ef806ab88fb4913e1abf6a19434dc2a775087f6e
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58                unsigned int nr_bytes)
59 {
60         /*
61          * decide whether to reenable DMA -- 3 is a random magic for now,
62          * if we DMA timeout more than 3 times, just stay in PIO
63          */
64         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65             drive->retry_pio <= 3) {
66                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67                 ide_dma_on(drive);
68         }
69
70         return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76         const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77         struct ide_taskfile *tf = &cmd->tf;
78         struct request *rq = cmd->rq;
79         u8 tf_cmd = tf->command;
80
81         tf->error = err;
82         tf->status = stat;
83
84         if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85                 u8 data[2];
86
87                 tp_ops->input_data(drive, cmd, data, 2);
88
89                 cmd->tf.data  = data[0];
90                 cmd->hob.data = data[1];
91         }
92
93         ide_tf_readback(drive, cmd);
94
95         if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96             tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97                 if (tf->lbal != 0xc4) {
98                         printk(KERN_ERR "%s: head unload failed!\n",
99                                drive->name);
100                         ide_tf_dump(drive->name, cmd);
101                 } else
102                         drive->dev_flags |= IDE_DFLAG_PARKED;
103         }
104
105         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106                 struct ide_cmd *orig_cmd = rq->special;
107
108                 if (cmd->tf_flags & IDE_TFLAG_DYN)
109                         kfree(orig_cmd);
110                 else
111                         memcpy(orig_cmd, cmd, sizeof(*cmd));
112         }
113 }
114
115 /* obsolete, blk_rq_bytes() should be used instead */
116 unsigned int ide_rq_bytes(struct request *rq)
117 {
118         if (blk_pc_request(rq))
119                 return rq->data_len;
120         else
121                 return rq->hard_cur_sectors << 9;
122 }
123 EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126 {
127         ide_hwif_t *hwif = drive->hwif;
128         struct request *rq = hwif->rq;
129         int rc;
130
131         /*
132          * if failfast is set on a request, override number of sectors
133          * and complete the whole request right now
134          */
135         if (blk_noretry_request(rq) && error <= 0)
136                 nr_bytes = rq->hard_nr_sectors << 9;
137
138         rc = ide_end_rq(drive, rq, error, nr_bytes);
139         if (rc == 0)
140                 hwif->rq = NULL;
141
142         return rc;
143 }
144 EXPORT_SYMBOL(ide_complete_rq);
145
146 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147 {
148         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149         u8 media = drive->media;
150
151         drive->failed_pc = NULL;
152
153         if ((media == ide_floppy || media == ide_tape) && drv_req) {
154                 rq->errors = 0;
155                 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156         } else {
157                 if (media == ide_tape)
158                         rq->errors = IDE_DRV_ERROR_GENERAL;
159                 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160                         rq->errors = -EIO;
161                 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162         }
163 }
164
165 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167         tf->nsect   = drive->sect;
168         tf->lbal    = drive->sect;
169         tf->lbam    = drive->cyl;
170         tf->lbah    = drive->cyl >> 8;
171         tf->device  = (drive->head - 1) | drive->select;
172         tf->command = ATA_CMD_INIT_DEV_PARAMS;
173 }
174
175 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176 {
177         tf->nsect   = drive->sect;
178         tf->command = ATA_CMD_RESTORE;
179 }
180
181 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182 {
183         tf->nsect   = drive->mult_req;
184         tf->command = ATA_CMD_SET_MULTI;
185 }
186
187 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
188 {
189         special_t *s = &drive->special;
190         struct ide_cmd cmd;
191
192         memset(&cmd, 0, sizeof(cmd));
193         cmd.protocol = ATA_PROT_NODATA;
194
195         if (s->b.set_geometry) {
196                 s->b.set_geometry = 0;
197                 ide_tf_set_specify_cmd(drive, &cmd.tf);
198         } else if (s->b.recalibrate) {
199                 s->b.recalibrate = 0;
200                 ide_tf_set_restore_cmd(drive, &cmd.tf);
201         } else if (s->b.set_multmode) {
202                 s->b.set_multmode = 0;
203                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
204         } else
205                 BUG();
206
207         cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
208         cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
209         cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
210
211         do_rw_taskfile(drive, &cmd);
212
213         return ide_started;
214 }
215
216 /**
217  *      do_special              -       issue some special commands
218  *      @drive: drive the command is for
219  *
220  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
221  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
222  *
223  *      It used to do much more, but has been scaled back.
224  */
225
226 static ide_startstop_t do_special (ide_drive_t *drive)
227 {
228         special_t *s = &drive->special;
229
230 #ifdef DEBUG
231         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
232 #endif
233         if (drive->media == ide_disk)
234                 return ide_disk_special(drive);
235
236         s->all = 0;
237         drive->mult_req = 0;
238         return ide_stopped;
239 }
240
241 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
242 {
243         ide_hwif_t *hwif = drive->hwif;
244         struct scatterlist *sg = hwif->sg_table;
245         struct request *rq = cmd->rq;
246
247         cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
248 }
249 EXPORT_SYMBOL_GPL(ide_map_sg);
250
251 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
252 {
253         cmd->nbytes = cmd->nleft = nr_bytes;
254         cmd->cursg_ofs = 0;
255         cmd->cursg = NULL;
256 }
257 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
258
259 /**
260  *      execute_drive_command   -       issue special drive command
261  *      @drive: the drive to issue the command on
262  *      @rq: the request structure holding the command
263  *
264  *      execute_drive_cmd() issues a special drive command,  usually 
265  *      initiated by ioctl() from the external hdparm program. The
266  *      command can be a drive command, drive task or taskfile 
267  *      operation. Weirdly you can call it with NULL to wait for
268  *      all commands to finish. Don't do this as that is due to change
269  */
270
271 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
272                 struct request *rq)
273 {
274         struct ide_cmd *cmd = rq->special;
275
276         if (cmd) {
277                 if (cmd->protocol == ATA_PROT_PIO) {
278                         ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
279                         ide_map_sg(drive, cmd);
280                 }
281
282                 return do_rw_taskfile(drive, cmd);
283         }
284
285         /*
286          * NULL is actually a valid way of waiting for
287          * all current requests to be flushed from the queue.
288          */
289 #ifdef DEBUG
290         printk("%s: DRIVE_CMD (null)\n", drive->name);
291 #endif
292         rq->errors = 0;
293         ide_complete_rq(drive, 0, blk_rq_bytes(rq));
294
295         return ide_stopped;
296 }
297
298 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
299 {
300         u8 cmd = rq->cmd[0];
301
302         switch (cmd) {
303         case REQ_PARK_HEADS:
304         case REQ_UNPARK_HEADS:
305                 return ide_do_park_unpark(drive, rq);
306         case REQ_DEVSET_EXEC:
307                 return ide_do_devset(drive, rq);
308         case REQ_DRIVE_RESET:
309                 return ide_do_reset(drive);
310         default:
311                 BUG();
312         }
313 }
314
315 /**
316  *      start_request   -       start of I/O and command issuing for IDE
317  *
318  *      start_request() initiates handling of a new I/O request. It
319  *      accepts commands and I/O (read/write) requests.
320  *
321  *      FIXME: this function needs a rename
322  */
323  
324 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
325 {
326         ide_startstop_t startstop;
327
328         BUG_ON(!blk_rq_started(rq));
329
330 #ifdef DEBUG
331         printk("%s: start_request: current=0x%08lx\n",
332                 drive->hwif->name, (unsigned long) rq);
333 #endif
334
335         /* bail early if we've exceeded max_failures */
336         if (drive->max_failures && (drive->failures > drive->max_failures)) {
337                 rq->cmd_flags |= REQ_FAILED;
338                 goto kill_rq;
339         }
340
341         if (blk_pm_request(rq))
342                 ide_check_pm_state(drive, rq);
343
344         drive->hwif->tp_ops->dev_select(drive);
345         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
346                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
347                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
348                 return startstop;
349         }
350         if (!drive->special.all) {
351                 struct ide_driver *drv;
352
353                 /*
354                  * We reset the drive so we need to issue a SETFEATURES.
355                  * Do it _after_ do_special() restored device parameters.
356                  */
357                 if (drive->current_speed == 0xff)
358                         ide_config_drive_speed(drive, drive->desired_speed);
359
360                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
361                         return execute_drive_cmd(drive, rq);
362                 else if (blk_pm_request(rq)) {
363                         struct request_pm_state *pm = rq->special;
364 #ifdef DEBUG_PM
365                         printk("%s: start_power_step(step: %d)\n",
366                                 drive->name, pm->pm_step);
367 #endif
368                         startstop = ide_start_power_step(drive, rq);
369                         if (startstop == ide_stopped &&
370                             pm->pm_step == IDE_PM_COMPLETED)
371                                 ide_complete_pm_rq(drive, rq);
372                         return startstop;
373                 } else if (!rq->rq_disk && blk_special_request(rq))
374                         /*
375                          * TODO: Once all ULDs have been modified to
376                          * check for specific op codes rather than
377                          * blindly accepting any special request, the
378                          * check for ->rq_disk above may be replaced
379                          * by a more suitable mechanism or even
380                          * dropped entirely.
381                          */
382                         return ide_special_rq(drive, rq);
383
384                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
385
386                 return drv->do_request(drive, rq, rq->sector);
387         }
388         return do_special(drive);
389 kill_rq:
390         ide_kill_rq(drive, rq);
391         return ide_stopped;
392 }
393
394 /**
395  *      ide_stall_queue         -       pause an IDE device
396  *      @drive: drive to stall
397  *      @timeout: time to stall for (jiffies)
398  *
399  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
400  *      to the port by sleeping for timeout jiffies.
401  */
402  
403 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
404 {
405         if (timeout > WAIT_WORSTCASE)
406                 timeout = WAIT_WORSTCASE;
407         drive->sleep = timeout + jiffies;
408         drive->dev_flags |= IDE_DFLAG_SLEEPING;
409 }
410 EXPORT_SYMBOL(ide_stall_queue);
411
412 static inline int ide_lock_port(ide_hwif_t *hwif)
413 {
414         if (hwif->busy)
415                 return 1;
416
417         hwif->busy = 1;
418
419         return 0;
420 }
421
422 static inline void ide_unlock_port(ide_hwif_t *hwif)
423 {
424         hwif->busy = 0;
425 }
426
427 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
428 {
429         int rc = 0;
430
431         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
432                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
433                 if (rc == 0) {
434                         if (host->get_lock)
435                                 host->get_lock(ide_intr, hwif);
436                 }
437         }
438         return rc;
439 }
440
441 static inline void ide_unlock_host(struct ide_host *host)
442 {
443         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
444                 if (host->release_lock)
445                         host->release_lock();
446                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
447         }
448 }
449
450 /*
451  * Issue a new request to a device.
452  */
453 void do_ide_request(struct request_queue *q)
454 {
455         ide_drive_t     *drive = q->queuedata;
456         ide_hwif_t      *hwif = drive->hwif;
457         struct ide_host *host = hwif->host;
458         struct request  *rq = NULL;
459         ide_startstop_t startstop;
460
461         /*
462          * drive is doing pre-flush, ordered write, post-flush sequence. even
463          * though that is 3 requests, it must be seen as a single transaction.
464          * we must not preempt this drive until that is complete
465          */
466         if (blk_queue_flushing(q))
467                 /*
468                  * small race where queue could get replugged during
469                  * the 3-request flush cycle, just yank the plug since
470                  * we want it to finish asap
471                  */
472                 blk_remove_plug(q);
473
474         spin_unlock_irq(q->queue_lock);
475
476         /* HLD do_request() callback might sleep, make sure it's okay */
477         might_sleep();
478
479         if (ide_lock_host(host, hwif))
480                 goto plug_device_2;
481
482         spin_lock_irq(&hwif->lock);
483
484         if (!ide_lock_port(hwif)) {
485                 ide_hwif_t *prev_port;
486 repeat:
487                 prev_port = hwif->host->cur_port;
488                 hwif->rq = NULL;
489
490                 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
491                     time_after(drive->sleep, jiffies)) {
492                         ide_unlock_port(hwif);
493                         goto plug_device;
494                 }
495
496                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
497                     hwif != prev_port) {
498                         /*
499                          * set nIEN for previous port, drives in the
500                          * quirk_list may not like intr setups/cleanups
501                          */
502                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
503                                 prev_port->tp_ops->write_devctl(prev_port,
504                                                                 ATA_NIEN |
505                                                                 ATA_DEVCTL_OBS);
506
507                         hwif->host->cur_port = hwif;
508                 }
509                 hwif->cur_dev = drive;
510                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
511
512                 spin_unlock_irq(&hwif->lock);
513                 spin_lock_irq(q->queue_lock);
514                 /*
515                  * we know that the queue isn't empty, but this can happen
516                  * if the q->prep_rq_fn() decides to kill a request
517                  */
518                 rq = elv_next_request(drive->queue);
519                 spin_unlock_irq(q->queue_lock);
520                 spin_lock_irq(&hwif->lock);
521
522                 if (!rq) {
523                         ide_unlock_port(hwif);
524                         goto out;
525                 }
526
527                 /*
528                  * Sanity: don't accept a request that isn't a PM request
529                  * if we are currently power managed. This is very important as
530                  * blk_stop_queue() doesn't prevent the elv_next_request()
531                  * above to return us whatever is in the queue. Since we call
532                  * ide_do_request() ourselves, we end up taking requests while
533                  * the queue is blocked...
534                  * 
535                  * We let requests forced at head of queue with ide-preempt
536                  * though. I hope that doesn't happen too much, hopefully not
537                  * unless the subdriver triggers such a thing in its own PM
538                  * state machine.
539                  */
540                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
541                     blk_pm_request(rq) == 0 &&
542                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
543                         /* there should be no pending command at this point */
544                         ide_unlock_port(hwif);
545                         goto plug_device;
546                 }
547
548                 hwif->rq = rq;
549
550                 spin_unlock_irq(&hwif->lock);
551                 startstop = start_request(drive, rq);
552                 spin_lock_irq(&hwif->lock);
553
554                 if (startstop == ide_stopped)
555                         goto repeat;
556         } else
557                 goto plug_device;
558 out:
559         spin_unlock_irq(&hwif->lock);
560         if (rq == NULL)
561                 ide_unlock_host(host);
562         spin_lock_irq(q->queue_lock);
563         return;
564
565 plug_device:
566         spin_unlock_irq(&hwif->lock);
567         ide_unlock_host(host);
568 plug_device_2:
569         spin_lock_irq(q->queue_lock);
570
571         if (!elv_queue_empty(q))
572                 blk_plug_device(q);
573 }
574
575 static void ide_plug_device(ide_drive_t *drive)
576 {
577         struct request_queue *q = drive->queue;
578         unsigned long flags;
579
580         spin_lock_irqsave(q->queue_lock, flags);
581         if (!elv_queue_empty(q))
582                 blk_plug_device(q);
583         spin_unlock_irqrestore(q->queue_lock, flags);
584 }
585
586 static int drive_is_ready(ide_drive_t *drive)
587 {
588         ide_hwif_t *hwif = drive->hwif;
589         u8 stat = 0;
590
591         if (drive->waiting_for_dma)
592                 return hwif->dma_ops->dma_test_irq(drive);
593
594         if (hwif->io_ports.ctl_addr &&
595             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
596                 stat = hwif->tp_ops->read_altstatus(hwif);
597         else
598                 /* Note: this may clear a pending IRQ!! */
599                 stat = hwif->tp_ops->read_status(hwif);
600
601         if (stat & ATA_BUSY)
602                 /* drive busy: definitely not interrupting */
603                 return 0;
604
605         /* drive ready: *might* be interrupting */
606         return 1;
607 }
608
609 /**
610  *      ide_timer_expiry        -       handle lack of an IDE interrupt
611  *      @data: timer callback magic (hwif)
612  *
613  *      An IDE command has timed out before the expected drive return
614  *      occurred. At this point we attempt to clean up the current
615  *      mess. If the current handler includes an expiry handler then
616  *      we invoke the expiry handler, and providing it is happy the
617  *      work is done. If that fails we apply generic recovery rules
618  *      invoking the handler and checking the drive DMA status. We
619  *      have an excessively incestuous relationship with the DMA
620  *      logic that wants cleaning up.
621  */
622  
623 void ide_timer_expiry (unsigned long data)
624 {
625         ide_hwif_t      *hwif = (ide_hwif_t *)data;
626         ide_drive_t     *uninitialized_var(drive);
627         ide_handler_t   *handler;
628         unsigned long   flags;
629         int             wait = -1;
630         int             plug_device = 0;
631
632         spin_lock_irqsave(&hwif->lock, flags);
633
634         handler = hwif->handler;
635
636         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
637                 /*
638                  * Either a marginal timeout occurred
639                  * (got the interrupt just as timer expired),
640                  * or we were "sleeping" to give other devices a chance.
641                  * Either way, we don't really want to complain about anything.
642                  */
643         } else {
644                 ide_expiry_t *expiry = hwif->expiry;
645                 ide_startstop_t startstop = ide_stopped;
646
647                 drive = hwif->cur_dev;
648
649                 if (expiry) {
650                         wait = expiry(drive);
651                         if (wait > 0) { /* continue */
652                                 /* reset timer */
653                                 hwif->timer.expires = jiffies + wait;
654                                 hwif->req_gen_timer = hwif->req_gen;
655                                 add_timer(&hwif->timer);
656                                 spin_unlock_irqrestore(&hwif->lock, flags);
657                                 return;
658                         }
659                 }
660                 hwif->handler = NULL;
661                 hwif->expiry = NULL;
662                 /*
663                  * We need to simulate a real interrupt when invoking
664                  * the handler() function, which means we need to
665                  * globally mask the specific IRQ:
666                  */
667                 spin_unlock(&hwif->lock);
668                 /* disable_irq_nosync ?? */
669                 disable_irq(hwif->irq);
670                 /* local CPU only, as if we were handling an interrupt */
671                 local_irq_disable();
672                 if (hwif->polling) {
673                         startstop = handler(drive);
674                 } else if (drive_is_ready(drive)) {
675                         if (drive->waiting_for_dma)
676                                 hwif->dma_ops->dma_lost_irq(drive);
677                         if (hwif->ack_intr)
678                                 hwif->ack_intr(hwif);
679                         printk(KERN_WARNING "%s: lost interrupt\n",
680                                 drive->name);
681                         startstop = handler(drive);
682                 } else {
683                         if (drive->waiting_for_dma)
684                                 startstop = ide_dma_timeout_retry(drive, wait);
685                         else
686                                 startstop = ide_error(drive, "irq timeout",
687                                         hwif->tp_ops->read_status(hwif));
688                 }
689                 spin_lock_irq(&hwif->lock);
690                 enable_irq(hwif->irq);
691                 if (startstop == ide_stopped) {
692                         ide_unlock_port(hwif);
693                         plug_device = 1;
694                 }
695         }
696         spin_unlock_irqrestore(&hwif->lock, flags);
697
698         if (plug_device) {
699                 ide_unlock_host(hwif->host);
700                 ide_plug_device(drive);
701         }
702 }
703
704 /**
705  *      unexpected_intr         -       handle an unexpected IDE interrupt
706  *      @irq: interrupt line
707  *      @hwif: port being processed
708  *
709  *      There's nothing really useful we can do with an unexpected interrupt,
710  *      other than reading the status register (to clear it), and logging it.
711  *      There should be no way that an irq can happen before we're ready for it,
712  *      so we needn't worry much about losing an "important" interrupt here.
713  *
714  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
715  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
716  *      looks "good", we just ignore the interrupt completely.
717  *
718  *      This routine assumes __cli() is in effect when called.
719  *
720  *      If an unexpected interrupt happens on irq15 while we are handling irq14
721  *      and if the two interfaces are "serialized" (CMD640), then it looks like
722  *      we could screw up by interfering with a new request being set up for 
723  *      irq15.
724  *
725  *      In reality, this is a non-issue.  The new command is not sent unless 
726  *      the drive is ready to accept one, in which case we know the drive is
727  *      not trying to interrupt us.  And ide_set_handler() is always invoked
728  *      before completing the issuance of any new drive command, so we will not
729  *      be accidentally invoked as a result of any valid command completion
730  *      interrupt.
731  */
732
733 static void unexpected_intr(int irq, ide_hwif_t *hwif)
734 {
735         u8 stat = hwif->tp_ops->read_status(hwif);
736
737         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
738                 /* Try to not flood the console with msgs */
739                 static unsigned long last_msgtime, count;
740                 ++count;
741
742                 if (time_after(jiffies, last_msgtime + HZ)) {
743                         last_msgtime = jiffies;
744                         printk(KERN_ERR "%s: unexpected interrupt, "
745                                 "status=0x%02x, count=%ld\n",
746                                 hwif->name, stat, count);
747                 }
748         }
749 }
750
751 /**
752  *      ide_intr        -       default IDE interrupt handler
753  *      @irq: interrupt number
754  *      @dev_id: hwif
755  *      @regs: unused weirdness from the kernel irq layer
756  *
757  *      This is the default IRQ handler for the IDE layer. You should
758  *      not need to override it. If you do be aware it is subtle in
759  *      places
760  *
761  *      hwif is the interface in the group currently performing
762  *      a command. hwif->cur_dev is the drive and hwif->handler is
763  *      the IRQ handler to call. As we issue a command the handlers
764  *      step through multiple states, reassigning the handler to the
765  *      next step in the process. Unlike a smart SCSI controller IDE
766  *      expects the main processor to sequence the various transfer
767  *      stages. We also manage a poll timer to catch up with most
768  *      timeout situations. There are still a few where the handlers
769  *      don't ever decide to give up.
770  *
771  *      The handler eventually returns ide_stopped to indicate the
772  *      request completed. At this point we issue the next request
773  *      on the port and the process begins again.
774  */
775
776 irqreturn_t ide_intr (int irq, void *dev_id)
777 {
778         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
779         struct ide_host *host = hwif->host;
780         ide_drive_t *uninitialized_var(drive);
781         ide_handler_t *handler;
782         unsigned long flags;
783         ide_startstop_t startstop;
784         irqreturn_t irq_ret = IRQ_NONE;
785         int plug_device = 0;
786
787         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
788                 if (hwif != host->cur_port)
789                         goto out_early;
790         }
791
792         spin_lock_irqsave(&hwif->lock, flags);
793
794         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
795                 goto out;
796
797         handler = hwif->handler;
798
799         if (handler == NULL || hwif->polling) {
800                 /*
801                  * Not expecting an interrupt from this drive.
802                  * That means this could be:
803                  *      (1) an interrupt from another PCI device
804                  *      sharing the same PCI INT# as us.
805                  * or   (2) a drive just entered sleep or standby mode,
806                  *      and is interrupting to let us know.
807                  * or   (3) a spurious interrupt of unknown origin.
808                  *
809                  * For PCI, we cannot tell the difference,
810                  * so in that case we just ignore it and hope it goes away.
811                  */
812                 if ((host->irq_flags & IRQF_SHARED) == 0) {
813                         /*
814                          * Probably not a shared PCI interrupt,
815                          * so we can safely try to do something about it:
816                          */
817                         unexpected_intr(irq, hwif);
818                 } else {
819                         /*
820                          * Whack the status register, just in case
821                          * we have a leftover pending IRQ.
822                          */
823                         (void)hwif->tp_ops->read_status(hwif);
824                 }
825                 goto out;
826         }
827
828         drive = hwif->cur_dev;
829
830         if (!drive_is_ready(drive))
831                 /*
832                  * This happens regularly when we share a PCI IRQ with
833                  * another device.  Unfortunately, it can also happen
834                  * with some buggy drives that trigger the IRQ before
835                  * their status register is up to date.  Hopefully we have
836                  * enough advance overhead that the latter isn't a problem.
837                  */
838                 goto out;
839
840         hwif->handler = NULL;
841         hwif->expiry = NULL;
842         hwif->req_gen++;
843         del_timer(&hwif->timer);
844         spin_unlock(&hwif->lock);
845
846         if (hwif->port_ops && hwif->port_ops->clear_irq)
847                 hwif->port_ops->clear_irq(drive);
848
849         if (drive->dev_flags & IDE_DFLAG_UNMASK)
850                 local_irq_enable_in_hardirq();
851
852         /* service this interrupt, may set handler for next interrupt */
853         startstop = handler(drive);
854
855         spin_lock_irq(&hwif->lock);
856         /*
857          * Note that handler() may have set things up for another
858          * interrupt to occur soon, but it cannot happen until
859          * we exit from this routine, because it will be the
860          * same irq as is currently being serviced here, and Linux
861          * won't allow another of the same (on any CPU) until we return.
862          */
863         if (startstop == ide_stopped) {
864                 BUG_ON(hwif->handler);
865                 ide_unlock_port(hwif);
866                 plug_device = 1;
867         }
868         irq_ret = IRQ_HANDLED;
869 out:
870         spin_unlock_irqrestore(&hwif->lock, flags);
871 out_early:
872         if (plug_device) {
873                 ide_unlock_host(hwif->host);
874                 ide_plug_device(drive);
875         }
876
877         return irq_ret;
878 }
879 EXPORT_SYMBOL_GPL(ide_intr);
880
881 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
882 {
883         ide_hwif_t *hwif = drive->hwif;
884         u8 buf[4] = { 0 };
885
886         while (len > 0) {
887                 if (write)
888                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
889                 else
890                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
891                 len -= 4;
892         }
893 }
894 EXPORT_SYMBOL_GPL(ide_pad_transfer);