ide: remove redundant code from ide_end_drive_cmd()
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->hwgroup->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->hwgroup->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
124 {
125         struct request_pm_state *pm = rq->data;
126
127 #ifdef DEBUG_PM
128         printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
129                 drive->name, pm->pm_step);
130 #endif
131         if (drive->media != ide_disk)
132                 return;
133
134         switch (pm->pm_step) {
135         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
136                 if (pm->pm_state == PM_EVENT_FREEZE)
137                         pm->pm_step = IDE_PM_COMPLETED;
138                 else
139                         pm->pm_step = IDE_PM_STANDBY;
140                 break;
141         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
142                 pm->pm_step = IDE_PM_COMPLETED;
143                 break;
144         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
145                 pm->pm_step = IDE_PM_IDLE;
146                 break;
147         case IDE_PM_IDLE:               /* Resume step 2 (idle)*/
148                 pm->pm_step = IDE_PM_RESTORE_DMA;
149                 break;
150         }
151 }
152
153 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
154 {
155         struct request_pm_state *pm = rq->data;
156         ide_task_t *args = rq->special;
157
158         memset(args, 0, sizeof(*args));
159
160         switch (pm->pm_step) {
161         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
162                 if (drive->media != ide_disk)
163                         break;
164                 /* Not supported? Switch to next step now. */
165                 if (ata_id_flush_enabled(drive->id) == 0 ||
166                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
167                         ide_complete_power_step(drive, rq);
168                         return ide_stopped;
169                 }
170                 if (ata_id_flush_ext_enabled(drive->id))
171                         args->tf.command = ATA_CMD_FLUSH_EXT;
172                 else
173                         args->tf.command = ATA_CMD_FLUSH;
174                 goto out_do_tf;
175         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
176                 args->tf.command = ATA_CMD_STANDBYNOW1;
177                 goto out_do_tf;
178         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
179                 ide_set_max_pio(drive);
180                 /*
181                  * skip IDE_PM_IDLE for ATAPI devices
182                  */
183                 if (drive->media != ide_disk)
184                         pm->pm_step = IDE_PM_RESTORE_DMA;
185                 else
186                         ide_complete_power_step(drive, rq);
187                 return ide_stopped;
188         case IDE_PM_IDLE:               /* Resume step 2 (idle) */
189                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
190                 goto out_do_tf;
191         case IDE_PM_RESTORE_DMA:        /* Resume step 3 (restore DMA) */
192                 /*
193                  * Right now, all we do is call ide_set_dma(drive),
194                  * we could be smarter and check for current xfer_speed
195                  * in struct drive etc...
196                  */
197                 if (drive->hwif->dma_ops == NULL)
198                         break;
199                 /*
200                  * TODO: respect IDE_DFLAG_USING_DMA
201                  */
202                 ide_set_dma(drive);
203                 break;
204         }
205
206         pm->pm_step = IDE_PM_COMPLETED;
207         return ide_stopped;
208
209 out_do_tf:
210         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
211         args->data_phase = TASKFILE_NO_DATA;
212         return do_rw_taskfile(drive, args);
213 }
214
215 /**
216  *      ide_end_dequeued_request        -       complete an IDE I/O
217  *      @drive: IDE device for the I/O
218  *      @uptodate:
219  *      @nr_sectors: number of sectors completed
220  *
221  *      Complete an I/O that is no longer on the request queue. This
222  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
223  *      We must still finish the old request but we must not tamper with the
224  *      queue in the meantime.
225  *
226  *      NOTE: This path does not handle barrier, but barrier is not supported
227  *      on ide-cd anyway.
228  */
229
230 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
231                              int uptodate, int nr_sectors)
232 {
233         BUG_ON(!blk_rq_started(rq));
234
235         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
236 }
237 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
238
239
240 /**
241  *      ide_complete_pm_request - end the current Power Management request
242  *      @drive: target drive
243  *      @rq: request
244  *
245  *      This function cleans up the current PM request and stops the queue
246  *      if necessary.
247  */
248 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
249 {
250         struct request_queue *q = drive->queue;
251         unsigned long flags;
252
253 #ifdef DEBUG_PM
254         printk("%s: completing PM request, %s\n", drive->name,
255                blk_pm_suspend_request(rq) ? "suspend" : "resume");
256 #endif
257         spin_lock_irqsave(q->queue_lock, flags);
258         if (blk_pm_suspend_request(rq)) {
259                 blk_stop_queue(q);
260         } else {
261                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
262                 blk_start_queue(q);
263         }
264         spin_unlock_irqrestore(q->queue_lock, flags);
265
266         drive->hwif->hwgroup->rq = NULL;
267
268         if (blk_end_request(rq, 0, 0))
269                 BUG();
270 }
271
272 /**
273  *      ide_end_drive_cmd       -       end an explicit drive command
274  *      @drive: command 
275  *      @stat: status bits
276  *      @err: error bits
277  *
278  *      Clean up after success/failure of an explicit drive command.
279  *      These get thrown onto the queue so they are synchronized with
280  *      real I/O operations on the drive.
281  *
282  *      In LBA48 mode we have to read the register set twice to get
283  *      all the extra information out.
284  */
285  
286 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
287 {
288         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
289         struct request *rq = hwgroup->rq;
290
291         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
292                 ide_task_t *task = (ide_task_t *)rq->special;
293
294                 if (task) {
295                         struct ide_taskfile *tf = &task->tf;
296
297                         tf->error = err;
298                         tf->status = stat;
299
300                         drive->hwif->tp_ops->tf_read(drive, task);
301
302                         if (task->tf_flags & IDE_TFLAG_DYN)
303                                 kfree(task);
304                 }
305         } else if (blk_pm_request(rq)) {
306                 struct request_pm_state *pm = rq->data;
307
308                 ide_complete_power_step(drive, rq);
309                 if (pm->pm_step == IDE_PM_COMPLETED)
310                         ide_complete_pm_request(drive, rq);
311                 return;
312         }
313
314         hwgroup->rq = NULL;
315
316         rq->errors = err;
317
318         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
319                                      blk_rq_bytes(rq))))
320                 BUG();
321 }
322 EXPORT_SYMBOL(ide_end_drive_cmd);
323
324 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
325 {
326         if (rq->rq_disk) {
327                 ide_driver_t *drv;
328
329                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
330                 drv->end_request(drive, 0, 0);
331         } else
332                 ide_end_request(drive, 0, 0);
333 }
334
335 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
336 {
337         ide_hwif_t *hwif = drive->hwif;
338
339         if ((stat & ATA_BUSY) ||
340             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
341                 /* other bits are useless when BUSY */
342                 rq->errors |= ERROR_RESET;
343         } else if (stat & ATA_ERR) {
344                 /* err has different meaning on cdrom and tape */
345                 if (err == ATA_ABORTED) {
346                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
347                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
348                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
349                                 return ide_stopped;
350                 } else if ((err & BAD_CRC) == BAD_CRC) {
351                         /* UDMA crc error, just retry the operation */
352                         drive->crc_count++;
353                 } else if (err & (ATA_BBK | ATA_UNC)) {
354                         /* retries won't help these */
355                         rq->errors = ERROR_MAX;
356                 } else if (err & ATA_TRK0NF) {
357                         /* help it find track zero */
358                         rq->errors |= ERROR_RECAL;
359                 }
360         }
361
362         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
363             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
364                 int nsect = drive->mult_count ? drive->mult_count : 1;
365
366                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
367         }
368
369         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
370                 ide_kill_rq(drive, rq);
371                 return ide_stopped;
372         }
373
374         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
375                 rq->errors |= ERROR_RESET;
376
377         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
378                 ++rq->errors;
379                 return ide_do_reset(drive);
380         }
381
382         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
383                 drive->special.b.recalibrate = 1;
384
385         ++rq->errors;
386
387         return ide_stopped;
388 }
389
390 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
391 {
392         ide_hwif_t *hwif = drive->hwif;
393
394         if ((stat & ATA_BUSY) ||
395             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
396                 /* other bits are useless when BUSY */
397                 rq->errors |= ERROR_RESET;
398         } else {
399                 /* add decoding error stuff */
400         }
401
402         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
403                 /* force an abort */
404                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
405
406         if (rq->errors >= ERROR_MAX) {
407                 ide_kill_rq(drive, rq);
408         } else {
409                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
410                         ++rq->errors;
411                         return ide_do_reset(drive);
412                 }
413                 ++rq->errors;
414         }
415
416         return ide_stopped;
417 }
418
419 ide_startstop_t
420 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
421 {
422         if (drive->media == ide_disk)
423                 return ide_ata_error(drive, rq, stat, err);
424         return ide_atapi_error(drive, rq, stat, err);
425 }
426
427 EXPORT_SYMBOL_GPL(__ide_error);
428
429 /**
430  *      ide_error       -       handle an error on the IDE
431  *      @drive: drive the error occurred on
432  *      @msg: message to report
433  *      @stat: status bits
434  *
435  *      ide_error() takes action based on the error returned by the drive.
436  *      For normal I/O that may well include retries. We deal with
437  *      both new-style (taskfile) and old style command handling here.
438  *      In the case of taskfile command handling there is work left to
439  *      do
440  */
441  
442 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
443 {
444         struct request *rq;
445         u8 err;
446
447         err = ide_dump_status(drive, msg, stat);
448
449         if ((rq = HWGROUP(drive)->rq) == NULL)
450                 return ide_stopped;
451
452         /* retry only "normal" I/O: */
453         if (!blk_fs_request(rq)) {
454                 rq->errors = 1;
455                 ide_end_drive_cmd(drive, stat, err);
456                 return ide_stopped;
457         }
458
459         if (rq->rq_disk) {
460                 ide_driver_t *drv;
461
462                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
463                 return drv->error(drive, rq, stat, err);
464         } else
465                 return __ide_error(drive, rq, stat, err);
466 }
467
468 EXPORT_SYMBOL_GPL(ide_error);
469
470 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
471 {
472         tf->nsect   = drive->sect;
473         tf->lbal    = drive->sect;
474         tf->lbam    = drive->cyl;
475         tf->lbah    = drive->cyl >> 8;
476         tf->device  = (drive->head - 1) | drive->select;
477         tf->command = ATA_CMD_INIT_DEV_PARAMS;
478 }
479
480 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
481 {
482         tf->nsect   = drive->sect;
483         tf->command = ATA_CMD_RESTORE;
484 }
485
486 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
487 {
488         tf->nsect   = drive->mult_req;
489         tf->command = ATA_CMD_SET_MULTI;
490 }
491
492 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
493 {
494         special_t *s = &drive->special;
495         ide_task_t args;
496
497         memset(&args, 0, sizeof(ide_task_t));
498         args.data_phase = TASKFILE_NO_DATA;
499
500         if (s->b.set_geometry) {
501                 s->b.set_geometry = 0;
502                 ide_tf_set_specify_cmd(drive, &args.tf);
503         } else if (s->b.recalibrate) {
504                 s->b.recalibrate = 0;
505                 ide_tf_set_restore_cmd(drive, &args.tf);
506         } else if (s->b.set_multmode) {
507                 s->b.set_multmode = 0;
508                 ide_tf_set_setmult_cmd(drive, &args.tf);
509         } else if (s->all) {
510                 int special = s->all;
511                 s->all = 0;
512                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
513                 return ide_stopped;
514         }
515
516         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
517                         IDE_TFLAG_CUSTOM_HANDLER;
518
519         do_rw_taskfile(drive, &args);
520
521         return ide_started;
522 }
523
524 /**
525  *      do_special              -       issue some special commands
526  *      @drive: drive the command is for
527  *
528  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
529  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
530  *
531  *      It used to do much more, but has been scaled back.
532  */
533
534 static ide_startstop_t do_special (ide_drive_t *drive)
535 {
536         special_t *s = &drive->special;
537
538 #ifdef DEBUG
539         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
540 #endif
541         if (drive->media == ide_disk)
542                 return ide_disk_special(drive);
543
544         s->all = 0;
545         drive->mult_req = 0;
546         return ide_stopped;
547 }
548
549 void ide_map_sg(ide_drive_t *drive, struct request *rq)
550 {
551         ide_hwif_t *hwif = drive->hwif;
552         struct scatterlist *sg = hwif->sg_table;
553
554         if (hwif->sg_mapped)    /* needed by ide-scsi */
555                 return;
556
557         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
558                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
559         } else {
560                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
561                 hwif->sg_nents = 1;
562         }
563 }
564
565 EXPORT_SYMBOL_GPL(ide_map_sg);
566
567 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
568 {
569         ide_hwif_t *hwif = drive->hwif;
570
571         hwif->nsect = hwif->nleft = rq->nr_sectors;
572         hwif->cursg_ofs = 0;
573         hwif->cursg = NULL;
574 }
575
576 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
577
578 /**
579  *      execute_drive_command   -       issue special drive command
580  *      @drive: the drive to issue the command on
581  *      @rq: the request structure holding the command
582  *
583  *      execute_drive_cmd() issues a special drive command,  usually 
584  *      initiated by ioctl() from the external hdparm program. The
585  *      command can be a drive command, drive task or taskfile 
586  *      operation. Weirdly you can call it with NULL to wait for
587  *      all commands to finish. Don't do this as that is due to change
588  */
589
590 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
591                 struct request *rq)
592 {
593         ide_hwif_t *hwif = HWIF(drive);
594         ide_task_t *task = rq->special;
595
596         if (task) {
597                 hwif->data_phase = task->data_phase;
598
599                 switch (hwif->data_phase) {
600                 case TASKFILE_MULTI_OUT:
601                 case TASKFILE_OUT:
602                 case TASKFILE_MULTI_IN:
603                 case TASKFILE_IN:
604                         ide_init_sg_cmd(drive, rq);
605                         ide_map_sg(drive, rq);
606                 default:
607                         break;
608                 }
609
610                 return do_rw_taskfile(drive, task);
611         }
612
613         /*
614          * NULL is actually a valid way of waiting for
615          * all current requests to be flushed from the queue.
616          */
617 #ifdef DEBUG
618         printk("%s: DRIVE_CMD (null)\n", drive->name);
619 #endif
620         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
621                           ide_read_error(drive));
622
623         return ide_stopped;
624 }
625
626 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
627                        int arg)
628 {
629         struct request_queue *q = drive->queue;
630         struct request *rq;
631         int ret = 0;
632
633         if (!(setting->flags & DS_SYNC))
634                 return setting->set(drive, arg);
635
636         rq = blk_get_request(q, READ, __GFP_WAIT);
637         rq->cmd_type = REQ_TYPE_SPECIAL;
638         rq->cmd_len = 5;
639         rq->cmd[0] = REQ_DEVSET_EXEC;
640         *(int *)&rq->cmd[1] = arg;
641         rq->special = setting->set;
642
643         if (blk_execute_rq(q, NULL, rq, 0))
644                 ret = rq->errors;
645         blk_put_request(rq);
646
647         return ret;
648 }
649 EXPORT_SYMBOL_GPL(ide_devset_execute);
650
651 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
652 {
653         u8 cmd = rq->cmd[0];
654
655         if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
656                 ide_task_t task;
657                 struct ide_taskfile *tf = &task.tf;
658
659                 memset(&task, 0, sizeof(task));
660                 if (cmd == REQ_PARK_HEADS) {
661                         drive->sleep = *(unsigned long *)rq->special;
662                         drive->dev_flags |= IDE_DFLAG_SLEEPING;
663                         tf->command = ATA_CMD_IDLEIMMEDIATE;
664                         tf->feature = 0x44;
665                         tf->lbal = 0x4c;
666                         tf->lbam = 0x4e;
667                         tf->lbah = 0x55;
668                         task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
669                 } else          /* cmd == REQ_UNPARK_HEADS */
670                         tf->command = ATA_CMD_CHK_POWER;
671
672                 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
673                 task.rq = rq;
674                 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
675                 return do_rw_taskfile(drive, &task);
676         }
677
678         switch (cmd) {
679         case REQ_DEVSET_EXEC:
680         {
681                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
682
683                 err = setfunc(drive, *(int *)&rq->cmd[1]);
684                 if (err)
685                         rq->errors = err;
686                 else
687                         err = 1;
688                 ide_end_request(drive, err, 0);
689                 return ide_stopped;
690         }
691         case REQ_DRIVE_RESET:
692                 return ide_do_reset(drive);
693         default:
694                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
695                 ide_end_request(drive, 0, 0);
696                 return ide_stopped;
697         }
698 }
699
700 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
701 {
702         struct request_pm_state *pm = rq->data;
703
704         if (blk_pm_suspend_request(rq) &&
705             pm->pm_step == IDE_PM_START_SUSPEND)
706                 /* Mark drive blocked when starting the suspend sequence. */
707                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
708         else if (blk_pm_resume_request(rq) &&
709                  pm->pm_step == IDE_PM_START_RESUME) {
710                 /* 
711                  * The first thing we do on wakeup is to wait for BSY bit to
712                  * go away (with a looong timeout) as a drive on this hwif may
713                  * just be POSTing itself.
714                  * We do that before even selecting as the "other" device on
715                  * the bus may be broken enough to walk on our toes at this
716                  * point.
717                  */
718                 ide_hwif_t *hwif = drive->hwif;
719                 int rc;
720 #ifdef DEBUG_PM
721                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
722 #endif
723                 rc = ide_wait_not_busy(hwif, 35000);
724                 if (rc)
725                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
726                 SELECT_DRIVE(drive);
727                 hwif->tp_ops->set_irq(hwif, 1);
728                 rc = ide_wait_not_busy(hwif, 100000);
729                 if (rc)
730                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
731         }
732 }
733
734 /**
735  *      start_request   -       start of I/O and command issuing for IDE
736  *
737  *      start_request() initiates handling of a new I/O request. It
738  *      accepts commands and I/O (read/write) requests.
739  *
740  *      FIXME: this function needs a rename
741  */
742  
743 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
744 {
745         ide_startstop_t startstop;
746
747         BUG_ON(!blk_rq_started(rq));
748
749 #ifdef DEBUG
750         printk("%s: start_request: current=0x%08lx\n",
751                 HWIF(drive)->name, (unsigned long) rq);
752 #endif
753
754         /* bail early if we've exceeded max_failures */
755         if (drive->max_failures && (drive->failures > drive->max_failures)) {
756                 rq->cmd_flags |= REQ_FAILED;
757                 goto kill_rq;
758         }
759
760         if (blk_pm_request(rq))
761                 ide_check_pm_state(drive, rq);
762
763         SELECT_DRIVE(drive);
764         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
765                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
766                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
767                 return startstop;
768         }
769         if (!drive->special.all) {
770                 ide_driver_t *drv;
771
772                 /*
773                  * We reset the drive so we need to issue a SETFEATURES.
774                  * Do it _after_ do_special() restored device parameters.
775                  */
776                 if (drive->current_speed == 0xff)
777                         ide_config_drive_speed(drive, drive->desired_speed);
778
779                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
780                         return execute_drive_cmd(drive, rq);
781                 else if (blk_pm_request(rq)) {
782                         struct request_pm_state *pm = rq->data;
783 #ifdef DEBUG_PM
784                         printk("%s: start_power_step(step: %d)\n",
785                                 drive->name, pm->pm_step);
786 #endif
787                         startstop = ide_start_power_step(drive, rq);
788                         if (startstop == ide_stopped &&
789                             pm->pm_step == IDE_PM_COMPLETED)
790                                 ide_complete_pm_request(drive, rq);
791                         return startstop;
792                 } else if (!rq->rq_disk && blk_special_request(rq))
793                         /*
794                          * TODO: Once all ULDs have been modified to
795                          * check for specific op codes rather than
796                          * blindly accepting any special request, the
797                          * check for ->rq_disk above may be replaced
798                          * by a more suitable mechanism or even
799                          * dropped entirely.
800                          */
801                         return ide_special_rq(drive, rq);
802
803                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
804
805                 return drv->do_request(drive, rq, rq->sector);
806         }
807         return do_special(drive);
808 kill_rq:
809         ide_kill_rq(drive, rq);
810         return ide_stopped;
811 }
812
813 /**
814  *      ide_stall_queue         -       pause an IDE device
815  *      @drive: drive to stall
816  *      @timeout: time to stall for (jiffies)
817  *
818  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
819  *      to the hwgroup by sleeping for timeout jiffies.
820  */
821  
822 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
823 {
824         if (timeout > WAIT_WORSTCASE)
825                 timeout = WAIT_WORSTCASE;
826         drive->sleep = timeout + jiffies;
827         drive->dev_flags |= IDE_DFLAG_SLEEPING;
828 }
829
830 EXPORT_SYMBOL(ide_stall_queue);
831
832 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
833
834 /**
835  *      choose_drive            -       select a drive to service
836  *      @hwgroup: hardware group to select on
837  *
838  *      choose_drive() selects the next drive which will be serviced.
839  *      This is necessary because the IDE layer can't issue commands
840  *      to both drives on the same cable, unlike SCSI.
841  */
842  
843 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
844 {
845         ide_drive_t *drive, *best;
846
847 repeat: 
848         best = NULL;
849         drive = hwgroup->drive;
850
851         /*
852          * drive is doing pre-flush, ordered write, post-flush sequence. even
853          * though that is 3 requests, it must be seen as a single transaction.
854          * we must not preempt this drive until that is complete
855          */
856         if (blk_queue_flushing(drive->queue)) {
857                 /*
858                  * small race where queue could get replugged during
859                  * the 3-request flush cycle, just yank the plug since
860                  * we want it to finish asap
861                  */
862                 blk_remove_plug(drive->queue);
863                 return drive;
864         }
865
866         do {
867                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
868                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
869
870                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
871                     !elv_queue_empty(drive->queue)) {
872                         if (best == NULL ||
873                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
874                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
875                                 if (!blk_queue_plugged(drive->queue))
876                                         best = drive;
877                         }
878                 }
879         } while ((drive = drive->next) != hwgroup->drive);
880
881         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
882             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
883             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
884                 long t = (signed long)(WAKEUP(best) - jiffies);
885                 if (t >= WAIT_MIN_SLEEP) {
886                 /*
887                  * We *may* have some time to spare, but first let's see if
888                  * someone can potentially benefit from our nice mood today..
889                  */
890                         drive = best->next;
891                         do {
892                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
893                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
894                                  && time_before(WAKEUP(drive), jiffies + t))
895                                 {
896                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
897                                         goto repeat;
898                                 }
899                         } while ((drive = drive->next) != best);
900                 }
901         }
902         return best;
903 }
904
905 /*
906  * Issue a new request to a drive from hwgroup
907  * Caller must have already done spin_lock_irqsave(&hwgroup->lock, ..);
908  *
909  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
910  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
911  * may have both interfaces in a single hwgroup to "serialize" access.
912  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
913  * together into one hwgroup for serialized access.
914  *
915  * Note also that several hwgroups can end up sharing a single IRQ,
916  * possibly along with many other devices.  This is especially common in
917  * PCI-based systems with off-board IDE controller cards.
918  *
919  * The IDE driver uses a per-hwgroup spinlock to protect
920  * access to the request queues, and to protect the hwgroup->busy flag.
921  *
922  * The first thread into the driver for a particular hwgroup sets the
923  * hwgroup->busy flag to indicate that this hwgroup is now active,
924  * and then initiates processing of the top request from the request queue.
925  *
926  * Other threads attempting entry notice the busy setting, and will simply
927  * queue their new requests and exit immediately.  Note that hwgroup->busy
928  * remains set even when the driver is merely awaiting the next interrupt.
929  * Thus, the meaning is "this hwgroup is busy processing a request".
930  *
931  * When processing of a request completes, the completing thread or IRQ-handler
932  * will start the next request from the queue.  If no more work remains,
933  * the driver will clear the hwgroup->busy flag and exit.
934  *
935  * The per-hwgroup spinlock is used to protect all access to the
936  * hwgroup->busy flag, but is otherwise not needed for most processing in
937  * the driver.  This makes the driver much more friendlier to shared IRQs
938  * than previous designs, while remaining 100% (?) SMP safe and capable.
939  */
940 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
941 {
942         ide_drive_t     *drive;
943         ide_hwif_t      *hwif;
944         struct request  *rq;
945         ide_startstop_t startstop;
946         int             loops = 0;
947
948         /* caller must own hwgroup->lock */
949         BUG_ON(!irqs_disabled());
950
951         while (!hwgroup->busy) {
952                 hwgroup->busy = 1;
953                 /* for atari only */
954                 ide_get_lock(ide_intr, hwgroup);
955                 drive = choose_drive(hwgroup);
956                 if (drive == NULL) {
957                         int sleeping = 0;
958                         unsigned long sleep = 0; /* shut up, gcc */
959                         hwgroup->rq = NULL;
960                         drive = hwgroup->drive;
961                         do {
962                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
963                                     (sleeping == 0 ||
964                                      time_before(drive->sleep, sleep))) {
965                                         sleeping = 1;
966                                         sleep = drive->sleep;
967                                 }
968                         } while ((drive = drive->next) != hwgroup->drive);
969                         if (sleeping) {
970                 /*
971                  * Take a short snooze, and then wake up this hwgroup again.
972                  * This gives other hwgroups on the same a chance to
973                  * play fairly with us, just in case there are big differences
974                  * in relative throughputs.. don't want to hog the cpu too much.
975                  */
976                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
977                                         sleep = jiffies + WAIT_MIN_SLEEP;
978 #if 1
979                                 if (timer_pending(&hwgroup->timer))
980                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
981 #endif
982                                 /* so that ide_timer_expiry knows what to do */
983                                 hwgroup->sleeping = 1;
984                                 hwgroup->req_gen_timer = hwgroup->req_gen;
985                                 mod_timer(&hwgroup->timer, sleep);
986                                 /* we purposely leave hwgroup->busy==1
987                                  * while sleeping */
988                         } else {
989                                 /* Ugly, but how can we sleep for the lock
990                                  * otherwise? perhaps from tq_disk?
991                                  */
992
993                                 /* for atari only */
994                                 ide_release_lock();
995                                 hwgroup->busy = 0;
996                         }
997
998                         /* no more work for this hwgroup (for now) */
999                         return;
1000                 }
1001         again:
1002                 hwif = HWIF(drive);
1003                 if (hwif != hwgroup->hwif) {
1004                         /*
1005                          * set nIEN for previous hwif, drives in the
1006                          * quirk_list may not like intr setups/cleanups
1007                          */
1008                         if (drive->quirk_list == 0)
1009                                 hwif->tp_ops->set_irq(hwif, 0);
1010                 }
1011                 hwgroup->hwif = hwif;
1012                 hwgroup->drive = drive;
1013                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1014                 drive->service_start = jiffies;
1015
1016                 /*
1017                  * we know that the queue isn't empty, but this can happen
1018                  * if the q->prep_rq_fn() decides to kill a request
1019                  */
1020                 rq = elv_next_request(drive->queue);
1021                 if (!rq) {
1022                         hwgroup->busy = 0;
1023                         break;
1024                 }
1025
1026                 /*
1027                  * Sanity: don't accept a request that isn't a PM request
1028                  * if we are currently power managed. This is very important as
1029                  * blk_stop_queue() doesn't prevent the elv_next_request()
1030                  * above to return us whatever is in the queue. Since we call
1031                  * ide_do_request() ourselves, we end up taking requests while
1032                  * the queue is blocked...
1033                  * 
1034                  * We let requests forced at head of queue with ide-preempt
1035                  * though. I hope that doesn't happen too much, hopefully not
1036                  * unless the subdriver triggers such a thing in its own PM
1037                  * state machine.
1038                  *
1039                  * We count how many times we loop here to make sure we service
1040                  * all drives in the hwgroup without looping for ever
1041                  */
1042                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1043                     blk_pm_request(rq) == 0 &&
1044                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1045                         drive = drive->next ? drive->next : hwgroup->drive;
1046                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1047                                 goto again;
1048                         /* We clear busy, there should be no pending ATA command at this point. */
1049                         hwgroup->busy = 0;
1050                         break;
1051                 }
1052
1053                 hwgroup->rq = rq;
1054
1055                 /*
1056                  * Some systems have trouble with IDE IRQs arriving while
1057                  * the driver is still setting things up.  So, here we disable
1058                  * the IRQ used by this interface while the request is being started.
1059                  * This may look bad at first, but pretty much the same thing
1060                  * happens anyway when any interrupt comes in, IDE or otherwise
1061                  *  -- the kernel masks the IRQ while it is being handled.
1062                  */
1063                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1064                         disable_irq_nosync(hwif->irq);
1065                 spin_unlock(&hwgroup->lock);
1066                 local_irq_enable_in_hardirq();
1067                         /* allow other IRQs while we start this request */
1068                 startstop = start_request(drive, rq);
1069                 spin_lock_irq(&hwgroup->lock);
1070                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1071                         enable_irq(hwif->irq);
1072                 if (startstop == ide_stopped)
1073                         hwgroup->busy = 0;
1074         }
1075 }
1076
1077 /*
1078  * Passes the stuff to ide_do_request
1079  */
1080 void do_ide_request(struct request_queue *q)
1081 {
1082         ide_drive_t *drive = q->queuedata;
1083
1084         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1085 }
1086
1087 /*
1088  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1089  * retry the current request in pio mode instead of risking tossing it
1090  * all away
1091  */
1092 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1093 {
1094         ide_hwif_t *hwif = HWIF(drive);
1095         struct request *rq;
1096         ide_startstop_t ret = ide_stopped;
1097
1098         /*
1099          * end current dma transaction
1100          */
1101
1102         if (error < 0) {
1103                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1104                 (void)hwif->dma_ops->dma_end(drive);
1105                 ret = ide_error(drive, "dma timeout error",
1106                                 hwif->tp_ops->read_status(hwif));
1107         } else {
1108                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1109                 hwif->dma_ops->dma_timeout(drive);
1110         }
1111
1112         /*
1113          * disable dma for now, but remember that we did so because of
1114          * a timeout -- we'll reenable after we finish this next request
1115          * (or rather the first chunk of it) in pio.
1116          */
1117         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1118         drive->retry_pio++;
1119         ide_dma_off_quietly(drive);
1120
1121         /*
1122          * un-busy drive etc (hwgroup->busy is cleared on return) and
1123          * make sure request is sane
1124          */
1125         rq = HWGROUP(drive)->rq;
1126
1127         if (!rq)
1128                 goto out;
1129
1130         HWGROUP(drive)->rq = NULL;
1131
1132         rq->errors = 0;
1133
1134         if (!rq->bio)
1135                 goto out;
1136
1137         rq->sector = rq->bio->bi_sector;
1138         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1139         rq->hard_cur_sectors = rq->current_nr_sectors;
1140         rq->buffer = bio_data(rq->bio);
1141 out:
1142         return ret;
1143 }
1144
1145 /**
1146  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1147  *      @data: timer callback magic (hwgroup)
1148  *
1149  *      An IDE command has timed out before the expected drive return
1150  *      occurred. At this point we attempt to clean up the current
1151  *      mess. If the current handler includes an expiry handler then
1152  *      we invoke the expiry handler, and providing it is happy the
1153  *      work is done. If that fails we apply generic recovery rules
1154  *      invoking the handler and checking the drive DMA status. We
1155  *      have an excessively incestuous relationship with the DMA
1156  *      logic that wants cleaning up.
1157  */
1158  
1159 void ide_timer_expiry (unsigned long data)
1160 {
1161         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1162         ide_handler_t   *handler;
1163         ide_expiry_t    *expiry;
1164         unsigned long   flags;
1165         unsigned long   wait = -1;
1166
1167         spin_lock_irqsave(&hwgroup->lock, flags);
1168
1169         if (((handler = hwgroup->handler) == NULL) ||
1170             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1171                 /*
1172                  * Either a marginal timeout occurred
1173                  * (got the interrupt just as timer expired),
1174                  * or we were "sleeping" to give other devices a chance.
1175                  * Either way, we don't really want to complain about anything.
1176                  */
1177                 if (hwgroup->sleeping) {
1178                         hwgroup->sleeping = 0;
1179                         hwgroup->busy = 0;
1180                 }
1181         } else {
1182                 ide_drive_t *drive = hwgroup->drive;
1183                 if (!drive) {
1184                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1185                         hwgroup->handler = NULL;
1186                 } else {
1187                         ide_hwif_t *hwif;
1188                         ide_startstop_t startstop = ide_stopped;
1189                         if (!hwgroup->busy) {
1190                                 hwgroup->busy = 1;      /* paranoia */
1191                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1192                         }
1193                         if ((expiry = hwgroup->expiry) != NULL) {
1194                                 /* continue */
1195                                 if ((wait = expiry(drive)) > 0) {
1196                                         /* reset timer */
1197                                         hwgroup->timer.expires  = jiffies + wait;
1198                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1199                                         add_timer(&hwgroup->timer);
1200                                         spin_unlock_irqrestore(&hwgroup->lock, flags);
1201                                         return;
1202                                 }
1203                         }
1204                         hwgroup->handler = NULL;
1205                         /*
1206                          * We need to simulate a real interrupt when invoking
1207                          * the handler() function, which means we need to
1208                          * globally mask the specific IRQ:
1209                          */
1210                         spin_unlock(&hwgroup->lock);
1211                         hwif  = HWIF(drive);
1212                         /* disable_irq_nosync ?? */
1213                         disable_irq(hwif->irq);
1214                         /* local CPU only,
1215                          * as if we were handling an interrupt */
1216                         local_irq_disable();
1217                         if (hwgroup->polling) {
1218                                 startstop = handler(drive);
1219                         } else if (drive_is_ready(drive)) {
1220                                 if (drive->waiting_for_dma)
1221                                         hwif->dma_ops->dma_lost_irq(drive);
1222                                 (void)ide_ack_intr(hwif);
1223                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1224                                 startstop = handler(drive);
1225                         } else {
1226                                 if (drive->waiting_for_dma) {
1227                                         startstop = ide_dma_timeout_retry(drive, wait);
1228                                 } else
1229                                         startstop =
1230                                         ide_error(drive, "irq timeout",
1231                                                   hwif->tp_ops->read_status(hwif));
1232                         }
1233                         drive->service_time = jiffies - drive->service_start;
1234                         spin_lock_irq(&hwgroup->lock);
1235                         enable_irq(hwif->irq);
1236                         if (startstop == ide_stopped)
1237                                 hwgroup->busy = 0;
1238                 }
1239         }
1240         ide_do_request(hwgroup, IDE_NO_IRQ);
1241         spin_unlock_irqrestore(&hwgroup->lock, flags);
1242 }
1243
1244 /**
1245  *      unexpected_intr         -       handle an unexpected IDE interrupt
1246  *      @irq: interrupt line
1247  *      @hwgroup: hwgroup being processed
1248  *
1249  *      There's nothing really useful we can do with an unexpected interrupt,
1250  *      other than reading the status register (to clear it), and logging it.
1251  *      There should be no way that an irq can happen before we're ready for it,
1252  *      so we needn't worry much about losing an "important" interrupt here.
1253  *
1254  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1255  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1256  *      looks "good", we just ignore the interrupt completely.
1257  *
1258  *      This routine assumes __cli() is in effect when called.
1259  *
1260  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1261  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1262  *      we could screw up by interfering with a new request being set up for 
1263  *      irq15.
1264  *
1265  *      In reality, this is a non-issue.  The new command is not sent unless 
1266  *      the drive is ready to accept one, in which case we know the drive is
1267  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1268  *      before completing the issuance of any new drive command, so we will not
1269  *      be accidentally invoked as a result of any valid command completion
1270  *      interrupt.
1271  *
1272  *      Note that we must walk the entire hwgroup here. We know which hwif
1273  *      is doing the current command, but we don't know which hwif burped
1274  *      mysteriously.
1275  */
1276  
1277 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1278 {
1279         u8 stat;
1280         ide_hwif_t *hwif = hwgroup->hwif;
1281
1282         /*
1283          * handle the unexpected interrupt
1284          */
1285         do {
1286                 if (hwif->irq == irq) {
1287                         stat = hwif->tp_ops->read_status(hwif);
1288
1289                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1290                                 /* Try to not flood the console with msgs */
1291                                 static unsigned long last_msgtime, count;
1292                                 ++count;
1293                                 if (time_after(jiffies, last_msgtime + HZ)) {
1294                                         last_msgtime = jiffies;
1295                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1296                                                 "status=0x%02x, count=%ld\n",
1297                                                 hwif->name,
1298                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1299                                 }
1300                         }
1301                 }
1302         } while ((hwif = hwif->next) != hwgroup->hwif);
1303 }
1304
1305 /**
1306  *      ide_intr        -       default IDE interrupt handler
1307  *      @irq: interrupt number
1308  *      @dev_id: hwif group
1309  *      @regs: unused weirdness from the kernel irq layer
1310  *
1311  *      This is the default IRQ handler for the IDE layer. You should
1312  *      not need to override it. If you do be aware it is subtle in
1313  *      places
1314  *
1315  *      hwgroup->hwif is the interface in the group currently performing
1316  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1317  *      the IRQ handler to call. As we issue a command the handlers
1318  *      step through multiple states, reassigning the handler to the
1319  *      next step in the process. Unlike a smart SCSI controller IDE
1320  *      expects the main processor to sequence the various transfer
1321  *      stages. We also manage a poll timer to catch up with most
1322  *      timeout situations. There are still a few where the handlers
1323  *      don't ever decide to give up.
1324  *
1325  *      The handler eventually returns ide_stopped to indicate the
1326  *      request completed. At this point we issue the next request
1327  *      on the hwgroup and the process begins again.
1328  */
1329  
1330 irqreturn_t ide_intr (int irq, void *dev_id)
1331 {
1332         unsigned long flags;
1333         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1334         ide_hwif_t *hwif = hwgroup->hwif;
1335         ide_drive_t *drive;
1336         ide_handler_t *handler;
1337         ide_startstop_t startstop;
1338         irqreturn_t irq_ret = IRQ_NONE;
1339
1340         spin_lock_irqsave(&hwgroup->lock, flags);
1341
1342         if (!ide_ack_intr(hwif))
1343                 goto out;
1344
1345         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1346                 /*
1347                  * Not expecting an interrupt from this drive.
1348                  * That means this could be:
1349                  *      (1) an interrupt from another PCI device
1350                  *      sharing the same PCI INT# as us.
1351                  * or   (2) a drive just entered sleep or standby mode,
1352                  *      and is interrupting to let us know.
1353                  * or   (3) a spurious interrupt of unknown origin.
1354                  *
1355                  * For PCI, we cannot tell the difference,
1356                  * so in that case we just ignore it and hope it goes away.
1357                  *
1358                  * FIXME: unexpected_intr should be hwif-> then we can
1359                  * remove all the ifdef PCI crap
1360                  */
1361 #ifdef CONFIG_BLK_DEV_IDEPCI
1362                 if (hwif->chipset != ide_pci)
1363 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1364                 {
1365                         /*
1366                          * Probably not a shared PCI interrupt,
1367                          * so we can safely try to do something about it:
1368                          */
1369                         unexpected_intr(irq, hwgroup);
1370 #ifdef CONFIG_BLK_DEV_IDEPCI
1371                 } else {
1372                         /*
1373                          * Whack the status register, just in case
1374                          * we have a leftover pending IRQ.
1375                          */
1376                         (void)hwif->tp_ops->read_status(hwif);
1377 #endif /* CONFIG_BLK_DEV_IDEPCI */
1378                 }
1379                 goto out;
1380         }
1381
1382         drive = hwgroup->drive;
1383         if (!drive) {
1384                 /*
1385                  * This should NEVER happen, and there isn't much
1386                  * we could do about it here.
1387                  *
1388                  * [Note - this can occur if the drive is hot unplugged]
1389                  */
1390                 goto out_handled;
1391         }
1392
1393         if (!drive_is_ready(drive))
1394                 /*
1395                  * This happens regularly when we share a PCI IRQ with
1396                  * another device.  Unfortunately, it can also happen
1397                  * with some buggy drives that trigger the IRQ before
1398                  * their status register is up to date.  Hopefully we have
1399                  * enough advance overhead that the latter isn't a problem.
1400                  */
1401                 goto out;
1402
1403         if (!hwgroup->busy) {
1404                 hwgroup->busy = 1;      /* paranoia */
1405                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1406         }
1407         hwgroup->handler = NULL;
1408         hwgroup->req_gen++;
1409         del_timer(&hwgroup->timer);
1410         spin_unlock(&hwgroup->lock);
1411
1412         if (hwif->port_ops && hwif->port_ops->clear_irq)
1413                 hwif->port_ops->clear_irq(drive);
1414
1415         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1416                 local_irq_enable_in_hardirq();
1417
1418         /* service this interrupt, may set handler for next interrupt */
1419         startstop = handler(drive);
1420
1421         spin_lock_irq(&hwgroup->lock);
1422         /*
1423          * Note that handler() may have set things up for another
1424          * interrupt to occur soon, but it cannot happen until
1425          * we exit from this routine, because it will be the
1426          * same irq as is currently being serviced here, and Linux
1427          * won't allow another of the same (on any CPU) until we return.
1428          */
1429         drive->service_time = jiffies - drive->service_start;
1430         if (startstop == ide_stopped) {
1431                 if (hwgroup->handler == NULL) { /* paranoia */
1432                         hwgroup->busy = 0;
1433                         ide_do_request(hwgroup, hwif->irq);
1434                 } else {
1435                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1436                                 "on exit\n", drive->name);
1437                 }
1438         }
1439 out_handled:
1440         irq_ret = IRQ_HANDLED;
1441 out:
1442         spin_unlock_irqrestore(&hwgroup->lock, flags);
1443         return irq_ret;
1444 }
1445
1446 /**
1447  *      ide_do_drive_cmd        -       issue IDE special command
1448  *      @drive: device to issue command
1449  *      @rq: request to issue
1450  *
1451  *      This function issues a special IDE device request
1452  *      onto the request queue.
1453  *
1454  *      the rq is queued at the head of the request queue, displacing
1455  *      the currently-being-processed request and this function
1456  *      returns immediately without waiting for the new rq to be
1457  *      completed.  This is VERY DANGEROUS, and is intended for
1458  *      careful use by the ATAPI tape/cdrom driver code.
1459  */
1460
1461 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1462 {
1463         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1464         struct request_queue *q = drive->queue;
1465         unsigned long flags;
1466
1467         hwgroup->rq = NULL;
1468
1469         spin_lock_irqsave(q->queue_lock, flags);
1470         __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1471         blk_start_queueing(q);
1472         spin_unlock_irqrestore(q->queue_lock, flags);
1473 }
1474 EXPORT_SYMBOL(ide_do_drive_cmd);
1475
1476 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1477 {
1478         ide_hwif_t *hwif = drive->hwif;
1479         ide_task_t task;
1480
1481         memset(&task, 0, sizeof(task));
1482         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1483                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1484         task.tf.feature = dma;          /* Use PIO/DMA */
1485         task.tf.lbam    = bcount & 0xff;
1486         task.tf.lbah    = (bcount >> 8) & 0xff;
1487
1488         ide_tf_dump(drive->name, &task.tf);
1489         hwif->tp_ops->set_irq(hwif, 1);
1490         SELECT_MASK(drive, 0);
1491         hwif->tp_ops->tf_load(drive, &task);
1492 }
1493
1494 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1495
1496 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1497 {
1498         ide_hwif_t *hwif = drive->hwif;
1499         u8 buf[4] = { 0 };
1500
1501         while (len > 0) {
1502                 if (write)
1503                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1504                 else
1505                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1506                 len -= 4;
1507         }
1508 }
1509 EXPORT_SYMBOL_GPL(ide_pad_transfer);