1af2cc4f864e30aad1bacb5451fd24d412cb6022
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags   = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236         args->data_phase = TASKFILE_NO_DATA;
237         args->handler    = task_no_data_intr;
238         return do_rw_taskfile(drive, args);
239 }
240
241 /**
242  *      ide_end_dequeued_request        -       complete an IDE I/O
243  *      @drive: IDE device for the I/O
244  *      @uptodate:
245  *      @nr_sectors: number of sectors completed
246  *
247  *      Complete an I/O that is no longer on the request queue. This
248  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
249  *      We must still finish the old request but we must not tamper with the
250  *      queue in the meantime.
251  *
252  *      NOTE: This path does not handle barrier, but barrier is not supported
253  *      on ide-cd anyway.
254  */
255
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257                              int uptodate, int nr_sectors)
258 {
259         unsigned long flags;
260         int ret;
261
262         spin_lock_irqsave(&ide_lock, flags);
263         BUG_ON(!blk_rq_started(rq));
264         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265         spin_unlock_irqrestore(&ide_lock, flags);
266
267         return ret;
268 }
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272 /**
273  *      ide_complete_pm_request - end the current Power Management request
274  *      @drive: target drive
275  *      @rq: request
276  *
277  *      This function cleans up the current PM request and stops the queue
278  *      if necessary.
279  */
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281 {
282         unsigned long flags;
283
284 #ifdef DEBUG_PM
285         printk("%s: completing PM request, %s\n", drive->name,
286                blk_pm_suspend_request(rq) ? "suspend" : "resume");
287 #endif
288         spin_lock_irqsave(&ide_lock, flags);
289         if (blk_pm_suspend_request(rq)) {
290                 blk_stop_queue(drive->queue);
291         } else {
292                 drive->blocked = 0;
293                 blk_start_queue(drive->queue);
294         }
295         blkdev_dequeue_request(rq);
296         HWGROUP(drive)->rq = NULL;
297         end_that_request_last(rq, 1);
298         spin_unlock_irqrestore(&ide_lock, flags);
299 }
300
301 /**
302  *      ide_end_drive_cmd       -       end an explicit drive command
303  *      @drive: command 
304  *      @stat: status bits
305  *      @err: error bits
306  *
307  *      Clean up after success/failure of an explicit drive command.
308  *      These get thrown onto the queue so they are synchronized with
309  *      real I/O operations on the drive.
310  *
311  *      In LBA48 mode we have to read the register set twice to get
312  *      all the extra information out.
313  */
314  
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316 {
317         ide_hwif_t *hwif = HWIF(drive);
318         unsigned long flags;
319         struct request *rq;
320
321         spin_lock_irqsave(&ide_lock, flags);
322         rq = HWGROUP(drive)->rq;
323         spin_unlock_irqrestore(&ide_lock, flags);
324
325         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326                 u8 *args = (u8 *) rq->buffer;
327                 if (rq->errors == 0)
328                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329
330                 if (args) {
331                         args[0] = stat;
332                         args[1] = err;
333                         args[2] = hwif->INB(IDE_NSECTOR_REG);
334                 }
335         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
336                 ide_task_t *args = (ide_task_t *) rq->special;
337                 if (rq->errors == 0)
338                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339                         
340                 if (args) {
341                         struct ide_taskfile *tf = &args->tf;
342
343                         if (args->tf_flags & IDE_TFLAG_IN_DATA) {
344                                 u16 data = hwif->INW(IDE_DATA_REG);
345
346                                 tf->data = data & 0xff;
347                                 tf->hob_data = (data >> 8) & 0xff;
348                         }
349                         tf->error = err;
350                         /* be sure we're looking at the low order bits */
351                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
352                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
353                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
354                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
355                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
356                         tf->device = hwif->INB(IDE_SELECT_REG);
357                         tf->status = stat;
358
359                         if (args->tf_flags & IDE_TFLAG_LBA48) {
360                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
361                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
362                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
363                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
364                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
365                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
366                         }
367                 }
368         } else if (blk_pm_request(rq)) {
369                 struct request_pm_state *pm = rq->data;
370 #ifdef DEBUG_PM
371                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
372                         drive->name, rq->pm->pm_step, stat, err);
373 #endif
374                 ide_complete_power_step(drive, rq, stat, err);
375                 if (pm->pm_step == ide_pm_state_completed)
376                         ide_complete_pm_request(drive, rq);
377                 return;
378         }
379
380         spin_lock_irqsave(&ide_lock, flags);
381         blkdev_dequeue_request(rq);
382         HWGROUP(drive)->rq = NULL;
383         rq->errors = err;
384         end_that_request_last(rq, !rq->errors);
385         spin_unlock_irqrestore(&ide_lock, flags);
386 }
387
388 EXPORT_SYMBOL(ide_end_drive_cmd);
389
390 /**
391  *      try_to_flush_leftover_data      -       flush junk
392  *      @drive: drive to flush
393  *
394  *      try_to_flush_leftover_data() is invoked in response to a drive
395  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
396  *      resetting the drive, this routine tries to clear the condition
397  *      by read a sector's worth of data from the drive.  Of course,
398  *      this may not help if the drive is *waiting* for data from *us*.
399  */
400 static void try_to_flush_leftover_data (ide_drive_t *drive)
401 {
402         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
403
404         if (drive->media != ide_disk)
405                 return;
406         while (i > 0) {
407                 u32 buffer[16];
408                 u32 wcount = (i > 16) ? 16 : i;
409
410                 i -= wcount;
411                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
412         }
413 }
414
415 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
416 {
417         if (rq->rq_disk) {
418                 ide_driver_t *drv;
419
420                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
421                 drv->end_request(drive, 0, 0);
422         } else
423                 ide_end_request(drive, 0, 0);
424 }
425
426 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427 {
428         ide_hwif_t *hwif = drive->hwif;
429
430         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431                 /* other bits are useless when BUSY */
432                 rq->errors |= ERROR_RESET;
433         } else if (stat & ERR_STAT) {
434                 /* err has different meaning on cdrom and tape */
435                 if (err == ABRT_ERR) {
436                         if (drive->select.b.lba &&
437                             /* some newer drives don't support WIN_SPECIFY */
438                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
439                                 return ide_stopped;
440                 } else if ((err & BAD_CRC) == BAD_CRC) {
441                         /* UDMA crc error, just retry the operation */
442                         drive->crc_count++;
443                 } else if (err & (BBD_ERR | ECC_ERR)) {
444                         /* retries won't help these */
445                         rq->errors = ERROR_MAX;
446                 } else if (err & TRK0_ERR) {
447                         /* help it find track zero */
448                         rq->errors |= ERROR_RECAL;
449                 }
450         }
451
452         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
453             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
454                 try_to_flush_leftover_data(drive);
455
456         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
457                 ide_kill_rq(drive, rq);
458                 return ide_stopped;
459         }
460
461         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
462                 rq->errors |= ERROR_RESET;
463
464         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
465                 ++rq->errors;
466                 return ide_do_reset(drive);
467         }
468
469         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
470                 drive->special.b.recalibrate = 1;
471
472         ++rq->errors;
473
474         return ide_stopped;
475 }
476
477 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
478 {
479         ide_hwif_t *hwif = drive->hwif;
480
481         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
482                 /* other bits are useless when BUSY */
483                 rq->errors |= ERROR_RESET;
484         } else {
485                 /* add decoding error stuff */
486         }
487
488         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
489                 /* force an abort */
490                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
491
492         if (rq->errors >= ERROR_MAX) {
493                 ide_kill_rq(drive, rq);
494         } else {
495                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
496                         ++rq->errors;
497                         return ide_do_reset(drive);
498                 }
499                 ++rq->errors;
500         }
501
502         return ide_stopped;
503 }
504
505 ide_startstop_t
506 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
507 {
508         if (drive->media == ide_disk)
509                 return ide_ata_error(drive, rq, stat, err);
510         return ide_atapi_error(drive, rq, stat, err);
511 }
512
513 EXPORT_SYMBOL_GPL(__ide_error);
514
515 /**
516  *      ide_error       -       handle an error on the IDE
517  *      @drive: drive the error occurred on
518  *      @msg: message to report
519  *      @stat: status bits
520  *
521  *      ide_error() takes action based on the error returned by the drive.
522  *      For normal I/O that may well include retries. We deal with
523  *      both new-style (taskfile) and old style command handling here.
524  *      In the case of taskfile command handling there is work left to
525  *      do
526  */
527  
528 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
529 {
530         struct request *rq;
531         u8 err;
532
533         err = ide_dump_status(drive, msg, stat);
534
535         if ((rq = HWGROUP(drive)->rq) == NULL)
536                 return ide_stopped;
537
538         /* retry only "normal" I/O: */
539         if (!blk_fs_request(rq)) {
540                 rq->errors = 1;
541                 ide_end_drive_cmd(drive, stat, err);
542                 return ide_stopped;
543         }
544
545         if (rq->rq_disk) {
546                 ide_driver_t *drv;
547
548                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
549                 return drv->error(drive, rq, stat, err);
550         } else
551                 return __ide_error(drive, rq, stat, err);
552 }
553
554 EXPORT_SYMBOL_GPL(ide_error);
555
556 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
557 {
558         if (drive->media != ide_disk)
559                 rq->errors |= ERROR_RESET;
560
561         ide_kill_rq(drive, rq);
562
563         return ide_stopped;
564 }
565
566 EXPORT_SYMBOL_GPL(__ide_abort);
567
568 /**
569  *      ide_abort       -       abort pending IDE operations
570  *      @drive: drive the error occurred on
571  *      @msg: message to report
572  *
573  *      ide_abort kills and cleans up when we are about to do a 
574  *      host initiated reset on active commands. Longer term we
575  *      want handlers to have sensible abort handling themselves
576  *
577  *      This differs fundamentally from ide_error because in 
578  *      this case the command is doing just fine when we
579  *      blow it away.
580  */
581  
582 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
583 {
584         struct request *rq;
585
586         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
587                 return ide_stopped;
588
589         /* retry only "normal" I/O: */
590         if (!blk_fs_request(rq)) {
591                 rq->errors = 1;
592                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
593                 return ide_stopped;
594         }
595
596         if (rq->rq_disk) {
597                 ide_driver_t *drv;
598
599                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
600                 return drv->abort(drive, rq);
601         } else
602                 return __ide_abort(drive, rq);
603 }
604
605 /**
606  *      drive_cmd_intr          -       drive command completion interrupt
607  *      @drive: drive the completion interrupt occurred on
608  *
609  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
610  *      We do any necessary data reading and then wait for the drive to
611  *      go non busy. At that point we may read the error data and complete
612  *      the request
613  */
614  
615 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
616 {
617         struct request *rq = HWGROUP(drive)->rq;
618         ide_hwif_t *hwif = HWIF(drive);
619         u8 *args = (u8 *) rq->buffer;
620         u8 stat = hwif->INB(IDE_STATUS_REG);
621         int retries = 10;
622
623         local_irq_enable_in_hardirq();
624         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
625             (stat & DRQ_STAT) && args && args[3]) {
626                 u8 io_32bit = drive->io_32bit;
627                 drive->io_32bit = 0;
628                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
629                 drive->io_32bit = io_32bit;
630                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
631                         udelay(100);
632         }
633
634         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
635                 return ide_error(drive, "drive_cmd", stat);
636                 /* calls ide_end_drive_cmd */
637         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
638         return ide_stopped;
639 }
640
641 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
642 {
643         task->tf.nsect   = drive->sect;
644         task->tf.lbal    = drive->sect;
645         task->tf.lbam    = drive->cyl;
646         task->tf.lbah    = drive->cyl >> 8;
647         task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
648         task->tf.command = WIN_SPECIFY;
649
650         task->handler = &set_geometry_intr;
651 }
652
653 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
654 {
655         task->tf.nsect   = drive->sect;
656         task->tf.command = WIN_RESTORE;
657
658         task->handler = &recal_intr;
659 }
660
661 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
662 {
663         task->tf.nsect   = drive->mult_req;
664         task->tf.command = WIN_SETMULT;
665
666         task->handler = &set_multmode_intr;
667 }
668
669 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
670 {
671         special_t *s = &drive->special;
672         ide_task_t args;
673
674         memset(&args, 0, sizeof(ide_task_t));
675         args.data_phase = TASKFILE_NO_DATA;
676
677         if (s->b.set_geometry) {
678                 s->b.set_geometry = 0;
679                 ide_init_specify_cmd(drive, &args);
680         } else if (s->b.recalibrate) {
681                 s->b.recalibrate = 0;
682                 ide_init_restore_cmd(drive, &args);
683         } else if (s->b.set_multmode) {
684                 s->b.set_multmode = 0;
685                 if (drive->mult_req > drive->id->max_multsect)
686                         drive->mult_req = drive->id->max_multsect;
687                 ide_init_setmult_cmd(drive, &args);
688         } else if (s->all) {
689                 int special = s->all;
690                 s->all = 0;
691                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
692                 return ide_stopped;
693         }
694
695         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
696
697         do_rw_taskfile(drive, &args);
698
699         return ide_started;
700 }
701
702 /*
703  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
704  */
705 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
706 {
707         switch (req_pio) {
708         case 202:
709         case 201:
710         case 200:
711         case 102:
712         case 101:
713         case 100:
714                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
715         case 9:
716         case 8:
717                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
718         case 7:
719         case 6:
720                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
721         default:
722                 return 0;
723         }
724 }
725
726 /**
727  *      do_special              -       issue some special commands
728  *      @drive: drive the command is for
729  *
730  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
731  *      commands to a drive.  It used to do much more, but has been scaled
732  *      back.
733  */
734
735 static ide_startstop_t do_special (ide_drive_t *drive)
736 {
737         special_t *s = &drive->special;
738
739 #ifdef DEBUG
740         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
741 #endif
742         if (s->b.set_tune) {
743                 ide_hwif_t *hwif = drive->hwif;
744                 u8 req_pio = drive->tune_req;
745
746                 s->b.set_tune = 0;
747
748                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
749
750                         if (hwif->set_pio_mode == NULL)
751                                 return ide_stopped;
752
753                         /*
754                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
755                          */
756                         if (req_pio == 8 || req_pio == 9) {
757                                 unsigned long flags;
758
759                                 spin_lock_irqsave(&ide_lock, flags);
760                                 hwif->set_pio_mode(drive, req_pio);
761                                 spin_unlock_irqrestore(&ide_lock, flags);
762                         } else
763                                 hwif->set_pio_mode(drive, req_pio);
764                 } else {
765                         int keep_dma = drive->using_dma;
766
767                         ide_set_pio(drive, req_pio);
768
769                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
770                                 if (keep_dma)
771                                         hwif->ide_dma_on(drive);
772                         }
773                 }
774
775                 return ide_stopped;
776         } else {
777                 if (drive->media == ide_disk)
778                         return ide_disk_special(drive);
779
780                 s->all = 0;
781                 drive->mult_req = 0;
782                 return ide_stopped;
783         }
784 }
785
786 void ide_map_sg(ide_drive_t *drive, struct request *rq)
787 {
788         ide_hwif_t *hwif = drive->hwif;
789         struct scatterlist *sg = hwif->sg_table;
790
791         if (hwif->sg_mapped)    /* needed by ide-scsi */
792                 return;
793
794         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
795                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
796         } else {
797                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
798                 hwif->sg_nents = 1;
799         }
800 }
801
802 EXPORT_SYMBOL_GPL(ide_map_sg);
803
804 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
805 {
806         ide_hwif_t *hwif = drive->hwif;
807
808         hwif->nsect = hwif->nleft = rq->nr_sectors;
809         hwif->cursg_ofs = 0;
810         hwif->cursg = NULL;
811 }
812
813 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
814
815 /**
816  *      execute_drive_command   -       issue special drive command
817  *      @drive: the drive to issue the command on
818  *      @rq: the request structure holding the command
819  *
820  *      execute_drive_cmd() issues a special drive command,  usually 
821  *      initiated by ioctl() from the external hdparm program. The
822  *      command can be a drive command, drive task or taskfile 
823  *      operation. Weirdly you can call it with NULL to wait for
824  *      all commands to finish. Don't do this as that is due to change
825  */
826
827 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
828                 struct request *rq)
829 {
830         ide_hwif_t *hwif = HWIF(drive);
831         u8 *args = rq->buffer;
832         ide_task_t ltask;
833         struct ide_taskfile *tf = &ltask.tf;
834
835         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
836                 ide_task_t *task = rq->special;
837  
838                 if (task == NULL)
839                         goto done;
840
841                 hwif->data_phase = task->data_phase;
842
843                 switch (hwif->data_phase) {
844                 case TASKFILE_MULTI_OUT:
845                 case TASKFILE_OUT:
846                 case TASKFILE_MULTI_IN:
847                 case TASKFILE_IN:
848                         ide_init_sg_cmd(drive, rq);
849                         ide_map_sg(drive, rq);
850                 default:
851                         break;
852                 }
853
854                 return do_rw_taskfile(drive, task);
855         }
856
857         if (args == NULL)
858                 goto done;
859
860         memset(&ltask, 0, sizeof(ltask));
861         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
862 #ifdef DEBUG
863                 printk("%s: DRIVE_CMD\n", drive->name);
864 #endif
865                 tf->feature = args[2];
866                 if (args[0] == WIN_SMART) {
867                         tf->nsect = args[3];
868                         tf->lbal  = args[1];
869                         tf->lbam  = 0x4f;
870                         tf->lbah  = 0xc2;
871                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
872                 } else {
873                         tf->nsect = args[1];
874                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
875                                          IDE_TFLAG_OUT_NSECT;
876                 }
877         }
878         tf->command = args[0];
879         ide_tf_load(drive, &ltask);
880         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
881         return ide_started;
882
883 done:
884         /*
885          * NULL is actually a valid way of waiting for
886          * all current requests to be flushed from the queue.
887          */
888 #ifdef DEBUG
889         printk("%s: DRIVE_CMD (null)\n", drive->name);
890 #endif
891         ide_end_drive_cmd(drive,
892                         hwif->INB(IDE_STATUS_REG),
893                         hwif->INB(IDE_ERROR_REG));
894         return ide_stopped;
895 }
896
897 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
898 {
899         struct request_pm_state *pm = rq->data;
900
901         if (blk_pm_suspend_request(rq) &&
902             pm->pm_step == ide_pm_state_start_suspend)
903                 /* Mark drive blocked when starting the suspend sequence. */
904                 drive->blocked = 1;
905         else if (blk_pm_resume_request(rq) &&
906                  pm->pm_step == ide_pm_state_start_resume) {
907                 /* 
908                  * The first thing we do on wakeup is to wait for BSY bit to
909                  * go away (with a looong timeout) as a drive on this hwif may
910                  * just be POSTing itself.
911                  * We do that before even selecting as the "other" device on
912                  * the bus may be broken enough to walk on our toes at this
913                  * point.
914                  */
915                 int rc;
916 #ifdef DEBUG_PM
917                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
918 #endif
919                 rc = ide_wait_not_busy(HWIF(drive), 35000);
920                 if (rc)
921                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
922                 SELECT_DRIVE(drive);
923                 if (IDE_CONTROL_REG)
924                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
925                 rc = ide_wait_not_busy(HWIF(drive), 100000);
926                 if (rc)
927                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
928         }
929 }
930
931 /**
932  *      start_request   -       start of I/O and command issuing for IDE
933  *
934  *      start_request() initiates handling of a new I/O request. It
935  *      accepts commands and I/O (read/write) requests. It also does
936  *      the final remapping for weird stuff like EZDrive. Once 
937  *      device mapper can work sector level the EZDrive stuff can go away
938  *
939  *      FIXME: this function needs a rename
940  */
941  
942 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
943 {
944         ide_startstop_t startstop;
945         sector_t block;
946
947         BUG_ON(!blk_rq_started(rq));
948
949 #ifdef DEBUG
950         printk("%s: start_request: current=0x%08lx\n",
951                 HWIF(drive)->name, (unsigned long) rq);
952 #endif
953
954         /* bail early if we've exceeded max_failures */
955         if (drive->max_failures && (drive->failures > drive->max_failures)) {
956                 rq->cmd_flags |= REQ_FAILED;
957                 goto kill_rq;
958         }
959
960         block    = rq->sector;
961         if (blk_fs_request(rq) &&
962             (drive->media == ide_disk || drive->media == ide_floppy)) {
963                 block += drive->sect0;
964         }
965         /* Yecch - this will shift the entire interval,
966            possibly killing some innocent following sector */
967         if (block == 0 && drive->remap_0_to_1 == 1)
968                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
969
970         if (blk_pm_request(rq))
971                 ide_check_pm_state(drive, rq);
972
973         SELECT_DRIVE(drive);
974         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
975                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
976                 return startstop;
977         }
978         if (!drive->special.all) {
979                 ide_driver_t *drv;
980
981                 /*
982                  * We reset the drive so we need to issue a SETFEATURES.
983                  * Do it _after_ do_special() restored device parameters.
984                  */
985                 if (drive->current_speed == 0xff)
986                         ide_config_drive_speed(drive, drive->desired_speed);
987
988                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
989                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
990                         return execute_drive_cmd(drive, rq);
991                 else if (blk_pm_request(rq)) {
992                         struct request_pm_state *pm = rq->data;
993 #ifdef DEBUG_PM
994                         printk("%s: start_power_step(step: %d)\n",
995                                 drive->name, rq->pm->pm_step);
996 #endif
997                         startstop = ide_start_power_step(drive, rq);
998                         if (startstop == ide_stopped &&
999                             pm->pm_step == ide_pm_state_completed)
1000                                 ide_complete_pm_request(drive, rq);
1001                         return startstop;
1002                 }
1003
1004                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1005                 return drv->do_request(drive, rq, block);
1006         }
1007         return do_special(drive);
1008 kill_rq:
1009         ide_kill_rq(drive, rq);
1010         return ide_stopped;
1011 }
1012
1013 /**
1014  *      ide_stall_queue         -       pause an IDE device
1015  *      @drive: drive to stall
1016  *      @timeout: time to stall for (jiffies)
1017  *
1018  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1019  *      to the hwgroup by sleeping for timeout jiffies.
1020  */
1021  
1022 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1023 {
1024         if (timeout > WAIT_WORSTCASE)
1025                 timeout = WAIT_WORSTCASE;
1026         drive->sleep = timeout + jiffies;
1027         drive->sleeping = 1;
1028 }
1029
1030 EXPORT_SYMBOL(ide_stall_queue);
1031
1032 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1033
1034 /**
1035  *      choose_drive            -       select a drive to service
1036  *      @hwgroup: hardware group to select on
1037  *
1038  *      choose_drive() selects the next drive which will be serviced.
1039  *      This is necessary because the IDE layer can't issue commands
1040  *      to both drives on the same cable, unlike SCSI.
1041  */
1042  
1043 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1044 {
1045         ide_drive_t *drive, *best;
1046
1047 repeat: 
1048         best = NULL;
1049         drive = hwgroup->drive;
1050
1051         /*
1052          * drive is doing pre-flush, ordered write, post-flush sequence. even
1053          * though that is 3 requests, it must be seen as a single transaction.
1054          * we must not preempt this drive until that is complete
1055          */
1056         if (blk_queue_flushing(drive->queue)) {
1057                 /*
1058                  * small race where queue could get replugged during
1059                  * the 3-request flush cycle, just yank the plug since
1060                  * we want it to finish asap
1061                  */
1062                 blk_remove_plug(drive->queue);
1063                 return drive;
1064         }
1065
1066         do {
1067                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1068                     && !elv_queue_empty(drive->queue)) {
1069                         if (!best
1070                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1071                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1072                         {
1073                                 if (!blk_queue_plugged(drive->queue))
1074                                         best = drive;
1075                         }
1076                 }
1077         } while ((drive = drive->next) != hwgroup->drive);
1078         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1079                 long t = (signed long)(WAKEUP(best) - jiffies);
1080                 if (t >= WAIT_MIN_SLEEP) {
1081                 /*
1082                  * We *may* have some time to spare, but first let's see if
1083                  * someone can potentially benefit from our nice mood today..
1084                  */
1085                         drive = best->next;
1086                         do {
1087                                 if (!drive->sleeping
1088                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1089                                  && time_before(WAKEUP(drive), jiffies + t))
1090                                 {
1091                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1092                                         goto repeat;
1093                                 }
1094                         } while ((drive = drive->next) != best);
1095                 }
1096         }
1097         return best;
1098 }
1099
1100 /*
1101  * Issue a new request to a drive from hwgroup
1102  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1103  *
1104  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1105  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1106  * may have both interfaces in a single hwgroup to "serialize" access.
1107  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1108  * together into one hwgroup for serialized access.
1109  *
1110  * Note also that several hwgroups can end up sharing a single IRQ,
1111  * possibly along with many other devices.  This is especially common in
1112  * PCI-based systems with off-board IDE controller cards.
1113  *
1114  * The IDE driver uses the single global ide_lock spinlock to protect
1115  * access to the request queues, and to protect the hwgroup->busy flag.
1116  *
1117  * The first thread into the driver for a particular hwgroup sets the
1118  * hwgroup->busy flag to indicate that this hwgroup is now active,
1119  * and then initiates processing of the top request from the request queue.
1120  *
1121  * Other threads attempting entry notice the busy setting, and will simply
1122  * queue their new requests and exit immediately.  Note that hwgroup->busy
1123  * remains set even when the driver is merely awaiting the next interrupt.
1124  * Thus, the meaning is "this hwgroup is busy processing a request".
1125  *
1126  * When processing of a request completes, the completing thread or IRQ-handler
1127  * will start the next request from the queue.  If no more work remains,
1128  * the driver will clear the hwgroup->busy flag and exit.
1129  *
1130  * The ide_lock (spinlock) is used to protect all access to the
1131  * hwgroup->busy flag, but is otherwise not needed for most processing in
1132  * the driver.  This makes the driver much more friendlier to shared IRQs
1133  * than previous designs, while remaining 100% (?) SMP safe and capable.
1134  */
1135 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1136 {
1137         ide_drive_t     *drive;
1138         ide_hwif_t      *hwif;
1139         struct request  *rq;
1140         ide_startstop_t startstop;
1141         int             loops = 0;
1142
1143         /* for atari only: POSSIBLY BROKEN HERE(?) */
1144         ide_get_lock(ide_intr, hwgroup);
1145
1146         /* caller must own ide_lock */
1147         BUG_ON(!irqs_disabled());
1148
1149         while (!hwgroup->busy) {
1150                 hwgroup->busy = 1;
1151                 drive = choose_drive(hwgroup);
1152                 if (drive == NULL) {
1153                         int sleeping = 0;
1154                         unsigned long sleep = 0; /* shut up, gcc */
1155                         hwgroup->rq = NULL;
1156                         drive = hwgroup->drive;
1157                         do {
1158                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1159                                         sleeping = 1;
1160                                         sleep = drive->sleep;
1161                                 }
1162                         } while ((drive = drive->next) != hwgroup->drive);
1163                         if (sleeping) {
1164                 /*
1165                  * Take a short snooze, and then wake up this hwgroup again.
1166                  * This gives other hwgroups on the same a chance to
1167                  * play fairly with us, just in case there are big differences
1168                  * in relative throughputs.. don't want to hog the cpu too much.
1169                  */
1170                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1171                                         sleep = jiffies + WAIT_MIN_SLEEP;
1172 #if 1
1173                                 if (timer_pending(&hwgroup->timer))
1174                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1175 #endif
1176                                 /* so that ide_timer_expiry knows what to do */
1177                                 hwgroup->sleeping = 1;
1178                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1179                                 mod_timer(&hwgroup->timer, sleep);
1180                                 /* we purposely leave hwgroup->busy==1
1181                                  * while sleeping */
1182                         } else {
1183                                 /* Ugly, but how can we sleep for the lock
1184                                  * otherwise? perhaps from tq_disk?
1185                                  */
1186
1187                                 /* for atari only */
1188                                 ide_release_lock();
1189                                 hwgroup->busy = 0;
1190                         }
1191
1192                         /* no more work for this hwgroup (for now) */
1193                         return;
1194                 }
1195         again:
1196                 hwif = HWIF(drive);
1197                 if (hwgroup->hwif->sharing_irq &&
1198                     hwif != hwgroup->hwif &&
1199                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1200                         /*
1201                          * set nIEN for previous hwif, drives in the
1202                          * quirk_list may not like intr setups/cleanups
1203                          */
1204                         if (drive->quirk_list != 1)
1205                                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
1206                 }
1207                 hwgroup->hwif = hwif;
1208                 hwgroup->drive = drive;
1209                 drive->sleeping = 0;
1210                 drive->service_start = jiffies;
1211
1212                 if (blk_queue_plugged(drive->queue)) {
1213                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1214                         break;
1215                 }
1216
1217                 /*
1218                  * we know that the queue isn't empty, but this can happen
1219                  * if the q->prep_rq_fn() decides to kill a request
1220                  */
1221                 rq = elv_next_request(drive->queue);
1222                 if (!rq) {
1223                         hwgroup->busy = 0;
1224                         break;
1225                 }
1226
1227                 /*
1228                  * Sanity: don't accept a request that isn't a PM request
1229                  * if we are currently power managed. This is very important as
1230                  * blk_stop_queue() doesn't prevent the elv_next_request()
1231                  * above to return us whatever is in the queue. Since we call
1232                  * ide_do_request() ourselves, we end up taking requests while
1233                  * the queue is blocked...
1234                  * 
1235                  * We let requests forced at head of queue with ide-preempt
1236                  * though. I hope that doesn't happen too much, hopefully not
1237                  * unless the subdriver triggers such a thing in its own PM
1238                  * state machine.
1239                  *
1240                  * We count how many times we loop here to make sure we service
1241                  * all drives in the hwgroup without looping for ever
1242                  */
1243                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1244                         drive = drive->next ? drive->next : hwgroup->drive;
1245                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1246                                 goto again;
1247                         /* We clear busy, there should be no pending ATA command at this point. */
1248                         hwgroup->busy = 0;
1249                         break;
1250                 }
1251
1252                 hwgroup->rq = rq;
1253
1254                 /*
1255                  * Some systems have trouble with IDE IRQs arriving while
1256                  * the driver is still setting things up.  So, here we disable
1257                  * the IRQ used by this interface while the request is being started.
1258                  * This may look bad at first, but pretty much the same thing
1259                  * happens anyway when any interrupt comes in, IDE or otherwise
1260                  *  -- the kernel masks the IRQ while it is being handled.
1261                  */
1262                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1263                         disable_irq_nosync(hwif->irq);
1264                 spin_unlock(&ide_lock);
1265                 local_irq_enable_in_hardirq();
1266                         /* allow other IRQs while we start this request */
1267                 startstop = start_request(drive, rq);
1268                 spin_lock_irq(&ide_lock);
1269                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1270                         enable_irq(hwif->irq);
1271                 if (startstop == ide_stopped)
1272                         hwgroup->busy = 0;
1273         }
1274 }
1275
1276 /*
1277  * Passes the stuff to ide_do_request
1278  */
1279 void do_ide_request(struct request_queue *q)
1280 {
1281         ide_drive_t *drive = q->queuedata;
1282
1283         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1284 }
1285
1286 /*
1287  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1288  * retry the current request in pio mode instead of risking tossing it
1289  * all away
1290  */
1291 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1292 {
1293         ide_hwif_t *hwif = HWIF(drive);
1294         struct request *rq;
1295         ide_startstop_t ret = ide_stopped;
1296
1297         /*
1298          * end current dma transaction
1299          */
1300
1301         if (error < 0) {
1302                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1303                 (void)HWIF(drive)->ide_dma_end(drive);
1304                 ret = ide_error(drive, "dma timeout error",
1305                                                 hwif->INB(IDE_STATUS_REG));
1306         } else {
1307                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1308                 hwif->dma_timeout(drive);
1309         }
1310
1311         /*
1312          * disable dma for now, but remember that we did so because of
1313          * a timeout -- we'll reenable after we finish this next request
1314          * (or rather the first chunk of it) in pio.
1315          */
1316         drive->retry_pio++;
1317         drive->state = DMA_PIO_RETRY;
1318         hwif->dma_off_quietly(drive);
1319
1320         /*
1321          * un-busy drive etc (hwgroup->busy is cleared on return) and
1322          * make sure request is sane
1323          */
1324         rq = HWGROUP(drive)->rq;
1325
1326         if (!rq)
1327                 goto out;
1328
1329         HWGROUP(drive)->rq = NULL;
1330
1331         rq->errors = 0;
1332
1333         if (!rq->bio)
1334                 goto out;
1335
1336         rq->sector = rq->bio->bi_sector;
1337         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1338         rq->hard_cur_sectors = rq->current_nr_sectors;
1339         rq->buffer = bio_data(rq->bio);
1340 out:
1341         return ret;
1342 }
1343
1344 /**
1345  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1346  *      @data: timer callback magic (hwgroup)
1347  *
1348  *      An IDE command has timed out before the expected drive return
1349  *      occurred. At this point we attempt to clean up the current
1350  *      mess. If the current handler includes an expiry handler then
1351  *      we invoke the expiry handler, and providing it is happy the
1352  *      work is done. If that fails we apply generic recovery rules
1353  *      invoking the handler and checking the drive DMA status. We
1354  *      have an excessively incestuous relationship with the DMA
1355  *      logic that wants cleaning up.
1356  */
1357  
1358 void ide_timer_expiry (unsigned long data)
1359 {
1360         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1361         ide_handler_t   *handler;
1362         ide_expiry_t    *expiry;
1363         unsigned long   flags;
1364         unsigned long   wait = -1;
1365
1366         spin_lock_irqsave(&ide_lock, flags);
1367
1368         if (((handler = hwgroup->handler) == NULL) ||
1369             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1370                 /*
1371                  * Either a marginal timeout occurred
1372                  * (got the interrupt just as timer expired),
1373                  * or we were "sleeping" to give other devices a chance.
1374                  * Either way, we don't really want to complain about anything.
1375                  */
1376                 if (hwgroup->sleeping) {
1377                         hwgroup->sleeping = 0;
1378                         hwgroup->busy = 0;
1379                 }
1380         } else {
1381                 ide_drive_t *drive = hwgroup->drive;
1382                 if (!drive) {
1383                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1384                         hwgroup->handler = NULL;
1385                 } else {
1386                         ide_hwif_t *hwif;
1387                         ide_startstop_t startstop = ide_stopped;
1388                         if (!hwgroup->busy) {
1389                                 hwgroup->busy = 1;      /* paranoia */
1390                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1391                         }
1392                         if ((expiry = hwgroup->expiry) != NULL) {
1393                                 /* continue */
1394                                 if ((wait = expiry(drive)) > 0) {
1395                                         /* reset timer */
1396                                         hwgroup->timer.expires  = jiffies + wait;
1397                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1398                                         add_timer(&hwgroup->timer);
1399                                         spin_unlock_irqrestore(&ide_lock, flags);
1400                                         return;
1401                                 }
1402                         }
1403                         hwgroup->handler = NULL;
1404                         /*
1405                          * We need to simulate a real interrupt when invoking
1406                          * the handler() function, which means we need to
1407                          * globally mask the specific IRQ:
1408                          */
1409                         spin_unlock(&ide_lock);
1410                         hwif  = HWIF(drive);
1411                         /* disable_irq_nosync ?? */
1412                         disable_irq(hwif->irq);
1413                         /* local CPU only,
1414                          * as if we were handling an interrupt */
1415                         local_irq_disable();
1416                         if (hwgroup->polling) {
1417                                 startstop = handler(drive);
1418                         } else if (drive_is_ready(drive)) {
1419                                 if (drive->waiting_for_dma)
1420                                         hwgroup->hwif->dma_lost_irq(drive);
1421                                 (void)ide_ack_intr(hwif);
1422                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1423                                 startstop = handler(drive);
1424                         } else {
1425                                 if (drive->waiting_for_dma) {
1426                                         startstop = ide_dma_timeout_retry(drive, wait);
1427                                 } else
1428                                         startstop =
1429                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1430                         }
1431                         drive->service_time = jiffies - drive->service_start;
1432                         spin_lock_irq(&ide_lock);
1433                         enable_irq(hwif->irq);
1434                         if (startstop == ide_stopped)
1435                                 hwgroup->busy = 0;
1436                 }
1437         }
1438         ide_do_request(hwgroup, IDE_NO_IRQ);
1439         spin_unlock_irqrestore(&ide_lock, flags);
1440 }
1441
1442 /**
1443  *      unexpected_intr         -       handle an unexpected IDE interrupt
1444  *      @irq: interrupt line
1445  *      @hwgroup: hwgroup being processed
1446  *
1447  *      There's nothing really useful we can do with an unexpected interrupt,
1448  *      other than reading the status register (to clear it), and logging it.
1449  *      There should be no way that an irq can happen before we're ready for it,
1450  *      so we needn't worry much about losing an "important" interrupt here.
1451  *
1452  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1453  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1454  *      looks "good", we just ignore the interrupt completely.
1455  *
1456  *      This routine assumes __cli() is in effect when called.
1457  *
1458  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1459  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1460  *      we could screw up by interfering with a new request being set up for 
1461  *      irq15.
1462  *
1463  *      In reality, this is a non-issue.  The new command is not sent unless 
1464  *      the drive is ready to accept one, in which case we know the drive is
1465  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1466  *      before completing the issuance of any new drive command, so we will not
1467  *      be accidentally invoked as a result of any valid command completion
1468  *      interrupt.
1469  *
1470  *      Note that we must walk the entire hwgroup here. We know which hwif
1471  *      is doing the current command, but we don't know which hwif burped
1472  *      mysteriously.
1473  */
1474  
1475 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1476 {
1477         u8 stat;
1478         ide_hwif_t *hwif = hwgroup->hwif;
1479
1480         /*
1481          * handle the unexpected interrupt
1482          */
1483         do {
1484                 if (hwif->irq == irq) {
1485                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1486                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1487                                 /* Try to not flood the console with msgs */
1488                                 static unsigned long last_msgtime, count;
1489                                 ++count;
1490                                 if (time_after(jiffies, last_msgtime + HZ)) {
1491                                         last_msgtime = jiffies;
1492                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1493                                                 "status=0x%02x, count=%ld\n",
1494                                                 hwif->name,
1495                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1496                                 }
1497                         }
1498                 }
1499         } while ((hwif = hwif->next) != hwgroup->hwif);
1500 }
1501
1502 /**
1503  *      ide_intr        -       default IDE interrupt handler
1504  *      @irq: interrupt number
1505  *      @dev_id: hwif group
1506  *      @regs: unused weirdness from the kernel irq layer
1507  *
1508  *      This is the default IRQ handler for the IDE layer. You should
1509  *      not need to override it. If you do be aware it is subtle in
1510  *      places
1511  *
1512  *      hwgroup->hwif is the interface in the group currently performing
1513  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1514  *      the IRQ handler to call. As we issue a command the handlers
1515  *      step through multiple states, reassigning the handler to the
1516  *      next step in the process. Unlike a smart SCSI controller IDE
1517  *      expects the main processor to sequence the various transfer
1518  *      stages. We also manage a poll timer to catch up with most
1519  *      timeout situations. There are still a few where the handlers
1520  *      don't ever decide to give up.
1521  *
1522  *      The handler eventually returns ide_stopped to indicate the
1523  *      request completed. At this point we issue the next request
1524  *      on the hwgroup and the process begins again.
1525  */
1526  
1527 irqreturn_t ide_intr (int irq, void *dev_id)
1528 {
1529         unsigned long flags;
1530         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1531         ide_hwif_t *hwif;
1532         ide_drive_t *drive;
1533         ide_handler_t *handler;
1534         ide_startstop_t startstop;
1535
1536         spin_lock_irqsave(&ide_lock, flags);
1537         hwif = hwgroup->hwif;
1538
1539         if (!ide_ack_intr(hwif)) {
1540                 spin_unlock_irqrestore(&ide_lock, flags);
1541                 return IRQ_NONE;
1542         }
1543
1544         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1545                 /*
1546                  * Not expecting an interrupt from this drive.
1547                  * That means this could be:
1548                  *      (1) an interrupt from another PCI device
1549                  *      sharing the same PCI INT# as us.
1550                  * or   (2) a drive just entered sleep or standby mode,
1551                  *      and is interrupting to let us know.
1552                  * or   (3) a spurious interrupt of unknown origin.
1553                  *
1554                  * For PCI, we cannot tell the difference,
1555                  * so in that case we just ignore it and hope it goes away.
1556                  *
1557                  * FIXME: unexpected_intr should be hwif-> then we can
1558                  * remove all the ifdef PCI crap
1559                  */
1560 #ifdef CONFIG_BLK_DEV_IDEPCI
1561                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1562 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1563                 {
1564                         /*
1565                          * Probably not a shared PCI interrupt,
1566                          * so we can safely try to do something about it:
1567                          */
1568                         unexpected_intr(irq, hwgroup);
1569 #ifdef CONFIG_BLK_DEV_IDEPCI
1570                 } else {
1571                         /*
1572                          * Whack the status register, just in case
1573                          * we have a leftover pending IRQ.
1574                          */
1575                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1576 #endif /* CONFIG_BLK_DEV_IDEPCI */
1577                 }
1578                 spin_unlock_irqrestore(&ide_lock, flags);
1579                 return IRQ_NONE;
1580         }
1581         drive = hwgroup->drive;
1582         if (!drive) {
1583                 /*
1584                  * This should NEVER happen, and there isn't much
1585                  * we could do about it here.
1586                  *
1587                  * [Note - this can occur if the drive is hot unplugged]
1588                  */
1589                 spin_unlock_irqrestore(&ide_lock, flags);
1590                 return IRQ_HANDLED;
1591         }
1592         if (!drive_is_ready(drive)) {
1593                 /*
1594                  * This happens regularly when we share a PCI IRQ with
1595                  * another device.  Unfortunately, it can also happen
1596                  * with some buggy drives that trigger the IRQ before
1597                  * their status register is up to date.  Hopefully we have
1598                  * enough advance overhead that the latter isn't a problem.
1599                  */
1600                 spin_unlock_irqrestore(&ide_lock, flags);
1601                 return IRQ_NONE;
1602         }
1603         if (!hwgroup->busy) {
1604                 hwgroup->busy = 1;      /* paranoia */
1605                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1606         }
1607         hwgroup->handler = NULL;
1608         hwgroup->req_gen++;
1609         del_timer(&hwgroup->timer);
1610         spin_unlock(&ide_lock);
1611
1612         /* Some controllers might set DMA INTR no matter DMA or PIO;
1613          * bmdma status might need to be cleared even for
1614          * PIO interrupts to prevent spurious/lost irq.
1615          */
1616         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1617                 /* ide_dma_end() needs bmdma status for error checking.
1618                  * So, skip clearing bmdma status here and leave it
1619                  * to ide_dma_end() if this is dma interrupt.
1620                  */
1621                 hwif->ide_dma_clear_irq(drive);
1622
1623         if (drive->unmask)
1624                 local_irq_enable_in_hardirq();
1625         /* service this interrupt, may set handler for next interrupt */
1626         startstop = handler(drive);
1627         spin_lock_irq(&ide_lock);
1628
1629         /*
1630          * Note that handler() may have set things up for another
1631          * interrupt to occur soon, but it cannot happen until
1632          * we exit from this routine, because it will be the
1633          * same irq as is currently being serviced here, and Linux
1634          * won't allow another of the same (on any CPU) until we return.
1635          */
1636         drive->service_time = jiffies - drive->service_start;
1637         if (startstop == ide_stopped) {
1638                 if (hwgroup->handler == NULL) { /* paranoia */
1639                         hwgroup->busy = 0;
1640                         ide_do_request(hwgroup, hwif->irq);
1641                 } else {
1642                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1643                                 "on exit\n", drive->name);
1644                 }
1645         }
1646         spin_unlock_irqrestore(&ide_lock, flags);
1647         return IRQ_HANDLED;
1648 }
1649
1650 /**
1651  *      ide_init_drive_cmd      -       initialize a drive command request
1652  *      @rq: request object
1653  *
1654  *      Initialize a request before we fill it in and send it down to
1655  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1656  *      now it doesn't do a lot, but if that changes abusers will have a
1657  *      nasty surprise.
1658  */
1659
1660 void ide_init_drive_cmd (struct request *rq)
1661 {
1662         memset(rq, 0, sizeof(*rq));
1663         rq->cmd_type = REQ_TYPE_ATA_CMD;
1664         rq->ref_count = 1;
1665 }
1666
1667 EXPORT_SYMBOL(ide_init_drive_cmd);
1668
1669 /**
1670  *      ide_do_drive_cmd        -       issue IDE special command
1671  *      @drive: device to issue command
1672  *      @rq: request to issue
1673  *      @action: action for processing
1674  *
1675  *      This function issues a special IDE device request
1676  *      onto the request queue.
1677  *
1678  *      If action is ide_wait, then the rq is queued at the end of the
1679  *      request queue, and the function sleeps until it has been processed.
1680  *      This is for use when invoked from an ioctl handler.
1681  *
1682  *      If action is ide_preempt, then the rq is queued at the head of
1683  *      the request queue, displacing the currently-being-processed
1684  *      request and this function returns immediately without waiting
1685  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1686  *      intended for careful use by the ATAPI tape/cdrom driver code.
1687  *
1688  *      If action is ide_end, then the rq is queued at the end of the
1689  *      request queue, and the function returns immediately without waiting
1690  *      for the new rq to be completed. This is again intended for careful
1691  *      use by the ATAPI tape/cdrom driver code.
1692  */
1693  
1694 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1695 {
1696         unsigned long flags;
1697         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1698         DECLARE_COMPLETION_ONSTACK(wait);
1699         int where = ELEVATOR_INSERT_BACK, err;
1700         int must_wait = (action == ide_wait || action == ide_head_wait);
1701
1702         rq->errors = 0;
1703
1704         /*
1705          * we need to hold an extra reference to request for safe inspection
1706          * after completion
1707          */
1708         if (must_wait) {
1709                 rq->ref_count++;
1710                 rq->end_io_data = &wait;
1711                 rq->end_io = blk_end_sync_rq;
1712         }
1713
1714         spin_lock_irqsave(&ide_lock, flags);
1715         if (action == ide_preempt)
1716                 hwgroup->rq = NULL;
1717         if (action == ide_preempt || action == ide_head_wait) {
1718                 where = ELEVATOR_INSERT_FRONT;
1719                 rq->cmd_flags |= REQ_PREEMPT;
1720         }
1721         __elv_add_request(drive->queue, rq, where, 0);
1722         ide_do_request(hwgroup, IDE_NO_IRQ);
1723         spin_unlock_irqrestore(&ide_lock, flags);
1724
1725         err = 0;
1726         if (must_wait) {
1727                 wait_for_completion(&wait);
1728                 if (rq->errors)
1729                         err = -EIO;
1730
1731                 blk_put_request(rq);
1732         }
1733
1734         return err;
1735 }
1736
1737 EXPORT_SYMBOL(ide_do_drive_cmd);
1738
1739 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1740 {
1741         ide_task_t task;
1742
1743         memset(&task, 0, sizeof(task));
1744         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1745                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1746         task.tf.feature = dma;          /* Use PIO/DMA */
1747         task.tf.lbam    = bcount & 0xff;
1748         task.tf.lbah    = (bcount >> 8) & 0xff;
1749
1750         ide_tf_load(drive, &task);
1751 }
1752
1753 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);