drm/ttm: consolidate cache flushing code in one place.
[safe/jmp/linux-2.6] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "drm_cache.h"
38 #include "ttm/ttm_module.h"
39 #include "ttm/ttm_bo_driver.h"
40 #include "ttm/ttm_placement.h"
41
42 static int ttm_tt_swapin(struct ttm_tt *ttm);
43
44 /**
45  * Allocates storage for pointers to the pages that back the ttm.
46  *
47  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
48  */
49 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
50 {
51         unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
52         ttm->pages = NULL;
53
54         if (size <= PAGE_SIZE)
55                 ttm->pages = kzalloc(size, GFP_KERNEL);
56
57         if (!ttm->pages) {
58                 ttm->pages = vmalloc_user(size);
59                 if (ttm->pages)
60                         ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
61         }
62 }
63
64 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
65 {
66         if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
67                 vfree(ttm->pages);
68                 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
69         } else {
70                 kfree(ttm->pages);
71         }
72         ttm->pages = NULL;
73 }
74
75 static struct page *ttm_tt_alloc_page(unsigned page_flags)
76 {
77         gfp_t gfp_flags = GFP_USER;
78
79         if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
80                 gfp_flags |= __GFP_ZERO;
81
82         if (page_flags & TTM_PAGE_FLAG_DMA32)
83                 gfp_flags |= __GFP_DMA32;
84         else
85                 gfp_flags |= __GFP_HIGHMEM;
86
87         return alloc_page(gfp_flags);
88 }
89
90 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
91 {
92         int write;
93         int dirty;
94         struct page *page;
95         int i;
96         struct ttm_backend *be = ttm->be;
97
98         BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
99         write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
100         dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
101
102         if (be)
103                 be->func->clear(be);
104
105         for (i = 0; i < ttm->num_pages; ++i) {
106                 page = ttm->pages[i];
107                 if (page == NULL)
108                         continue;
109
110                 if (page == ttm->dummy_read_page) {
111                         BUG_ON(write);
112                         continue;
113                 }
114
115                 if (write && dirty && !PageReserved(page))
116                         set_page_dirty_lock(page);
117
118                 ttm->pages[i] = NULL;
119                 ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
120                 put_page(page);
121         }
122         ttm->state = tt_unpopulated;
123         ttm->first_himem_page = ttm->num_pages;
124         ttm->last_lomem_page = -1;
125 }
126
127 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
128 {
129         struct page *p;
130         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
131         int ret;
132
133         while (NULL == (p = ttm->pages[index])) {
134                 p = ttm_tt_alloc_page(ttm->page_flags);
135
136                 if (!p)
137                         return NULL;
138
139                 ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
140                 if (unlikely(ret != 0))
141                         goto out_err;
142
143                 if (PageHighMem(p))
144                         ttm->pages[--ttm->first_himem_page] = p;
145                 else
146                         ttm->pages[++ttm->last_lomem_page] = p;
147         }
148         return p;
149 out_err:
150         put_page(p);
151         return NULL;
152 }
153
154 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
155 {
156         int ret;
157
158         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
159                 ret = ttm_tt_swapin(ttm);
160                 if (unlikely(ret != 0))
161                         return NULL;
162         }
163         return __ttm_tt_get_page(ttm, index);
164 }
165
166 int ttm_tt_populate(struct ttm_tt *ttm)
167 {
168         struct page *page;
169         unsigned long i;
170         struct ttm_backend *be;
171         int ret;
172
173         if (ttm->state != tt_unpopulated)
174                 return 0;
175
176         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
177                 ret = ttm_tt_swapin(ttm);
178                 if (unlikely(ret != 0))
179                         return ret;
180         }
181
182         be = ttm->be;
183
184         for (i = 0; i < ttm->num_pages; ++i) {
185                 page = __ttm_tt_get_page(ttm, i);
186                 if (!page)
187                         return -ENOMEM;
188         }
189
190         be->func->populate(be, ttm->num_pages, ttm->pages,
191                            ttm->dummy_read_page);
192         ttm->state = tt_unbound;
193         return 0;
194 }
195
196 #ifdef CONFIG_X86
197 static inline int ttm_tt_set_page_caching(struct page *p,
198                                           enum ttm_caching_state c_state)
199 {
200         if (PageHighMem(p))
201                 return 0;
202
203         switch (c_state) {
204         case tt_cached:
205                 return set_pages_wb(p, 1);
206         case tt_wc:
207             return set_memory_wc((unsigned long) page_address(p), 1);
208         default:
209                 return set_pages_uc(p, 1);
210         }
211 }
212 #else /* CONFIG_X86 */
213 static inline int ttm_tt_set_page_caching(struct page *p,
214                                           enum ttm_caching_state c_state)
215 {
216         return 0;
217 }
218 #endif /* CONFIG_X86 */
219
220 /*
221  * Change caching policy for the linear kernel map
222  * for range of pages in a ttm.
223  */
224
225 static int ttm_tt_set_caching(struct ttm_tt *ttm,
226                               enum ttm_caching_state c_state)
227 {
228         int i, j;
229         struct page *cur_page;
230         int ret;
231
232         if (ttm->caching_state == c_state)
233                 return 0;
234
235         if (c_state != tt_cached) {
236                 ret = ttm_tt_populate(ttm);
237                 if (unlikely(ret != 0))
238                         return ret;
239         }
240
241         if (ttm->caching_state == tt_cached)
242                 drm_clflush_pages(ttm->pages, ttm->num_pages);
243
244         for (i = 0; i < ttm->num_pages; ++i) {
245                 cur_page = ttm->pages[i];
246                 if (likely(cur_page != NULL)) {
247                         ret = ttm_tt_set_page_caching(cur_page, c_state);
248                         if (unlikely(ret != 0))
249                                 goto out_err;
250                 }
251         }
252
253         ttm->caching_state = c_state;
254
255         return 0;
256
257 out_err:
258         for (j = 0; j < i; ++j) {
259                 cur_page = ttm->pages[j];
260                 if (likely(cur_page != NULL)) {
261                         (void)ttm_tt_set_page_caching(cur_page,
262                                                       ttm->caching_state);
263                 }
264         }
265
266         return ret;
267 }
268
269 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
270 {
271         enum ttm_caching_state state;
272
273         if (placement & TTM_PL_FLAG_WC)
274                 state = tt_wc;
275         else if (placement & TTM_PL_FLAG_UNCACHED)
276                 state = tt_uncached;
277         else
278                 state = tt_cached;
279
280         return ttm_tt_set_caching(ttm, state);
281 }
282
283 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
284 {
285         int i;
286         struct page *cur_page;
287         struct ttm_backend *be = ttm->be;
288
289         if (be)
290                 be->func->clear(be);
291         (void)ttm_tt_set_caching(ttm, tt_cached);
292         for (i = 0; i < ttm->num_pages; ++i) {
293                 cur_page = ttm->pages[i];
294                 ttm->pages[i] = NULL;
295                 if (cur_page) {
296                         if (page_count(cur_page) != 1)
297                                 printk(KERN_ERR TTM_PFX
298                                        "Erroneous page count. "
299                                        "Leaking pages.\n");
300                         ttm_mem_global_free_page(ttm->glob->mem_glob,
301                                                  cur_page);
302                         __free_page(cur_page);
303                 }
304         }
305         ttm->state = tt_unpopulated;
306         ttm->first_himem_page = ttm->num_pages;
307         ttm->last_lomem_page = -1;
308 }
309
310 void ttm_tt_destroy(struct ttm_tt *ttm)
311 {
312         struct ttm_backend *be;
313
314         if (unlikely(ttm == NULL))
315                 return;
316
317         be = ttm->be;
318         if (likely(be != NULL)) {
319                 be->func->destroy(be);
320                 ttm->be = NULL;
321         }
322
323         if (likely(ttm->pages != NULL)) {
324                 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
325                         ttm_tt_free_user_pages(ttm);
326                 else
327                         ttm_tt_free_alloced_pages(ttm);
328
329                 ttm_tt_free_page_directory(ttm);
330         }
331
332         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
333             ttm->swap_storage)
334                 fput(ttm->swap_storage);
335
336         kfree(ttm);
337 }
338
339 int ttm_tt_set_user(struct ttm_tt *ttm,
340                     struct task_struct *tsk,
341                     unsigned long start, unsigned long num_pages)
342 {
343         struct mm_struct *mm = tsk->mm;
344         int ret;
345         int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
346         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
347
348         BUG_ON(num_pages != ttm->num_pages);
349         BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
350
351         /**
352          * Account user pages as lowmem pages for now.
353          */
354
355         ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
356                                    false, false);
357         if (unlikely(ret != 0))
358                 return ret;
359
360         down_read(&mm->mmap_sem);
361         ret = get_user_pages(tsk, mm, start, num_pages,
362                              write, 0, ttm->pages, NULL);
363         up_read(&mm->mmap_sem);
364
365         if (ret != num_pages && write) {
366                 ttm_tt_free_user_pages(ttm);
367                 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
368                 return -ENOMEM;
369         }
370
371         ttm->tsk = tsk;
372         ttm->start = start;
373         ttm->state = tt_unbound;
374
375         return 0;
376 }
377
378 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
379                              uint32_t page_flags, struct page *dummy_read_page)
380 {
381         struct ttm_bo_driver *bo_driver = bdev->driver;
382         struct ttm_tt *ttm;
383
384         if (!bo_driver)
385                 return NULL;
386
387         ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
388         if (!ttm)
389                 return NULL;
390
391         ttm->glob = bdev->glob;
392         ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
393         ttm->first_himem_page = ttm->num_pages;
394         ttm->last_lomem_page = -1;
395         ttm->caching_state = tt_cached;
396         ttm->page_flags = page_flags;
397
398         ttm->dummy_read_page = dummy_read_page;
399
400         ttm_tt_alloc_page_directory(ttm);
401         if (!ttm->pages) {
402                 ttm_tt_destroy(ttm);
403                 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
404                 return NULL;
405         }
406         ttm->be = bo_driver->create_ttm_backend_entry(bdev);
407         if (!ttm->be) {
408                 ttm_tt_destroy(ttm);
409                 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
410                 return NULL;
411         }
412         ttm->state = tt_unpopulated;
413         return ttm;
414 }
415
416 void ttm_tt_unbind(struct ttm_tt *ttm)
417 {
418         int ret;
419         struct ttm_backend *be = ttm->be;
420
421         if (ttm->state == tt_bound) {
422                 ret = be->func->unbind(be);
423                 BUG_ON(ret);
424                 ttm->state = tt_unbound;
425         }
426 }
427
428 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
429 {
430         int ret = 0;
431         struct ttm_backend *be;
432
433         if (!ttm)
434                 return -EINVAL;
435
436         if (ttm->state == tt_bound)
437                 return 0;
438
439         be = ttm->be;
440
441         ret = ttm_tt_populate(ttm);
442         if (ret)
443                 return ret;
444
445         ret = be->func->bind(be, bo_mem);
446         if (ret) {
447                 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
448                 return ret;
449         }
450
451         ttm->state = tt_bound;
452
453         if (ttm->page_flags & TTM_PAGE_FLAG_USER)
454                 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
455         return 0;
456 }
457 EXPORT_SYMBOL(ttm_tt_bind);
458
459 static int ttm_tt_swapin(struct ttm_tt *ttm)
460 {
461         struct address_space *swap_space;
462         struct file *swap_storage;
463         struct page *from_page;
464         struct page *to_page;
465         void *from_virtual;
466         void *to_virtual;
467         int i;
468         int ret;
469
470         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
471                 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
472                                       ttm->num_pages);
473                 if (unlikely(ret != 0))
474                         return ret;
475
476                 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
477                 return 0;
478         }
479
480         swap_storage = ttm->swap_storage;
481         BUG_ON(swap_storage == NULL);
482
483         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
484
485         for (i = 0; i < ttm->num_pages; ++i) {
486                 from_page = read_mapping_page(swap_space, i, NULL);
487                 if (IS_ERR(from_page))
488                         goto out_err;
489                 to_page = __ttm_tt_get_page(ttm, i);
490                 if (unlikely(to_page == NULL))
491                         goto out_err;
492
493                 preempt_disable();
494                 from_virtual = kmap_atomic(from_page, KM_USER0);
495                 to_virtual = kmap_atomic(to_page, KM_USER1);
496                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
497                 kunmap_atomic(to_virtual, KM_USER1);
498                 kunmap_atomic(from_virtual, KM_USER0);
499                 preempt_enable();
500                 page_cache_release(from_page);
501         }
502
503         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
504                 fput(swap_storage);
505         ttm->swap_storage = NULL;
506         ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
507
508         return 0;
509 out_err:
510         ttm_tt_free_alloced_pages(ttm);
511         return -ENOMEM;
512 }
513
514 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
515 {
516         struct address_space *swap_space;
517         struct file *swap_storage;
518         struct page *from_page;
519         struct page *to_page;
520         void *from_virtual;
521         void *to_virtual;
522         int i;
523
524         BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
525         BUG_ON(ttm->caching_state != tt_cached);
526
527         /*
528          * For user buffers, just unpin the pages, as there should be
529          * vma references.
530          */
531
532         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
533                 ttm_tt_free_user_pages(ttm);
534                 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
535                 ttm->swap_storage = NULL;
536                 return 0;
537         }
538
539         if (!persistant_swap_storage) {
540                 swap_storage = shmem_file_setup("ttm swap",
541                                                 ttm->num_pages << PAGE_SHIFT,
542                                                 0);
543                 if (unlikely(IS_ERR(swap_storage))) {
544                         printk(KERN_ERR "Failed allocating swap storage.\n");
545                         return -ENOMEM;
546                 }
547         } else
548                 swap_storage = persistant_swap_storage;
549
550         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
551
552         for (i = 0; i < ttm->num_pages; ++i) {
553                 from_page = ttm->pages[i];
554                 if (unlikely(from_page == NULL))
555                         continue;
556                 to_page = read_mapping_page(swap_space, i, NULL);
557                 if (unlikely(to_page == NULL))
558                         goto out_err;
559
560                 preempt_disable();
561                 from_virtual = kmap_atomic(from_page, KM_USER0);
562                 to_virtual = kmap_atomic(to_page, KM_USER1);
563                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
564                 kunmap_atomic(to_virtual, KM_USER1);
565                 kunmap_atomic(from_virtual, KM_USER0);
566                 preempt_enable();
567                 set_page_dirty(to_page);
568                 mark_page_accessed(to_page);
569                 page_cache_release(to_page);
570         }
571
572         ttm_tt_free_alloced_pages(ttm);
573         ttm->swap_storage = swap_storage;
574         ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
575         if (persistant_swap_storage)
576                 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
577
578         return 0;
579 out_err:
580         if (!persistant_swap_storage)
581                 fput(swap_storage);
582
583         return -ENOMEM;
584 }