drm/i915: Fix typo for wrong LVDS clock setting on IGDNG
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73     bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74                               int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN              25000
78 #define I8XX_DOT_MAX             350000
79 #define I8XX_VCO_MIN             930000
80 #define I8XX_VCO_MAX            1400000
81 #define I8XX_N_MIN                    3
82 #define I8XX_N_MAX                   16
83 #define I8XX_M_MIN                   96
84 #define I8XX_M_MAX                  140
85 #define I8XX_M1_MIN                  18
86 #define I8XX_M1_MAX                  26
87 #define I8XX_M2_MIN                   6
88 #define I8XX_M2_MAX                  16
89 #define I8XX_P_MIN                    4
90 #define I8XX_P_MAX                  128
91 #define I8XX_P1_MIN                   2
92 #define I8XX_P1_MAX                  33
93 #define I8XX_P1_LVDS_MIN              1
94 #define I8XX_P1_LVDS_MAX              6
95 #define I8XX_P2_SLOW                  4
96 #define I8XX_P2_FAST                  2
97 #define I8XX_P2_LVDS_SLOW             14
98 #define I8XX_P2_LVDS_FAST             7
99 #define I8XX_P2_SLOW_LIMIT       165000
100
101 #define I9XX_DOT_MIN              20000
102 #define I9XX_DOT_MAX             400000
103 #define I9XX_VCO_MIN            1400000
104 #define I9XX_VCO_MAX            2800000
105 #define IGD_VCO_MIN             1700000
106 #define IGD_VCO_MAX             3500000
107 #define I9XX_N_MIN                    1
108 #define I9XX_N_MAX                    6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN                     3
111 #define IGD_N_MAX                     6
112 #define I9XX_M_MIN                   70
113 #define I9XX_M_MAX                  120
114 #define IGD_M_MIN                     2
115 #define IGD_M_MAX                   256
116 #define I9XX_M1_MIN                  10
117 #define I9XX_M1_MAX                  22
118 #define I9XX_M2_MIN                   5
119 #define I9XX_M2_MAX                   9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN                    0
122 #define IGD_M1_MAX                    0
123 #define IGD_M2_MIN                    0
124 #define IGD_M2_MAX                    254
125 #define I9XX_P_SDVO_DAC_MIN           5
126 #define I9XX_P_SDVO_DAC_MAX          80
127 #define I9XX_P_LVDS_MIN               7
128 #define I9XX_P_LVDS_MAX              98
129 #define IGD_P_LVDS_MIN                7
130 #define IGD_P_LVDS_MAX               112
131 #define I9XX_P1_MIN                   1
132 #define I9XX_P1_MAX                   8
133 #define I9XX_P2_SDVO_DAC_SLOW                10
134 #define I9XX_P2_SDVO_DAC_FAST                 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
136 #define I9XX_P2_LVDS_SLOW                    14
137 #define I9XX_P2_LVDS_FAST                     7
138 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN           25000
142 #define G4X_DOT_SDVO_MAX           270000
143 #define G4X_VCO_MIN                1750000
144 #define G4X_VCO_MAX                3500000
145 #define G4X_N_SDVO_MIN             1
146 #define G4X_N_SDVO_MAX             4
147 #define G4X_M_SDVO_MIN             104
148 #define G4X_M_SDVO_MAX             138
149 #define G4X_M1_SDVO_MIN            17
150 #define G4X_M1_SDVO_MAX            23
151 #define G4X_M2_SDVO_MIN            5
152 #define G4X_M2_SDVO_MAX            11
153 #define G4X_P_SDVO_MIN             10
154 #define G4X_P_SDVO_MAX             30
155 #define G4X_P1_SDVO_MIN            1
156 #define G4X_P1_SDVO_MAX            3
157 #define G4X_P2_SDVO_SLOW           10
158 #define G4X_P2_SDVO_FAST           10
159 #define G4X_P2_SDVO_LIMIT          270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN           22000
163 #define G4X_DOT_HDMI_DAC_MAX           400000
164 #define G4X_N_HDMI_DAC_MIN             1
165 #define G4X_N_HDMI_DAC_MAX             4
166 #define G4X_M_HDMI_DAC_MIN             104
167 #define G4X_M_HDMI_DAC_MAX             138
168 #define G4X_M1_HDMI_DAC_MIN            16
169 #define G4X_M1_HDMI_DAC_MAX            23
170 #define G4X_M2_HDMI_DAC_MIN            5
171 #define G4X_M2_HDMI_DAC_MAX            11
172 #define G4X_P_HDMI_DAC_MIN             5
173 #define G4X_P_HDMI_DAC_MAX             80
174 #define G4X_P1_HDMI_DAC_MIN            1
175 #define G4X_P1_HDMI_DAC_MAX            8
176 #define G4X_P2_HDMI_DAC_SLOW           10
177 #define G4X_P2_HDMI_DAC_FAST           5
178 #define G4X_P2_HDMI_DAC_LIMIT          165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN           161670
220 #define G4X_DOT_DISPLAY_PORT_MAX           227000
221 #define G4X_N_DISPLAY_PORT_MIN             1
222 #define G4X_N_DISPLAY_PORT_MAX             2
223 #define G4X_M_DISPLAY_PORT_MIN             97
224 #define G4X_M_DISPLAY_PORT_MAX             108
225 #define G4X_M1_DISPLAY_PORT_MIN            0x10
226 #define G4X_M1_DISPLAY_PORT_MAX            0x12
227 #define G4X_M2_DISPLAY_PORT_MIN            0x05
228 #define G4X_M2_DISPLAY_PORT_MAX            0x06
229 #define G4X_P_DISPLAY_PORT_MIN             10
230 #define G4X_P_DISPLAY_PORT_MAX             20
231 #define G4X_P1_DISPLAY_PORT_MIN            1
232 #define G4X_P1_DISPLAY_PORT_MAX            2
233 #define G4X_P2_DISPLAY_PORT_SLOW           10
234 #define G4X_P2_DISPLAY_PORT_FAST           10
235 #define G4X_P2_DISPLAY_PORT_LIMIT          0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239    N/M1/M2, so here the range value for them is (actual_value-2).
240  */
241 #define IGDNG_DOT_MIN         25000
242 #define IGDNG_DOT_MAX         350000
243 #define IGDNG_VCO_MIN         1760000
244 #define IGDNG_VCO_MAX         3510000
245 #define IGDNG_N_MIN           1
246 #define IGDNG_N_MAX           5
247 #define IGDNG_M_MIN           79
248 #define IGDNG_M_MAX           118
249 #define IGDNG_M1_MIN          12
250 #define IGDNG_M1_MAX          23
251 #define IGDNG_M2_MIN          5
252 #define IGDNG_M2_MAX          9
253 #define IGDNG_P_SDVO_DAC_MIN  5
254 #define IGDNG_P_SDVO_DAC_MAX  80
255 #define IGDNG_P_LVDS_MIN      28
256 #define IGDNG_P_LVDS_MAX      112
257 #define IGDNG_P1_MIN          1
258 #define IGDNG_P1_MAX          8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
263 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267                     int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270                             int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                         int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                       int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297         .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
302         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
303         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
304         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
305         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
306         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
307         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
308         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
309         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
311         .find_pll = intel_find_best_PLL,
312         .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314         
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
317         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
318         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
319         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
320         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
321         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
322         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
323         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
324         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326         .find_pll = intel_find_best_PLL,
327         .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
332         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
333         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
334         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
335         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
336         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
337         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
338         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
339         /* The single-channel range is 25-112Mhz, and dual-channel
340          * is 80-224Mhz.  Prefer single channel as much as possible.
341          */
342         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
344         .find_pll = intel_find_best_PLL,
345         .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348     /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
351         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
352         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
353         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
354         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
355         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
356         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
357         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
358         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
359                  .p2_slow = G4X_P2_SDVO_SLOW,
360                  .p2_fast = G4X_P2_SDVO_FAST
361         },
362         .find_pll = intel_g4x_find_best_PLL,
363         .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
368         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
369         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
370         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
371         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
372         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
373         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
374         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
375         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377                  .p2_fast = G4X_P2_HDMI_DAC_FAST
378         },
379         .find_pll = intel_g4x_find_best_PLL,
380         .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386         .vco = { .min = G4X_VCO_MIN,
387                  .max = G4X_VCO_MAX },
388         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403         },
404         .find_pll = intel_g4x_find_best_PLL,
405         .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411         .vco = { .min = G4X_VCO_MIN,
412                  .max = G4X_VCO_MAX },
413         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428         },
429         .find_pll = intel_g4x_find_best_PLL,
430         .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435                  .max = G4X_DOT_DISPLAY_PORT_MAX },
436         .vco = { .min = G4X_VCO_MIN,
437                  .max = G4X_VCO_MAX},
438         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
439                  .max = G4X_N_DISPLAY_PORT_MAX },
440         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
441                  .max = G4X_M_DISPLAY_PORT_MAX },
442         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
443                  .max = G4X_M1_DISPLAY_PORT_MAX },
444         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
445                  .max = G4X_M2_DISPLAY_PORT_MAX },
446         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
447                  .max = G4X_P_DISPLAY_PORT_MAX },
448         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
449                  .max = G4X_P1_DISPLAY_PORT_MAX},
450         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453         .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
458         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
459         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
460         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
461         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
462         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
463         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
464         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
465         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467         .find_pll = intel_find_best_PLL,
468         .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
473         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
474         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
475         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
476         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
477         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
478         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
480         /* IGD only supports single-channel mode. */
481         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
483         .find_pll = intel_find_best_PLL,
484         .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
489         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
490         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
491         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
492         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
493         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
494         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
495         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
496         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499         .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
504         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
505         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
506         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
507         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
508         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
509         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
510         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
511         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512                  .p2_slow = IGDNG_P2_LVDS_SLOW,
513                  .p2_fast = IGDNG_P2_LVDS_FAST },
514         .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519         const intel_limit_t *limit;
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521                 limit = &intel_limits_igdng_lvds;
522         else
523                 limit = &intel_limits_igdng_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         const intel_limit_t *limit;
533
534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         /* LVDS with dual channel */
538                         limit = &intel_limits_g4x_dual_channel_lvds;
539                 else
540                         /* LVDS with dual channel */
541                         limit = &intel_limits_g4x_single_channel_lvds;
542         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544                 limit = &intel_limits_g4x_hdmi;
545         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546                 limit = &intel_limits_g4x_sdvo;
547         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548                 limit = &intel_limits_g4x_display_port;
549         } else /* The option is for other outputs */
550                 limit = &intel_limits_i9xx_sdvo;
551
552         return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557         struct drm_device *dev = crtc->dev;
558         const intel_limit_t *limit;
559
560         if (IS_IGDNG(dev))
561                 limit = intel_igdng_limit(crtc);
562         else if (IS_G4X(dev)) {
563                 limit = intel_g4x_limit(crtc);
564         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566                         limit = &intel_limits_i9xx_lvds;
567                 else
568                         limit = &intel_limits_i9xx_sdvo;
569         } else if (IS_IGD(dev)) {
570                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571                         limit = &intel_limits_igd_lvds;
572                 else
573                         limit = &intel_limits_igd_sdvo;
574         } else {
575                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576                         limit = &intel_limits_i8xx_lvds;
577                 else
578                         limit = &intel_limits_i8xx_dvo;
579         }
580         return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         clock->vco = refclk * clock->m / clock->n;
589         clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594         if (IS_IGD(dev)) {
595                 igd_clock(refclk, clock);
596                 return;
597         }
598         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599         clock->p = clock->p1 * clock->p2;
600         clock->vco = refclk * clock->m / (clock->n + 2);
601         clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605  * Returns whether any output on the specified pipe is of the specified type
606  */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609     struct drm_device *dev = crtc->dev;
610     struct drm_mode_config *mode_config = &dev->mode_config;
611     struct drm_connector *l_entry;
612
613     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614             if (l_entry->encoder &&
615                 l_entry->encoder->crtc == crtc) {
616                     struct intel_output *intel_output = to_intel_output(l_entry);
617                     if (intel_output->type == type)
618                             return true;
619             }
620     }
621     return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627     struct drm_device *dev = crtc->dev;
628     struct drm_mode_config *mode_config = &dev->mode_config;
629     struct drm_connector *l_entry, *ret = NULL;
630
631     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632             if (l_entry->encoder &&
633                 l_entry->encoder->crtc == crtc) {
634                     ret = l_entry;
635                     break;
636             }
637     }
638     return ret;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649         const intel_limit_t *limit = intel_limit (crtc);
650         struct drm_device *dev = crtc->dev;
651
652         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
653                 INTELPllInvalid ("p1 out of range\n");
654         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
655                 INTELPllInvalid ("p out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid ("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid ("m1 out of range\n");
660         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661                 INTELPllInvalid ("m1 <= m2\n");
662         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
663                 INTELPllInvalid ("m out of range\n");
664         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
665                 INTELPllInvalid ("n out of range\n");
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid ("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid ("dot out of range\n");
673
674         return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679                     int target, int refclk, intel_clock_t *best_clock)
680
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         intel_clock_t clock;
685         int err = target;
686
687         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688             (I915_READ(LVDS)) != 0) {
689                 /*
690                  * For LVDS, if the panel is on, just rely on its current
691                  * settings for dual-channel.  We haven't figured out how to
692                  * reliably set up different single/dual channel state, if we
693                  * even can.
694                  */
695                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696                     LVDS_CLKB_POWER_UP)
697                         clock.p2 = limit->p2.p2_fast;
698                 else
699                         clock.p2 = limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         clock.p2 = limit->p2.p2_slow;
703                 else
704                         clock.p2 = limit->p2.p2_fast;
705         }
706
707         memset (best_clock, 0, sizeof (*best_clock));
708
709         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711                      clock.m1++) {
712                         for (clock.m2 = limit->m2.min;
713                              clock.m2 <= limit->m2.max; clock.m2++) {
714                                 /* m1 is always 0 in IGD */
715                                 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716                                         break;
717                                 for (clock.n = limit->n.min;
718                                      clock.n <= limit->n.max; clock.n++) {
719                                         int this_err;
720
721                                         intel_clock(dev, refclk, &clock);
722
723                                         if (!intel_PLL_is_valid(crtc, &clock))
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                             int target, int refclk, intel_clock_t *best_clock)
743
744 {
745         struct drm_device *dev = crtc->dev;
746         intel_clock_t clock;
747         int err = target;
748         bool found = false;
749
750         memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754                         /* m1 is always 0 in IGD */
755                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756                                 break;
757                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
758                              clock.n++) {
759                                 int this_err;
760
761                                 intel_clock(dev, refclk, &clock);
762
763                                 if (!intel_PLL_is_valid(crtc, &clock))
764                                         continue;
765
766                                 this_err = abs(clock.dot - target);
767                                 if (this_err < err) {
768                                         *best_clock = clock;
769                                         err = this_err;
770                                         found = true;
771                                 }
772                         }
773                 }
774         }
775
776         return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781                         int target, int refclk, intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         intel_clock_t clock;
786         int max_n;
787         bool found;
788         /* approximately equals target * 0.00488 */
789         int err_most = (target >> 8) + (target >> 10);
790         found = false;
791
792         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794                     LVDS_CLKB_POWER_UP)
795                         clock.p2 = limit->p2.p2_fast;
796                 else
797                         clock.p2 = limit->p2.p2_slow;
798         } else {
799                 if (target < limit->p2.dot_limit)
800                         clock.p2 = limit->p2.p2_slow;
801                 else
802                         clock.p2 = limit->p2.p2_fast;
803         }
804
805         memset(best_clock, 0, sizeof(*best_clock));
806         max_n = limit->n.max;
807         /* based on hardware requriment prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirment prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         intel_clock(dev, refclk, &clock);
819                                         if (!intel_PLL_is_valid(crtc, &clock))
820                                                 continue;
821                                         this_err = abs(clock.dot - target) ;
822                                         if (this_err < err_most) {
823                                                 *best_clock = clock;
824                                                 err_most = this_err;
825                                                 max_n = clock.n;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832         return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->dev;
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.n = 1;
843                 clock.p1 = 2;
844                 clock.p2 = 10;
845                 clock.m1 = 12;
846                 clock.m2 = 9;
847         } else {
848                 clock.n = 2;
849                 clock.p1 = 1;
850                 clock.p2 = 10;
851                 clock.m1 = 14;
852                 clock.m2 = 8;
853         }
854         intel_clock(dev, refclk, &clock);
855         memcpy(best_clock, &clock, sizeof(intel_clock_t));
856         return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861                         int target, int refclk, intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         intel_clock_t clock;
866         int max_n;
867         bool found;
868         int err_most = 47;
869         found = false;
870
871         /* eDP has only 2 clock choice, no n/m/p setting */
872         if (HAS_eDP)
873                 return true;
874
875         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
876                 return intel_find_pll_igdng_dp(limit, crtc, target,
877                                                refclk, best_clock);
878
879         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
881                     LVDS_CLKB_POWER_UP)
882                         clock.p2 = limit->p2.p2_fast;
883                 else
884                         clock.p2 = limit->p2.p2_slow;
885         } else {
886                 if (target < limit->p2.dot_limit)
887                         clock.p2 = limit->p2.p2_slow;
888                 else
889                         clock.p2 = limit->p2.p2_fast;
890         }
891
892         memset(best_clock, 0, sizeof(*best_clock));
893         max_n = limit->n.max;
894         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895                 /* based on hardware requriment prefer smaller n to precision */
896                 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897                         /* based on hardware requirment prefere larger m1,m2 */
898                         for (clock.m1 = limit->m1.max;
899                              clock.m1 >= limit->m1.min; clock.m1--) {
900                                 for (clock.m2 = limit->m2.max;
901                                      clock.m2 >= limit->m2.min; clock.m2--) {
902                                         int this_err;
903
904                                         intel_clock(dev, refclk, &clock);
905                                         if (!intel_PLL_is_valid(crtc, &clock))
906                                                 continue;
907                                         this_err = abs((10000 - (target*10000/clock.dot)));
908                                         if (this_err < err_most) {
909                                                 *best_clock = clock;
910                                                 err_most = this_err;
911                                                 max_n = clock.n;
912                                                 found = true;
913                                                 /* found on first matching */
914                                                 goto out;
915                                         }
916                                 }
917                         }
918                 }
919         }
920 out:
921         return found;
922 }
923
924 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
925 static bool
926 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
927                       int target, int refclk, intel_clock_t *best_clock)
928 {
929     intel_clock_t clock;
930     if (target < 200000) {
931         clock.p1 = 2;
932         clock.p2 = 10;
933         clock.n = 2;
934         clock.m1 = 23;
935         clock.m2 = 8;
936     } else {
937         clock.p1 = 1;
938         clock.p2 = 10;
939         clock.n = 1;
940         clock.m1 = 14;
941         clock.m2 = 2;
942     }
943     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
944     clock.p = (clock.p1 * clock.p2);
945     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
946     memcpy(best_clock, &clock, sizeof(intel_clock_t));
947     return true;
948 }
949
950 void
951 intel_wait_for_vblank(struct drm_device *dev)
952 {
953         /* Wait for 20ms, i.e. one cycle at 50hz. */
954         mdelay(20);
955 }
956
957 /* Parameters have changed, update FBC info */
958 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
959 {
960         struct drm_device *dev = crtc->dev;
961         struct drm_i915_private *dev_priv = dev->dev_private;
962         struct drm_framebuffer *fb = crtc->fb;
963         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
964         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
966         int plane, i;
967         u32 fbc_ctl, fbc_ctl2;
968
969         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
970
971         if (fb->pitch < dev_priv->cfb_pitch)
972                 dev_priv->cfb_pitch = fb->pitch;
973
974         /* FBC_CTL wants 64B units */
975         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
976         dev_priv->cfb_fence = obj_priv->fence_reg;
977         dev_priv->cfb_plane = intel_crtc->plane;
978         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
979
980         /* Clear old tags */
981         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
982                 I915_WRITE(FBC_TAG + (i * 4), 0);
983
984         /* Set it up... */
985         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
986         if (obj_priv->tiling_mode != I915_TILING_NONE)
987                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
988         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
989         I915_WRITE(FBC_FENCE_OFF, crtc->y);
990
991         /* enable it... */
992         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
993         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
994         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
995         if (obj_priv->tiling_mode != I915_TILING_NONE)
996                 fbc_ctl |= dev_priv->cfb_fence;
997         I915_WRITE(FBC_CONTROL, fbc_ctl);
998
999         DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1000                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1001 }
1002
1003 void i8xx_disable_fbc(struct drm_device *dev)
1004 {
1005         struct drm_i915_private *dev_priv = dev->dev_private;
1006         u32 fbc_ctl;
1007
1008         /* Disable compression */
1009         fbc_ctl = I915_READ(FBC_CONTROL);
1010         fbc_ctl &= ~FBC_CTL_EN;
1011         I915_WRITE(FBC_CONTROL, fbc_ctl);
1012
1013         /* Wait for compressing bit to clear */
1014         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1015                 ; /* nothing */
1016
1017         intel_wait_for_vblank(dev);
1018
1019         DRM_DEBUG("disabled FBC\n");
1020 }
1021
1022 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1023 {
1024         struct drm_device *dev = crtc->dev;
1025         struct drm_i915_private *dev_priv = dev->dev_private;
1026
1027         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1028 }
1029
1030 /**
1031  * intel_update_fbc - enable/disable FBC as needed
1032  * @crtc: CRTC to point the compressor at
1033  * @mode: mode in use
1034  *
1035  * Set up the framebuffer compression hardware at mode set time.  We
1036  * enable it if possible:
1037  *   - plane A only (on pre-965)
1038  *   - no pixel mulitply/line duplication
1039  *   - no alpha buffer discard
1040  *   - no dual wide
1041  *   - framebuffer <= 2048 in width, 1536 in height
1042  *
1043  * We can't assume that any compression will take place (worst case),
1044  * so the compressed buffer has to be the same size as the uncompressed
1045  * one.  It also must reside (along with the line length buffer) in
1046  * stolen memory.
1047  *
1048  * We need to enable/disable FBC on a global basis.
1049  */
1050 static void intel_update_fbc(struct drm_crtc *crtc,
1051                              struct drm_display_mode *mode)
1052 {
1053         struct drm_device *dev = crtc->dev;
1054         struct drm_i915_private *dev_priv = dev->dev_private;
1055         struct drm_framebuffer *fb = crtc->fb;
1056         struct intel_framebuffer *intel_fb;
1057         struct drm_i915_gem_object *obj_priv;
1058         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1059         int plane = intel_crtc->plane;
1060
1061         if (!i915_powersave)
1062                 return;
1063
1064         if (!crtc->fb)
1065                 return;
1066
1067         intel_fb = to_intel_framebuffer(fb);
1068         obj_priv = intel_fb->obj->driver_private;
1069
1070         /*
1071          * If FBC is already on, we just have to verify that we can
1072          * keep it that way...
1073          * Need to disable if:
1074          *   - changing FBC params (stride, fence, mode)
1075          *   - new fb is too large to fit in compressed buffer
1076          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1077          */
1078         if (intel_fb->obj->size > dev_priv->cfb_size) {
1079                 DRM_DEBUG("framebuffer too large, disabling compression\n");
1080                 goto out_disable;
1081         }
1082         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1083             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1084                 DRM_DEBUG("mode incompatible with compression, disabling\n");
1085                 goto out_disable;
1086         }
1087         if ((mode->hdisplay > 2048) ||
1088             (mode->vdisplay > 1536)) {
1089                 DRM_DEBUG("mode too large for compression, disabling\n");
1090                 goto out_disable;
1091         }
1092         if (IS_I9XX(dev) && plane != 0) {
1093                 DRM_DEBUG("plane not 0, disabling compression\n");
1094                 goto out_disable;
1095         }
1096         if (obj_priv->tiling_mode != I915_TILING_X) {
1097                 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1098                 goto out_disable;
1099         }
1100
1101         if (i8xx_fbc_enabled(crtc)) {
1102                 /* We can re-enable it in this case, but need to update pitch */
1103                 if (fb->pitch > dev_priv->cfb_pitch)
1104                         i8xx_disable_fbc(dev);
1105                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1106                         i8xx_disable_fbc(dev);
1107                 if (plane != dev_priv->cfb_plane)
1108                         i8xx_disable_fbc(dev);
1109         }
1110
1111         if (!i8xx_fbc_enabled(crtc)) {
1112                 /* Now try to turn it back on if possible */
1113                 i8xx_enable_fbc(crtc, 500);
1114         }
1115
1116         return;
1117
1118 out_disable:
1119         DRM_DEBUG("unsupported config, disabling FBC\n");
1120         /* Multiple disables should be harmless */
1121         if (i8xx_fbc_enabled(crtc))
1122                 i8xx_disable_fbc(dev);
1123 }
1124
1125 static int
1126 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1127                     struct drm_framebuffer *old_fb)
1128 {
1129         struct drm_device *dev = crtc->dev;
1130         struct drm_i915_private *dev_priv = dev->dev_private;
1131         struct drm_i915_master_private *master_priv;
1132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1133         struct intel_framebuffer *intel_fb;
1134         struct drm_i915_gem_object *obj_priv;
1135         struct drm_gem_object *obj;
1136         int pipe = intel_crtc->pipe;
1137         int plane = intel_crtc->plane;
1138         unsigned long Start, Offset;
1139         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1140         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1141         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1142         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1143         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1144         u32 dspcntr, alignment;
1145         int ret;
1146
1147         /* no fb bound */
1148         if (!crtc->fb) {
1149                 DRM_DEBUG("No FB bound\n");
1150                 return 0;
1151         }
1152
1153         switch (plane) {
1154         case 0:
1155         case 1:
1156                 break;
1157         default:
1158                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1159                 return -EINVAL;
1160         }
1161
1162         intel_fb = to_intel_framebuffer(crtc->fb);
1163         obj = intel_fb->obj;
1164         obj_priv = obj->driver_private;
1165
1166         switch (obj_priv->tiling_mode) {
1167         case I915_TILING_NONE:
1168                 alignment = 64 * 1024;
1169                 break;
1170         case I915_TILING_X:
1171                 /* pin() will align the object as required by fence */
1172                 alignment = 0;
1173                 break;
1174         case I915_TILING_Y:
1175                 /* FIXME: Is this true? */
1176                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1177                 return -EINVAL;
1178         default:
1179                 BUG();
1180         }
1181
1182         mutex_lock(&dev->struct_mutex);
1183         ret = i915_gem_object_pin(obj, alignment);
1184         if (ret != 0) {
1185                 mutex_unlock(&dev->struct_mutex);
1186                 return ret;
1187         }
1188
1189         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1190         if (ret != 0) {
1191                 i915_gem_object_unpin(obj);
1192                 mutex_unlock(&dev->struct_mutex);
1193                 return ret;
1194         }
1195
1196         /* Pre-i965 needs to install a fence for tiled scan-out */
1197         if (!IS_I965G(dev) &&
1198             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1199             obj_priv->tiling_mode != I915_TILING_NONE) {
1200                 ret = i915_gem_object_get_fence_reg(obj);
1201                 if (ret != 0) {
1202                         i915_gem_object_unpin(obj);
1203                         mutex_unlock(&dev->struct_mutex);
1204                         return ret;
1205                 }
1206         }
1207
1208         dspcntr = I915_READ(dspcntr_reg);
1209         /* Mask out pixel format bits in case we change it */
1210         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1211         switch (crtc->fb->bits_per_pixel) {
1212         case 8:
1213                 dspcntr |= DISPPLANE_8BPP;
1214                 break;
1215         case 16:
1216                 if (crtc->fb->depth == 15)
1217                         dspcntr |= DISPPLANE_15_16BPP;
1218                 else
1219                         dspcntr |= DISPPLANE_16BPP;
1220                 break;
1221         case 24:
1222         case 32:
1223                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1224                 break;
1225         default:
1226                 DRM_ERROR("Unknown color depth\n");
1227                 i915_gem_object_unpin(obj);
1228                 mutex_unlock(&dev->struct_mutex);
1229                 return -EINVAL;
1230         }
1231         if (IS_I965G(dev)) {
1232                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1233                         dspcntr |= DISPPLANE_TILED;
1234                 else
1235                         dspcntr &= ~DISPPLANE_TILED;
1236         }
1237
1238         if (IS_IGDNG(dev))
1239                 /* must disable */
1240                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1241
1242         I915_WRITE(dspcntr_reg, dspcntr);
1243
1244         Start = obj_priv->gtt_offset;
1245         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1246
1247         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1248         I915_WRITE(dspstride, crtc->fb->pitch);
1249         if (IS_I965G(dev)) {
1250                 I915_WRITE(dspbase, Offset);
1251                 I915_READ(dspbase);
1252                 I915_WRITE(dspsurf, Start);
1253                 I915_READ(dspsurf);
1254                 I915_WRITE(dsptileoff, (y << 16) | x);
1255         } else {
1256                 I915_WRITE(dspbase, Start + Offset);
1257                 I915_READ(dspbase);
1258         }
1259
1260         intel_wait_for_vblank(dev);
1261
1262         if (old_fb) {
1263                 intel_fb = to_intel_framebuffer(old_fb);
1264                 obj_priv = intel_fb->obj->driver_private;
1265                 i915_gem_object_unpin(intel_fb->obj);
1266         }
1267         intel_increase_pllclock(crtc, true);
1268
1269         mutex_unlock(&dev->struct_mutex);
1270
1271         if (!dev->primary->master)
1272                 return 0;
1273
1274         master_priv = dev->primary->master->driver_priv;
1275         if (!master_priv->sarea_priv)
1276                 return 0;
1277
1278         if (pipe) {
1279                 master_priv->sarea_priv->pipeB_x = x;
1280                 master_priv->sarea_priv->pipeB_y = y;
1281         } else {
1282                 master_priv->sarea_priv->pipeA_x = x;
1283                 master_priv->sarea_priv->pipeA_y = y;
1284         }
1285
1286         if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
1287                 intel_update_fbc(crtc, &crtc->mode);
1288
1289         return 0;
1290 }
1291
1292 /* Disable the VGA plane that we never use */
1293 static void i915_disable_vga (struct drm_device *dev)
1294 {
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         u8 sr1;
1297         u32 vga_reg;
1298
1299         if (IS_IGDNG(dev))
1300                 vga_reg = CPU_VGACNTRL;
1301         else
1302                 vga_reg = VGACNTRL;
1303
1304         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1305                 return;
1306
1307         I915_WRITE8(VGA_SR_INDEX, 1);
1308         sr1 = I915_READ8(VGA_SR_DATA);
1309         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1310         udelay(100);
1311
1312         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1313 }
1314
1315 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1316 {
1317         struct drm_device *dev = crtc->dev;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319         u32 dpa_ctl;
1320
1321         DRM_DEBUG("\n");
1322         dpa_ctl = I915_READ(DP_A);
1323         dpa_ctl &= ~DP_PLL_ENABLE;
1324         I915_WRITE(DP_A, dpa_ctl);
1325 }
1326
1327 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1328 {
1329         struct drm_device *dev = crtc->dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         u32 dpa_ctl;
1332
1333         dpa_ctl = I915_READ(DP_A);
1334         dpa_ctl |= DP_PLL_ENABLE;
1335         I915_WRITE(DP_A, dpa_ctl);
1336         udelay(200);
1337 }
1338
1339
1340 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1341 {
1342         struct drm_device *dev = crtc->dev;
1343         struct drm_i915_private *dev_priv = dev->dev_private;
1344         u32 dpa_ctl;
1345
1346         DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1347         dpa_ctl = I915_READ(DP_A);
1348         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1349
1350         if (clock < 200000) {
1351                 u32 temp;
1352                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1353                 /* workaround for 160Mhz:
1354                    1) program 0x4600c bits 15:0 = 0x8124
1355                    2) program 0x46010 bit 0 = 1
1356                    3) program 0x46034 bit 24 = 1
1357                    4) program 0x64000 bit 14 = 1
1358                    */
1359                 temp = I915_READ(0x4600c);
1360                 temp &= 0xffff0000;
1361                 I915_WRITE(0x4600c, temp | 0x8124);
1362
1363                 temp = I915_READ(0x46010);
1364                 I915_WRITE(0x46010, temp | 1);
1365
1366                 temp = I915_READ(0x46034);
1367                 I915_WRITE(0x46034, temp | (1 << 24));
1368         } else {
1369                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1370         }
1371         I915_WRITE(DP_A, dpa_ctl);
1372
1373         udelay(500);
1374 }
1375
1376 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1377 {
1378         struct drm_device *dev = crtc->dev;
1379         struct drm_i915_private *dev_priv = dev->dev_private;
1380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1381         int pipe = intel_crtc->pipe;
1382         int plane = intel_crtc->plane;
1383         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1384         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1385         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1386         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1387         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1388         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1389         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1390         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1391         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1392         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1393         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1394         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1395         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1396         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1397         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1398         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1399         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1400         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1401         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1402         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1403         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1404         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1405         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1406         u32 temp;
1407         int tries = 5, j, n;
1408
1409         /* XXX: When our outputs are all unaware of DPMS modes other than off
1410          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1411          */
1412         switch (mode) {
1413         case DRM_MODE_DPMS_ON:
1414         case DRM_MODE_DPMS_STANDBY:
1415         case DRM_MODE_DPMS_SUSPEND:
1416                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1417                 if (HAS_eDP) {
1418                         /* enable eDP PLL */
1419                         igdng_enable_pll_edp(crtc);
1420                 } else {
1421                         /* enable PCH DPLL */
1422                         temp = I915_READ(pch_dpll_reg);
1423                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1424                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1425                                 I915_READ(pch_dpll_reg);
1426                         }
1427
1428                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1429                         temp = I915_READ(fdi_rx_reg);
1430                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1431                                         FDI_SEL_PCDCLK |
1432                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1433                         I915_READ(fdi_rx_reg);
1434                         udelay(200);
1435
1436                         /* Enable CPU FDI TX PLL, always on for IGDNG */
1437                         temp = I915_READ(fdi_tx_reg);
1438                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1439                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1440                                 I915_READ(fdi_tx_reg);
1441                                 udelay(100);
1442                         }
1443                 }
1444
1445                 /* Enable CPU pipe */
1446                 temp = I915_READ(pipeconf_reg);
1447                 if ((temp & PIPEACONF_ENABLE) == 0) {
1448                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1449                         I915_READ(pipeconf_reg);
1450                         udelay(100);
1451                 }
1452
1453                 /* configure and enable CPU plane */
1454                 temp = I915_READ(dspcntr_reg);
1455                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1456                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1457                         /* Flush the plane changes */
1458                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1459                 }
1460
1461                 if (!HAS_eDP) {
1462                         /* enable CPU FDI TX and PCH FDI RX */
1463                         temp = I915_READ(fdi_tx_reg);
1464                         temp |= FDI_TX_ENABLE;
1465                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1466                         temp &= ~FDI_LINK_TRAIN_NONE;
1467                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1468                         I915_WRITE(fdi_tx_reg, temp);
1469                         I915_READ(fdi_tx_reg);
1470
1471                         temp = I915_READ(fdi_rx_reg);
1472                         temp &= ~FDI_LINK_TRAIN_NONE;
1473                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1474                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1475                         I915_READ(fdi_rx_reg);
1476
1477                         udelay(150);
1478
1479                         /* Train FDI. */
1480                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1481                            for train result */
1482                         temp = I915_READ(fdi_rx_imr_reg);
1483                         temp &= ~FDI_RX_SYMBOL_LOCK;
1484                         temp &= ~FDI_RX_BIT_LOCK;
1485                         I915_WRITE(fdi_rx_imr_reg, temp);
1486                         I915_READ(fdi_rx_imr_reg);
1487                         udelay(150);
1488
1489                         temp = I915_READ(fdi_rx_iir_reg);
1490                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1491
1492                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1493                                 for (j = 0; j < tries; j++) {
1494                                         temp = I915_READ(fdi_rx_iir_reg);
1495                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1496                                         if (temp & FDI_RX_BIT_LOCK)
1497                                                 break;
1498                                         udelay(200);
1499                                 }
1500                                 if (j != tries)
1501                                         I915_WRITE(fdi_rx_iir_reg,
1502                                                         temp | FDI_RX_BIT_LOCK);
1503                                 else
1504                                         DRM_DEBUG("train 1 fail\n");
1505                         } else {
1506                                 I915_WRITE(fdi_rx_iir_reg,
1507                                                 temp | FDI_RX_BIT_LOCK);
1508                                 DRM_DEBUG("train 1 ok 2!\n");
1509                         }
1510                         temp = I915_READ(fdi_tx_reg);
1511                         temp &= ~FDI_LINK_TRAIN_NONE;
1512                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1513                         I915_WRITE(fdi_tx_reg, temp);
1514
1515                         temp = I915_READ(fdi_rx_reg);
1516                         temp &= ~FDI_LINK_TRAIN_NONE;
1517                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1518                         I915_WRITE(fdi_rx_reg, temp);
1519
1520                         udelay(150);
1521
1522                         temp = I915_READ(fdi_rx_iir_reg);
1523                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1524
1525                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1526                                 for (j = 0; j < tries; j++) {
1527                                         temp = I915_READ(fdi_rx_iir_reg);
1528                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1529                                         if (temp & FDI_RX_SYMBOL_LOCK)
1530                                                 break;
1531                                         udelay(200);
1532                                 }
1533                                 if (j != tries) {
1534                                         I915_WRITE(fdi_rx_iir_reg,
1535                                                         temp | FDI_RX_SYMBOL_LOCK);
1536                                         DRM_DEBUG("train 2 ok 1!\n");
1537                                 } else
1538                                         DRM_DEBUG("train 2 fail\n");
1539                         } else {
1540                                 I915_WRITE(fdi_rx_iir_reg,
1541                                                 temp | FDI_RX_SYMBOL_LOCK);
1542                                 DRM_DEBUG("train 2 ok 2!\n");
1543                         }
1544                         DRM_DEBUG("train done\n");
1545
1546                         /* set transcoder timing */
1547                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1548                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1549                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1550
1551                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1552                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1553                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1554
1555                         /* enable PCH transcoder */
1556                         temp = I915_READ(transconf_reg);
1557                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1558                         I915_READ(transconf_reg);
1559
1560                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1561                                 ;
1562
1563                         /* enable normal */
1564
1565                         temp = I915_READ(fdi_tx_reg);
1566                         temp &= ~FDI_LINK_TRAIN_NONE;
1567                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1568                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1569                         I915_READ(fdi_tx_reg);
1570
1571                         temp = I915_READ(fdi_rx_reg);
1572                         temp &= ~FDI_LINK_TRAIN_NONE;
1573                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1574                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1575                         I915_READ(fdi_rx_reg);
1576
1577                         /* wait one idle pattern time */
1578                         udelay(100);
1579
1580                 }
1581
1582                 intel_crtc_load_lut(crtc);
1583
1584         break;
1585         case DRM_MODE_DPMS_OFF:
1586                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1587
1588                 i915_disable_vga(dev);
1589
1590                 /* Disable display plane */
1591                 temp = I915_READ(dspcntr_reg);
1592                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1593                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1594                         /* Flush the plane changes */
1595                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1596                         I915_READ(dspbase_reg);
1597                 }
1598
1599                 /* disable cpu pipe, disable after all planes disabled */
1600                 temp = I915_READ(pipeconf_reg);
1601                 if ((temp & PIPEACONF_ENABLE) != 0) {
1602                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1603                         I915_READ(pipeconf_reg);
1604                         n = 0;
1605                         /* wait for cpu pipe off, pipe state */
1606                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1607                                 n++;
1608                                 if (n < 60) {
1609                                         udelay(500);
1610                                         continue;
1611                                 } else {
1612                                         DRM_DEBUG("pipe %d off delay\n", pipe);
1613                                         break;
1614                                 }
1615                         }
1616                 } else
1617                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1618
1619                 if (HAS_eDP) {
1620                         igdng_disable_pll_edp(crtc);
1621                 }
1622
1623                 /* disable CPU FDI tx and PCH FDI rx */
1624                 temp = I915_READ(fdi_tx_reg);
1625                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1626                 I915_READ(fdi_tx_reg);
1627
1628                 temp = I915_READ(fdi_rx_reg);
1629                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1630                 I915_READ(fdi_rx_reg);
1631
1632                 udelay(100);
1633
1634                 /* still set train pattern 1 */
1635                 temp = I915_READ(fdi_tx_reg);
1636                 temp &= ~FDI_LINK_TRAIN_NONE;
1637                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1638                 I915_WRITE(fdi_tx_reg, temp);
1639
1640                 temp = I915_READ(fdi_rx_reg);
1641                 temp &= ~FDI_LINK_TRAIN_NONE;
1642                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1643                 I915_WRITE(fdi_rx_reg, temp);
1644
1645                 udelay(100);
1646
1647                 /* disable PCH transcoder */
1648                 temp = I915_READ(transconf_reg);
1649                 if ((temp & TRANS_ENABLE) != 0) {
1650                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1651                         I915_READ(transconf_reg);
1652                         n = 0;
1653                         /* wait for PCH transcoder off, transcoder state */
1654                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1655                                 n++;
1656                                 if (n < 60) {
1657                                         udelay(500);
1658                                         continue;
1659                                 } else {
1660                                         DRM_DEBUG("transcoder %d off delay\n", pipe);
1661                                         break;
1662                                 }
1663                         }
1664                 }
1665
1666                 /* disable PCH DPLL */
1667                 temp = I915_READ(pch_dpll_reg);
1668                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1669                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1670                         I915_READ(pch_dpll_reg);
1671                 }
1672
1673                 temp = I915_READ(fdi_rx_reg);
1674                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1675                         temp &= ~FDI_SEL_PCDCLK;
1676                         temp &= ~FDI_RX_PLL_ENABLE;
1677                         I915_WRITE(fdi_rx_reg, temp);
1678                         I915_READ(fdi_rx_reg);
1679                 }
1680
1681                 /* Disable CPU FDI TX PLL */
1682                 temp = I915_READ(fdi_tx_reg);
1683                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1684                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1685                         I915_READ(fdi_tx_reg);
1686                         udelay(100);
1687                 }
1688
1689                 /* Disable PF */
1690                 temp = I915_READ(pf_ctl_reg);
1691                 if ((temp & PF_ENABLE) != 0) {
1692                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1693                         I915_READ(pf_ctl_reg);
1694                 }
1695                 I915_WRITE(pf_win_size, 0);
1696
1697                 /* Wait for the clocks to turn off. */
1698                 udelay(150);
1699                 break;
1700         }
1701 }
1702
1703 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1704 {
1705         struct drm_device *dev = crtc->dev;
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1708         int pipe = intel_crtc->pipe;
1709         int plane = intel_crtc->plane;
1710         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1711         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1712         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1713         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1714         u32 temp;
1715
1716         /* XXX: When our outputs are all unaware of DPMS modes other than off
1717          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1718          */
1719         switch (mode) {
1720         case DRM_MODE_DPMS_ON:
1721         case DRM_MODE_DPMS_STANDBY:
1722         case DRM_MODE_DPMS_SUSPEND:
1723                 /* Enable the DPLL */
1724                 temp = I915_READ(dpll_reg);
1725                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1726                         I915_WRITE(dpll_reg, temp);
1727                         I915_READ(dpll_reg);
1728                         /* Wait for the clocks to stabilize. */
1729                         udelay(150);
1730                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1731                         I915_READ(dpll_reg);
1732                         /* Wait for the clocks to stabilize. */
1733                         udelay(150);
1734                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1735                         I915_READ(dpll_reg);
1736                         /* Wait for the clocks to stabilize. */
1737                         udelay(150);
1738                 }
1739
1740                 /* Enable the pipe */
1741                 temp = I915_READ(pipeconf_reg);
1742                 if ((temp & PIPEACONF_ENABLE) == 0)
1743                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1744
1745                 /* Enable the plane */
1746                 temp = I915_READ(dspcntr_reg);
1747                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1748                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1749                         /* Flush the plane changes */
1750                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1751                 }
1752
1753                 intel_crtc_load_lut(crtc);
1754
1755                 if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
1756                         intel_update_fbc(crtc, &crtc->mode);
1757
1758                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1759                 //intel_crtc_dpms_video(crtc, true); TODO
1760                 intel_update_watermarks(dev);
1761         break;
1762         case DRM_MODE_DPMS_OFF:
1763                 intel_update_watermarks(dev);
1764                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1765                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1766
1767                 if (dev_priv->cfb_plane == plane)
1768                         i8xx_disable_fbc(dev);
1769
1770                 /* Disable the VGA plane that we never use */
1771                 i915_disable_vga(dev);
1772
1773                 /* Disable display plane */
1774                 temp = I915_READ(dspcntr_reg);
1775                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1776                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1777                         /* Flush the plane changes */
1778                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1779                         I915_READ(dspbase_reg);
1780                 }
1781
1782                 if (!IS_I9XX(dev)) {
1783                         /* Wait for vblank for the disable to take effect */
1784                         intel_wait_for_vblank(dev);
1785                 }
1786
1787                 /* Next, disable display pipes */
1788                 temp = I915_READ(pipeconf_reg);
1789                 if ((temp & PIPEACONF_ENABLE) != 0) {
1790                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1791                         I915_READ(pipeconf_reg);
1792                 }
1793
1794                 /* Wait for vblank for the disable to take effect. */
1795                 intel_wait_for_vblank(dev);
1796
1797                 temp = I915_READ(dpll_reg);
1798                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1799                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1800                         I915_READ(dpll_reg);
1801                 }
1802
1803                 /* Wait for the clocks to turn off. */
1804                 udelay(150);
1805                 break;
1806         }
1807 }
1808
1809 /**
1810  * Sets the power management mode of the pipe and plane.
1811  *
1812  * This code should probably grow support for turning the cursor off and back
1813  * on appropriately at the same time as we're turning the pipe off/on.
1814  */
1815 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1816 {
1817         struct drm_device *dev = crtc->dev;
1818         struct drm_i915_master_private *master_priv;
1819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1820         int pipe = intel_crtc->pipe;
1821         bool enabled;
1822
1823         if (IS_IGDNG(dev))
1824                 igdng_crtc_dpms(crtc, mode);
1825         else
1826                 i9xx_crtc_dpms(crtc, mode);
1827
1828         intel_crtc->dpms_mode = mode;
1829
1830         if (!dev->primary->master)
1831                 return;
1832
1833         master_priv = dev->primary->master->driver_priv;
1834         if (!master_priv->sarea_priv)
1835                 return;
1836
1837         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1838
1839         switch (pipe) {
1840         case 0:
1841                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1842                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1843                 break;
1844         case 1:
1845                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1846                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1847                 break;
1848         default:
1849                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1850                 break;
1851         }
1852 }
1853
1854 static void intel_crtc_prepare (struct drm_crtc *crtc)
1855 {
1856         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1857         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1858 }
1859
1860 static void intel_crtc_commit (struct drm_crtc *crtc)
1861 {
1862         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1863         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1864 }
1865
1866 void intel_encoder_prepare (struct drm_encoder *encoder)
1867 {
1868         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1869         /* lvds has its own version of prepare see intel_lvds_prepare */
1870         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1871 }
1872
1873 void intel_encoder_commit (struct drm_encoder *encoder)
1874 {
1875         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1876         /* lvds has its own version of commit see intel_lvds_commit */
1877         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1878 }
1879
1880 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1881                                   struct drm_display_mode *mode,
1882                                   struct drm_display_mode *adjusted_mode)
1883 {
1884         struct drm_device *dev = crtc->dev;
1885         if (IS_IGDNG(dev)) {
1886                 /* FDI link clock is fixed at 2.7G */
1887                 if (mode->clock * 3 > 27000 * 4)
1888                         return MODE_CLOCK_HIGH;
1889         }
1890         return true;
1891 }
1892
1893
1894 /** Returns the core display clock speed for i830 - i945 */
1895 static int intel_get_core_clock_speed(struct drm_device *dev)
1896 {
1897
1898         /* Core clock values taken from the published datasheets.
1899          * The 830 may go up to 166 Mhz, which we should check.
1900          */
1901         if (IS_I945G(dev))
1902                 return 400000;
1903         else if (IS_I915G(dev))
1904                 return 333000;
1905         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1906                 return 200000;
1907         else if (IS_I915GM(dev)) {
1908                 u16 gcfgc = 0;
1909
1910                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1911
1912                 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1913                         return 133000;
1914                 else {
1915                         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1916                         case GC_DISPLAY_CLOCK_333_MHZ:
1917                                 return 333000;
1918                         default:
1919                         case GC_DISPLAY_CLOCK_190_200_MHZ:
1920                                 return 190000;
1921                         }
1922                 }
1923         } else if (IS_I865G(dev))
1924                 return 266000;
1925         else if (IS_I855(dev)) {
1926                 u16 hpllcc = 0;
1927                 /* Assume that the hardware is in the high speed state.  This
1928                  * should be the default.
1929                  */
1930                 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1931                 case GC_CLOCK_133_200:
1932                 case GC_CLOCK_100_200:
1933                         return 200000;
1934                 case GC_CLOCK_166_250:
1935                         return 250000;
1936                 case GC_CLOCK_100_133:
1937                         return 133000;
1938                 }
1939         } else /* 852, 830 */
1940                 return 133000;
1941
1942         return 0; /* Silence gcc warning */
1943 }
1944
1945 /**
1946  * Return the pipe currently connected to the panel fitter,
1947  * or -1 if the panel fitter is not present or not in use
1948  */
1949 static int intel_panel_fitter_pipe (struct drm_device *dev)
1950 {
1951         struct drm_i915_private *dev_priv = dev->dev_private;
1952         u32  pfit_control;
1953
1954         /* i830 doesn't have a panel fitter */
1955         if (IS_I830(dev))
1956                 return -1;
1957
1958         pfit_control = I915_READ(PFIT_CONTROL);
1959
1960         /* See if the panel fitter is in use */
1961         if ((pfit_control & PFIT_ENABLE) == 0)
1962                 return -1;
1963
1964         /* 965 can place panel fitter on either pipe */
1965         if (IS_I965G(dev))
1966                 return (pfit_control >> 29) & 0x3;
1967
1968         /* older chips can only use pipe 1 */
1969         return 1;
1970 }
1971
1972 struct fdi_m_n {
1973         u32        tu;
1974         u32        gmch_m;
1975         u32        gmch_n;
1976         u32        link_m;
1977         u32        link_n;
1978 };
1979
1980 static void
1981 fdi_reduce_ratio(u32 *num, u32 *den)
1982 {
1983         while (*num > 0xffffff || *den > 0xffffff) {
1984                 *num >>= 1;
1985                 *den >>= 1;
1986         }
1987 }
1988
1989 #define DATA_N 0x800000
1990 #define LINK_N 0x80000
1991
1992 static void
1993 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1994                 int pixel_clock, int link_clock,
1995                 struct fdi_m_n *m_n)
1996 {
1997         u64 temp;
1998
1999         m_n->tu = 64; /* default size */
2000
2001         temp = (u64) DATA_N * pixel_clock;
2002         temp = div_u64(temp, link_clock);
2003         m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
2004         m_n->gmch_n = DATA_N;
2005         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2006
2007         temp = (u64) LINK_N * pixel_clock;
2008         m_n->link_m = div_u64(temp, link_clock);
2009         m_n->link_n = LINK_N;
2010         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2011 }
2012
2013
2014 struct intel_watermark_params {
2015         unsigned long fifo_size;
2016         unsigned long max_wm;
2017         unsigned long default_wm;
2018         unsigned long guard_size;
2019         unsigned long cacheline_size;
2020 };
2021
2022 /* IGD has different values for various configs */
2023 static struct intel_watermark_params igd_display_wm = {
2024         IGD_DISPLAY_FIFO,
2025         IGD_MAX_WM,
2026         IGD_DFT_WM,
2027         IGD_GUARD_WM,
2028         IGD_FIFO_LINE_SIZE
2029 };
2030 static struct intel_watermark_params igd_display_hplloff_wm = {
2031         IGD_DISPLAY_FIFO,
2032         IGD_MAX_WM,
2033         IGD_DFT_HPLLOFF_WM,
2034         IGD_GUARD_WM,
2035         IGD_FIFO_LINE_SIZE
2036 };
2037 static struct intel_watermark_params igd_cursor_wm = {
2038         IGD_CURSOR_FIFO,
2039         IGD_CURSOR_MAX_WM,
2040         IGD_CURSOR_DFT_WM,
2041         IGD_CURSOR_GUARD_WM,
2042         IGD_FIFO_LINE_SIZE,
2043 };
2044 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2045         IGD_CURSOR_FIFO,
2046         IGD_CURSOR_MAX_WM,
2047         IGD_CURSOR_DFT_WM,
2048         IGD_CURSOR_GUARD_WM,
2049         IGD_FIFO_LINE_SIZE
2050 };
2051 static struct intel_watermark_params i945_wm_info = {
2052         I945_FIFO_SIZE,
2053         I915_MAX_WM,
2054         1,
2055         2,
2056         I915_FIFO_LINE_SIZE
2057 };
2058 static struct intel_watermark_params i915_wm_info = {
2059         I915_FIFO_SIZE,
2060         I915_MAX_WM,
2061         1,
2062         2,
2063         I915_FIFO_LINE_SIZE
2064 };
2065 static struct intel_watermark_params i855_wm_info = {
2066         I855GM_FIFO_SIZE,
2067         I915_MAX_WM,
2068         1,
2069         2,
2070         I830_FIFO_LINE_SIZE
2071 };
2072 static struct intel_watermark_params i830_wm_info = {
2073         I830_FIFO_SIZE,
2074         I915_MAX_WM,
2075         1,
2076         2,
2077         I830_FIFO_LINE_SIZE
2078 };
2079
2080 /**
2081  * intel_calculate_wm - calculate watermark level
2082  * @clock_in_khz: pixel clock
2083  * @wm: chip FIFO params
2084  * @pixel_size: display pixel size
2085  * @latency_ns: memory latency for the platform
2086  *
2087  * Calculate the watermark level (the level at which the display plane will
2088  * start fetching from memory again).  Each chip has a different display
2089  * FIFO size and allocation, so the caller needs to figure that out and pass
2090  * in the correct intel_watermark_params structure.
2091  *
2092  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2093  * on the pixel size.  When it reaches the watermark level, it'll start
2094  * fetching FIFO line sized based chunks from memory until the FIFO fills
2095  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2096  * will occur, and a display engine hang could result.
2097  */
2098 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2099                                         struct intel_watermark_params *wm,
2100                                         int pixel_size,
2101                                         unsigned long latency_ns)
2102 {
2103         long entries_required, wm_size;
2104
2105         entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
2106         entries_required /= wm->cacheline_size;
2107
2108         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2109
2110         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2111
2112         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2113
2114         /* Don't promote wm_size to unsigned... */
2115         if (wm_size > (long)wm->max_wm)
2116                 wm_size = wm->max_wm;
2117         if (wm_size <= 0)
2118                 wm_size = wm->default_wm;
2119         return wm_size;
2120 }
2121
2122 struct cxsr_latency {
2123         int is_desktop;
2124         unsigned long fsb_freq;
2125         unsigned long mem_freq;
2126         unsigned long display_sr;
2127         unsigned long display_hpll_disable;
2128         unsigned long cursor_sr;
2129         unsigned long cursor_hpll_disable;
2130 };
2131
2132 static struct cxsr_latency cxsr_latency_table[] = {
2133         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2134         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2135         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2136
2137         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2138         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2139         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2140
2141         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2142         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2143         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2144
2145         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2146         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2147         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2148
2149         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2150         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2151         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2152
2153         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2154         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2155         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2156 };
2157
2158 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2159                                                    int mem)
2160 {
2161         int i;
2162         struct cxsr_latency *latency;
2163
2164         if (fsb == 0 || mem == 0)
2165                 return NULL;
2166
2167         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2168                 latency = &cxsr_latency_table[i];
2169                 if (is_desktop == latency->is_desktop &&
2170                         fsb == latency->fsb_freq && mem == latency->mem_freq)
2171                         break;
2172         }
2173         if (i >= ARRAY_SIZE(cxsr_latency_table)) {
2174                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2175                 return NULL;
2176         }
2177         return latency;
2178 }
2179
2180 static void igd_disable_cxsr(struct drm_device *dev)
2181 {
2182         struct drm_i915_private *dev_priv = dev->dev_private;
2183         u32 reg;
2184
2185         /* deactivate cxsr */
2186         reg = I915_READ(DSPFW3);
2187         reg &= ~(IGD_SELF_REFRESH_EN);
2188         I915_WRITE(DSPFW3, reg);
2189         DRM_INFO("Big FIFO is disabled\n");
2190 }
2191
2192 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2193                             int pixel_size)
2194 {
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         u32 reg;
2197         unsigned long wm;
2198         struct cxsr_latency *latency;
2199
2200         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2201                 dev_priv->mem_freq);
2202         if (!latency) {
2203                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2204                 igd_disable_cxsr(dev);
2205                 return;
2206         }
2207
2208         /* Display SR */
2209         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2210                                 latency->display_sr);
2211         reg = I915_READ(DSPFW1);
2212         reg &= 0x7fffff;
2213         reg |= wm << 23;
2214         I915_WRITE(DSPFW1, reg);
2215         DRM_DEBUG("DSPFW1 register is %x\n", reg);
2216
2217         /* cursor SR */
2218         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2219                                 latency->cursor_sr);
2220         reg = I915_READ(DSPFW3);
2221         reg &= ~(0x3f << 24);
2222         reg |= (wm & 0x3f) << 24;
2223         I915_WRITE(DSPFW3, reg);
2224
2225         /* Display HPLL off SR */
2226         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2227                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2228         reg = I915_READ(DSPFW3);
2229         reg &= 0xfffffe00;
2230         reg |= wm & 0x1ff;
2231         I915_WRITE(DSPFW3, reg);
2232
2233         /* cursor HPLL off SR */
2234         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2235                                 latency->cursor_hpll_disable);
2236         reg = I915_READ(DSPFW3);
2237         reg &= ~(0x3f << 16);
2238         reg |= (wm & 0x3f) << 16;
2239         I915_WRITE(DSPFW3, reg);
2240         DRM_DEBUG("DSPFW3 register is %x\n", reg);
2241
2242         /* activate cxsr */
2243         reg = I915_READ(DSPFW3);
2244         reg |= IGD_SELF_REFRESH_EN;
2245         I915_WRITE(DSPFW3, reg);
2246
2247         DRM_INFO("Big FIFO is enabled\n");
2248
2249         return;
2250 }
2251
2252 /*
2253  * Latency for FIFO fetches is dependent on several factors:
2254  *   - memory configuration (speed, channels)
2255  *   - chipset
2256  *   - current MCH state
2257  * It can be fairly high in some situations, so here we assume a fairly
2258  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2259  * set this value too high, the FIFO will fetch frequently to stay full)
2260  * and power consumption (set it too low to save power and we might see
2261  * FIFO underruns and display "flicker").
2262  *
2263  * A value of 5us seems to be a good balance; safe for very low end
2264  * platforms but not overly aggressive on lower latency configs.
2265  */
2266 const static int latency_ns = 5000;
2267
2268 static int intel_get_fifo_size(struct drm_device *dev, int plane)
2269 {
2270         struct drm_i915_private *dev_priv = dev->dev_private;
2271         uint32_t dsparb = I915_READ(DSPARB);
2272         int size;
2273
2274         if (IS_I9XX(dev)) {
2275                 if (plane == 0)
2276                         size = dsparb & 0x7f;
2277                 else
2278                         size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2279                                 (dsparb & 0x7f);
2280         } else if (IS_I85X(dev)) {
2281                 if (plane == 0)
2282                         size = dsparb & 0x1ff;
2283                 else
2284                         size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2285                                 (dsparb & 0x1ff);
2286                 size >>= 1; /* Convert to cachelines */
2287         } else if (IS_845G(dev)) {
2288                 size = dsparb & 0x7f;
2289                 size >>= 2; /* Convert to cachelines */
2290         } else {
2291                 size = dsparb & 0x7f;
2292                 size >>= 1; /* Convert to cachelines */
2293         }
2294
2295         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2296                   size);
2297
2298         return size;
2299 }
2300
2301 static void g4x_update_wm(struct drm_device *dev)
2302 {
2303         struct drm_i915_private *dev_priv = dev->dev_private;
2304         u32 fw_blc_self = I915_READ(FW_BLC_SELF);
2305
2306         if (i915_powersave)
2307                 fw_blc_self |= FW_BLC_SELF_EN;
2308         else
2309                 fw_blc_self &= ~FW_BLC_SELF_EN;
2310         I915_WRITE(FW_BLC_SELF, fw_blc_self);
2311 }
2312
2313 static void i965_update_wm(struct drm_device *dev)
2314 {
2315         struct drm_i915_private *dev_priv = dev->dev_private;
2316
2317         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2318
2319         /* 965 has limitations... */
2320         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2321         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2322 }
2323
2324 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2325                            int planeb_clock, int sr_hdisplay, int pixel_size)
2326 {
2327         struct drm_i915_private *dev_priv = dev->dev_private;
2328         uint32_t fwater_lo;
2329         uint32_t fwater_hi;
2330         int total_size, cacheline_size, cwm, srwm = 1;
2331         int planea_wm, planeb_wm;
2332         struct intel_watermark_params planea_params, planeb_params;
2333         unsigned long line_time_us;
2334         int sr_clock, sr_entries = 0;
2335
2336         /* Create copies of the base settings for each pipe */
2337         if (IS_I965GM(dev) || IS_I945GM(dev))
2338                 planea_params = planeb_params = i945_wm_info;
2339         else if (IS_I9XX(dev))
2340                 planea_params = planeb_params = i915_wm_info;
2341         else
2342                 planea_params = planeb_params = i855_wm_info;
2343
2344         /* Grab a couple of global values before we overwrite them */
2345         total_size = planea_params.fifo_size;
2346         cacheline_size = planea_params.cacheline_size;
2347
2348         /* Update per-plane FIFO sizes */
2349         planea_params.fifo_size = intel_get_fifo_size(dev, 0);
2350         planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
2351
2352         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2353                                        pixel_size, latency_ns);
2354         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2355                                        pixel_size, latency_ns);
2356         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2357
2358         /*
2359          * Overlay gets an aggressive default since video jitter is bad.
2360          */
2361         cwm = 2;
2362
2363         /* Calc sr entries for one plane configs */
2364         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2365             (!planea_clock || !planeb_clock)) {
2366                 /* self-refresh has much higher latency */
2367                 const static int sr_latency_ns = 6000;
2368
2369                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2370                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2371
2372                 /* Use ns/us then divide to preserve precision */
2373                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2374                               pixel_size * sr_hdisplay) / 1000;
2375                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2376                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2377                 srwm = total_size - sr_entries;
2378                 if (srwm < 0)
2379                         srwm = 1;
2380                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2381         }
2382
2383         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2384                   planea_wm, planeb_wm, cwm, srwm);
2385
2386         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2387         fwater_hi = (cwm & 0x1f);
2388
2389         /* Set request length to 8 cachelines per fetch */
2390         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2391         fwater_hi = fwater_hi | (1 << 8);
2392
2393         I915_WRITE(FW_BLC, fwater_lo);
2394         I915_WRITE(FW_BLC2, fwater_hi);
2395 }
2396
2397 static void i830_update_wm(struct drm_device *dev, int planea_clock,
2398                            int pixel_size)
2399 {
2400         struct drm_i915_private *dev_priv = dev->dev_private;
2401         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2402         int planea_wm;
2403
2404         i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
2405
2406         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2407                                        pixel_size, latency_ns);
2408         fwater_lo |= (3<<8) | planea_wm;
2409
2410         DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2411
2412         I915_WRITE(FW_BLC, fwater_lo);
2413 }
2414
2415 /**
2416  * intel_update_watermarks - update FIFO watermark values based on current modes
2417  *
2418  * Calculate watermark values for the various WM regs based on current mode
2419  * and plane configuration.
2420  *
2421  * There are several cases to deal with here:
2422  *   - normal (i.e. non-self-refresh)
2423  *   - self-refresh (SR) mode
2424  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2425  *   - lines are small relative to FIFO size (buffer can hold more than 2
2426  *     lines), so need to account for TLB latency
2427  *
2428  *   The normal calculation is:
2429  *     watermark = dotclock * bytes per pixel * latency
2430  *   where latency is platform & configuration dependent (we assume pessimal
2431  *   values here).
2432  *
2433  *   The SR calculation is:
2434  *     watermark = (trunc(latency/line time)+1) * surface width *
2435  *       bytes per pixel
2436  *   where
2437  *     line time = htotal / dotclock
2438  *   and latency is assumed to be high, as above.
2439  *
2440  * The final value programmed to the register should always be rounded up,
2441  * and include an extra 2 entries to account for clock crossings.
2442  *
2443  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2444  * to set the non-SR watermarks to 8.
2445   */
2446 static void intel_update_watermarks(struct drm_device *dev)
2447 {
2448         struct drm_crtc *crtc;
2449         struct intel_crtc *intel_crtc;
2450         int sr_hdisplay = 0;
2451         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2452         int enabled = 0, pixel_size = 0;
2453
2454         /* Get the clock config from both planes */
2455         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2456                 intel_crtc = to_intel_crtc(crtc);
2457                 if (crtc->enabled) {
2458                         enabled++;
2459                         if (intel_crtc->plane == 0) {
2460                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2461                                           intel_crtc->pipe, crtc->mode.clock);
2462                                 planea_clock = crtc->mode.clock;
2463                         } else {
2464                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2465                                           intel_crtc->pipe, crtc->mode.clock);
2466                                 planeb_clock = crtc->mode.clock;
2467                         }
2468                         sr_hdisplay = crtc->mode.hdisplay;
2469                         sr_clock = crtc->mode.clock;
2470                         if (crtc->fb)
2471                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2472                         else
2473                                 pixel_size = 4; /* by default */
2474                 }
2475         }
2476
2477         if (enabled <= 0)
2478                 return;
2479
2480         /* Single plane configs can enable self refresh */
2481         if (enabled == 1 && IS_IGD(dev))
2482                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2483         else if (IS_IGD(dev))
2484                 igd_disable_cxsr(dev);
2485
2486         if (IS_G4X(dev))
2487                 g4x_update_wm(dev);
2488         else if (IS_I965G(dev))
2489                 i965_update_wm(dev);
2490         else if (IS_I9XX(dev) || IS_MOBILE(dev))
2491                 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2492                                pixel_size);
2493         else
2494                 i830_update_wm(dev, planea_clock, pixel_size);
2495 }
2496
2497 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2498                                struct drm_display_mode *mode,
2499                                struct drm_display_mode *adjusted_mode,
2500                                int x, int y,
2501                                struct drm_framebuffer *old_fb)
2502 {
2503         struct drm_device *dev = crtc->dev;
2504         struct drm_i915_private *dev_priv = dev->dev_private;
2505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2506         int pipe = intel_crtc->pipe;
2507         int plane = intel_crtc->plane;
2508         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2509         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2510         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2511         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2512         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2513         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2514         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2515         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2516         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2517         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2518         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2519         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2520         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2521         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2522         int refclk, num_outputs = 0;
2523         intel_clock_t clock, reduced_clock;
2524         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2525         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2526         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2527         bool is_edp = false;
2528         struct drm_mode_config *mode_config = &dev->mode_config;
2529         struct drm_connector *connector;
2530         const intel_limit_t *limit;
2531         int ret;
2532         struct fdi_m_n m_n = {0};
2533         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2534         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2535         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2536         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2537         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2538         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2539         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2540         int lvds_reg = LVDS;
2541         u32 temp;
2542         int sdvo_pixel_multiply;
2543         int target_clock;
2544
2545         drm_vblank_pre_modeset(dev, pipe);
2546
2547         list_for_each_entry(connector, &mode_config->connector_list, head) {
2548                 struct intel_output *intel_output = to_intel_output(connector);
2549
2550                 if (!connector->encoder || connector->encoder->crtc != crtc)
2551                         continue;
2552
2553                 switch (intel_output->type) {
2554                 case INTEL_OUTPUT_LVDS:
2555                         is_lvds = true;
2556                         break;
2557                 case INTEL_OUTPUT_SDVO:
2558                 case INTEL_OUTPUT_HDMI:
2559                         is_sdvo = true;
2560                         if (intel_output->needs_tv_clock)
2561                                 is_tv = true;
2562                         break;
2563                 case INTEL_OUTPUT_DVO:
2564                         is_dvo = true;
2565                         break;
2566                 case INTEL_OUTPUT_TVOUT:
2567                         is_tv = true;
2568                         break;
2569                 case INTEL_OUTPUT_ANALOG:
2570                         is_crt = true;
2571                         break;
2572                 case INTEL_OUTPUT_DISPLAYPORT:
2573                         is_dp = true;
2574                         break;
2575                 case INTEL_OUTPUT_EDP:
2576                         is_edp = true;
2577                         break;
2578                 }
2579
2580                 num_outputs++;
2581         }
2582
2583         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2584                 refclk = dev_priv->lvds_ssc_freq * 1000;
2585                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2586         } else if (IS_I9XX(dev)) {
2587                 refclk = 96000;
2588                 if (IS_IGDNG(dev))
2589                         refclk = 120000; /* 120Mhz refclk */
2590         } else {
2591                 refclk = 48000;
2592         }
2593         
2594
2595         /*
2596          * Returns a set of divisors for the desired target clock with the given
2597          * refclk, or FALSE.  The returned values represent the clock equation:
2598          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2599          */
2600         limit = intel_limit(crtc);
2601         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2602         if (!ok) {
2603                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2604                 drm_vblank_post_modeset(dev, pipe);
2605                 return -EINVAL;
2606         }
2607
2608         if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2609                 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2610                 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2611                                                             (adjusted_mode->clock*3/4),
2612                                                             refclk,
2613                                                             &reduced_clock);
2614         }
2615
2616         /* SDVO TV has fixed PLL values depend on its clock range,
2617            this mirrors vbios setting. */
2618         if (is_sdvo && is_tv) {
2619                 if (adjusted_mode->clock >= 100000
2620                                 && adjusted_mode->clock < 140500) {
2621                         clock.p1 = 2;
2622                         clock.p2 = 10;
2623                         clock.n = 3;
2624                         clock.m1 = 16;
2625                         clock.m2 = 8;
2626                 } else if (adjusted_mode->clock >= 140500
2627                                 && adjusted_mode->clock <= 200000) {
2628                         clock.p1 = 1;
2629                         clock.p2 = 10;
2630                         clock.n = 6;
2631                         clock.m1 = 12;
2632                         clock.m2 = 8;
2633                 }
2634         }
2635
2636         /* FDI link */
2637         if (IS_IGDNG(dev)) {
2638                 int lane, link_bw;
2639                 /* eDP doesn't require FDI link, so just set DP M/N
2640                    according to current link config */
2641                 if (is_edp) {
2642                         struct drm_connector *edp;
2643                         target_clock = mode->clock;
2644                         edp = intel_pipe_get_output(crtc);
2645                         intel_edp_link_config(to_intel_output(edp),
2646                                         &lane, &link_bw);
2647                 } else {
2648                         /* DP over FDI requires target mode clock
2649                            instead of link clock */
2650                         if (is_dp)
2651                                 target_clock = mode->clock;
2652                         else
2653                                 target_clock = adjusted_mode->clock;
2654                         lane = 4;
2655                         link_bw = 270000;
2656                 }
2657                 igdng_compute_m_n(3, lane, target_clock,
2658                                   link_bw, &m_n);
2659         }
2660
2661         if (IS_IGD(dev)) {
2662                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2663                 if (has_reduced_clock)
2664                         fp2 = (1 << reduced_clock.n) << 16 |
2665                                 reduced_clock.m1 << 8 | reduced_clock.m2;
2666         } else {
2667                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2668                 if (has_reduced_clock)
2669                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2670                                 reduced_clock.m2;
2671         }
2672
2673         if (!IS_IGDNG(dev))
2674                 dpll = DPLL_VGA_MODE_DIS;
2675
2676         if (IS_I9XX(dev)) {
2677                 if (is_lvds)
2678                         dpll |= DPLLB_MODE_LVDS;
2679                 else
2680                         dpll |= DPLLB_MODE_DAC_SERIAL;
2681                 if (is_sdvo) {
2682                         dpll |= DPLL_DVO_HIGH_SPEED;
2683                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2684                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2685                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2686                         else if (IS_IGDNG(dev))
2687                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2688                 }
2689                 if (is_dp)
2690                         dpll |= DPLL_DVO_HIGH_SPEED;
2691
2692                 /* compute bitmask from p1 value */
2693                 if (IS_IGD(dev))
2694                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2695                 else {
2696                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2697                         /* also FPA1 */
2698                         if (IS_IGDNG(dev))
2699                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2700                         if (IS_G4X(dev) && has_reduced_clock)
2701                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2702                 }
2703                 switch (clock.p2) {
2704                 case 5:
2705                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2706                         break;
2707                 case 7:
2708                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2709                         break;
2710                 case 10:
2711                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2712                         break;
2713                 case 14:
2714                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2715                         break;
2716                 }
2717                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2718                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2719         } else {
2720                 if (is_lvds) {
2721                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2722                 } else {
2723                         if (clock.p1 == 2)
2724                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2725                         else
2726                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2727                         if (clock.p2 == 4)
2728                                 dpll |= PLL_P2_DIVIDE_BY_4;
2729                 }
2730         }
2731
2732         if (is_sdvo && is_tv)
2733                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2734         else if (is_tv)
2735                 /* XXX: just matching BIOS for now */
2736                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2737                 dpll |= 3;
2738         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2739                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2740         else
2741                 dpll |= PLL_REF_INPUT_DREFCLK;
2742
2743         /* setup pipeconf */
2744         pipeconf = I915_READ(pipeconf_reg);
2745
2746         /* Set up the display plane register */
2747         dspcntr = DISPPLANE_GAMMA_ENABLE;
2748
2749         /* IGDNG's plane is forced to pipe, bit 24 is to
2750            enable color space conversion */
2751         if (!IS_IGDNG(dev)) {
2752                 if (pipe == 0)
2753                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
2754                 else
2755                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2756         }
2757
2758         if (pipe == 0 && !IS_I965G(dev)) {
2759                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2760                  * core speed.
2761                  *
2762                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2763                  * pipe == 0 check?
2764                  */
2765                 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2766                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
2767                 else
2768                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2769         }
2770
2771         dspcntr |= DISPLAY_PLANE_ENABLE;
2772         pipeconf |= PIPEACONF_ENABLE;
2773         dpll |= DPLL_VCO_ENABLE;
2774
2775
2776         /* Disable the panel fitter if it was on our pipe */
2777         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2778                 I915_WRITE(PFIT_CONTROL, 0);
2779
2780         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2781         drm_mode_debug_printmodeline(mode);
2782
2783         /* assign to IGDNG registers */
2784         if (IS_IGDNG(dev)) {
2785                 fp_reg = pch_fp_reg;
2786                 dpll_reg = pch_dpll_reg;
2787         }
2788
2789         if (is_edp) {
2790                 igdng_disable_pll_edp(crtc);
2791         } else if ((dpll & DPLL_VCO_ENABLE)) {
2792                 I915_WRITE(fp_reg, fp);
2793                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2794                 I915_READ(dpll_reg);
2795                 udelay(150);
2796         }
2797
2798         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2799          * This is an exception to the general rule that mode_set doesn't turn
2800          * things on.
2801          */
2802         if (is_lvds) {
2803                 u32 lvds;
2804
2805                 if (IS_IGDNG(dev))
2806                         lvds_reg = PCH_LVDS;
2807
2808                 lvds = I915_READ(lvds_reg);
2809                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2810                 /* Set the B0-B3 data pairs corresponding to whether we're going to
2811                  * set the DPLLs for dual-channel mode or not.
2812                  */
2813                 if (clock.p2 == 7)
2814                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2815                 else
2816                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2817
2818                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2819                  * appropriately here, but we need to look more thoroughly into how
2820                  * panels behave in the two modes.
2821                  */
2822
2823                 I915_WRITE(lvds_reg, lvds);
2824                 I915_READ(lvds_reg);
2825         }
2826         if (is_dp)
2827                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2828
2829         if (!is_edp) {
2830                 I915_WRITE(fp_reg, fp);
2831                 I915_WRITE(dpll_reg, dpll);
2832                 I915_READ(dpll_reg);
2833                 /* Wait for the clocks to stabilize. */
2834                 udelay(150);
2835
2836                 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2837                         if (is_sdvo) {
2838                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2839                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2840                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2841                         } else
2842                                 I915_WRITE(dpll_md_reg, 0);
2843                 } else {
2844                         /* write it again -- the BIOS does, after all */
2845                         I915_WRITE(dpll_reg, dpll);
2846                 }
2847                 I915_READ(dpll_reg);
2848                 /* Wait for the clocks to stabilize. */
2849                 udelay(150);
2850         }
2851
2852         if (is_lvds && has_reduced_clock && i915_powersave) {
2853                 I915_WRITE(fp_reg + 4, fp2);
2854                 intel_crtc->lowfreq_avail = true;
2855                 if (HAS_PIPE_CXSR(dev)) {
2856                         DRM_DEBUG("enabling CxSR downclocking\n");
2857                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
2858                 }
2859         } else {
2860                 I915_WRITE(fp_reg + 4, fp);
2861                 intel_crtc->lowfreq_avail = false;
2862                 if (HAS_PIPE_CXSR(dev)) {
2863                         DRM_DEBUG("disabling CxSR downclocking\n");
2864                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
2865                 }
2866         }
2867
2868         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2869                    ((adjusted_mode->crtc_htotal - 1) << 16));
2870         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2871                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
2872         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2873                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
2874         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2875                    ((adjusted_mode->crtc_vtotal - 1) << 16));
2876         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2877                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
2878         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2879                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
2880         /* pipesrc and dspsize control the size that is scaled from, which should
2881          * always be the user's requested size.
2882          */
2883         if (!IS_IGDNG(dev)) {
2884                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2885                                 (mode->hdisplay - 1));
2886                 I915_WRITE(dsppos_reg, 0);
2887         }
2888         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2889
2890         if (IS_IGDNG(dev)) {
2891                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2892                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2893                 I915_WRITE(link_m1_reg, m_n.link_m);
2894                 I915_WRITE(link_n1_reg, m_n.link_n);
2895
2896                 if (is_edp) {
2897                         igdng_set_pll_edp(crtc, adjusted_mode->clock);
2898                 } else {
2899                         /* enable FDI RX PLL too */
2900                         temp = I915_READ(fdi_rx_reg);
2901                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2902                         udelay(200);
2903                 }
2904         }
2905
2906         I915_WRITE(pipeconf_reg, pipeconf);
2907         I915_READ(pipeconf_reg);
2908
2909         intel_wait_for_vblank(dev);
2910
2911         if (IS_IGDNG(dev)) {
2912                 /* enable address swizzle for tiling buffer */
2913                 temp = I915_READ(DISP_ARB_CTL);
2914                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
2915         }
2916
2917         I915_WRITE(dspcntr_reg, dspcntr);
2918
2919         /* Flush the plane changes */
2920         ret = intel_pipe_set_base(crtc, x, y, old_fb);
2921
2922         if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
2923                 intel_update_fbc(crtc, &crtc->mode);
2924         intel_update_watermarks(dev);
2925
2926         drm_vblank_post_modeset(dev, pipe);
2927
2928         return ret;
2929 }
2930
2931 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2932 void intel_crtc_load_lut(struct drm_crtc *crtc)
2933 {
2934         struct drm_device *dev = crtc->dev;
2935         struct drm_i915_private *dev_priv = dev->dev_private;
2936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2937         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2938         int i;
2939
2940         /* The clocks have to be on to load the palette. */
2941         if (!crtc->enabled)
2942                 return;
2943
2944         /* use legacy palette for IGDNG */
2945         if (IS_IGDNG(dev))
2946                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2947                                                    LGC_PALETTE_B;
2948
2949         for (i = 0; i < 256; i++) {
2950                 I915_WRITE(palreg + 4 * i,
2951                            (intel_crtc->lut_r[i] << 16) |
2952                            (intel_crtc->lut_g[i] << 8) |
2953                            intel_crtc->lut_b[i]);
2954         }
2955 }
2956
2957 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2958                                  struct drm_file *file_priv,
2959                                  uint32_t handle,
2960                                  uint32_t width, uint32_t height)
2961 {
2962         struct drm_device *dev = crtc->dev;
2963         struct drm_i915_private *dev_priv = dev->dev_private;
2964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2965         struct drm_gem_object *bo;
2966         struct drm_i915_gem_object *obj_priv;
2967         int pipe = intel_crtc->pipe;
2968         int plane = intel_crtc->plane;
2969         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2970         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2971         uint32_t temp = I915_READ(control);
2972         size_t addr;
2973         int ret;
2974
2975         DRM_DEBUG("\n");
2976
2977         /* if we want to turn off the cursor ignore width and height */
2978         if (!handle) {
2979                 DRM_DEBUG("cursor off\n");
2980                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2981                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2982                         temp |= CURSOR_MODE_DISABLE;
2983                 } else {
2984                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2985                 }
2986                 addr = 0;
2987                 bo = NULL;
2988                 mutex_lock(&dev->struct_mutex);
2989                 goto finish;
2990         }
2991
2992         /* Currently we only support 64x64 cursors */
2993         if (width != 64 || height != 64) {
2994                 DRM_ERROR("we currently only support 64x64 cursors\n");
2995                 return -EINVAL;
2996         }
2997
2998         bo = drm_gem_object_lookup(dev, file_priv, handle);
2999         if (!bo)
3000                 return -ENOENT;
3001
3002         obj_priv = bo->driver_private;
3003
3004         if (bo->size < width * height * 4) {
3005                 DRM_ERROR("buffer is to small\n");
3006                 ret = -ENOMEM;
3007                 goto fail;
3008         }
3009
3010         /* we only need to pin inside GTT if cursor is non-phy */
3011         mutex_lock(&dev->struct_mutex);
3012         if (!dev_priv->cursor_needs_physical) {
3013                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3014                 if (ret) {
3015                         DRM_ERROR("failed to pin cursor bo\n");
3016                         goto fail_locked;
3017                 }
3018                 addr = obj_priv->gtt_offset;
3019         } else {
3020                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3021                 if (ret) {
3022                         DRM_ERROR("failed to attach phys object\n");
3023                         goto fail_locked;
3024                 }
3025                 addr = obj_priv->phys_obj->handle->busaddr;
3026         }
3027
3028         if (!IS_I9XX(dev))
3029                 I915_WRITE(CURSIZE, (height << 12) | width);
3030
3031         /* Hooray for CUR*CNTR differences */
3032         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3033                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3034                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3035                 temp |= (pipe << 28); /* Connect to correct pipe */
3036         } else {
3037                 temp &= ~(CURSOR_FORMAT_MASK);
3038                 temp |= CURSOR_ENABLE;
3039                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3040         }
3041
3042  finish:
3043         I915_WRITE(control, temp);
3044         I915_WRITE(base, addr);
3045
3046         if (intel_crtc->cursor_bo) {
3047                 if (dev_priv->cursor_needs_physical) {
3048                         if (intel_crtc->cursor_bo != bo)
3049                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3050                 } else
3051                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3052                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3053         }
3054
3055         if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
3056                 intel_update_fbc(crtc, &crtc->mode);
3057
3058         mutex_unlock(&dev->struct_mutex);
3059
3060         intel_crtc->cursor_addr = addr;
3061         intel_crtc->cursor_bo = bo;
3062
3063         return 0;
3064 fail:
3065         mutex_lock(&dev->struct_mutex);
3066 fail_locked:
3067         drm_gem_object_unreference(bo);
3068         mutex_unlock(&dev->struct_mutex);
3069         return ret;
3070 }
3071
3072 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3073 {
3074         struct drm_device *dev = crtc->dev;
3075         struct drm_i915_private *dev_priv = dev->dev_private;
3076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3077         struct intel_framebuffer *intel_fb;
3078         int pipe = intel_crtc->pipe;
3079         uint32_t temp = 0;
3080         uint32_t adder;
3081
3082         if (crtc->fb) {
3083                 intel_fb = to_intel_framebuffer(crtc->fb);
3084                 intel_mark_busy(dev, intel_fb->obj);
3085         }
3086
3087         if (x < 0) {
3088                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3089                 x = -x;
3090         }
3091         if (y < 0) {
3092                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3093                 y = -y;
3094         }
3095
3096         temp |= x << CURSOR_X_SHIFT;
3097         temp |= y << CURSOR_Y_SHIFT;
3098
3099         adder = intel_crtc->cursor_addr;
3100         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3101         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3102
3103         return 0;
3104 }
3105
3106 /** Sets the color ramps on behalf of RandR */
3107 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3108                                  u16 blue, int regno)
3109 {
3110         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3111
3112         intel_crtc->lut_r[regno] = red >> 8;
3113         intel_crtc->lut_g[regno] = green >> 8;
3114         intel_crtc->lut_b[regno] = blue >> 8;
3115 }
3116
3117 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3118                                  u16 *blue, uint32_t size)
3119 {
3120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3121         int i;
3122
3123         if (size != 256)
3124                 return;
3125
3126         for (i = 0; i < 256; i++) {
3127                 intel_crtc->lut_r[i] = red[i] >> 8;
3128                 intel_crtc->lut_g[i] = green[i] >> 8;
3129                 intel_crtc->lut_b[i] = blue[i] >> 8;
3130         }
3131
3132         intel_crtc_load_lut(crtc);
3133 }
3134
3135 /**
3136  * Get a pipe with a simple mode set on it for doing load-based monitor
3137  * detection.
3138  *
3139  * It will be up to the load-detect code to adjust the pipe as appropriate for
3140  * its requirements.  The pipe will be connected to no other outputs.
3141  *
3142  * Currently this code will only succeed if there is a pipe with no outputs
3143  * configured for it.  In the future, it could choose to temporarily disable
3144  * some outputs to free up a pipe for its use.
3145  *
3146  * \return crtc, or NULL if no pipes are available.
3147  */
3148
3149 /* VESA 640x480x72Hz mode to set on the pipe */
3150 static struct drm_display_mode load_detect_mode = {
3151         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3152                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3153 };
3154
3155 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3156                                             struct drm_display_mode *mode,
3157                                             int *dpms_mode)
3158 {
3159         struct intel_crtc *intel_crtc;
3160         struct drm_crtc *possible_crtc;
3161         struct drm_crtc *supported_crtc =NULL;
3162         struct drm_encoder *encoder = &intel_output->enc;
3163         struct drm_crtc *crtc = NULL;
3164         struct drm_device *dev = encoder->dev;
3165         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3166         struct drm_crtc_helper_funcs *crtc_funcs;
3167         int i = -1;
3168
3169         /*
3170          * Algorithm gets a little messy:
3171          *   - if the connector already has an assigned crtc, use it (but make
3172          *     sure it's on first)
3173          *   - try to find the first unused crtc that can drive this connector,
3174          *     and use that if we find one
3175          *   - if there are no unused crtcs available, try to use the first
3176          *     one we found that supports the connector
3177          */
3178
3179         /* See if we already have a CRTC for this connector */
3180         if (encoder->crtc) {
3181                 crtc = encoder->crtc;
3182                 /* Make sure the crtc and connector are running */
3183                 intel_crtc = to_intel_crtc(crtc);
3184                 *dpms_mode = intel_crtc->dpms_mode;
3185                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3186                         crtc_funcs = crtc->helper_private;
3187                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3188                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3189                 }
3190                 return crtc;
3191         }
3192
3193         /* Find an unused one (if possible) */
3194         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3195                 i++;
3196                 if (!(encoder->possible_crtcs & (1 << i)))
3197                         continue;
3198                 if (!possible_crtc->enabled) {
3199                         crtc = possible_crtc;
3200                         break;
3201                 }
3202                 if (!supported_crtc)
3203                         supported_crtc = possible_crtc;
3204         }
3205
3206         /*
3207          * If we didn't find an unused CRTC, don't use any.
3208          */
3209         if (!crtc) {
3210                 return NULL;
3211         }
3212
3213         encoder->crtc = crtc;
3214         intel_output->base.encoder = encoder;
3215         intel_output->load_detect_temp = true;
3216
3217         intel_crtc = to_intel_crtc(crtc);
3218         *dpms_mode = intel_crtc->dpms_mode;
3219
3220         if (!crtc->enabled) {
3221                 if (!mode)
3222                         mode = &load_detect_mode;
3223                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3224         } else {
3225                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3226                         crtc_funcs = crtc->helper_private;
3227                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3228                 }
3229
3230                 /* Add this connector to the crtc */
3231                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3232                 encoder_funcs->commit(encoder);
3233         }
3234         /* let the connector get through one full cycle before testing */
3235         intel_wait_for_vblank(dev);
3236
3237         return crtc;
3238 }
3239
3240 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3241 {
3242         struct drm_encoder *encoder = &intel_output->enc;
3243         struct drm_device *dev = encoder->dev;
3244         struct drm_crtc *crtc = encoder->crtc;
3245         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3246         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3247
3248         if (intel_output->load_detect_temp) {
3249                 encoder->crtc = NULL;
3250                 intel_output->base.encoder = NULL;
3251                 intel_output->load_detect_temp = false;
3252                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3253                 drm_helper_disable_unused_functions(dev);
3254         }
3255
3256         /* Switch crtc and output back off if necessary */
3257         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3258                 if (encoder->crtc == crtc)
3259                         encoder_funcs->dpms(encoder, dpms_mode);
3260                 crtc_funcs->dpms(crtc, dpms_mode);
3261         }
3262 }
3263
3264 /* Returns the clock of the currently programmed mode of the given pipe. */
3265 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3266 {
3267         struct drm_i915_private *dev_priv = dev->dev_private;
3268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3269         int pipe = intel_crtc->pipe;
3270         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3271         u32 fp;
3272         intel_clock_t clock;
3273
3274         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3275                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3276         else
3277                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3278
3279         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3280         if (IS_IGD(dev)) {
3281                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3282                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3283         } else {
3284                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3285                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3286         }
3287
3288         if (IS_I9XX(dev)) {
3289                 if (IS_IGD(dev))
3290                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3291                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3292                 else
3293                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3294                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3295
3296                 switch (dpll & DPLL_MODE_MASK) {
3297                 case DPLLB_MODE_DAC_SERIAL:
3298                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3299                                 5 : 10;
3300                         break;
3301                 case DPLLB_MODE_LVDS:
3302                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3303                                 7 : 14;
3304                         break;
3305                 default:
3306                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3307                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3308                         return 0;
3309                 }
3310
3311                 /* XXX: Handle the 100Mhz refclk */
3312                 intel_clock(dev, 96000, &clock);
3313         } else {
3314                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3315
3316                 if (is_lvds) {
3317                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3318                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3319                         clock.p2 = 14;
3320
3321                         if ((dpll & PLL_REF_INPUT_MASK) ==
3322                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3323                                 /* XXX: might not be 66MHz */
3324                                 intel_clock(dev, 66000, &clock);
3325                         } else
3326                                 intel_clock(dev, 48000, &clock);
3327                 } else {
3328                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3329                                 clock.p1 = 2;
3330                         else {
3331                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3332                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3333                         }
3334                         if (dpll & PLL_P2_DIVIDE_BY_4)
3335                                 clock.p2 = 4;
3336                         else
3337                                 clock.p2 = 2;
3338
3339                         intel_clock(dev, 48000, &clock);
3340                 }
3341         }
3342
3343         /* XXX: It would be nice to validate the clocks, but we can't reuse
3344          * i830PllIsValid() because it relies on the xf86_config connector
3345          * configuration being accurate, which it isn't necessarily.
3346          */
3347
3348         return clock.dot;
3349 }
3350
3351 /** Returns the currently programmed mode of the given pipe. */
3352 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3353                                              struct drm_crtc *crtc)
3354 {
3355         struct drm_i915_private *dev_priv = dev->dev_private;
3356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357         int pipe = intel_crtc->pipe;
3358         struct drm_display_mode *mode;
3359         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3360         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3361         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3362         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3363
3364         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3365         if (!mode)
3366                 return NULL;
3367
3368         mode->clock = intel_crtc_clock_get(dev, crtc);
3369         mode->hdisplay = (htot & 0xffff) + 1;
3370         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3371         mode->hsync_start = (hsync & 0xffff) + 1;
3372         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3373         mode->vdisplay = (vtot & 0xffff) + 1;
3374         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3375         mode->vsync_start = (vsync & 0xffff) + 1;
3376         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3377
3378         drm_mode_set_name(mode);
3379         drm_mode_set_crtcinfo(mode, 0);
3380
3381         return mode;
3382 }
3383
3384 #define GPU_IDLE_TIMEOUT 500 /* ms */
3385
3386 /* When this timer fires, we've been idle for awhile */
3387 static void intel_gpu_idle_timer(unsigned long arg)
3388 {
3389         struct drm_device *dev = (struct drm_device *)arg;
3390         drm_i915_private_t *dev_priv = dev->dev_private;
3391
3392         DRM_DEBUG("idle timer fired, downclocking\n");
3393
3394         dev_priv->busy = false;
3395
3396         queue_work(dev_priv->wq, &dev_priv->idle_work);
3397 }
3398
3399 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3400 {
3401         drm_i915_private_t *dev_priv = dev->dev_private;
3402
3403         if (IS_IGDNG(dev))
3404                 return;
3405
3406         if (!dev_priv->render_reclock_avail) {
3407                 DRM_DEBUG("not reclocking render clock\n");
3408                 return;
3409         }
3410
3411         /* Restore render clock frequency to original value */
3412         if (IS_G4X(dev) || IS_I9XX(dev))
3413                 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3414         else if (IS_I85X(dev))
3415                 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3416         DRM_DEBUG("increasing render clock frequency\n");
3417
3418         /* Schedule downclock */
3419         if (schedule)
3420                 mod_timer(&dev_priv->idle_timer, jiffies +
3421                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3422 }
3423
3424 void intel_decrease_renderclock(struct drm_device *dev)
3425 {
3426         drm_i915_private_t *dev_priv = dev->dev_private;
3427
3428         if (IS_IGDNG(dev))
3429                 return;
3430
3431         if (!dev_priv->render_reclock_avail) {
3432                 DRM_DEBUG("not reclocking render clock\n");
3433                 return;
3434         }
3435
3436         if (IS_G4X(dev)) {
3437                 u16 gcfgc;
3438
3439                 /* Adjust render clock... */
3440                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3441
3442                 /* Down to minimum... */
3443                 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3444                 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3445
3446                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3447         } else if (IS_I965G(dev)) {
3448                 u16 gcfgc;
3449
3450                 /* Adjust render clock... */
3451                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3452
3453                 /* Down to minimum... */
3454                 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3455                 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3456
3457                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3458         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3459                 u16 gcfgc;
3460
3461                 /* Adjust render clock... */
3462                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3463
3464                 /* Down to minimum... */
3465                 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3466                 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3467
3468                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3469         } else if (IS_I915G(dev)) {
3470                 u16 gcfgc;
3471
3472                 /* Adjust render clock... */
3473                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3474
3475                 /* Down to minimum... */
3476                 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3477                 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3478
3479                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3480         } else if (IS_I85X(dev)) {
3481                 u16 hpllcc;
3482
3483                 /* Adjust render clock... */
3484                 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3485
3486                 /* Up to maximum... */
3487                 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3488                 hpllcc |= GC_CLOCK_133_200;
3489
3490                 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3491         }
3492         DRM_DEBUG("decreasing render clock frequency\n");
3493 }
3494
3495 /* Note that no increase function is needed for this - increase_renderclock()
3496  *  will also rewrite these bits
3497  */
3498 void intel_decrease_displayclock(struct drm_device *dev)
3499 {
3500         if (IS_IGDNG(dev))
3501                 return;
3502
3503         if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3504             IS_I915GM(dev)) {
3505                 u16 gcfgc;
3506
3507                 /* Adjust render clock... */
3508                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3509
3510                 /* Down to minimum... */
3511                 gcfgc &= ~0xf0;
3512                 gcfgc |= 0x80;
3513
3514                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3515         }
3516 }
3517
3518 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3519
3520 static void intel_crtc_idle_timer(unsigned long arg)
3521 {
3522         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3523         struct drm_crtc *crtc = &intel_crtc->base;
3524         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3525
3526         DRM_DEBUG("idle timer fired, downclocking\n");
3527
3528         intel_crtc->busy = false;
3529
3530         queue_work(dev_priv->wq, &dev_priv->idle_work);
3531 }
3532
3533 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3534 {
3535         struct drm_device *dev = crtc->dev;
3536         drm_i915_private_t *dev_priv = dev->dev_private;
3537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3538         int pipe = intel_crtc->pipe;
3539         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3540         int dpll = I915_READ(dpll_reg);
3541
3542         if (IS_IGDNG(dev))
3543                 return;
3544
3545         if (!dev_priv->lvds_downclock_avail)
3546                 return;
3547
3548         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3549                 DRM_DEBUG("upclocking LVDS\n");
3550
3551                 /* Unlock panel regs */
3552                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3553
3554                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3555                 I915_WRITE(dpll_reg, dpll);
3556                 dpll = I915_READ(dpll_reg);
3557                 intel_wait_for_vblank(dev);
3558                 dpll = I915_READ(dpll_reg);
3559                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3560                         DRM_DEBUG("failed to upclock LVDS!\n");
3561
3562                 /* ...and lock them again */
3563                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3564         }
3565
3566         /* Schedule downclock */
3567         if (schedule)
3568                 mod_timer(&intel_crtc->idle_timer, jiffies +
3569                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3570 }
3571
3572 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3573 {
3574         struct drm_device *dev = crtc->dev;
3575         drm_i915_private_t *dev_priv = dev->dev_private;
3576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3577         int pipe = intel_crtc->pipe;
3578         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3579         int dpll = I915_READ(dpll_reg);
3580
3581         if (IS_IGDNG(dev))
3582                 return;
3583
3584         if (!dev_priv->lvds_downclock_avail)
3585                 return;
3586
3587         /*
3588          * Since this is called by a timer, we should never get here in
3589          * the manual case.
3590          */
3591         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3592                 DRM_DEBUG("downclocking LVDS\n");
3593
3594                 /* Unlock panel regs */
3595                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3596
3597                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3598                 I915_WRITE(dpll_reg, dpll);
3599                 dpll = I915_READ(dpll_reg);
3600                 intel_wait_for_vblank(dev);
3601                 dpll = I915_READ(dpll_reg);
3602                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3603                         DRM_DEBUG("failed to downclock LVDS!\n");
3604
3605                 /* ...and lock them again */
3606                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3607         }
3608
3609 }
3610
3611 /**
3612  * intel_idle_update - adjust clocks for idleness
3613  * @work: work struct
3614  *
3615  * Either the GPU or display (or both) went idle.  Check the busy status
3616  * here and adjust the CRTC and GPU clocks as necessary.
3617  */
3618 static void intel_idle_update(struct work_struct *work)
3619 {
3620         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3621                                                     idle_work);
3622         struct drm_device *dev = dev_priv->dev;
3623         struct drm_crtc *crtc;
3624         struct intel_crtc *intel_crtc;
3625
3626         if (!i915_powersave)
3627                 return;
3628
3629         mutex_lock(&dev->struct_mutex);
3630
3631         /* GPU isn't processing, downclock it. */
3632         if (!dev_priv->busy) {
3633                 intel_decrease_renderclock(dev);
3634                 intel_decrease_displayclock(dev);
3635         }
3636
3637         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3638                 /* Skip inactive CRTCs */
3639                 if (!crtc->fb)
3640                         continue;
3641
3642                 intel_crtc = to_intel_crtc(crtc);
3643                 if (!intel_crtc->busy)
3644                         intel_decrease_pllclock(crtc);
3645         }
3646
3647         mutex_unlock(&dev->struct_mutex);
3648 }
3649
3650 /**
3651  * intel_mark_busy - mark the GPU and possibly the display busy
3652  * @dev: drm device
3653  * @obj: object we're operating on
3654  *
3655  * Callers can use this function to indicate that the GPU is busy processing
3656  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3657  * buffer), we'll also mark the display as busy, so we know to increase its
3658  * clock frequency.
3659  */
3660 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3661 {
3662         drm_i915_private_t *dev_priv = dev->dev_private;
3663         struct drm_crtc *crtc = NULL;
3664         struct intel_framebuffer *intel_fb;
3665         struct intel_crtc *intel_crtc;
3666
3667         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3668                 return;
3669
3670         dev_priv->busy = true;
3671         intel_increase_renderclock(dev, true);
3672
3673         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3674                 if (!crtc->fb)
3675                         continue;
3676
3677                 intel_crtc = to_intel_crtc(crtc);
3678                 intel_fb = to_intel_framebuffer(crtc->fb);
3679                 if (intel_fb->obj == obj) {
3680                         if (!intel_crtc->busy) {
3681                                 /* Non-busy -> busy, upclock */
3682                                 intel_increase_pllclock(crtc, true);
3683                                 intel_crtc->busy = true;
3684                         } else {
3685                                 /* Busy -> busy, put off timer */
3686                                 mod_timer(&intel_crtc->idle_timer, jiffies +
3687                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3688                         }
3689                 }
3690         }
3691 }
3692
3693 static void intel_crtc_destroy(struct drm_crtc *crtc)
3694 {
3695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696
3697         drm_crtc_cleanup(crtc);
3698         kfree(intel_crtc);
3699 }
3700
3701 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3702         .dpms = intel_crtc_dpms,
3703         .mode_fixup = intel_crtc_mode_fixup,
3704         .mode_set = intel_crtc_mode_set,
3705         .mode_set_base = intel_pipe_set_base,
3706         .prepare = intel_crtc_prepare,
3707         .commit = intel_crtc_commit,
3708 };
3709
3710 static const struct drm_crtc_funcs intel_crtc_funcs = {
3711         .cursor_set = intel_crtc_cursor_set,
3712         .cursor_move = intel_crtc_cursor_move,
3713         .gamma_set = intel_crtc_gamma_set,
3714         .set_config = drm_crtc_helper_set_config,
3715         .destroy = intel_crtc_destroy,
3716 };
3717
3718
3719 static void intel_crtc_init(struct drm_device *dev, int pipe)
3720 {
3721         struct intel_crtc *intel_crtc;
3722         int i;
3723
3724         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3725         if (intel_crtc == NULL)
3726                 return;
3727
3728         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3729
3730         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3731         intel_crtc->pipe = pipe;
3732         intel_crtc->plane = pipe;
3733         for (i = 0; i < 256; i++) {
3734                 intel_crtc->lut_r[i] = i;
3735                 intel_crtc->lut_g[i] = i;
3736                 intel_crtc->lut_b[i] = i;
3737         }
3738
3739         /* Swap pipes & planes for FBC on pre-965 */
3740         intel_crtc->pipe = pipe;
3741         intel_crtc->plane = pipe;
3742         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
3743                 DRM_DEBUG("swapping pipes & planes for FBC\n");
3744                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
3745         }
3746
3747         intel_crtc->cursor_addr = 0;
3748         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3749         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3750
3751         intel_crtc->busy = false;
3752
3753         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
3754                     (unsigned long)intel_crtc);
3755 }
3756
3757 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3758                                 struct drm_file *file_priv)
3759 {
3760         drm_i915_private_t *dev_priv = dev->dev_private;
3761         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3762         struct drm_mode_object *drmmode_obj;
3763         struct intel_crtc *crtc;
3764
3765         if (!dev_priv) {
3766                 DRM_ERROR("called with no initialization\n");
3767                 return -EINVAL;
3768         }
3769
3770         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
3771                         DRM_MODE_OBJECT_CRTC);
3772
3773         if (!drmmode_obj) {
3774                 DRM_ERROR("no such CRTC id\n");
3775                 return -EINVAL;
3776         }
3777
3778         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
3779         pipe_from_crtc_id->pipe = crtc->pipe;
3780
3781         return 0;
3782 }
3783
3784 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3785 {
3786         struct drm_crtc *crtc = NULL;
3787
3788         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3789                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3790                 if (intel_crtc->pipe == pipe)
3791                         break;
3792         }
3793         return crtc;
3794 }
3795
3796 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3797 {
3798         int index_mask = 0;
3799         struct drm_connector *connector;
3800         int entry = 0;
3801
3802         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3803                 struct intel_output *intel_output = to_intel_output(connector);
3804                 if (type_mask & intel_output->clone_mask)
3805                         index_mask |= (1 << entry);
3806                 entry++;
3807         }
3808         return index_mask;
3809 }
3810
3811
3812 static void intel_setup_outputs(struct drm_device *dev)
3813 {
3814         struct drm_i915_private *dev_priv = dev->dev_private;
3815         struct drm_connector *connector;
3816
3817         intel_crt_init(dev);
3818
3819         /* Set up integrated LVDS */
3820         if (IS_MOBILE(dev) && !IS_I830(dev))
3821                 intel_lvds_init(dev);
3822
3823         if (IS_IGDNG(dev)) {
3824                 int found;
3825
3826                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3827                         intel_dp_init(dev, DP_A);
3828
3829                 if (I915_READ(HDMIB) & PORT_DETECTED) {
3830                         /* check SDVOB */
3831                         /* found = intel_sdvo_init(dev, HDMIB); */
3832                         found = 0;
3833                         if (!found)
3834                                 intel_hdmi_init(dev, HDMIB);
3835                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3836                                 intel_dp_init(dev, PCH_DP_B);
3837                 }
3838
3839                 if (I915_READ(HDMIC) & PORT_DETECTED)
3840                         intel_hdmi_init(dev, HDMIC);
3841
3842                 if (I915_READ(HDMID) & PORT_DETECTED)
3843                         intel_hdmi_init(dev, HDMID);
3844
3845                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3846                         intel_dp_init(dev, PCH_DP_C);
3847
3848                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3849                         intel_dp_init(dev, PCH_DP_D);
3850
3851         } else if (IS_I9XX(dev)) {
3852                 bool found = false;
3853
3854                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3855                         found = intel_sdvo_init(dev, SDVOB);
3856                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3857                                 intel_hdmi_init(dev, SDVOB);
3858
3859                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3860                                 intel_dp_init(dev, DP_B);
3861                 }
3862
3863                 /* Before G4X SDVOC doesn't have its own detect register */
3864
3865                 if (I915_READ(SDVOB) & SDVO_DETECTED)
3866                         found = intel_sdvo_init(dev, SDVOC);
3867
3868                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
3869
3870                         if (SUPPORTS_INTEGRATED_HDMI(dev))
3871                                 intel_hdmi_init(dev, SDVOC);
3872                         if (SUPPORTS_INTEGRATED_DP(dev))
3873                                 intel_dp_init(dev, DP_C);
3874                 }
3875
3876                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3877                         intel_dp_init(dev, DP_D);
3878         } else
3879                 intel_dvo_init(dev);
3880
3881         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
3882                 intel_tv_init(dev);
3883
3884         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3885                 struct intel_output *intel_output = to_intel_output(connector);
3886                 struct drm_encoder *encoder = &intel_output->enc;
3887
3888                 encoder->possible_crtcs = intel_output->crtc_mask;
3889                 encoder->possible_clones = intel_connector_clones(dev,
3890                                                 intel_output->clone_mask);
3891         }
3892 }
3893
3894 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3895 {
3896         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3897         struct drm_device *dev = fb->dev;
3898
3899         if (fb->fbdev)
3900                 intelfb_remove(dev, fb);
3901
3902         drm_framebuffer_cleanup(fb);
3903         mutex_lock(&dev->struct_mutex);
3904         drm_gem_object_unreference(intel_fb->obj);
3905         mutex_unlock(&dev->struct_mutex);
3906
3907         kfree(intel_fb);
3908 }
3909
3910 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3911                                                 struct drm_file *file_priv,
3912                                                 unsigned int *handle)
3913 {
3914         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3915         struct drm_gem_object *object = intel_fb->obj;
3916
3917         return drm_gem_handle_create(file_priv, object, handle);
3918 }
3919
3920 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3921         .destroy = intel_user_framebuffer_destroy,
3922         .create_handle = intel_user_framebuffer_create_handle,
3923 };
3924
3925 int intel_framebuffer_create(struct drm_device *dev,
3926                              struct drm_mode_fb_cmd *mode_cmd,
3927                              struct drm_framebuffer **fb,
3928                              struct drm_gem_object *obj)
3929 {
3930         struct intel_framebuffer *intel_fb;
3931         int ret;
3932
3933         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3934         if (!intel_fb)
3935                 return -ENOMEM;
3936
3937         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3938         if (ret) {
3939                 DRM_ERROR("framebuffer init failed %d\n", ret);
3940                 return ret;
3941         }
3942
3943         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3944
3945         intel_fb->obj = obj;
3946
3947         *fb = &intel_fb->base;
3948
3949         return 0;
3950 }
3951
3952
3953 static struct drm_framebuffer *
3954 intel_user_framebuffer_create(struct drm_device *dev,
3955                               struct drm_file *filp,
3956                               struct drm_mode_fb_cmd *mode_cmd)
3957 {
3958         struct drm_gem_object *obj;
3959         struct drm_framebuffer *fb;
3960         int ret;
3961
3962         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3963         if (!obj)
3964                 return NULL;
3965
3966         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3967         if (ret) {
3968                 mutex_lock(&dev->struct_mutex);
3969                 drm_gem_object_unreference(obj);
3970                 mutex_unlock(&dev->struct_mutex);
3971                 return NULL;
3972         }
3973
3974         return fb;
3975 }
3976
3977 static const struct drm_mode_config_funcs intel_mode_funcs = {
3978         .fb_create = intel_user_framebuffer_create,
3979         .fb_changed = intelfb_probe,
3980 };
3981
3982 void intel_init_clock_gating(struct drm_device *dev)
3983 {
3984         struct drm_i915_private *dev_priv = dev->dev_private;
3985
3986         /*
3987          * Disable clock gating reported to work incorrectly according to the
3988          * specs, but enable as much else as we can.
3989          */
3990         if (IS_G4X(dev)) {
3991                 uint32_t dspclk_gate;
3992                 I915_WRITE(RENCLK_GATE_D1, 0);
3993                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3994                        GS_UNIT_CLOCK_GATE_DISABLE |
3995                        CL_UNIT_CLOCK_GATE_DISABLE);
3996                 I915_WRITE(RAMCLK_GATE_D, 0);
3997                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3998                         OVRUNIT_CLOCK_GATE_DISABLE |
3999                         OVCUNIT_CLOCK_GATE_DISABLE;
4000                 if (IS_GM45(dev))
4001                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4002                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4003         } else if (IS_I965GM(dev)) {
4004                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4005                 I915_WRITE(RENCLK_GATE_D2, 0);
4006                 I915_WRITE(DSPCLK_GATE_D, 0);
4007                 I915_WRITE(RAMCLK_GATE_D, 0);
4008                 I915_WRITE16(DEUC, 0);
4009         } else if (IS_I965G(dev)) {
4010                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4011                        I965_RCC_CLOCK_GATE_DISABLE |
4012                        I965_RCPB_CLOCK_GATE_DISABLE |
4013                        I965_ISC_CLOCK_GATE_DISABLE |
4014                        I965_FBC_CLOCK_GATE_DISABLE);
4015                 I915_WRITE(RENCLK_GATE_D2, 0);
4016         } else if (IS_I9XX(dev)) {
4017                 u32 dstate = I915_READ(D_STATE);
4018
4019                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4020                         DSTATE_DOT_CLOCK_GATING;
4021                 I915_WRITE(D_STATE, dstate);
4022         } else if (IS_I855(dev) || IS_I865G(dev)) {
4023                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4024         } else if (IS_I830(dev)) {
4025                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4026         }
4027 }
4028
4029 void intel_modeset_init(struct drm_device *dev)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         int num_pipe;
4033         int i;
4034
4035         drm_mode_config_init(dev);
4036
4037         dev->mode_config.min_width = 0;
4038         dev->mode_config.min_height = 0;
4039
4040         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4041
4042         if (IS_I965G(dev)) {
4043                 dev->mode_config.max_width = 8192;
4044                 dev->mode_config.max_height = 8192;
4045         } else if (IS_I9XX(dev)) {
4046                 dev->mode_config.max_width = 4096;
4047                 dev->mode_config.max_height = 4096;
4048         } else {
4049                 dev->mode_config.max_width = 2048;
4050                 dev->mode_config.max_height = 2048;
4051         }
4052
4053         /* set memory base */
4054         if (IS_I9XX(dev))
4055                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4056         else
4057                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4058
4059         if (IS_MOBILE(dev) || IS_I9XX(dev))
4060                 num_pipe = 2;
4061         else
4062                 num_pipe = 1;
4063         DRM_DEBUG("%d display pipe%s available.\n",
4064                   num_pipe, num_pipe > 1 ? "s" : "");
4065
4066         if (IS_I85X(dev))
4067                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4068         else if (IS_I9XX(dev) || IS_G4X(dev))
4069                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4070
4071         for (i = 0; i < num_pipe; i++) {
4072                 intel_crtc_init(dev, i);
4073         }
4074
4075         intel_setup_outputs(dev);
4076
4077         intel_init_clock_gating(dev);
4078
4079         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4080         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4081                     (unsigned long)dev);
4082 }
4083
4084 void intel_modeset_cleanup(struct drm_device *dev)
4085 {
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         struct drm_crtc *crtc;
4088         struct intel_crtc *intel_crtc;
4089
4090         mutex_lock(&dev->struct_mutex);
4091
4092         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4093                 /* Skip inactive CRTCs */
4094                 if (!crtc->fb)
4095                         continue;
4096
4097                 intel_crtc = to_intel_crtc(crtc);
4098                 intel_increase_pllclock(crtc, false);
4099                 del_timer_sync(&intel_crtc->idle_timer);
4100         }
4101
4102         intel_increase_renderclock(dev, false);
4103         del_timer_sync(&dev_priv->idle_timer);
4104
4105         mutex_unlock(&dev->struct_mutex);
4106
4107         i8xx_disable_fbc(dev);
4108         drm_mode_config_cleanup(dev);
4109 }
4110
4111
4112 /* current intel driver doesn't take advantage of encoders
4113    always give back the encoder for the connector
4114 */
4115 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4116 {
4117         struct intel_output *intel_output = to_intel_output(connector);
4118
4119         return &intel_output->enc;
4120 }