drm/i915: enable DisplayPort support on IGDNG
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include <linux/kernel.h>
29 #include "drmP.h"
30 #include "intel_drv.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "intel_dp.h"
34
35 #include "drm_crtc_helper.h"
36
37 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
38 static void intel_update_watermarks(struct drm_device *dev);
39
40 typedef struct {
41     /* given values */
42     int n;
43     int m1, m2;
44     int p1, p2;
45     /* derived values */
46     int dot;
47     int vco;
48     int m;
49     int p;
50 } intel_clock_t;
51
52 typedef struct {
53     int min, max;
54 } intel_range_t;
55
56 typedef struct {
57     int dot_limit;
58     int p2_slow, p2_fast;
59 } intel_p2_t;
60
61 #define INTEL_P2_NUM                  2
62 typedef struct intel_limit intel_limit_t;
63 struct intel_limit {
64     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
65     intel_p2_t      p2;
66     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
67                       int, int, intel_clock_t *);
68 };
69
70 #define I8XX_DOT_MIN              25000
71 #define I8XX_DOT_MAX             350000
72 #define I8XX_VCO_MIN             930000
73 #define I8XX_VCO_MAX            1400000
74 #define I8XX_N_MIN                    3
75 #define I8XX_N_MAX                   16
76 #define I8XX_M_MIN                   96
77 #define I8XX_M_MAX                  140
78 #define I8XX_M1_MIN                  18
79 #define I8XX_M1_MAX                  26
80 #define I8XX_M2_MIN                   6
81 #define I8XX_M2_MAX                  16
82 #define I8XX_P_MIN                    4
83 #define I8XX_P_MAX                  128
84 #define I8XX_P1_MIN                   2
85 #define I8XX_P1_MAX                  33
86 #define I8XX_P1_LVDS_MIN              1
87 #define I8XX_P1_LVDS_MAX              6
88 #define I8XX_P2_SLOW                  4
89 #define I8XX_P2_FAST                  2
90 #define I8XX_P2_LVDS_SLOW             14
91 #define I8XX_P2_LVDS_FAST             14 /* No fast option */
92 #define I8XX_P2_SLOW_LIMIT       165000
93
94 #define I9XX_DOT_MIN              20000
95 #define I9XX_DOT_MAX             400000
96 #define I9XX_VCO_MIN            1400000
97 #define I9XX_VCO_MAX            2800000
98 #define IGD_VCO_MIN             1700000
99 #define IGD_VCO_MAX             3500000
100 #define I9XX_N_MIN                    1
101 #define I9XX_N_MAX                    6
102 /* IGD's Ncounter is a ring counter */
103 #define IGD_N_MIN                     3
104 #define IGD_N_MAX                     6
105 #define I9XX_M_MIN                   70
106 #define I9XX_M_MAX                  120
107 #define IGD_M_MIN                     2
108 #define IGD_M_MAX                   256
109 #define I9XX_M1_MIN                  10
110 #define I9XX_M1_MAX                  22
111 #define I9XX_M2_MIN                   5
112 #define I9XX_M2_MAX                   9
113 /* IGD M1 is reserved, and must be 0 */
114 #define IGD_M1_MIN                    0
115 #define IGD_M1_MAX                    0
116 #define IGD_M2_MIN                    0
117 #define IGD_M2_MAX                    254
118 #define I9XX_P_SDVO_DAC_MIN           5
119 #define I9XX_P_SDVO_DAC_MAX          80
120 #define I9XX_P_LVDS_MIN               7
121 #define I9XX_P_LVDS_MAX              98
122 #define IGD_P_LVDS_MIN                7
123 #define IGD_P_LVDS_MAX               112
124 #define I9XX_P1_MIN                   1
125 #define I9XX_P1_MAX                   8
126 #define I9XX_P2_SDVO_DAC_SLOW                10
127 #define I9XX_P2_SDVO_DAC_FAST                 5
128 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
129 #define I9XX_P2_LVDS_SLOW                    14
130 #define I9XX_P2_LVDS_FAST                     7
131 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
132
133 /*The parameter is for SDVO on G4x platform*/
134 #define G4X_DOT_SDVO_MIN           25000
135 #define G4X_DOT_SDVO_MAX           270000
136 #define G4X_VCO_MIN                1750000
137 #define G4X_VCO_MAX                3500000
138 #define G4X_N_SDVO_MIN             1
139 #define G4X_N_SDVO_MAX             4
140 #define G4X_M_SDVO_MIN             104
141 #define G4X_M_SDVO_MAX             138
142 #define G4X_M1_SDVO_MIN            17
143 #define G4X_M1_SDVO_MAX            23
144 #define G4X_M2_SDVO_MIN            5
145 #define G4X_M2_SDVO_MAX            11
146 #define G4X_P_SDVO_MIN             10
147 #define G4X_P_SDVO_MAX             30
148 #define G4X_P1_SDVO_MIN            1
149 #define G4X_P1_SDVO_MAX            3
150 #define G4X_P2_SDVO_SLOW           10
151 #define G4X_P2_SDVO_FAST           10
152 #define G4X_P2_SDVO_LIMIT          270000
153
154 /*The parameter is for HDMI_DAC on G4x platform*/
155 #define G4X_DOT_HDMI_DAC_MIN           22000
156 #define G4X_DOT_HDMI_DAC_MAX           400000
157 #define G4X_N_HDMI_DAC_MIN             1
158 #define G4X_N_HDMI_DAC_MAX             4
159 #define G4X_M_HDMI_DAC_MIN             104
160 #define G4X_M_HDMI_DAC_MAX             138
161 #define G4X_M1_HDMI_DAC_MIN            16
162 #define G4X_M1_HDMI_DAC_MAX            23
163 #define G4X_M2_HDMI_DAC_MIN            5
164 #define G4X_M2_HDMI_DAC_MAX            11
165 #define G4X_P_HDMI_DAC_MIN             5
166 #define G4X_P_HDMI_DAC_MAX             80
167 #define G4X_P1_HDMI_DAC_MIN            1
168 #define G4X_P1_HDMI_DAC_MAX            8
169 #define G4X_P2_HDMI_DAC_SLOW           10
170 #define G4X_P2_HDMI_DAC_FAST           5
171 #define G4X_P2_HDMI_DAC_LIMIT          165000
172
173 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
174 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
175 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
176 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
177 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
178 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
179 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
180 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
181 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
182 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
183 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
184 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
185 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
186 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
187 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
188 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
189 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
190 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
191
192 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
193 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
194 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
195 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
196 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
197 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
198 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
199 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
200 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
201 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
202 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
203 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
204 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
205 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
206 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
207 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
208 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
209 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
210
211 /*The parameter is for DISPLAY PORT on G4x platform*/
212 #define G4X_DOT_DISPLAY_PORT_MIN           161670
213 #define G4X_DOT_DISPLAY_PORT_MAX           227000
214 #define G4X_N_DISPLAY_PORT_MIN             1
215 #define G4X_N_DISPLAY_PORT_MAX             2
216 #define G4X_M_DISPLAY_PORT_MIN             97
217 #define G4X_M_DISPLAY_PORT_MAX             108
218 #define G4X_M1_DISPLAY_PORT_MIN            0x10
219 #define G4X_M1_DISPLAY_PORT_MAX            0x12
220 #define G4X_M2_DISPLAY_PORT_MIN            0x05
221 #define G4X_M2_DISPLAY_PORT_MAX            0x06
222 #define G4X_P_DISPLAY_PORT_MIN             10
223 #define G4X_P_DISPLAY_PORT_MAX             20
224 #define G4X_P1_DISPLAY_PORT_MIN            1
225 #define G4X_P1_DISPLAY_PORT_MAX            2
226 #define G4X_P2_DISPLAY_PORT_SLOW           10
227 #define G4X_P2_DISPLAY_PORT_FAST           10
228 #define G4X_P2_DISPLAY_PORT_LIMIT          0
229
230 /* IGDNG */
231 /* as we calculate clock using (register_value + 2) for
232    N/M1/M2, so here the range value for them is (actual_value-2).
233  */
234 #define IGDNG_DOT_MIN         25000
235 #define IGDNG_DOT_MAX         350000
236 #define IGDNG_VCO_MIN         1760000
237 #define IGDNG_VCO_MAX         3510000
238 #define IGDNG_N_MIN           1
239 #define IGDNG_N_MAX           5
240 #define IGDNG_M_MIN           79
241 #define IGDNG_M_MAX           118
242 #define IGDNG_M1_MIN          12
243 #define IGDNG_M1_MAX          23
244 #define IGDNG_M2_MIN          5
245 #define IGDNG_M2_MAX          9
246 #define IGDNG_P_SDVO_DAC_MIN  5
247 #define IGDNG_P_SDVO_DAC_MAX  80
248 #define IGDNG_P_LVDS_MIN      28
249 #define IGDNG_P_LVDS_MAX      112
250 #define IGDNG_P1_MIN          1
251 #define IGDNG_P1_MAX          8
252 #define IGDNG_P2_SDVO_DAC_SLOW 10
253 #define IGDNG_P2_SDVO_DAC_FAST 5
254 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
255 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
256 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
257
258 static bool
259 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
260                     int target, int refclk, intel_clock_t *best_clock);
261 static bool
262 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
263                         int target, int refclk, intel_clock_t *best_clock);
264 static bool
265 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
266                         int target, int refclk, intel_clock_t *best_clock);
267
268 static bool
269 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
270                       int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
273                       int target, int refclk, intel_clock_t *best_clock);
274
275 static const intel_limit_t intel_limits_i8xx_dvo = {
276         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
277         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
278         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
279         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
280         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
281         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
282         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
283         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
284         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
285                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
286         .find_pll = intel_find_best_PLL,
287 };
288
289 static const intel_limit_t intel_limits_i8xx_lvds = {
290         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
291         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
292         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
293         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
294         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
295         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
296         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
297         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
298         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
299                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
300         .find_pll = intel_find_best_PLL,
301 };
302         
303 static const intel_limit_t intel_limits_i9xx_sdvo = {
304         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
305         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
306         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
307         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
308         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
309         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
310         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
311         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
312         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
313                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
314         .find_pll = intel_find_best_PLL,
315 };
316
317 static const intel_limit_t intel_limits_i9xx_lvds = {
318         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
319         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
320         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
321         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
322         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
323         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
324         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
325         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
326         /* The single-channel range is 25-112Mhz, and dual-channel
327          * is 80-224Mhz.  Prefer single channel as much as possible.
328          */
329         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
330                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
331         .find_pll = intel_find_best_PLL,
332 };
333
334     /* below parameter and function is for G4X Chipset Family*/
335 static const intel_limit_t intel_limits_g4x_sdvo = {
336         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
337         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
338         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
339         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
340         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
341         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
342         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
343         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
344         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
345                  .p2_slow = G4X_P2_SDVO_SLOW,
346                  .p2_fast = G4X_P2_SDVO_FAST
347         },
348         .find_pll = intel_g4x_find_best_PLL,
349 };
350
351 static const intel_limit_t intel_limits_g4x_hdmi = {
352         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
353         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
354         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
355         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
356         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
357         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
358         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
359         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
360         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
361                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
362                  .p2_fast = G4X_P2_HDMI_DAC_FAST
363         },
364         .find_pll = intel_g4x_find_best_PLL,
365 };
366
367 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
368         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
369                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
370         .vco = { .min = G4X_VCO_MIN,
371                  .max = G4X_VCO_MAX },
372         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
373                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
374         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
375                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
376         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
377                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
378         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
379                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
380         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
381                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
382         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
383                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
384         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
385                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
386                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
387         },
388         .find_pll = intel_g4x_find_best_PLL,
389 };
390
391 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
392         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
393                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
394         .vco = { .min = G4X_VCO_MIN,
395                  .max = G4X_VCO_MAX },
396         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
397                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
398         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
399                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
400         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
401                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
402         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
403                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
404         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
405                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
406         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
407                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
408         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
409                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
410                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_display_port = {
416         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
417                  .max = G4X_DOT_DISPLAY_PORT_MAX },
418         .vco = { .min = G4X_VCO_MIN,
419                  .max = G4X_VCO_MAX},
420         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
421                  .max = G4X_N_DISPLAY_PORT_MAX },
422         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
423                  .max = G4X_M_DISPLAY_PORT_MAX },
424         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
425                  .max = G4X_M1_DISPLAY_PORT_MAX },
426         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
427                  .max = G4X_M2_DISPLAY_PORT_MAX },
428         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
429                  .max = G4X_P_DISPLAY_PORT_MAX },
430         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
431                  .max = G4X_P1_DISPLAY_PORT_MAX},
432         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
433                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
434                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
435         .find_pll = intel_find_pll_g4x_dp,
436 };
437
438 static const intel_limit_t intel_limits_igd_sdvo = {
439         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
440         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
441         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
442         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
443         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
444         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
445         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
446         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
447         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
448                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
449         .find_pll = intel_find_best_PLL,
450 };
451
452 static const intel_limit_t intel_limits_igd_lvds = {
453         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
454         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
455         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
456         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
457         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
458         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
459         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
460         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
461         /* IGD only supports single-channel mode. */
462         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
463                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
464         .find_pll = intel_find_best_PLL,
465 };
466
467 static const intel_limit_t intel_limits_igdng_sdvo = {
468         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
469         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
470         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
471         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
472         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
473         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
474         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
475         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
476         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
477                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
478                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
479         .find_pll = intel_igdng_find_best_PLL,
480 };
481
482 static const intel_limit_t intel_limits_igdng_lvds = {
483         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
484         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
485         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
486         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
487         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
488         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
489         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
490         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
491         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
492                  .p2_slow = IGDNG_P2_LVDS_SLOW,
493                  .p2_fast = IGDNG_P2_LVDS_FAST },
494         .find_pll = intel_igdng_find_best_PLL,
495 };
496
497 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
498 {
499         const intel_limit_t *limit;
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
501                 limit = &intel_limits_igdng_lvds;
502         else
503                 limit = &intel_limits_igdng_sdvo;
504
505         return limit;
506 }
507
508 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
509 {
510         struct drm_device *dev = crtc->dev;
511         struct drm_i915_private *dev_priv = dev->dev_private;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
516                     LVDS_CLKB_POWER_UP)
517                         /* LVDS with dual channel */
518                         limit = &intel_limits_g4x_dual_channel_lvds;
519                 else
520                         /* LVDS with dual channel */
521                         limit = &intel_limits_g4x_single_channel_lvds;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
523                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
524                 limit = &intel_limits_g4x_hdmi;
525         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
526                 limit = &intel_limits_g4x_sdvo;
527         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
528                 limit = &intel_limits_g4x_display_port;
529         } else /* The option is for other outputs */
530                 limit = &intel_limits_i9xx_sdvo;
531
532         return limit;
533 }
534
535 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
536 {
537         struct drm_device *dev = crtc->dev;
538         const intel_limit_t *limit;
539
540         if (IS_IGDNG(dev))
541                 limit = intel_igdng_limit(crtc);
542         else if (IS_G4X(dev)) {
543                 limit = intel_g4x_limit(crtc);
544         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
545                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
546                         limit = &intel_limits_i9xx_lvds;
547                 else
548                         limit = &intel_limits_i9xx_sdvo;
549         } else if (IS_IGD(dev)) {
550                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
551                         limit = &intel_limits_igd_lvds;
552                 else
553                         limit = &intel_limits_igd_sdvo;
554         } else {
555                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
556                         limit = &intel_limits_i8xx_lvds;
557                 else
558                         limit = &intel_limits_i8xx_dvo;
559         }
560         return limit;
561 }
562
563 /* m1 is reserved as 0 in IGD, n is a ring counter */
564 static void igd_clock(int refclk, intel_clock_t *clock)
565 {
566         clock->m = clock->m2 + 2;
567         clock->p = clock->p1 * clock->p2;
568         clock->vco = refclk * clock->m / clock->n;
569         clock->dot = clock->vco / clock->p;
570 }
571
572 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
573 {
574         if (IS_IGD(dev)) {
575                 igd_clock(refclk, clock);
576                 return;
577         }
578         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
579         clock->p = clock->p1 * clock->p2;
580         clock->vco = refclk * clock->m / (clock->n + 2);
581         clock->dot = clock->vco / clock->p;
582 }
583
584 /**
585  * Returns whether any output on the specified pipe is of the specified type
586  */
587 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
588 {
589     struct drm_device *dev = crtc->dev;
590     struct drm_mode_config *mode_config = &dev->mode_config;
591     struct drm_connector *l_entry;
592
593     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
594             if (l_entry->encoder &&
595                 l_entry->encoder->crtc == crtc) {
596                     struct intel_output *intel_output = to_intel_output(l_entry);
597                     if (intel_output->type == type)
598                             return true;
599             }
600     }
601     return false;
602 }
603
604 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
605 /**
606  * Returns whether the given set of divisors are valid for a given refclk with
607  * the given connectors.
608  */
609
610 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
611 {
612         const intel_limit_t *limit = intel_limit (crtc);
613         struct drm_device *dev = crtc->dev;
614
615         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
616                 INTELPllInvalid ("p1 out of range\n");
617         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
618                 INTELPllInvalid ("p out of range\n");
619         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
620                 INTELPllInvalid ("m2 out of range\n");
621         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
622                 INTELPllInvalid ("m1 out of range\n");
623         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
624                 INTELPllInvalid ("m1 <= m2\n");
625         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
626                 INTELPllInvalid ("m out of range\n");
627         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
628                 INTELPllInvalid ("n out of range\n");
629         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630                 INTELPllInvalid ("vco out of range\n");
631         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632          * connector, etc., rather than just a single range.
633          */
634         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635                 INTELPllInvalid ("dot out of range\n");
636
637         return true;
638 }
639
640 static bool
641 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
642                     int target, int refclk, intel_clock_t *best_clock)
643
644 {
645         struct drm_device *dev = crtc->dev;
646         struct drm_i915_private *dev_priv = dev->dev_private;
647         intel_clock_t clock;
648         int err = target;
649
650         if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
651             (I915_READ(LVDS)) != 0) {
652                 /*
653                  * For LVDS, if the panel is on, just rely on its current
654                  * settings for dual-channel.  We haven't figured out how to
655                  * reliably set up different single/dual channel state, if we
656                  * even can.
657                  */
658                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
659                     LVDS_CLKB_POWER_UP)
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset (best_clock, 0, sizeof (*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
673                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
674                         /* m1 is always 0 in IGD */
675                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
676                                 break;
677                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
678                              clock.n++) {
679                                 for (clock.p1 = limit->p1.min;
680                                      clock.p1 <= limit->p1.max; clock.p1++) {
681                                         int this_err;
682
683                                         intel_clock(dev, refclk, &clock);
684
685                                         if (!intel_PLL_is_valid(crtc, &clock))
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *best_clock)
704 {
705         struct drm_device *dev = crtc->dev;
706         struct drm_i915_private *dev_priv = dev->dev_private;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00488 */
711         int err_most = (target >> 8) + (target >> 10);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
716                     LVDS_CLKB_POWER_UP)
717                         clock.p2 = limit->p2.p2_fast;
718                 else
719                         clock.p2 = limit->p2.p2_slow;
720         } else {
721                 if (target < limit->p2.dot_limit)
722                         clock.p2 = limit->p2.p2_slow;
723                 else
724                         clock.p2 = limit->p2.p2_fast;
725         }
726
727         memset(best_clock, 0, sizeof(*best_clock));
728         max_n = limit->n.max;
729         /* based on hardware requriment prefer smaller n to precision */
730         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
731                 /* based on hardware requirment prefere larger m1,m2, p1 */
732                 for (clock.m1 = limit->m1.max;
733                      clock.m1 >= limit->m1.min; clock.m1--) {
734                         for (clock.m2 = limit->m2.max;
735                              clock.m2 >= limit->m2.min; clock.m2--) {
736                                 for (clock.p1 = limit->p1.max;
737                                      clock.p1 >= limit->p1.min; clock.p1--) {
738                                         int this_err;
739
740                                         intel_clock(dev, refclk, &clock);
741                                         if (!intel_PLL_is_valid(crtc, &clock))
742                                                 continue;
743                                         this_err = abs(clock.dot - target) ;
744                                         if (this_err < err_most) {
745                                                 *best_clock = clock;
746                                                 err_most = this_err;
747                                                 max_n = clock.n;
748                                                 found = true;
749                                         }
750                                 }
751                         }
752                 }
753         }
754         return found;
755 }
756
757 static bool
758 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
759                       int target, int refclk, intel_clock_t *best_clock)
760 {
761         struct drm_device *dev = crtc->dev;
762         intel_clock_t clock;
763         if (target < 200000) {
764                 clock.n = 1;
765                 clock.p1 = 2;
766                 clock.p2 = 10;
767                 clock.m1 = 12;
768                 clock.m2 = 9;
769         } else {
770                 clock.n = 2;
771                 clock.p1 = 1;
772                 clock.p2 = 10;
773                 clock.m1 = 14;
774                 clock.m2 = 8;
775         }
776         intel_clock(dev, refclk, &clock);
777         memcpy(best_clock, &clock, sizeof(intel_clock_t));
778         return true;
779 }
780
781 static bool
782 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
783                         int target, int refclk, intel_clock_t *best_clock)
784 {
785         struct drm_device *dev = crtc->dev;
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         intel_clock_t clock;
788         int max_n;
789         bool found;
790         int err_most = 47;
791         found = false;
792
793         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
794                 return intel_find_pll_igdng_dp(limit, crtc, target,
795                                                refclk, best_clock);
796
797         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
798                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
799                     LVDS_CLKB_POWER_UP)
800                         clock.p2 = limit->p2.p2_fast;
801                 else
802                         clock.p2 = limit->p2.p2_slow;
803         } else {
804                 if (target < limit->p2.dot_limit)
805                         clock.p2 = limit->p2.p2_slow;
806                 else
807                         clock.p2 = limit->p2.p2_fast;
808         }
809
810         memset(best_clock, 0, sizeof(*best_clock));
811         max_n = limit->n.max;
812         /* based on hardware requriment prefer smaller n to precision */
813         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
814                 /* based on hardware requirment prefere larger m1,m2, p1 */
815                 for (clock.m1 = limit->m1.max;
816                      clock.m1 >= limit->m1.min; clock.m1--) {
817                         for (clock.m2 = limit->m2.max;
818                              clock.m2 >= limit->m2.min; clock.m2--) {
819                                 for (clock.p1 = limit->p1.max;
820                                      clock.p1 >= limit->p1.min; clock.p1--) {
821                                         int this_err;
822
823                                         intel_clock(dev, refclk, &clock);
824                                         if (!intel_PLL_is_valid(crtc, &clock))
825                                                 continue;
826                                         this_err = abs((10000 - (target*10000/clock.dot)));
827                                         if (this_err < err_most) {
828                                                 *best_clock = clock;
829                                                 err_most = this_err;
830                                                 max_n = clock.n;
831                                                 found = true;
832                                                 /* found on first matching */
833                                                 goto out;
834                                         }
835                                 }
836                         }
837                 }
838         }
839 out:
840         return found;
841 }
842
843 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
844 static bool
845 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
846                       int target, int refclk, intel_clock_t *best_clock)
847 {
848     intel_clock_t clock;
849     if (target < 200000) {
850         clock.p1 = 2;
851         clock.p2 = 10;
852         clock.n = 2;
853         clock.m1 = 23;
854         clock.m2 = 8;
855     } else {
856         clock.p1 = 1;
857         clock.p2 = 10;
858         clock.n = 1;
859         clock.m1 = 14;
860         clock.m2 = 2;
861     }
862     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863     clock.p = (clock.p1 * clock.p2);
864     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865     memcpy(best_clock, &clock, sizeof(intel_clock_t));
866     return true;
867 }
868
869 void
870 intel_wait_for_vblank(struct drm_device *dev)
871 {
872         /* Wait for 20ms, i.e. one cycle at 50hz. */
873         mdelay(20);
874 }
875
876 static int
877 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
878                     struct drm_framebuffer *old_fb)
879 {
880         struct drm_device *dev = crtc->dev;
881         struct drm_i915_private *dev_priv = dev->dev_private;
882         struct drm_i915_master_private *master_priv;
883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
884         struct intel_framebuffer *intel_fb;
885         struct drm_i915_gem_object *obj_priv;
886         struct drm_gem_object *obj;
887         int pipe = intel_crtc->pipe;
888         unsigned long Start, Offset;
889         int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
890         int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
891         int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
892         int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
893         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
894         u32 dspcntr, alignment;
895         int ret;
896
897         /* no fb bound */
898         if (!crtc->fb) {
899                 DRM_DEBUG("No FB bound\n");
900                 return 0;
901         }
902
903         switch (pipe) {
904         case 0:
905         case 1:
906                 break;
907         default:
908                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
909                 return -EINVAL;
910         }
911
912         intel_fb = to_intel_framebuffer(crtc->fb);
913         obj = intel_fb->obj;
914         obj_priv = obj->driver_private;
915
916         switch (obj_priv->tiling_mode) {
917         case I915_TILING_NONE:
918                 alignment = 64 * 1024;
919                 break;
920         case I915_TILING_X:
921                 /* pin() will align the object as required by fence */
922                 alignment = 0;
923                 break;
924         case I915_TILING_Y:
925                 /* FIXME: Is this true? */
926                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
927                 return -EINVAL;
928         default:
929                 BUG();
930         }
931
932         mutex_lock(&dev->struct_mutex);
933         ret = i915_gem_object_pin(obj, alignment);
934         if (ret != 0) {
935                 mutex_unlock(&dev->struct_mutex);
936                 return ret;
937         }
938
939         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
940         if (ret != 0) {
941                 i915_gem_object_unpin(obj);
942                 mutex_unlock(&dev->struct_mutex);
943                 return ret;
944         }
945
946         /* Pre-i965 needs to install a fence for tiled scan-out */
947         if (!IS_I965G(dev) &&
948             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
949             obj_priv->tiling_mode != I915_TILING_NONE) {
950                 ret = i915_gem_object_get_fence_reg(obj);
951                 if (ret != 0) {
952                         i915_gem_object_unpin(obj);
953                         mutex_unlock(&dev->struct_mutex);
954                         return ret;
955                 }
956         }
957
958         dspcntr = I915_READ(dspcntr_reg);
959         /* Mask out pixel format bits in case we change it */
960         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
961         switch (crtc->fb->bits_per_pixel) {
962         case 8:
963                 dspcntr |= DISPPLANE_8BPP;
964                 break;
965         case 16:
966                 if (crtc->fb->depth == 15)
967                         dspcntr |= DISPPLANE_15_16BPP;
968                 else
969                         dspcntr |= DISPPLANE_16BPP;
970                 break;
971         case 24:
972         case 32:
973                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
974                 break;
975         default:
976                 DRM_ERROR("Unknown color depth\n");
977                 i915_gem_object_unpin(obj);
978                 mutex_unlock(&dev->struct_mutex);
979                 return -EINVAL;
980         }
981         if (IS_I965G(dev)) {
982                 if (obj_priv->tiling_mode != I915_TILING_NONE)
983                         dspcntr |= DISPPLANE_TILED;
984                 else
985                         dspcntr &= ~DISPPLANE_TILED;
986         }
987
988         I915_WRITE(dspcntr_reg, dspcntr);
989
990         Start = obj_priv->gtt_offset;
991         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
992
993         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
994         I915_WRITE(dspstride, crtc->fb->pitch);
995         if (IS_I965G(dev)) {
996                 I915_WRITE(dspbase, Offset);
997                 I915_READ(dspbase);
998                 I915_WRITE(dspsurf, Start);
999                 I915_READ(dspsurf);
1000                 I915_WRITE(dsptileoff, (y << 16) | x);
1001         } else {
1002                 I915_WRITE(dspbase, Start + Offset);
1003                 I915_READ(dspbase);
1004         }
1005
1006         intel_wait_for_vblank(dev);
1007
1008         if (old_fb) {
1009                 intel_fb = to_intel_framebuffer(old_fb);
1010                 i915_gem_object_unpin(intel_fb->obj);
1011         }
1012         mutex_unlock(&dev->struct_mutex);
1013
1014         if (!dev->primary->master)
1015                 return 0;
1016
1017         master_priv = dev->primary->master->driver_priv;
1018         if (!master_priv->sarea_priv)
1019                 return 0;
1020
1021         if (pipe) {
1022                 master_priv->sarea_priv->pipeB_x = x;
1023                 master_priv->sarea_priv->pipeB_y = y;
1024         } else {
1025                 master_priv->sarea_priv->pipeA_x = x;
1026                 master_priv->sarea_priv->pipeA_y = y;
1027         }
1028
1029         return 0;
1030 }
1031
1032 /* Disable the VGA plane that we never use */
1033 static void i915_disable_vga (struct drm_device *dev)
1034 {
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u8 sr1;
1037         u32 vga_reg;
1038
1039         if (IS_IGDNG(dev))
1040                 vga_reg = CPU_VGACNTRL;
1041         else
1042                 vga_reg = VGACNTRL;
1043
1044         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1045                 return;
1046
1047         I915_WRITE8(VGA_SR_INDEX, 1);
1048         sr1 = I915_READ8(VGA_SR_DATA);
1049         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1050         udelay(100);
1051
1052         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1053 }
1054
1055 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1056 {
1057         struct drm_device *dev = crtc->dev;
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1060         int pipe = intel_crtc->pipe;
1061         int plane = intel_crtc->plane;
1062         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1063         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1064         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1065         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1066         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1067         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1068         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1069         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1070         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1071         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1072         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1073         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1074         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1075         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1076         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1077         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1078         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1079         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1080         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1081         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1082         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1083         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1084         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1085         u32 temp;
1086         int tries = 5, j, n;
1087
1088         /* XXX: When our outputs are all unaware of DPMS modes other than off
1089          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1090          */
1091         switch (mode) {
1092         case DRM_MODE_DPMS_ON:
1093         case DRM_MODE_DPMS_STANDBY:
1094         case DRM_MODE_DPMS_SUSPEND:
1095                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1096                 /* enable PCH DPLL */
1097                 temp = I915_READ(pch_dpll_reg);
1098                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1099                         I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1100                         I915_READ(pch_dpll_reg);
1101                 }
1102
1103                 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1104                 temp = I915_READ(fdi_rx_reg);
1105                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1106                                 FDI_SEL_PCDCLK |
1107                                 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1108                 I915_READ(fdi_rx_reg);
1109                 udelay(200);
1110
1111                 /* Enable CPU FDI TX PLL, always on for IGDNG */
1112                 temp = I915_READ(fdi_tx_reg);
1113                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1114                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1115                         I915_READ(fdi_tx_reg);
1116                         udelay(100);
1117                 }
1118
1119                 /* Enable CPU pipe */
1120                 temp = I915_READ(pipeconf_reg);
1121                 if ((temp & PIPEACONF_ENABLE) == 0) {
1122                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1123                         I915_READ(pipeconf_reg);
1124                         udelay(100);
1125                 }
1126
1127                 /* configure and enable CPU plane */
1128                 temp = I915_READ(dspcntr_reg);
1129                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1130                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1131                         /* Flush the plane changes */
1132                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1133                 }
1134
1135                 /* enable CPU FDI TX and PCH FDI RX */
1136                 temp = I915_READ(fdi_tx_reg);
1137                 temp |= FDI_TX_ENABLE;
1138                 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1139                 temp &= ~FDI_LINK_TRAIN_NONE;
1140                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1141                 I915_WRITE(fdi_tx_reg, temp);
1142                 I915_READ(fdi_tx_reg);
1143
1144                 temp = I915_READ(fdi_rx_reg);
1145                 temp &= ~FDI_LINK_TRAIN_NONE;
1146                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1147                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1148                 I915_READ(fdi_rx_reg);
1149
1150                 udelay(150);
1151
1152                 /* Train FDI. */
1153                 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1154                    for train result */
1155                 temp = I915_READ(fdi_rx_imr_reg);
1156                 temp &= ~FDI_RX_SYMBOL_LOCK;
1157                 temp &= ~FDI_RX_BIT_LOCK;
1158                 I915_WRITE(fdi_rx_imr_reg, temp);
1159                 I915_READ(fdi_rx_imr_reg);
1160                 udelay(150);
1161
1162                 temp = I915_READ(fdi_rx_iir_reg);
1163                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1164
1165                 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1166                         for (j = 0; j < tries; j++) {
1167                                 temp = I915_READ(fdi_rx_iir_reg);
1168                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1169                                 if (temp & FDI_RX_BIT_LOCK)
1170                                         break;
1171                                 udelay(200);
1172                         }
1173                         if (j != tries)
1174                                 I915_WRITE(fdi_rx_iir_reg,
1175                                                 temp | FDI_RX_BIT_LOCK);
1176                         else
1177                                 DRM_DEBUG("train 1 fail\n");
1178                 } else {
1179                         I915_WRITE(fdi_rx_iir_reg,
1180                                         temp | FDI_RX_BIT_LOCK);
1181                         DRM_DEBUG("train 1 ok 2!\n");
1182                 }
1183                 temp = I915_READ(fdi_tx_reg);
1184                 temp &= ~FDI_LINK_TRAIN_NONE;
1185                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1186                 I915_WRITE(fdi_tx_reg, temp);
1187
1188                 temp = I915_READ(fdi_rx_reg);
1189                 temp &= ~FDI_LINK_TRAIN_NONE;
1190                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1191                 I915_WRITE(fdi_rx_reg, temp);
1192
1193                 udelay(150);
1194
1195                 temp = I915_READ(fdi_rx_iir_reg);
1196                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1197
1198                 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1199                         for (j = 0; j < tries; j++) {
1200                                 temp = I915_READ(fdi_rx_iir_reg);
1201                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1202                                 if (temp & FDI_RX_SYMBOL_LOCK)
1203                                         break;
1204                                 udelay(200);
1205                         }
1206                         if (j != tries) {
1207                                 I915_WRITE(fdi_rx_iir_reg,
1208                                                 temp | FDI_RX_SYMBOL_LOCK);
1209                                 DRM_DEBUG("train 2 ok 1!\n");
1210                         } else
1211                                 DRM_DEBUG("train 2 fail\n");
1212                 } else {
1213                         I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1214                         DRM_DEBUG("train 2 ok 2!\n");
1215                 }
1216                 DRM_DEBUG("train done\n");
1217
1218                 /* set transcoder timing */
1219                 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1220                 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1221                 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1222
1223                 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1224                 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1225                 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1226
1227                 /* enable PCH transcoder */
1228                 temp = I915_READ(transconf_reg);
1229                 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1230                 I915_READ(transconf_reg);
1231
1232                 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1233                         ;
1234
1235                 /* enable normal */
1236
1237                 temp = I915_READ(fdi_tx_reg);
1238                 temp &= ~FDI_LINK_TRAIN_NONE;
1239                 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1240                                 FDI_TX_ENHANCE_FRAME_ENABLE);
1241                 I915_READ(fdi_tx_reg);
1242
1243                 temp = I915_READ(fdi_rx_reg);
1244                 temp &= ~FDI_LINK_TRAIN_NONE;
1245                 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1246                                 FDI_RX_ENHANCE_FRAME_ENABLE);
1247                 I915_READ(fdi_rx_reg);
1248
1249                 /* wait one idle pattern time */
1250                 udelay(100);
1251
1252                 intel_crtc_load_lut(crtc);
1253
1254         break;
1255         case DRM_MODE_DPMS_OFF:
1256                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1257
1258                 i915_disable_vga(dev);
1259
1260                 /* Disable display plane */
1261                 temp = I915_READ(dspcntr_reg);
1262                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1263                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1264                         /* Flush the plane changes */
1265                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1266                         I915_READ(dspbase_reg);
1267                 }
1268
1269                 /* disable cpu pipe, disable after all planes disabled */
1270                 temp = I915_READ(pipeconf_reg);
1271                 if ((temp & PIPEACONF_ENABLE) != 0) {
1272                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1273                         I915_READ(pipeconf_reg);
1274                         n = 0;
1275                         /* wait for cpu pipe off, pipe state */
1276                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1277                                 n++;
1278                                 if (n < 60) {
1279                                         udelay(500);
1280                                         continue;
1281                                 } else {
1282                                         DRM_DEBUG("pipe %d off delay\n", pipe);
1283                                         break;
1284                                 }
1285                         }
1286                 } else
1287                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1288
1289                 /* disable CPU FDI tx and PCH FDI rx */
1290                 temp = I915_READ(fdi_tx_reg);
1291                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1292                 I915_READ(fdi_tx_reg);
1293
1294                 temp = I915_READ(fdi_rx_reg);
1295                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1296                 I915_READ(fdi_rx_reg);
1297
1298                 udelay(100);
1299
1300                 /* still set train pattern 1 */
1301                 temp = I915_READ(fdi_tx_reg);
1302                 temp &= ~FDI_LINK_TRAIN_NONE;
1303                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1304                 I915_WRITE(fdi_tx_reg, temp);
1305
1306                 temp = I915_READ(fdi_rx_reg);
1307                 temp &= ~FDI_LINK_TRAIN_NONE;
1308                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1309                 I915_WRITE(fdi_rx_reg, temp);
1310
1311                 udelay(100);
1312
1313                 /* disable PCH transcoder */
1314                 temp = I915_READ(transconf_reg);
1315                 if ((temp & TRANS_ENABLE) != 0) {
1316                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1317                         I915_READ(transconf_reg);
1318                         n = 0;
1319                         /* wait for PCH transcoder off, transcoder state */
1320                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1321                                 n++;
1322                                 if (n < 60) {
1323                                         udelay(500);
1324                                         continue;
1325                                 } else {
1326                                         DRM_DEBUG("transcoder %d off delay\n", pipe);
1327                                         break;
1328                                 }
1329                         }
1330                 }
1331
1332                 /* disable PCH DPLL */
1333                 temp = I915_READ(pch_dpll_reg);
1334                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1335                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1336                         I915_READ(pch_dpll_reg);
1337                 }
1338
1339                 temp = I915_READ(fdi_rx_reg);
1340                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1341                         temp &= ~FDI_SEL_PCDCLK;
1342                         temp &= ~FDI_RX_PLL_ENABLE;
1343                         I915_WRITE(fdi_rx_reg, temp);
1344                         I915_READ(fdi_rx_reg);
1345                 }
1346
1347                 /* Disable CPU FDI TX PLL */
1348                 temp = I915_READ(fdi_tx_reg);
1349                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1350                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1351                         I915_READ(fdi_tx_reg);
1352                         udelay(100);
1353                 }
1354
1355                 /* Disable PF */
1356                 temp = I915_READ(pf_ctl_reg);
1357                 if ((temp & PF_ENABLE) != 0) {
1358                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1359                         I915_READ(pf_ctl_reg);
1360                 }
1361                 I915_WRITE(pf_win_size, 0);
1362
1363                 /* Wait for the clocks to turn off. */
1364                 udelay(150);
1365                 break;
1366         }
1367 }
1368
1369 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1370 {
1371         struct drm_device *dev = crtc->dev;
1372         struct drm_i915_private *dev_priv = dev->dev_private;
1373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1374         int pipe = intel_crtc->pipe;
1375         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1376         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1377         int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1378         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1379         u32 temp;
1380
1381         /* XXX: When our outputs are all unaware of DPMS modes other than off
1382          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1383          */
1384         switch (mode) {
1385         case DRM_MODE_DPMS_ON:
1386         case DRM_MODE_DPMS_STANDBY:
1387         case DRM_MODE_DPMS_SUSPEND:
1388                 /* Enable the DPLL */
1389                 temp = I915_READ(dpll_reg);
1390                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1391                         I915_WRITE(dpll_reg, temp);
1392                         I915_READ(dpll_reg);
1393                         /* Wait for the clocks to stabilize. */
1394                         udelay(150);
1395                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1396                         I915_READ(dpll_reg);
1397                         /* Wait for the clocks to stabilize. */
1398                         udelay(150);
1399                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1400                         I915_READ(dpll_reg);
1401                         /* Wait for the clocks to stabilize. */
1402                         udelay(150);
1403                 }
1404
1405                 /* Enable the pipe */
1406                 temp = I915_READ(pipeconf_reg);
1407                 if ((temp & PIPEACONF_ENABLE) == 0)
1408                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1409
1410                 /* Enable the plane */
1411                 temp = I915_READ(dspcntr_reg);
1412                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1413                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1414                         /* Flush the plane changes */
1415                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1416                 }
1417
1418                 intel_crtc_load_lut(crtc);
1419
1420                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1421                 //intel_crtc_dpms_video(crtc, true); TODO
1422                 intel_update_watermarks(dev);
1423         break;
1424         case DRM_MODE_DPMS_OFF:
1425                 intel_update_watermarks(dev);
1426                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1427                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1428
1429                 /* Disable the VGA plane that we never use */
1430                 i915_disable_vga(dev);
1431
1432                 /* Disable display plane */
1433                 temp = I915_READ(dspcntr_reg);
1434                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1435                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1436                         /* Flush the plane changes */
1437                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1438                         I915_READ(dspbase_reg);
1439                 }
1440
1441                 if (!IS_I9XX(dev)) {
1442                         /* Wait for vblank for the disable to take effect */
1443                         intel_wait_for_vblank(dev);
1444                 }
1445
1446                 /* Next, disable display pipes */
1447                 temp = I915_READ(pipeconf_reg);
1448                 if ((temp & PIPEACONF_ENABLE) != 0) {
1449                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1450                         I915_READ(pipeconf_reg);
1451                 }
1452
1453                 /* Wait for vblank for the disable to take effect. */
1454                 intel_wait_for_vblank(dev);
1455
1456                 temp = I915_READ(dpll_reg);
1457                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1458                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1459                         I915_READ(dpll_reg);
1460                 }
1461
1462                 /* Wait for the clocks to turn off. */
1463                 udelay(150);
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * Sets the power management mode of the pipe and plane.
1470  *
1471  * This code should probably grow support for turning the cursor off and back
1472  * on appropriately at the same time as we're turning the pipe off/on.
1473  */
1474 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1475 {
1476         struct drm_device *dev = crtc->dev;
1477         struct drm_i915_master_private *master_priv;
1478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1479         int pipe = intel_crtc->pipe;
1480         bool enabled;
1481
1482         if (IS_IGDNG(dev))
1483                 igdng_crtc_dpms(crtc, mode);
1484         else
1485                 i9xx_crtc_dpms(crtc, mode);
1486
1487         if (!dev->primary->master)
1488                 return;
1489
1490         master_priv = dev->primary->master->driver_priv;
1491         if (!master_priv->sarea_priv)
1492                 return;
1493
1494         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1495
1496         switch (pipe) {
1497         case 0:
1498                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1499                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1500                 break;
1501         case 1:
1502                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1503                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1504                 break;
1505         default:
1506                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1507                 break;
1508         }
1509
1510         intel_crtc->dpms_mode = mode;
1511 }
1512
1513 static void intel_crtc_prepare (struct drm_crtc *crtc)
1514 {
1515         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1516         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1517 }
1518
1519 static void intel_crtc_commit (struct drm_crtc *crtc)
1520 {
1521         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1522         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1523 }
1524
1525 void intel_encoder_prepare (struct drm_encoder *encoder)
1526 {
1527         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1528         /* lvds has its own version of prepare see intel_lvds_prepare */
1529         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1530 }
1531
1532 void intel_encoder_commit (struct drm_encoder *encoder)
1533 {
1534         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1535         /* lvds has its own version of commit see intel_lvds_commit */
1536         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1537 }
1538
1539 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1540                                   struct drm_display_mode *mode,
1541                                   struct drm_display_mode *adjusted_mode)
1542 {
1543         struct drm_device *dev = crtc->dev;
1544         if (IS_IGDNG(dev)) {
1545                 /* FDI link clock is fixed at 2.7G */
1546                 if (mode->clock * 3 > 27000 * 4)
1547                         return MODE_CLOCK_HIGH;
1548         }
1549         return true;
1550 }
1551
1552
1553 /** Returns the core display clock speed for i830 - i945 */
1554 static int intel_get_core_clock_speed(struct drm_device *dev)
1555 {
1556
1557         /* Core clock values taken from the published datasheets.
1558          * The 830 may go up to 166 Mhz, which we should check.
1559          */
1560         if (IS_I945G(dev))
1561                 return 400000;
1562         else if (IS_I915G(dev))
1563                 return 333000;
1564         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1565                 return 200000;
1566         else if (IS_I915GM(dev)) {
1567                 u16 gcfgc = 0;
1568
1569                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1570
1571                 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1572                         return 133000;
1573                 else {
1574                         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1575                         case GC_DISPLAY_CLOCK_333_MHZ:
1576                                 return 333000;
1577                         default:
1578                         case GC_DISPLAY_CLOCK_190_200_MHZ:
1579                                 return 190000;
1580                         }
1581                 }
1582         } else if (IS_I865G(dev))
1583                 return 266000;
1584         else if (IS_I855(dev)) {
1585                 u16 hpllcc = 0;
1586                 /* Assume that the hardware is in the high speed state.  This
1587                  * should be the default.
1588                  */
1589                 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1590                 case GC_CLOCK_133_200:
1591                 case GC_CLOCK_100_200:
1592                         return 200000;
1593                 case GC_CLOCK_166_250:
1594                         return 250000;
1595                 case GC_CLOCK_100_133:
1596                         return 133000;
1597                 }
1598         } else /* 852, 830 */
1599                 return 133000;
1600
1601         return 0; /* Silence gcc warning */
1602 }
1603
1604 /**
1605  * Return the pipe currently connected to the panel fitter,
1606  * or -1 if the panel fitter is not present or not in use
1607  */
1608 static int intel_panel_fitter_pipe (struct drm_device *dev)
1609 {
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         u32  pfit_control;
1612
1613         /* i830 doesn't have a panel fitter */
1614         if (IS_I830(dev))
1615                 return -1;
1616
1617         pfit_control = I915_READ(PFIT_CONTROL);
1618
1619         /* See if the panel fitter is in use */
1620         if ((pfit_control & PFIT_ENABLE) == 0)
1621                 return -1;
1622
1623         /* 965 can place panel fitter on either pipe */
1624         if (IS_I965G(dev))
1625                 return (pfit_control >> 29) & 0x3;
1626
1627         /* older chips can only use pipe 1 */
1628         return 1;
1629 }
1630
1631 struct fdi_m_n {
1632         u32        tu;
1633         u32        gmch_m;
1634         u32        gmch_n;
1635         u32        link_m;
1636         u32        link_n;
1637 };
1638
1639 static void
1640 fdi_reduce_ratio(u32 *num, u32 *den)
1641 {
1642         while (*num > 0xffffff || *den > 0xffffff) {
1643                 *num >>= 1;
1644                 *den >>= 1;
1645         }
1646 }
1647
1648 #define DATA_N 0x800000
1649 #define LINK_N 0x80000
1650
1651 static void
1652 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1653                 int pixel_clock, int link_clock,
1654                 struct fdi_m_n *m_n)
1655 {
1656         u64 temp;
1657
1658         m_n->tu = 64; /* default size */
1659
1660         temp = (u64) DATA_N * pixel_clock;
1661         temp = div_u64(temp, link_clock);
1662         m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
1663         m_n->gmch_n = DATA_N;
1664         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1665
1666         temp = (u64) LINK_N * pixel_clock;
1667         m_n->link_m = div_u64(temp, link_clock);
1668         m_n->link_n = LINK_N;
1669         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1670 }
1671
1672
1673 struct intel_watermark_params {
1674         unsigned long fifo_size;
1675         unsigned long max_wm;
1676         unsigned long default_wm;
1677         unsigned long guard_size;
1678         unsigned long cacheline_size;
1679 };
1680
1681 /* IGD has different values for various configs */
1682 static struct intel_watermark_params igd_display_wm = {
1683         IGD_DISPLAY_FIFO,
1684         IGD_MAX_WM,
1685         IGD_DFT_WM,
1686         IGD_GUARD_WM,
1687         IGD_FIFO_LINE_SIZE
1688 };
1689 static struct intel_watermark_params igd_display_hplloff_wm = {
1690         IGD_DISPLAY_FIFO,
1691         IGD_MAX_WM,
1692         IGD_DFT_HPLLOFF_WM,
1693         IGD_GUARD_WM,
1694         IGD_FIFO_LINE_SIZE
1695 };
1696 static struct intel_watermark_params igd_cursor_wm = {
1697         IGD_CURSOR_FIFO,
1698         IGD_CURSOR_MAX_WM,
1699         IGD_CURSOR_DFT_WM,
1700         IGD_CURSOR_GUARD_WM,
1701         IGD_FIFO_LINE_SIZE,
1702 };
1703 static struct intel_watermark_params igd_cursor_hplloff_wm = {
1704         IGD_CURSOR_FIFO,
1705         IGD_CURSOR_MAX_WM,
1706         IGD_CURSOR_DFT_WM,
1707         IGD_CURSOR_GUARD_WM,
1708         IGD_FIFO_LINE_SIZE
1709 };
1710 static struct intel_watermark_params i945_wm_info = {
1711         I945_FIFO_SIZE,
1712         I915_MAX_WM,
1713         1,
1714         2,
1715         I915_FIFO_LINE_SIZE
1716 };
1717 static struct intel_watermark_params i915_wm_info = {
1718         I915_FIFO_SIZE,
1719         I915_MAX_WM,
1720         1,
1721         2,
1722         I915_FIFO_LINE_SIZE
1723 };
1724 static struct intel_watermark_params i855_wm_info = {
1725         I855GM_FIFO_SIZE,
1726         I915_MAX_WM,
1727         1,
1728         2,
1729         I830_FIFO_LINE_SIZE
1730 };
1731 static struct intel_watermark_params i830_wm_info = {
1732         I830_FIFO_SIZE,
1733         I915_MAX_WM,
1734         1,
1735         2,
1736         I830_FIFO_LINE_SIZE
1737 };
1738
1739 /**
1740  * intel_calculate_wm - calculate watermark level
1741  * @clock_in_khz: pixel clock
1742  * @wm: chip FIFO params
1743  * @pixel_size: display pixel size
1744  * @latency_ns: memory latency for the platform
1745  *
1746  * Calculate the watermark level (the level at which the display plane will
1747  * start fetching from memory again).  Each chip has a different display
1748  * FIFO size and allocation, so the caller needs to figure that out and pass
1749  * in the correct intel_watermark_params structure.
1750  *
1751  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1752  * on the pixel size.  When it reaches the watermark level, it'll start
1753  * fetching FIFO line sized based chunks from memory until the FIFO fills
1754  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1755  * will occur, and a display engine hang could result.
1756  */
1757 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1758                                         struct intel_watermark_params *wm,
1759                                         int pixel_size,
1760                                         unsigned long latency_ns)
1761 {
1762         long entries_required, wm_size;
1763
1764         entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
1765         entries_required /= wm->cacheline_size;
1766
1767         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
1768
1769         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
1770
1771         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
1772
1773         /* Don't promote wm_size to unsigned... */
1774         if (wm_size > (long)wm->max_wm)
1775                 wm_size = wm->max_wm;
1776         if (wm_size <= 0)
1777                 wm_size = wm->default_wm;
1778         return wm_size;
1779 }
1780
1781 struct cxsr_latency {
1782         int is_desktop;
1783         unsigned long fsb_freq;
1784         unsigned long mem_freq;
1785         unsigned long display_sr;
1786         unsigned long display_hpll_disable;
1787         unsigned long cursor_sr;
1788         unsigned long cursor_hpll_disable;
1789 };
1790
1791 static struct cxsr_latency cxsr_latency_table[] = {
1792         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
1793         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
1794         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
1795
1796         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
1797         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
1798         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
1799
1800         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
1801         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
1802         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
1803
1804         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
1805         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
1806         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
1807
1808         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
1809         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
1810         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
1811
1812         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
1813         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
1814         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
1815 };
1816
1817 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1818                                                    int mem)
1819 {
1820         int i;
1821         struct cxsr_latency *latency;
1822
1823         if (fsb == 0 || mem == 0)
1824                 return NULL;
1825
1826         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1827                 latency = &cxsr_latency_table[i];
1828                 if (is_desktop == latency->is_desktop &&
1829                         fsb == latency->fsb_freq && mem == latency->mem_freq)
1830                         break;
1831         }
1832         if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1833                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1834                 return NULL;
1835         }
1836         return latency;
1837 }
1838
1839 static void igd_disable_cxsr(struct drm_device *dev)
1840 {
1841         struct drm_i915_private *dev_priv = dev->dev_private;
1842         u32 reg;
1843
1844         /* deactivate cxsr */
1845         reg = I915_READ(DSPFW3);
1846         reg &= ~(IGD_SELF_REFRESH_EN);
1847         I915_WRITE(DSPFW3, reg);
1848         DRM_INFO("Big FIFO is disabled\n");
1849 }
1850
1851 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1852                             int pixel_size)
1853 {
1854         struct drm_i915_private *dev_priv = dev->dev_private;
1855         u32 reg;
1856         unsigned long wm;
1857         struct cxsr_latency *latency;
1858
1859         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
1860                 dev_priv->mem_freq);
1861         if (!latency) {
1862                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1863                 igd_disable_cxsr(dev);
1864                 return;
1865         }
1866
1867         /* Display SR */
1868         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
1869                                 latency->display_sr);
1870         reg = I915_READ(DSPFW1);
1871         reg &= 0x7fffff;
1872         reg |= wm << 23;
1873         I915_WRITE(DSPFW1, reg);
1874         DRM_DEBUG("DSPFW1 register is %x\n", reg);
1875
1876         /* cursor SR */
1877         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
1878                                 latency->cursor_sr);
1879         reg = I915_READ(DSPFW3);
1880         reg &= ~(0x3f << 24);
1881         reg |= (wm & 0x3f) << 24;
1882         I915_WRITE(DSPFW3, reg);
1883
1884         /* Display HPLL off SR */
1885         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
1886                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
1887         reg = I915_READ(DSPFW3);
1888         reg &= 0xfffffe00;
1889         reg |= wm & 0x1ff;
1890         I915_WRITE(DSPFW3, reg);
1891
1892         /* cursor HPLL off SR */
1893         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
1894                                 latency->cursor_hpll_disable);
1895         reg = I915_READ(DSPFW3);
1896         reg &= ~(0x3f << 16);
1897         reg |= (wm & 0x3f) << 16;
1898         I915_WRITE(DSPFW3, reg);
1899         DRM_DEBUG("DSPFW3 register is %x\n", reg);
1900
1901         /* activate cxsr */
1902         reg = I915_READ(DSPFW3);
1903         reg |= IGD_SELF_REFRESH_EN;
1904         I915_WRITE(DSPFW3, reg);
1905
1906         DRM_INFO("Big FIFO is enabled\n");
1907
1908         return;
1909 }
1910
1911 const static int latency_ns = 3000; /* default for non-igd platforms */
1912
1913 static int intel_get_fifo_size(struct drm_device *dev, int plane)
1914 {
1915         struct drm_i915_private *dev_priv = dev->dev_private;
1916         uint32_t dsparb = I915_READ(DSPARB);
1917         int size;
1918
1919         if (IS_I9XX(dev)) {
1920                 if (plane == 0)
1921                         size = dsparb & 0x7f;
1922                 else
1923                         size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
1924                                 (dsparb & 0x7f);
1925         } else if (IS_I85X(dev)) {
1926                 if (plane == 0)
1927                         size = dsparb & 0x1ff;
1928                 else
1929                         size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
1930                                 (dsparb & 0x1ff);
1931                 size >>= 1; /* Convert to cachelines */
1932         } else {
1933                 size = dsparb & 0x7f;
1934                 size >>= 1; /* Convert to cachelines */
1935         }
1936
1937         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
1938                   size);
1939
1940         return size;
1941 }
1942
1943 static void i965_update_wm(struct drm_device *dev)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946
1947         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
1948
1949         /* 965 has limitations... */
1950         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
1951         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1952 }
1953
1954 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
1955                            int planeb_clock, int sr_hdisplay, int pixel_size)
1956 {
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         uint32_t fwater_lo;
1959         uint32_t fwater_hi;
1960         int total_size, cacheline_size, cwm, srwm = 1;
1961         int planea_wm, planeb_wm;
1962         struct intel_watermark_params planea_params, planeb_params;
1963         unsigned long line_time_us;
1964         int sr_clock, sr_entries = 0;
1965
1966         /* Create copies of the base settings for each pipe */
1967         if (IS_I965GM(dev) || IS_I945GM(dev))
1968                 planea_params = planeb_params = i945_wm_info;
1969         else if (IS_I9XX(dev))
1970                 planea_params = planeb_params = i915_wm_info;
1971         else
1972                 planea_params = planeb_params = i855_wm_info;
1973
1974         /* Grab a couple of global values before we overwrite them */
1975         total_size = planea_params.fifo_size;
1976         cacheline_size = planea_params.cacheline_size;
1977
1978         /* Update per-plane FIFO sizes */
1979         planea_params.fifo_size = intel_get_fifo_size(dev, 0);
1980         planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
1981
1982         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
1983                                        pixel_size, latency_ns);
1984         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
1985                                        pixel_size, latency_ns);
1986         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1987
1988         /*
1989          * Overlay gets an aggressive default since video jitter is bad.
1990          */
1991         cwm = 2;
1992
1993         /* Calc sr entries for one plane configs */
1994         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
1995                 /* self-refresh has much higher latency */
1996                 const static int sr_latency_ns = 6000;
1997
1998                 sr_clock = planea_clock ? planea_clock : planeb_clock;
1999                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2000
2001                 /* Use ns/us then divide to preserve precision */
2002                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2003                               pixel_size * sr_hdisplay) / 1000;
2004                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2005                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2006                 srwm = total_size - sr_entries;
2007                 if (srwm < 0)
2008                         srwm = 1;
2009                 if (IS_I9XX(dev))
2010                         I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
2011         }
2012
2013         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2014                   planea_wm, planeb_wm, cwm, srwm);
2015
2016         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2017         fwater_hi = (cwm & 0x1f);
2018
2019         /* Set request length to 8 cachelines per fetch */
2020         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2021         fwater_hi = fwater_hi | (1 << 8);
2022
2023         I915_WRITE(FW_BLC, fwater_lo);
2024         I915_WRITE(FW_BLC2, fwater_hi);
2025 }
2026
2027 static void i830_update_wm(struct drm_device *dev, int planea_clock,
2028                            int pixel_size)
2029 {
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
2032         int planea_wm;
2033
2034         i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
2035
2036         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2037                                        pixel_size, latency_ns);
2038         fwater_lo = fwater_lo | planea_wm;
2039
2040         I915_WRITE(FW_BLC, fwater_lo);
2041 }
2042
2043 /**
2044  * intel_update_watermarks - update FIFO watermark values based on current modes
2045  *
2046  * Calculate watermark values for the various WM regs based on current mode
2047  * and plane configuration.
2048  *
2049  * There are several cases to deal with here:
2050  *   - normal (i.e. non-self-refresh)
2051  *   - self-refresh (SR) mode
2052  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2053  *   - lines are small relative to FIFO size (buffer can hold more than 2
2054  *     lines), so need to account for TLB latency
2055  *
2056  *   The normal calculation is:
2057  *     watermark = dotclock * bytes per pixel * latency
2058  *   where latency is platform & configuration dependent (we assume pessimal
2059  *   values here).
2060  *
2061  *   The SR calculation is:
2062  *     watermark = (trunc(latency/line time)+1) * surface width *
2063  *       bytes per pixel
2064  *   where
2065  *     line time = htotal / dotclock
2066  *   and latency is assumed to be high, as above.
2067  *
2068  * The final value programmed to the register should always be rounded up,
2069  * and include an extra 2 entries to account for clock crossings.
2070  *
2071  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2072  * to set the non-SR watermarks to 8.
2073   */
2074 static void intel_update_watermarks(struct drm_device *dev)
2075 {
2076         struct drm_crtc *crtc;
2077         struct intel_crtc *intel_crtc;
2078         int sr_hdisplay = 0;
2079         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2080         int enabled = 0, pixel_size = 0;
2081
2082         if (DSPARB_HWCONTROL(dev))
2083                 return;
2084
2085         /* Get the clock config from both planes */
2086         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2087                 intel_crtc = to_intel_crtc(crtc);
2088                 if (crtc->enabled) {
2089                         enabled++;
2090                         if (intel_crtc->plane == 0) {
2091                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2092                                           intel_crtc->pipe, crtc->mode.clock);
2093                                 planea_clock = crtc->mode.clock;
2094                         } else {
2095                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2096                                           intel_crtc->pipe, crtc->mode.clock);
2097                                 planeb_clock = crtc->mode.clock;
2098                         }
2099                         sr_hdisplay = crtc->mode.hdisplay;
2100                         sr_clock = crtc->mode.clock;
2101                         if (crtc->fb)
2102                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2103                         else
2104                                 pixel_size = 4; /* by default */
2105                 }
2106         }
2107
2108         if (enabled <= 0)
2109                 return;
2110
2111         /* Single plane configs can enable self refresh */
2112         if (enabled == 1 && IS_IGD(dev))
2113                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2114         else if (IS_IGD(dev))
2115                 igd_disable_cxsr(dev);
2116
2117         if (IS_I965G(dev))
2118                 i965_update_wm(dev);
2119         else if (IS_I9XX(dev) || IS_MOBILE(dev))
2120                 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2121                                pixel_size);
2122         else
2123                 i830_update_wm(dev, planea_clock, pixel_size);
2124 }
2125
2126 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2127                                struct drm_display_mode *mode,
2128                                struct drm_display_mode *adjusted_mode,
2129                                int x, int y,
2130                                struct drm_framebuffer *old_fb)
2131 {
2132         struct drm_device *dev = crtc->dev;
2133         struct drm_i915_private *dev_priv = dev->dev_private;
2134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135         int pipe = intel_crtc->pipe;
2136         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2137         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2138         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2139         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2140         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2141         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2142         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2143         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2144         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2145         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2146         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2147         int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2148         int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2149         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2150         int refclk, num_outputs = 0;
2151         intel_clock_t clock;
2152         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2153         bool ok, is_sdvo = false, is_dvo = false;
2154         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2155         struct drm_mode_config *mode_config = &dev->mode_config;
2156         struct drm_connector *connector;
2157         const intel_limit_t *limit;
2158         int ret;
2159         struct fdi_m_n m_n = {0};
2160         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2161         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2162         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2163         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2164         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2165         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2166         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2167         int lvds_reg = LVDS;
2168         u32 temp;
2169         int sdvo_pixel_multiply;
2170         int target_clock;
2171
2172         drm_vblank_pre_modeset(dev, pipe);
2173
2174         list_for_each_entry(connector, &mode_config->connector_list, head) {
2175                 struct intel_output *intel_output = to_intel_output(connector);
2176
2177                 if (!connector->encoder || connector->encoder->crtc != crtc)
2178                         continue;
2179
2180                 switch (intel_output->type) {
2181                 case INTEL_OUTPUT_LVDS:
2182                         is_lvds = true;
2183                         break;
2184                 case INTEL_OUTPUT_SDVO:
2185                 case INTEL_OUTPUT_HDMI:
2186                         is_sdvo = true;
2187                         if (intel_output->needs_tv_clock)
2188                                 is_tv = true;
2189                         break;
2190                 case INTEL_OUTPUT_DVO:
2191                         is_dvo = true;
2192                         break;
2193                 case INTEL_OUTPUT_TVOUT:
2194                         is_tv = true;
2195                         break;
2196                 case INTEL_OUTPUT_ANALOG:
2197                         is_crt = true;
2198                         break;
2199                 case INTEL_OUTPUT_DISPLAYPORT:
2200                         is_dp = true;
2201                         break;
2202                 }
2203
2204                 num_outputs++;
2205         }
2206
2207         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2208                 refclk = dev_priv->lvds_ssc_freq * 1000;
2209                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2210         } else if (IS_I9XX(dev)) {
2211                 refclk = 96000;
2212                 if (IS_IGDNG(dev))
2213                         refclk = 120000; /* 120Mhz refclk */
2214         } else {
2215                 refclk = 48000;
2216         }
2217         
2218
2219         /*
2220          * Returns a set of divisors for the desired target clock with the given
2221          * refclk, or FALSE.  The returned values represent the clock equation:
2222          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2223          */
2224         limit = intel_limit(crtc);
2225         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2226         if (!ok) {
2227                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2228                 drm_vblank_post_modeset(dev, pipe);
2229                 return -EINVAL;
2230         }
2231
2232         /* SDVO TV has fixed PLL values depend on its clock range,
2233            this mirrors vbios setting. */
2234         if (is_sdvo && is_tv) {
2235                 if (adjusted_mode->clock >= 100000
2236                                 && adjusted_mode->clock < 140500) {
2237                         clock.p1 = 2;
2238                         clock.p2 = 10;
2239                         clock.n = 3;
2240                         clock.m1 = 16;
2241                         clock.m2 = 8;
2242                 } else if (adjusted_mode->clock >= 140500
2243                                 && adjusted_mode->clock <= 200000) {
2244                         clock.p1 = 1;
2245                         clock.p2 = 10;
2246                         clock.n = 6;
2247                         clock.m1 = 12;
2248                         clock.m2 = 8;
2249                 }
2250         }
2251
2252         /* FDI link */
2253         if (IS_IGDNG(dev)) {
2254                 /* DP over FDI requires target mode clock
2255                    instead of link clock */
2256                 if (is_dp)
2257                         target_clock = mode->clock;
2258                 else
2259                         target_clock = adjusted_mode->clock;
2260                 igdng_compute_m_n(3, 4, /* lane num 4 */
2261                                 target_clock,
2262                                 270000, /* lane clock */
2263                                 &m_n);
2264         }
2265
2266         if (IS_IGD(dev))
2267                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2268         else
2269                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2270
2271         if (!IS_IGDNG(dev))
2272                 dpll = DPLL_VGA_MODE_DIS;
2273
2274         if (IS_I9XX(dev)) {
2275                 if (is_lvds)
2276                         dpll |= DPLLB_MODE_LVDS;
2277                 else
2278                         dpll |= DPLLB_MODE_DAC_SERIAL;
2279                 if (is_sdvo) {
2280                         dpll |= DPLL_DVO_HIGH_SPEED;
2281                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2282                         if (IS_I945G(dev) || IS_I945GM(dev))
2283                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2284                         else if (IS_IGDNG(dev))
2285                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2286                 }
2287                 if (is_dp)
2288                         dpll |= DPLL_DVO_HIGH_SPEED;
2289
2290                 /* compute bitmask from p1 value */
2291                 if (IS_IGD(dev))
2292                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2293                 else {
2294                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2295                         /* also FPA1 */
2296                         if (IS_IGDNG(dev))
2297                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2298                 }
2299                 switch (clock.p2) {
2300                 case 5:
2301                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2302                         break;
2303                 case 7:
2304                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2305                         break;
2306                 case 10:
2307                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2308                         break;
2309                 case 14:
2310                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2311                         break;
2312                 }
2313                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2314                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2315         } else {
2316                 if (is_lvds) {
2317                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2318                 } else {
2319                         if (clock.p1 == 2)
2320                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2321                         else
2322                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2323                         if (clock.p2 == 4)
2324                                 dpll |= PLL_P2_DIVIDE_BY_4;
2325                 }
2326         }
2327
2328         if (is_sdvo && is_tv)
2329                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2330         else if (is_tv)
2331                 /* XXX: just matching BIOS for now */
2332                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2333                 dpll |= 3;
2334         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2335                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2336         else
2337                 dpll |= PLL_REF_INPUT_DREFCLK;
2338
2339         /* setup pipeconf */
2340         pipeconf = I915_READ(pipeconf_reg);
2341
2342         /* Set up the display plane register */
2343         dspcntr = DISPPLANE_GAMMA_ENABLE;
2344
2345         /* IGDNG's plane is forced to pipe, bit 24 is to
2346            enable color space conversion */
2347         if (!IS_IGDNG(dev)) {
2348                 if (pipe == 0)
2349                         dspcntr |= DISPPLANE_SEL_PIPE_A;
2350                 else
2351                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2352         }
2353
2354         if (pipe == 0 && !IS_I965G(dev)) {
2355                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2356                  * core speed.
2357                  *
2358                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2359                  * pipe == 0 check?
2360                  */
2361                 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2362                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
2363                 else
2364                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2365         }
2366
2367         dspcntr |= DISPLAY_PLANE_ENABLE;
2368         pipeconf |= PIPEACONF_ENABLE;
2369         dpll |= DPLL_VCO_ENABLE;
2370
2371
2372         /* Disable the panel fitter if it was on our pipe */
2373         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2374                 I915_WRITE(PFIT_CONTROL, 0);
2375
2376         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2377         drm_mode_debug_printmodeline(mode);
2378
2379         /* assign to IGDNG registers */
2380         if (IS_IGDNG(dev)) {
2381                 fp_reg = pch_fp_reg;
2382                 dpll_reg = pch_dpll_reg;
2383         }
2384
2385         if (dpll & DPLL_VCO_ENABLE) {
2386                 I915_WRITE(fp_reg, fp);
2387                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2388                 I915_READ(dpll_reg);
2389                 udelay(150);
2390         }
2391
2392         if (IS_IGDNG(dev)) {
2393                 /* enable PCH clock reference source */
2394                 /* XXX need to change the setting for other outputs */
2395                 u32 temp;
2396                 temp = I915_READ(PCH_DREF_CONTROL);
2397                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2398                 temp |= DREF_NONSPREAD_CK505_ENABLE;
2399                 temp &= ~DREF_SSC_SOURCE_MASK;
2400                 temp |= DREF_SSC_SOURCE_ENABLE;
2401                 temp &= ~DREF_SSC1_ENABLE;
2402                 /* if no eDP, disable source output to CPU */
2403                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2404                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2405                 I915_WRITE(PCH_DREF_CONTROL, temp);
2406         }
2407
2408         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2409          * This is an exception to the general rule that mode_set doesn't turn
2410          * things on.
2411          */
2412         if (is_lvds) {
2413                 u32 lvds;
2414
2415                 if (IS_IGDNG(dev))
2416                         lvds_reg = PCH_LVDS;
2417
2418                 lvds = I915_READ(lvds_reg);
2419                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2420                 /* Set the B0-B3 data pairs corresponding to whether we're going to
2421                  * set the DPLLs for dual-channel mode or not.
2422                  */
2423                 if (clock.p2 == 7)
2424                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2425                 else
2426                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2427
2428                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2429                  * appropriately here, but we need to look more thoroughly into how
2430                  * panels behave in the two modes.
2431                  */
2432
2433                 I915_WRITE(lvds_reg, lvds);
2434                 I915_READ(lvds_reg);
2435         }
2436         if (is_dp)
2437                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2438
2439         I915_WRITE(fp_reg, fp);
2440         I915_WRITE(dpll_reg, dpll);
2441         I915_READ(dpll_reg);
2442         /* Wait for the clocks to stabilize. */
2443         udelay(150);
2444
2445         if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2446                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2447                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2448                            ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2449         } else {
2450                 /* write it again -- the BIOS does, after all */
2451                 I915_WRITE(dpll_reg, dpll);
2452         }
2453         I915_READ(dpll_reg);
2454         /* Wait for the clocks to stabilize. */
2455         udelay(150);
2456
2457         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2458                    ((adjusted_mode->crtc_htotal - 1) << 16));
2459         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2460                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
2461         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2462                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
2463         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2464                    ((adjusted_mode->crtc_vtotal - 1) << 16));
2465         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2466                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
2467         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2468                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
2469         /* pipesrc and dspsize control the size that is scaled from, which should
2470          * always be the user's requested size.
2471          */
2472         if (!IS_IGDNG(dev)) {
2473                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2474                                 (mode->hdisplay - 1));
2475                 I915_WRITE(dsppos_reg, 0);
2476         }
2477         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2478
2479         if (IS_IGDNG(dev)) {
2480                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2481                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2482                 I915_WRITE(link_m1_reg, m_n.link_m);
2483                 I915_WRITE(link_n1_reg, m_n.link_n);
2484
2485                  /* enable FDI RX PLL too */
2486                 temp = I915_READ(fdi_rx_reg);
2487                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2488                 udelay(200);
2489         }
2490
2491         I915_WRITE(pipeconf_reg, pipeconf);
2492         I915_READ(pipeconf_reg);
2493
2494         intel_wait_for_vblank(dev);
2495
2496         I915_WRITE(dspcntr_reg, dspcntr);
2497
2498         /* Flush the plane changes */
2499         ret = intel_pipe_set_base(crtc, x, y, old_fb);
2500
2501         intel_update_watermarks(dev);
2502
2503         drm_vblank_post_modeset(dev, pipe);
2504
2505         return ret;
2506 }
2507
2508 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2509 void intel_crtc_load_lut(struct drm_crtc *crtc)
2510 {
2511         struct drm_device *dev = crtc->dev;
2512         struct drm_i915_private *dev_priv = dev->dev_private;
2513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2514         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2515         int i;
2516
2517         /* The clocks have to be on to load the palette. */
2518         if (!crtc->enabled)
2519                 return;
2520
2521         /* use legacy palette for IGDNG */
2522         if (IS_IGDNG(dev))
2523                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2524                                                    LGC_PALETTE_B;
2525
2526         for (i = 0; i < 256; i++) {
2527                 I915_WRITE(palreg + 4 * i,
2528                            (intel_crtc->lut_r[i] << 16) |
2529                            (intel_crtc->lut_g[i] << 8) |
2530                            intel_crtc->lut_b[i]);
2531         }
2532 }
2533
2534 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2535                                  struct drm_file *file_priv,
2536                                  uint32_t handle,
2537                                  uint32_t width, uint32_t height)
2538 {
2539         struct drm_device *dev = crtc->dev;
2540         struct drm_i915_private *dev_priv = dev->dev_private;
2541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2542         struct drm_gem_object *bo;
2543         struct drm_i915_gem_object *obj_priv;
2544         int pipe = intel_crtc->pipe;
2545         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2546         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2547         uint32_t temp = I915_READ(control);
2548         size_t addr;
2549         int ret;
2550
2551         DRM_DEBUG("\n");
2552
2553         /* if we want to turn off the cursor ignore width and height */
2554         if (!handle) {
2555                 DRM_DEBUG("cursor off\n");
2556                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2557                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2558                         temp |= CURSOR_MODE_DISABLE;
2559                 } else {
2560                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2561                 }
2562                 addr = 0;
2563                 bo = NULL;
2564                 mutex_lock(&dev->struct_mutex);
2565                 goto finish;
2566         }
2567
2568         /* Currently we only support 64x64 cursors */
2569         if (width != 64 || height != 64) {
2570                 DRM_ERROR("we currently only support 64x64 cursors\n");
2571                 return -EINVAL;
2572         }
2573
2574         bo = drm_gem_object_lookup(dev, file_priv, handle);
2575         if (!bo)
2576                 return -ENOENT;
2577
2578         obj_priv = bo->driver_private;
2579
2580         if (bo->size < width * height * 4) {
2581                 DRM_ERROR("buffer is to small\n");
2582                 ret = -ENOMEM;
2583                 goto fail;
2584         }
2585
2586         /* we only need to pin inside GTT if cursor is non-phy */
2587         mutex_lock(&dev->struct_mutex);
2588         if (!dev_priv->cursor_needs_physical) {
2589                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2590                 if (ret) {
2591                         DRM_ERROR("failed to pin cursor bo\n");
2592                         goto fail_locked;
2593                 }
2594                 addr = obj_priv->gtt_offset;
2595         } else {
2596                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2597                 if (ret) {
2598                         DRM_ERROR("failed to attach phys object\n");
2599                         goto fail_locked;
2600                 }
2601                 addr = obj_priv->phys_obj->handle->busaddr;
2602         }
2603
2604         if (!IS_I9XX(dev))
2605                 I915_WRITE(CURSIZE, (height << 12) | width);
2606
2607         /* Hooray for CUR*CNTR differences */
2608         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2609                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2610                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2611                 temp |= (pipe << 28); /* Connect to correct pipe */
2612         } else {
2613                 temp &= ~(CURSOR_FORMAT_MASK);
2614                 temp |= CURSOR_ENABLE;
2615                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2616         }
2617
2618  finish:
2619         I915_WRITE(control, temp);
2620         I915_WRITE(base, addr);
2621
2622         if (intel_crtc->cursor_bo) {
2623                 if (dev_priv->cursor_needs_physical) {
2624                         if (intel_crtc->cursor_bo != bo)
2625                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2626                 } else
2627                         i915_gem_object_unpin(intel_crtc->cursor_bo);
2628                 drm_gem_object_unreference(intel_crtc->cursor_bo);
2629         }
2630         mutex_unlock(&dev->struct_mutex);
2631
2632         intel_crtc->cursor_addr = addr;
2633         intel_crtc->cursor_bo = bo;
2634
2635         return 0;
2636 fail:
2637         mutex_lock(&dev->struct_mutex);
2638 fail_locked:
2639         drm_gem_object_unreference(bo);
2640         mutex_unlock(&dev->struct_mutex);
2641         return ret;
2642 }
2643
2644 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2645 {
2646         struct drm_device *dev = crtc->dev;
2647         struct drm_i915_private *dev_priv = dev->dev_private;
2648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2649         int pipe = intel_crtc->pipe;
2650         uint32_t temp = 0;
2651         uint32_t adder;
2652
2653         if (x < 0) {
2654                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2655                 x = -x;
2656         }
2657         if (y < 0) {
2658                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2659                 y = -y;
2660         }
2661
2662         temp |= x << CURSOR_X_SHIFT;
2663         temp |= y << CURSOR_Y_SHIFT;
2664
2665         adder = intel_crtc->cursor_addr;
2666         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2667         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2668
2669         return 0;
2670 }
2671
2672 /** Sets the color ramps on behalf of RandR */
2673 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2674                                  u16 blue, int regno)
2675 {
2676         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2677
2678         intel_crtc->lut_r[regno] = red >> 8;
2679         intel_crtc->lut_g[regno] = green >> 8;
2680         intel_crtc->lut_b[regno] = blue >> 8;
2681 }
2682
2683 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2684                                  u16 *blue, uint32_t size)
2685 {
2686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2687         int i;
2688
2689         if (size != 256)
2690                 return;
2691
2692         for (i = 0; i < 256; i++) {
2693                 intel_crtc->lut_r[i] = red[i] >> 8;
2694                 intel_crtc->lut_g[i] = green[i] >> 8;
2695                 intel_crtc->lut_b[i] = blue[i] >> 8;
2696         }
2697
2698         intel_crtc_load_lut(crtc);
2699 }
2700
2701 /**
2702  * Get a pipe with a simple mode set on it for doing load-based monitor
2703  * detection.
2704  *
2705  * It will be up to the load-detect code to adjust the pipe as appropriate for
2706  * its requirements.  The pipe will be connected to no other outputs.
2707  *
2708  * Currently this code will only succeed if there is a pipe with no outputs
2709  * configured for it.  In the future, it could choose to temporarily disable
2710  * some outputs to free up a pipe for its use.
2711  *
2712  * \return crtc, or NULL if no pipes are available.
2713  */
2714
2715 /* VESA 640x480x72Hz mode to set on the pipe */
2716 static struct drm_display_mode load_detect_mode = {
2717         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2718                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2719 };
2720
2721 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2722                                             struct drm_display_mode *mode,
2723                                             int *dpms_mode)
2724 {
2725         struct intel_crtc *intel_crtc;
2726         struct drm_crtc *possible_crtc;
2727         struct drm_crtc *supported_crtc =NULL;
2728         struct drm_encoder *encoder = &intel_output->enc;
2729         struct drm_crtc *crtc = NULL;
2730         struct drm_device *dev = encoder->dev;
2731         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2732         struct drm_crtc_helper_funcs *crtc_funcs;
2733         int i = -1;
2734
2735         /*
2736          * Algorithm gets a little messy:
2737          *   - if the connector already has an assigned crtc, use it (but make
2738          *     sure it's on first)
2739          *   - try to find the first unused crtc that can drive this connector,
2740          *     and use that if we find one
2741          *   - if there are no unused crtcs available, try to use the first
2742          *     one we found that supports the connector
2743          */
2744
2745         /* See if we already have a CRTC for this connector */
2746         if (encoder->crtc) {
2747                 crtc = encoder->crtc;
2748                 /* Make sure the crtc and connector are running */
2749                 intel_crtc = to_intel_crtc(crtc);
2750                 *dpms_mode = intel_crtc->dpms_mode;
2751                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2752                         crtc_funcs = crtc->helper_private;
2753                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2754                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2755                 }
2756                 return crtc;
2757         }
2758
2759         /* Find an unused one (if possible) */
2760         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2761                 i++;
2762                 if (!(encoder->possible_crtcs & (1 << i)))
2763                         continue;
2764                 if (!possible_crtc->enabled) {
2765                         crtc = possible_crtc;
2766                         break;
2767                 }
2768                 if (!supported_crtc)
2769                         supported_crtc = possible_crtc;
2770         }
2771
2772         /*
2773          * If we didn't find an unused CRTC, don't use any.
2774          */
2775         if (!crtc) {
2776                 return NULL;
2777         }
2778
2779         encoder->crtc = crtc;
2780         intel_output->base.encoder = encoder;
2781         intel_output->load_detect_temp = true;
2782
2783         intel_crtc = to_intel_crtc(crtc);
2784         *dpms_mode = intel_crtc->dpms_mode;
2785
2786         if (!crtc->enabled) {
2787                 if (!mode)
2788                         mode = &load_detect_mode;
2789                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
2790         } else {
2791                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2792                         crtc_funcs = crtc->helper_private;
2793                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2794                 }
2795
2796                 /* Add this connector to the crtc */
2797                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2798                 encoder_funcs->commit(encoder);
2799         }
2800         /* let the connector get through one full cycle before testing */
2801         intel_wait_for_vblank(dev);
2802
2803         return crtc;
2804 }
2805
2806 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2807 {
2808         struct drm_encoder *encoder = &intel_output->enc;
2809         struct drm_device *dev = encoder->dev;
2810         struct drm_crtc *crtc = encoder->crtc;
2811         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2812         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2813
2814         if (intel_output->load_detect_temp) {
2815                 encoder->crtc = NULL;
2816                 intel_output->base.encoder = NULL;
2817                 intel_output->load_detect_temp = false;
2818                 crtc->enabled = drm_helper_crtc_in_use(crtc);
2819                 drm_helper_disable_unused_functions(dev);
2820         }
2821
2822         /* Switch crtc and output back off if necessary */
2823         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2824                 if (encoder->crtc == crtc)
2825                         encoder_funcs->dpms(encoder, dpms_mode);
2826                 crtc_funcs->dpms(crtc, dpms_mode);
2827         }
2828 }
2829
2830 /* Returns the clock of the currently programmed mode of the given pipe. */
2831 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2832 {
2833         struct drm_i915_private *dev_priv = dev->dev_private;
2834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2835         int pipe = intel_crtc->pipe;
2836         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2837         u32 fp;
2838         intel_clock_t clock;
2839
2840         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2841                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2842         else
2843                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2844
2845         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2846         if (IS_IGD(dev)) {
2847                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2848                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2849         } else {
2850                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2851                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2852         }
2853
2854         if (IS_I9XX(dev)) {
2855                 if (IS_IGD(dev))
2856                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2857                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2858                 else
2859                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
2860                                DPLL_FPA01_P1_POST_DIV_SHIFT);
2861
2862                 switch (dpll & DPLL_MODE_MASK) {
2863                 case DPLLB_MODE_DAC_SERIAL:
2864                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2865                                 5 : 10;
2866                         break;
2867                 case DPLLB_MODE_LVDS:
2868                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2869                                 7 : 14;
2870                         break;
2871                 default:
2872                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2873                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
2874                         return 0;
2875                 }
2876
2877                 /* XXX: Handle the 100Mhz refclk */
2878                 intel_clock(dev, 96000, &clock);
2879         } else {
2880                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2881
2882                 if (is_lvds) {
2883                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2884                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
2885                         clock.p2 = 14;
2886
2887                         if ((dpll & PLL_REF_INPUT_MASK) ==
2888                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2889                                 /* XXX: might not be 66MHz */
2890                                 intel_clock(dev, 66000, &clock);
2891                         } else
2892                                 intel_clock(dev, 48000, &clock);
2893                 } else {
2894                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
2895                                 clock.p1 = 2;
2896                         else {
2897                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2898                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2899                         }
2900                         if (dpll & PLL_P2_DIVIDE_BY_4)
2901                                 clock.p2 = 4;
2902                         else
2903                                 clock.p2 = 2;
2904
2905                         intel_clock(dev, 48000, &clock);
2906                 }
2907         }
2908
2909         /* XXX: It would be nice to validate the clocks, but we can't reuse
2910          * i830PllIsValid() because it relies on the xf86_config connector
2911          * configuration being accurate, which it isn't necessarily.
2912          */
2913
2914         return clock.dot;
2915 }
2916
2917 /** Returns the currently programmed mode of the given pipe. */
2918 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2919                                              struct drm_crtc *crtc)
2920 {
2921         struct drm_i915_private *dev_priv = dev->dev_private;
2922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2923         int pipe = intel_crtc->pipe;
2924         struct drm_display_mode *mode;
2925         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2926         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2927         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2928         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2929
2930         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2931         if (!mode)
2932                 return NULL;
2933
2934         mode->clock = intel_crtc_clock_get(dev, crtc);
2935         mode->hdisplay = (htot & 0xffff) + 1;
2936         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2937         mode->hsync_start = (hsync & 0xffff) + 1;
2938         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2939         mode->vdisplay = (vtot & 0xffff) + 1;
2940         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2941         mode->vsync_start = (vsync & 0xffff) + 1;
2942         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2943
2944         drm_mode_set_name(mode);
2945         drm_mode_set_crtcinfo(mode, 0);
2946
2947         return mode;
2948 }
2949
2950 static void intel_crtc_destroy(struct drm_crtc *crtc)
2951 {
2952         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2953
2954         if (intel_crtc->mode_set.mode)
2955                 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
2956         drm_crtc_cleanup(crtc);
2957         kfree(intel_crtc);
2958 }
2959
2960 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2961         .dpms = intel_crtc_dpms,
2962         .mode_fixup = intel_crtc_mode_fixup,
2963         .mode_set = intel_crtc_mode_set,
2964         .mode_set_base = intel_pipe_set_base,
2965         .prepare = intel_crtc_prepare,
2966         .commit = intel_crtc_commit,
2967 };
2968
2969 static const struct drm_crtc_funcs intel_crtc_funcs = {
2970         .cursor_set = intel_crtc_cursor_set,
2971         .cursor_move = intel_crtc_cursor_move,
2972         .gamma_set = intel_crtc_gamma_set,
2973         .set_config = drm_crtc_helper_set_config,
2974         .destroy = intel_crtc_destroy,
2975 };
2976
2977
2978 static void intel_crtc_init(struct drm_device *dev, int pipe)
2979 {
2980         struct intel_crtc *intel_crtc;
2981         int i;
2982
2983         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2984         if (intel_crtc == NULL)
2985                 return;
2986
2987         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2988
2989         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2990         intel_crtc->pipe = pipe;
2991         intel_crtc->plane = pipe;
2992         for (i = 0; i < 256; i++) {
2993                 intel_crtc->lut_r[i] = i;
2994                 intel_crtc->lut_g[i] = i;
2995                 intel_crtc->lut_b[i] = i;
2996         }
2997
2998         intel_crtc->cursor_addr = 0;
2999         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3000         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3001
3002         intel_crtc->mode_set.crtc = &intel_crtc->base;
3003         intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
3004         intel_crtc->mode_set.num_connectors = 0;
3005
3006         if (i915_fbpercrtc) {
3007
3008
3009
3010         }
3011 }
3012
3013 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3014                                 struct drm_file *file_priv)
3015 {
3016         drm_i915_private_t *dev_priv = dev->dev_private;
3017         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3018         struct drm_crtc *crtc = NULL;
3019         int pipe = -1;
3020
3021         if (!dev_priv) {
3022                 DRM_ERROR("called with no initialization\n");
3023                 return -EINVAL;
3024         }
3025
3026         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3027                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3028                 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
3029                         pipe = intel_crtc->pipe;
3030                         break;
3031                 }
3032         }
3033
3034         if (pipe == -1) {
3035                 DRM_ERROR("no such CRTC id\n");
3036                 return -EINVAL;
3037         }
3038
3039         pipe_from_crtc_id->pipe = pipe;
3040
3041        return 0;
3042 }
3043
3044 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3045 {
3046         struct drm_crtc *crtc = NULL;
3047
3048         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3049                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3050                 if (intel_crtc->pipe == pipe)
3051                         break;
3052         }
3053         return crtc;
3054 }
3055
3056 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3057 {
3058         int index_mask = 0;
3059         struct drm_connector *connector;
3060         int entry = 0;
3061
3062         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3063                 struct intel_output *intel_output = to_intel_output(connector);
3064                 if (type_mask & (1 << intel_output->type))
3065                         index_mask |= (1 << entry);
3066                 entry++;
3067         }
3068         return index_mask;
3069 }
3070
3071
3072 static void intel_setup_outputs(struct drm_device *dev)
3073 {
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct drm_connector *connector;
3076
3077         intel_crt_init(dev);
3078
3079         /* Set up integrated LVDS */
3080         if (IS_MOBILE(dev) && !IS_I830(dev))
3081                 intel_lvds_init(dev);
3082
3083         if (IS_IGDNG(dev)) {
3084                 int found;
3085
3086                 if (I915_READ(HDMIB) & PORT_DETECTED) {
3087                         /* check SDVOB */
3088                         /* found = intel_sdvo_init(dev, HDMIB); */
3089                         found = 0;
3090                         if (!found)
3091                                 intel_hdmi_init(dev, HDMIB);
3092                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3093                                 intel_dp_init(dev, PCH_DP_B);
3094                 }
3095
3096                 if (I915_READ(HDMIC) & PORT_DETECTED)
3097                         intel_hdmi_init(dev, HDMIC);
3098
3099                 if (I915_READ(HDMID) & PORT_DETECTED)
3100                         intel_hdmi_init(dev, HDMID);
3101
3102                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3103                         intel_dp_init(dev, PCH_DP_C);
3104
3105                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3106                         intel_dp_init(dev, PCH_DP_D);
3107
3108         } else if (IS_I9XX(dev)) {
3109                 int found;
3110                 u32 reg;
3111
3112                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3113                         found = intel_sdvo_init(dev, SDVOB);
3114                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3115                                 intel_hdmi_init(dev, SDVOB);
3116                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3117                                 intel_dp_init(dev, DP_B);
3118                 }
3119
3120                 /* Before G4X SDVOC doesn't have its own detect register */
3121                 if (IS_G4X(dev))
3122                         reg = SDVOC;
3123                 else
3124                         reg = SDVOB;
3125
3126                 if (I915_READ(reg) & SDVO_DETECTED) {
3127                         found = intel_sdvo_init(dev, SDVOC);
3128                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3129                                 intel_hdmi_init(dev, SDVOC);
3130                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3131                                 intel_dp_init(dev, DP_C);
3132                 }
3133                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3134                         intel_dp_init(dev, DP_D);
3135         } else
3136                 intel_dvo_init(dev);
3137
3138         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
3139                 intel_tv_init(dev);
3140
3141         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3142                 struct intel_output *intel_output = to_intel_output(connector);
3143                 struct drm_encoder *encoder = &intel_output->enc;
3144                 int crtc_mask = 0, clone_mask = 0;
3145
3146                 /* valid crtcs */
3147                 switch(intel_output->type) {
3148                 case INTEL_OUTPUT_HDMI:
3149                         crtc_mask = ((1 << 0)|
3150                                      (1 << 1));
3151                         clone_mask = ((1 << INTEL_OUTPUT_HDMI));
3152                         break;
3153                 case INTEL_OUTPUT_DVO:
3154                 case INTEL_OUTPUT_SDVO:
3155                         crtc_mask = ((1 << 0)|
3156                                      (1 << 1));
3157                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3158                                       (1 << INTEL_OUTPUT_DVO) |
3159                                       (1 << INTEL_OUTPUT_SDVO));
3160                         break;
3161                 case INTEL_OUTPUT_ANALOG:
3162                         crtc_mask = ((1 << 0)|
3163                                      (1 << 1));
3164                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3165                                       (1 << INTEL_OUTPUT_DVO) |
3166                                       (1 << INTEL_OUTPUT_SDVO));
3167                         break;
3168                 case INTEL_OUTPUT_LVDS:
3169                         crtc_mask = (1 << 1);
3170                         clone_mask = (1 << INTEL_OUTPUT_LVDS);
3171                         break;
3172                 case INTEL_OUTPUT_TVOUT:
3173                         crtc_mask = ((1 << 0) |
3174                                      (1 << 1));
3175                         clone_mask = (1 << INTEL_OUTPUT_TVOUT);
3176                         break;
3177                 case INTEL_OUTPUT_DISPLAYPORT:
3178                         crtc_mask = ((1 << 0) |
3179                                      (1 << 1));
3180                         clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
3181                         break;
3182                 }
3183                 encoder->possible_crtcs = crtc_mask;
3184                 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
3185         }
3186 }
3187
3188 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3189 {
3190         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3191         struct drm_device *dev = fb->dev;
3192
3193         if (fb->fbdev)
3194                 intelfb_remove(dev, fb);
3195
3196         drm_framebuffer_cleanup(fb);
3197         mutex_lock(&dev->struct_mutex);
3198         drm_gem_object_unreference(intel_fb->obj);
3199         mutex_unlock(&dev->struct_mutex);
3200
3201         kfree(intel_fb);
3202 }
3203
3204 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3205                                                 struct drm_file *file_priv,
3206                                                 unsigned int *handle)
3207 {
3208         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3209         struct drm_gem_object *object = intel_fb->obj;
3210
3211         return drm_gem_handle_create(file_priv, object, handle);
3212 }
3213
3214 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3215         .destroy = intel_user_framebuffer_destroy,
3216         .create_handle = intel_user_framebuffer_create_handle,
3217 };
3218
3219 int intel_framebuffer_create(struct drm_device *dev,
3220                              struct drm_mode_fb_cmd *mode_cmd,
3221                              struct drm_framebuffer **fb,
3222                              struct drm_gem_object *obj)
3223 {
3224         struct intel_framebuffer *intel_fb;
3225         int ret;
3226
3227         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3228         if (!intel_fb)
3229                 return -ENOMEM;
3230
3231         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3232         if (ret) {
3233                 DRM_ERROR("framebuffer init failed %d\n", ret);
3234                 return ret;
3235         }
3236
3237         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3238
3239         intel_fb->obj = obj;
3240
3241         *fb = &intel_fb->base;
3242
3243         return 0;
3244 }
3245
3246
3247 static struct drm_framebuffer *
3248 intel_user_framebuffer_create(struct drm_device *dev,
3249                               struct drm_file *filp,
3250                               struct drm_mode_fb_cmd *mode_cmd)
3251 {
3252         struct drm_gem_object *obj;
3253         struct drm_framebuffer *fb;
3254         int ret;
3255
3256         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3257         if (!obj)
3258                 return NULL;
3259
3260         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3261         if (ret) {
3262                 mutex_lock(&dev->struct_mutex);
3263                 drm_gem_object_unreference(obj);
3264                 mutex_unlock(&dev->struct_mutex);
3265                 return NULL;
3266         }
3267
3268         return fb;
3269 }
3270
3271 static const struct drm_mode_config_funcs intel_mode_funcs = {
3272         .fb_create = intel_user_framebuffer_create,
3273         .fb_changed = intelfb_probe,
3274 };
3275
3276 void intel_modeset_init(struct drm_device *dev)
3277 {
3278         int num_pipe;
3279         int i;
3280
3281         drm_mode_config_init(dev);
3282
3283         dev->mode_config.min_width = 0;
3284         dev->mode_config.min_height = 0;
3285
3286         dev->mode_config.funcs = (void *)&intel_mode_funcs;
3287
3288         if (IS_I965G(dev)) {
3289                 dev->mode_config.max_width = 8192;
3290                 dev->mode_config.max_height = 8192;
3291         } else if (IS_I9XX(dev)) {
3292                 dev->mode_config.max_width = 4096;
3293                 dev->mode_config.max_height = 4096;
3294         } else {
3295                 dev->mode_config.max_width = 2048;
3296                 dev->mode_config.max_height = 2048;
3297         }
3298
3299         /* set memory base */
3300         if (IS_I9XX(dev))
3301                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3302         else
3303                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3304
3305         if (IS_MOBILE(dev) || IS_I9XX(dev))
3306                 num_pipe = 2;
3307         else
3308                 num_pipe = 1;
3309         DRM_DEBUG("%d display pipe%s available.\n",
3310                   num_pipe, num_pipe > 1 ? "s" : "");
3311
3312         for (i = 0; i < num_pipe; i++) {
3313                 intel_crtc_init(dev, i);
3314         }
3315
3316         intel_setup_outputs(dev);
3317 }
3318
3319 void intel_modeset_cleanup(struct drm_device *dev)
3320 {
3321         drm_mode_config_cleanup(dev);
3322 }
3323
3324
3325 /* current intel driver doesn't take advantage of encoders
3326    always give back the encoder for the connector
3327 */
3328 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3329 {
3330         struct intel_output *intel_output = to_intel_output(connector);
3331
3332         return &intel_output->enc;
3333 }