drm/i915: correct self-refresh calculation in "everything off" case
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include <linux/kernel.h>
29 #include "drmP.h"
30 #include "intel_drv.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "intel_dp.h"
34
35 #include "drm_crtc_helper.h"
36
37 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
38 static void intel_update_watermarks(struct drm_device *dev);
39
40 typedef struct {
41     /* given values */
42     int n;
43     int m1, m2;
44     int p1, p2;
45     /* derived values */
46     int dot;
47     int vco;
48     int m;
49     int p;
50 } intel_clock_t;
51
52 typedef struct {
53     int min, max;
54 } intel_range_t;
55
56 typedef struct {
57     int dot_limit;
58     int p2_slow, p2_fast;
59 } intel_p2_t;
60
61 #define INTEL_P2_NUM                  2
62 typedef struct intel_limit intel_limit_t;
63 struct intel_limit {
64     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
65     intel_p2_t      p2;
66     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
67                       int, int, intel_clock_t *);
68 };
69
70 #define I8XX_DOT_MIN              25000
71 #define I8XX_DOT_MAX             350000
72 #define I8XX_VCO_MIN             930000
73 #define I8XX_VCO_MAX            1400000
74 #define I8XX_N_MIN                    3
75 #define I8XX_N_MAX                   16
76 #define I8XX_M_MIN                   96
77 #define I8XX_M_MAX                  140
78 #define I8XX_M1_MIN                  18
79 #define I8XX_M1_MAX                  26
80 #define I8XX_M2_MIN                   6
81 #define I8XX_M2_MAX                  16
82 #define I8XX_P_MIN                    4
83 #define I8XX_P_MAX                  128
84 #define I8XX_P1_MIN                   2
85 #define I8XX_P1_MAX                  33
86 #define I8XX_P1_LVDS_MIN              1
87 #define I8XX_P1_LVDS_MAX              6
88 #define I8XX_P2_SLOW                  4
89 #define I8XX_P2_FAST                  2
90 #define I8XX_P2_LVDS_SLOW             14
91 #define I8XX_P2_LVDS_FAST             14 /* No fast option */
92 #define I8XX_P2_SLOW_LIMIT       165000
93
94 #define I9XX_DOT_MIN              20000
95 #define I9XX_DOT_MAX             400000
96 #define I9XX_VCO_MIN            1400000
97 #define I9XX_VCO_MAX            2800000
98 #define IGD_VCO_MIN             1700000
99 #define IGD_VCO_MAX             3500000
100 #define I9XX_N_MIN                    1
101 #define I9XX_N_MAX                    6
102 /* IGD's Ncounter is a ring counter */
103 #define IGD_N_MIN                     3
104 #define IGD_N_MAX                     6
105 #define I9XX_M_MIN                   70
106 #define I9XX_M_MAX                  120
107 #define IGD_M_MIN                     2
108 #define IGD_M_MAX                   256
109 #define I9XX_M1_MIN                  10
110 #define I9XX_M1_MAX                  22
111 #define I9XX_M2_MIN                   5
112 #define I9XX_M2_MAX                   9
113 /* IGD M1 is reserved, and must be 0 */
114 #define IGD_M1_MIN                    0
115 #define IGD_M1_MAX                    0
116 #define IGD_M2_MIN                    0
117 #define IGD_M2_MAX                    254
118 #define I9XX_P_SDVO_DAC_MIN           5
119 #define I9XX_P_SDVO_DAC_MAX          80
120 #define I9XX_P_LVDS_MIN               7
121 #define I9XX_P_LVDS_MAX              98
122 #define IGD_P_LVDS_MIN                7
123 #define IGD_P_LVDS_MAX               112
124 #define I9XX_P1_MIN                   1
125 #define I9XX_P1_MAX                   8
126 #define I9XX_P2_SDVO_DAC_SLOW                10
127 #define I9XX_P2_SDVO_DAC_FAST                 5
128 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
129 #define I9XX_P2_LVDS_SLOW                    14
130 #define I9XX_P2_LVDS_FAST                     7
131 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
132
133 /*The parameter is for SDVO on G4x platform*/
134 #define G4X_DOT_SDVO_MIN           25000
135 #define G4X_DOT_SDVO_MAX           270000
136 #define G4X_VCO_MIN                1750000
137 #define G4X_VCO_MAX                3500000
138 #define G4X_N_SDVO_MIN             1
139 #define G4X_N_SDVO_MAX             4
140 #define G4X_M_SDVO_MIN             104
141 #define G4X_M_SDVO_MAX             138
142 #define G4X_M1_SDVO_MIN            17
143 #define G4X_M1_SDVO_MAX            23
144 #define G4X_M2_SDVO_MIN            5
145 #define G4X_M2_SDVO_MAX            11
146 #define G4X_P_SDVO_MIN             10
147 #define G4X_P_SDVO_MAX             30
148 #define G4X_P1_SDVO_MIN            1
149 #define G4X_P1_SDVO_MAX            3
150 #define G4X_P2_SDVO_SLOW           10
151 #define G4X_P2_SDVO_FAST           10
152 #define G4X_P2_SDVO_LIMIT          270000
153
154 /*The parameter is for HDMI_DAC on G4x platform*/
155 #define G4X_DOT_HDMI_DAC_MIN           22000
156 #define G4X_DOT_HDMI_DAC_MAX           400000
157 #define G4X_N_HDMI_DAC_MIN             1
158 #define G4X_N_HDMI_DAC_MAX             4
159 #define G4X_M_HDMI_DAC_MIN             104
160 #define G4X_M_HDMI_DAC_MAX             138
161 #define G4X_M1_HDMI_DAC_MIN            16
162 #define G4X_M1_HDMI_DAC_MAX            23
163 #define G4X_M2_HDMI_DAC_MIN            5
164 #define G4X_M2_HDMI_DAC_MAX            11
165 #define G4X_P_HDMI_DAC_MIN             5
166 #define G4X_P_HDMI_DAC_MAX             80
167 #define G4X_P1_HDMI_DAC_MIN            1
168 #define G4X_P1_HDMI_DAC_MAX            8
169 #define G4X_P2_HDMI_DAC_SLOW           10
170 #define G4X_P2_HDMI_DAC_FAST           5
171 #define G4X_P2_HDMI_DAC_LIMIT          165000
172
173 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
174 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
175 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
176 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
177 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
178 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
179 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
180 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
181 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
182 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
183 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
184 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
185 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
186 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
187 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
188 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
189 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
190 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
191
192 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
193 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
194 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
195 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
196 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
197 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
198 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
199 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
200 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
201 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
202 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
203 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
204 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
205 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
206 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
207 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
208 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
209 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
210
211 /*The parameter is for DISPLAY PORT on G4x platform*/
212 #define G4X_DOT_DISPLAY_PORT_MIN           161670
213 #define G4X_DOT_DISPLAY_PORT_MAX           227000
214 #define G4X_N_DISPLAY_PORT_MIN             1
215 #define G4X_N_DISPLAY_PORT_MAX             2
216 #define G4X_M_DISPLAY_PORT_MIN             97
217 #define G4X_M_DISPLAY_PORT_MAX             108
218 #define G4X_M1_DISPLAY_PORT_MIN            0x10
219 #define G4X_M1_DISPLAY_PORT_MAX            0x12
220 #define G4X_M2_DISPLAY_PORT_MIN            0x05
221 #define G4X_M2_DISPLAY_PORT_MAX            0x06
222 #define G4X_P_DISPLAY_PORT_MIN             10
223 #define G4X_P_DISPLAY_PORT_MAX             20
224 #define G4X_P1_DISPLAY_PORT_MIN            1
225 #define G4X_P1_DISPLAY_PORT_MAX            2
226 #define G4X_P2_DISPLAY_PORT_SLOW           10
227 #define G4X_P2_DISPLAY_PORT_FAST           10
228 #define G4X_P2_DISPLAY_PORT_LIMIT          0
229
230 /* IGDNG */
231 /* as we calculate clock using (register_value + 2) for
232    N/M1/M2, so here the range value for them is (actual_value-2).
233  */
234 #define IGDNG_DOT_MIN         25000
235 #define IGDNG_DOT_MAX         350000
236 #define IGDNG_VCO_MIN         1760000
237 #define IGDNG_VCO_MAX         3510000
238 #define IGDNG_N_MIN           1
239 #define IGDNG_N_MAX           5
240 #define IGDNG_M_MIN           79
241 #define IGDNG_M_MAX           118
242 #define IGDNG_M1_MIN          12
243 #define IGDNG_M1_MAX          23
244 #define IGDNG_M2_MIN          5
245 #define IGDNG_M2_MAX          9
246 #define IGDNG_P_SDVO_DAC_MIN  5
247 #define IGDNG_P_SDVO_DAC_MAX  80
248 #define IGDNG_P_LVDS_MIN      28
249 #define IGDNG_P_LVDS_MAX      112
250 #define IGDNG_P1_MIN          1
251 #define IGDNG_P1_MAX          8
252 #define IGDNG_P2_SDVO_DAC_SLOW 10
253 #define IGDNG_P2_SDVO_DAC_FAST 5
254 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
255 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
256 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
257
258 static bool
259 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
260                     int target, int refclk, intel_clock_t *best_clock);
261 static bool
262 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
263                         int target, int refclk, intel_clock_t *best_clock);
264 static bool
265 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
266                         int target, int refclk, intel_clock_t *best_clock);
267
268 static bool
269 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
270                       int target, int refclk, intel_clock_t *best_clock);
271
272 static const intel_limit_t intel_limits_i8xx_dvo = {
273         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
274         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
275         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
276         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
277         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
278         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
279         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
280         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
281         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
282                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
283         .find_pll = intel_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_i8xx_lvds = {
287         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
288         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
289         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
290         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
291         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
292         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
293         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
294         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
295         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
296                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
297         .find_pll = intel_find_best_PLL,
298 };
299         
300 static const intel_limit_t intel_limits_i9xx_sdvo = {
301         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
302         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
303         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
304         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
305         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
306         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
307         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
308         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
309         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
310                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
311         .find_pll = intel_find_best_PLL,
312 };
313
314 static const intel_limit_t intel_limits_i9xx_lvds = {
315         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
316         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
317         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
318         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
319         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
320         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
321         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
322         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
323         /* The single-channel range is 25-112Mhz, and dual-channel
324          * is 80-224Mhz.  Prefer single channel as much as possible.
325          */
326         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
327                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
328         .find_pll = intel_find_best_PLL,
329 };
330
331     /* below parameter and function is for G4X Chipset Family*/
332 static const intel_limit_t intel_limits_g4x_sdvo = {
333         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
334         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
335         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
336         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
337         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
338         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
339         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
340         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
341         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
342                  .p2_slow = G4X_P2_SDVO_SLOW,
343                  .p2_fast = G4X_P2_SDVO_FAST
344         },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_g4x_hdmi = {
349         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
350         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
351         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
352         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
353         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
354         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
355         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
356         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
357         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
358                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
359                  .p2_fast = G4X_P2_HDMI_DAC_FAST
360         },
361         .find_pll = intel_g4x_find_best_PLL,
362 };
363
364 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
365         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
366                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
367         .vco = { .min = G4X_VCO_MIN,
368                  .max = G4X_VCO_MAX },
369         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
370                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
371         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
372                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
373         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
374                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
375         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
376                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
377         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
378                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
379         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
380                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
381         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
382                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
383                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
384         },
385         .find_pll = intel_g4x_find_best_PLL,
386 };
387
388 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
389         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
390                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
391         .vco = { .min = G4X_VCO_MIN,
392                  .max = G4X_VCO_MAX },
393         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
394                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
395         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
396                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
397         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
398                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
399         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
400                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
401         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
402                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
403         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
404                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
405         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
406                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
407                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
408         },
409         .find_pll = intel_g4x_find_best_PLL,
410 };
411
412 static const intel_limit_t intel_limits_g4x_display_port = {
413         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
414                  .max = G4X_DOT_DISPLAY_PORT_MAX },
415         .vco = { .min = G4X_VCO_MIN,
416                  .max = G4X_VCO_MAX},
417         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
418                  .max = G4X_N_DISPLAY_PORT_MAX },
419         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
420                  .max = G4X_M_DISPLAY_PORT_MAX },
421         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
422                  .max = G4X_M1_DISPLAY_PORT_MAX },
423         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
424                  .max = G4X_M2_DISPLAY_PORT_MAX },
425         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
426                  .max = G4X_P_DISPLAY_PORT_MAX },
427         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
428                  .max = G4X_P1_DISPLAY_PORT_MAX},
429         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
430                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
431                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
432         .find_pll = intel_find_pll_g4x_dp,
433 };
434
435 static const intel_limit_t intel_limits_igd_sdvo = {
436         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
437         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
438         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
439         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
440         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
441         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
442         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
443         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
444         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
445                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
446         .find_pll = intel_find_best_PLL,
447 };
448
449 static const intel_limit_t intel_limits_igd_lvds = {
450         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
451         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
452         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
453         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
454         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
455         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
456         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
457         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
458         /* IGD only supports single-channel mode. */
459         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
460                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
461         .find_pll = intel_find_best_PLL,
462 };
463
464 static const intel_limit_t intel_limits_igdng_sdvo = {
465         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
466         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
467         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
468         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
469         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
470         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
471         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
472         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
473         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
474                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
475                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
476         .find_pll = intel_igdng_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_igdng_lvds = {
480         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
481         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
482         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
483         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
484         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
485         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
486         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
487         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
488         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
489                  .p2_slow = IGDNG_P2_LVDS_SLOW,
490                  .p2_fast = IGDNG_P2_LVDS_FAST },
491         .find_pll = intel_igdng_find_best_PLL,
492 };
493
494 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
495 {
496         const intel_limit_t *limit;
497         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
498                 limit = &intel_limits_igdng_lvds;
499         else
500                 limit = &intel_limits_igdng_sdvo;
501
502         return limit;
503 }
504
505 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
506 {
507         struct drm_device *dev = crtc->dev;
508         struct drm_i915_private *dev_priv = dev->dev_private;
509         const intel_limit_t *limit;
510
511         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
512                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
513                     LVDS_CLKB_POWER_UP)
514                         /* LVDS with dual channel */
515                         limit = &intel_limits_g4x_dual_channel_lvds;
516                 else
517                         /* LVDS with dual channel */
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (IS_IGDNG(dev))
538                 limit = intel_igdng_limit(crtc);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_i9xx_lvds;
544                 else
545                         limit = &intel_limits_i9xx_sdvo;
546         } else if (IS_IGD(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
548                         limit = &intel_limits_igd_lvds;
549                 else
550                         limit = &intel_limits_igd_sdvo;
551         } else {
552                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
553                         limit = &intel_limits_i8xx_lvds;
554                 else
555                         limit = &intel_limits_i8xx_dvo;
556         }
557         return limit;
558 }
559
560 /* m1 is reserved as 0 in IGD, n is a ring counter */
561 static void igd_clock(int refclk, intel_clock_t *clock)
562 {
563         clock->m = clock->m2 + 2;
564         clock->p = clock->p1 * clock->p2;
565         clock->vco = refclk * clock->m / clock->n;
566         clock->dot = clock->vco / clock->p;
567 }
568
569 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
570 {
571         if (IS_IGD(dev)) {
572                 igd_clock(refclk, clock);
573                 return;
574         }
575         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
576         clock->p = clock->p1 * clock->p2;
577         clock->vco = refclk * clock->m / (clock->n + 2);
578         clock->dot = clock->vco / clock->p;
579 }
580
581 /**
582  * Returns whether any output on the specified pipe is of the specified type
583  */
584 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
585 {
586     struct drm_device *dev = crtc->dev;
587     struct drm_mode_config *mode_config = &dev->mode_config;
588     struct drm_connector *l_entry;
589
590     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
591             if (l_entry->encoder &&
592                 l_entry->encoder->crtc == crtc) {
593                     struct intel_output *intel_output = to_intel_output(l_entry);
594                     if (intel_output->type == type)
595                             return true;
596             }
597     }
598     return false;
599 }
600
601 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
602 /**
603  * Returns whether the given set of divisors are valid for a given refclk with
604  * the given connectors.
605  */
606
607 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
608 {
609         const intel_limit_t *limit = intel_limit (crtc);
610         struct drm_device *dev = crtc->dev;
611
612         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
613                 INTELPllInvalid ("p1 out of range\n");
614         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
615                 INTELPllInvalid ("p out of range\n");
616         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
617                 INTELPllInvalid ("m2 out of range\n");
618         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
619                 INTELPllInvalid ("m1 out of range\n");
620         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
621                 INTELPllInvalid ("m1 <= m2\n");
622         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
623                 INTELPllInvalid ("m out of range\n");
624         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
625                 INTELPllInvalid ("n out of range\n");
626         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
627                 INTELPllInvalid ("vco out of range\n");
628         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629          * connector, etc., rather than just a single range.
630          */
631         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
632                 INTELPllInvalid ("dot out of range\n");
633
634         return true;
635 }
636
637 static bool
638 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
639                     int target, int refclk, intel_clock_t *best_clock)
640
641 {
642         struct drm_device *dev = crtc->dev;
643         struct drm_i915_private *dev_priv = dev->dev_private;
644         intel_clock_t clock;
645         int err = target;
646
647         if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
648             (I915_READ(LVDS)) != 0) {
649                 /*
650                  * For LVDS, if the panel is on, just rely on its current
651                  * settings for dual-channel.  We haven't figured out how to
652                  * reliably set up different single/dual channel state, if we
653                  * even can.
654                  */
655                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
656                     LVDS_CLKB_POWER_UP)
657                         clock.p2 = limit->p2.p2_fast;
658                 else
659                         clock.p2 = limit->p2.p2_slow;
660         } else {
661                 if (target < limit->p2.dot_limit)
662                         clock.p2 = limit->p2.p2_slow;
663                 else
664                         clock.p2 = limit->p2.p2_fast;
665         }
666
667         memset (best_clock, 0, sizeof (*best_clock));
668
669         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
670                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in IGD */
672                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
673                                 break;
674                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
675                              clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                      clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681
682                                         if (!intel_PLL_is_valid(crtc, &clock))
683                                                 continue;
684
685                                         this_err = abs(clock.dot - target);
686                                         if (this_err < err) {
687                                                 *best_clock = clock;
688                                                 err = this_err;
689                                         }
690                                 }
691                         }
692                 }
693         }
694
695         return (err != target);
696 }
697
698 static bool
699 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
700                         int target, int refclk, intel_clock_t *best_clock)
701 {
702         struct drm_device *dev = crtc->dev;
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         intel_clock_t clock;
705         int max_n;
706         bool found;
707         /* approximately equals target * 0.00488 */
708         int err_most = (target >> 8) + (target >> 10);
709         found = false;
710
711         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
712                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
713                     LVDS_CLKB_POWER_UP)
714                         clock.p2 = limit->p2.p2_fast;
715                 else
716                         clock.p2 = limit->p2.p2_slow;
717         } else {
718                 if (target < limit->p2.dot_limit)
719                         clock.p2 = limit->p2.p2_slow;
720                 else
721                         clock.p2 = limit->p2.p2_fast;
722         }
723
724         memset(best_clock, 0, sizeof(*best_clock));
725         max_n = limit->n.max;
726         /* based on hardware requriment prefer smaller n to precision */
727         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
728                 /* based on hardware requirment prefere larger m1,m2, p1 */
729                 for (clock.m1 = limit->m1.max;
730                      clock.m1 >= limit->m1.min; clock.m1--) {
731                         for (clock.m2 = limit->m2.max;
732                              clock.m2 >= limit->m2.min; clock.m2--) {
733                                 for (clock.p1 = limit->p1.max;
734                                      clock.p1 >= limit->p1.min; clock.p1--) {
735                                         int this_err;
736
737                                         intel_clock(dev, refclk, &clock);
738                                         if (!intel_PLL_is_valid(crtc, &clock))
739                                                 continue;
740                                         this_err = abs(clock.dot - target) ;
741                                         if (this_err < err_most) {
742                                                 *best_clock = clock;
743                                                 err_most = this_err;
744                                                 max_n = clock.n;
745                                                 found = true;
746                                         }
747                                 }
748                         }
749                 }
750         }
751         return found;
752 }
753
754 static bool
755 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
756                         int target, int refclk, intel_clock_t *best_clock)
757 {
758         struct drm_device *dev = crtc->dev;
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         intel_clock_t clock;
761         int max_n;
762         bool found;
763         int err_most = 47;
764         found = false;
765
766         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
767                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
768                     LVDS_CLKB_POWER_UP)
769                         clock.p2 = limit->p2.p2_fast;
770                 else
771                         clock.p2 = limit->p2.p2_slow;
772         } else {
773                 if (target < limit->p2.dot_limit)
774                         clock.p2 = limit->p2.p2_slow;
775                 else
776                         clock.p2 = limit->p2.p2_fast;
777         }
778
779         memset(best_clock, 0, sizeof(*best_clock));
780         max_n = limit->n.max;
781         /* based on hardware requriment prefer smaller n to precision */
782         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
783                 /* based on hardware requirment prefere larger m1,m2, p1 */
784                 for (clock.m1 = limit->m1.max;
785                      clock.m1 >= limit->m1.min; clock.m1--) {
786                         for (clock.m2 = limit->m2.max;
787                              clock.m2 >= limit->m2.min; clock.m2--) {
788                                 for (clock.p1 = limit->p1.max;
789                                      clock.p1 >= limit->p1.min; clock.p1--) {
790                                         int this_err;
791
792                                         intel_clock(dev, refclk, &clock);
793                                         if (!intel_PLL_is_valid(crtc, &clock))
794                                                 continue;
795                                         this_err = abs((10000 - (target*10000/clock.dot)));
796                                         if (this_err < err_most) {
797                                                 *best_clock = clock;
798                                                 err_most = this_err;
799                                                 max_n = clock.n;
800                                                 found = true;
801                                                 /* found on first matching */
802                                                 goto out;
803                                         }
804                                 }
805                         }
806                 }
807         }
808 out:
809         return found;
810 }
811
812 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
813 static bool
814 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
815                       int target, int refclk, intel_clock_t *best_clock)
816 {
817     intel_clock_t clock;
818     if (target < 200000) {
819         clock.p1 = 2;
820         clock.p2 = 10;
821         clock.n = 2;
822         clock.m1 = 23;
823         clock.m2 = 8;
824     } else {
825         clock.p1 = 1;
826         clock.p2 = 10;
827         clock.n = 1;
828         clock.m1 = 14;
829         clock.m2 = 2;
830     }
831     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
832     clock.p = (clock.p1 * clock.p2);
833     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
834     memcpy(best_clock, &clock, sizeof(intel_clock_t));
835     return true;
836 }
837
838 void
839 intel_wait_for_vblank(struct drm_device *dev)
840 {
841         /* Wait for 20ms, i.e. one cycle at 50hz. */
842         mdelay(20);
843 }
844
845 static int
846 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
847                     struct drm_framebuffer *old_fb)
848 {
849         struct drm_device *dev = crtc->dev;
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         struct drm_i915_master_private *master_priv;
852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853         struct intel_framebuffer *intel_fb;
854         struct drm_i915_gem_object *obj_priv;
855         struct drm_gem_object *obj;
856         int pipe = intel_crtc->pipe;
857         unsigned long Start, Offset;
858         int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
859         int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
860         int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
861         int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
862         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
863         u32 dspcntr, alignment;
864         int ret;
865
866         /* no fb bound */
867         if (!crtc->fb) {
868                 DRM_DEBUG("No FB bound\n");
869                 return 0;
870         }
871
872         switch (pipe) {
873         case 0:
874         case 1:
875                 break;
876         default:
877                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
878                 return -EINVAL;
879         }
880
881         intel_fb = to_intel_framebuffer(crtc->fb);
882         obj = intel_fb->obj;
883         obj_priv = obj->driver_private;
884
885         switch (obj_priv->tiling_mode) {
886         case I915_TILING_NONE:
887                 alignment = 64 * 1024;
888                 break;
889         case I915_TILING_X:
890                 /* pin() will align the object as required by fence */
891                 alignment = 0;
892                 break;
893         case I915_TILING_Y:
894                 /* FIXME: Is this true? */
895                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
896                 return -EINVAL;
897         default:
898                 BUG();
899         }
900
901         mutex_lock(&dev->struct_mutex);
902         ret = i915_gem_object_pin(obj, alignment);
903         if (ret != 0) {
904                 mutex_unlock(&dev->struct_mutex);
905                 return ret;
906         }
907
908         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
909         if (ret != 0) {
910                 i915_gem_object_unpin(obj);
911                 mutex_unlock(&dev->struct_mutex);
912                 return ret;
913         }
914
915         /* Pre-i965 needs to install a fence for tiled scan-out */
916         if (!IS_I965G(dev) &&
917             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
918             obj_priv->tiling_mode != I915_TILING_NONE) {
919                 ret = i915_gem_object_get_fence_reg(obj);
920                 if (ret != 0) {
921                         i915_gem_object_unpin(obj);
922                         mutex_unlock(&dev->struct_mutex);
923                         return ret;
924                 }
925         }
926
927         dspcntr = I915_READ(dspcntr_reg);
928         /* Mask out pixel format bits in case we change it */
929         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
930         switch (crtc->fb->bits_per_pixel) {
931         case 8:
932                 dspcntr |= DISPPLANE_8BPP;
933                 break;
934         case 16:
935                 if (crtc->fb->depth == 15)
936                         dspcntr |= DISPPLANE_15_16BPP;
937                 else
938                         dspcntr |= DISPPLANE_16BPP;
939                 break;
940         case 24:
941         case 32:
942                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
943                 break;
944         default:
945                 DRM_ERROR("Unknown color depth\n");
946                 i915_gem_object_unpin(obj);
947                 mutex_unlock(&dev->struct_mutex);
948                 return -EINVAL;
949         }
950         if (IS_I965G(dev)) {
951                 if (obj_priv->tiling_mode != I915_TILING_NONE)
952                         dspcntr |= DISPPLANE_TILED;
953                 else
954                         dspcntr &= ~DISPPLANE_TILED;
955         }
956
957         I915_WRITE(dspcntr_reg, dspcntr);
958
959         Start = obj_priv->gtt_offset;
960         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
961
962         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
963         I915_WRITE(dspstride, crtc->fb->pitch);
964         if (IS_I965G(dev)) {
965                 I915_WRITE(dspbase, Offset);
966                 I915_READ(dspbase);
967                 I915_WRITE(dspsurf, Start);
968                 I915_READ(dspsurf);
969                 I915_WRITE(dsptileoff, (y << 16) | x);
970         } else {
971                 I915_WRITE(dspbase, Start + Offset);
972                 I915_READ(dspbase);
973         }
974
975         intel_wait_for_vblank(dev);
976
977         if (old_fb) {
978                 intel_fb = to_intel_framebuffer(old_fb);
979                 i915_gem_object_unpin(intel_fb->obj);
980         }
981         mutex_unlock(&dev->struct_mutex);
982
983         if (!dev->primary->master)
984                 return 0;
985
986         master_priv = dev->primary->master->driver_priv;
987         if (!master_priv->sarea_priv)
988                 return 0;
989
990         if (pipe) {
991                 master_priv->sarea_priv->pipeB_x = x;
992                 master_priv->sarea_priv->pipeB_y = y;
993         } else {
994                 master_priv->sarea_priv->pipeA_x = x;
995                 master_priv->sarea_priv->pipeA_y = y;
996         }
997
998         return 0;
999 }
1000
1001 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1002 {
1003         struct drm_device *dev = crtc->dev;
1004         struct drm_i915_private *dev_priv = dev->dev_private;
1005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1006         int pipe = intel_crtc->pipe;
1007         int plane = intel_crtc->plane;
1008         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1009         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1010         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1011         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1012         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1013         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1014         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1015         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1016         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1017         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1018         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1019         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1020         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1021         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1022         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1023         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1024         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1025         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1026         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1027         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1028         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1029         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1030         u32 temp;
1031         int tries = 5, j;
1032
1033         /* XXX: When our outputs are all unaware of DPMS modes other than off
1034          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1035          */
1036         switch (mode) {
1037         case DRM_MODE_DPMS_ON:
1038         case DRM_MODE_DPMS_STANDBY:
1039         case DRM_MODE_DPMS_SUSPEND:
1040                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1041                 /* enable PCH DPLL */
1042                 temp = I915_READ(pch_dpll_reg);
1043                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1044                         I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1045                         I915_READ(pch_dpll_reg);
1046                 }
1047
1048                 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1049                 temp = I915_READ(fdi_rx_reg);
1050                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1051                                 FDI_SEL_PCDCLK |
1052                                 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1053                 I915_READ(fdi_rx_reg);
1054                 udelay(200);
1055
1056                 /* Enable CPU FDI TX PLL, always on for IGDNG */
1057                 temp = I915_READ(fdi_tx_reg);
1058                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1059                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1060                         I915_READ(fdi_tx_reg);
1061                         udelay(100);
1062                 }
1063
1064                 /* Enable CPU pipe */
1065                 temp = I915_READ(pipeconf_reg);
1066                 if ((temp & PIPEACONF_ENABLE) == 0) {
1067                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1068                         I915_READ(pipeconf_reg);
1069                         udelay(100);
1070                 }
1071
1072                 /* configure and enable CPU plane */
1073                 temp = I915_READ(dspcntr_reg);
1074                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1075                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1076                         /* Flush the plane changes */
1077                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1078                 }
1079
1080                 /* enable CPU FDI TX and PCH FDI RX */
1081                 temp = I915_READ(fdi_tx_reg);
1082                 temp |= FDI_TX_ENABLE;
1083                 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1084                 temp &= ~FDI_LINK_TRAIN_NONE;
1085                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1086                 I915_WRITE(fdi_tx_reg, temp);
1087                 I915_READ(fdi_tx_reg);
1088
1089                 temp = I915_READ(fdi_rx_reg);
1090                 temp &= ~FDI_LINK_TRAIN_NONE;
1091                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1092                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1093                 I915_READ(fdi_rx_reg);
1094
1095                 udelay(150);
1096
1097                 /* Train FDI. */
1098                 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1099                    for train result */
1100                 temp = I915_READ(fdi_rx_imr_reg);
1101                 temp &= ~FDI_RX_SYMBOL_LOCK;
1102                 temp &= ~FDI_RX_BIT_LOCK;
1103                 I915_WRITE(fdi_rx_imr_reg, temp);
1104                 I915_READ(fdi_rx_imr_reg);
1105                 udelay(150);
1106
1107                 temp = I915_READ(fdi_rx_iir_reg);
1108                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1109
1110                 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1111                         for (j = 0; j < tries; j++) {
1112                                 temp = I915_READ(fdi_rx_iir_reg);
1113                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1114                                 if (temp & FDI_RX_BIT_LOCK)
1115                                         break;
1116                                 udelay(200);
1117                         }
1118                         if (j != tries)
1119                                 I915_WRITE(fdi_rx_iir_reg,
1120                                                 temp | FDI_RX_BIT_LOCK);
1121                         else
1122                                 DRM_DEBUG("train 1 fail\n");
1123                 } else {
1124                         I915_WRITE(fdi_rx_iir_reg,
1125                                         temp | FDI_RX_BIT_LOCK);
1126                         DRM_DEBUG("train 1 ok 2!\n");
1127                 }
1128                 temp = I915_READ(fdi_tx_reg);
1129                 temp &= ~FDI_LINK_TRAIN_NONE;
1130                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1131                 I915_WRITE(fdi_tx_reg, temp);
1132
1133                 temp = I915_READ(fdi_rx_reg);
1134                 temp &= ~FDI_LINK_TRAIN_NONE;
1135                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1136                 I915_WRITE(fdi_rx_reg, temp);
1137
1138                 udelay(150);
1139
1140                 temp = I915_READ(fdi_rx_iir_reg);
1141                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1142
1143                 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1144                         for (j = 0; j < tries; j++) {
1145                                 temp = I915_READ(fdi_rx_iir_reg);
1146                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1147                                 if (temp & FDI_RX_SYMBOL_LOCK)
1148                                         break;
1149                                 udelay(200);
1150                         }
1151                         if (j != tries) {
1152                                 I915_WRITE(fdi_rx_iir_reg,
1153                                                 temp | FDI_RX_SYMBOL_LOCK);
1154                                 DRM_DEBUG("train 2 ok 1!\n");
1155                         } else
1156                                 DRM_DEBUG("train 2 fail\n");
1157                 } else {
1158                         I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1159                         DRM_DEBUG("train 2 ok 2!\n");
1160                 }
1161                 DRM_DEBUG("train done\n");
1162
1163                 /* set transcoder timing */
1164                 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1165                 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1166                 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1167
1168                 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1169                 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1170                 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1171
1172                 /* enable PCH transcoder */
1173                 temp = I915_READ(transconf_reg);
1174                 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1175                 I915_READ(transconf_reg);
1176
1177                 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1178                         ;
1179
1180                 /* enable normal */
1181
1182                 temp = I915_READ(fdi_tx_reg);
1183                 temp &= ~FDI_LINK_TRAIN_NONE;
1184                 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1185                                 FDI_TX_ENHANCE_FRAME_ENABLE);
1186                 I915_READ(fdi_tx_reg);
1187
1188                 temp = I915_READ(fdi_rx_reg);
1189                 temp &= ~FDI_LINK_TRAIN_NONE;
1190                 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1191                                 FDI_RX_ENHANCE_FRAME_ENABLE);
1192                 I915_READ(fdi_rx_reg);
1193
1194                 /* wait one idle pattern time */
1195                 udelay(100);
1196
1197                 intel_crtc_load_lut(crtc);
1198
1199         break;
1200         case DRM_MODE_DPMS_OFF:
1201                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1202
1203                 /* Disable the VGA plane that we never use */
1204                 I915_WRITE(CPU_VGACNTRL, VGA_DISP_DISABLE);
1205
1206                 /* Disable display plane */
1207                 temp = I915_READ(dspcntr_reg);
1208                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1209                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1210                         /* Flush the plane changes */
1211                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1212                         I915_READ(dspbase_reg);
1213                 }
1214
1215                 /* disable cpu pipe, disable after all planes disabled */
1216                 temp = I915_READ(pipeconf_reg);
1217                 if ((temp & PIPEACONF_ENABLE) != 0) {
1218                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1219                         I915_READ(pipeconf_reg);
1220                         /* wait for cpu pipe off, pipe state */
1221                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
1222                                 ;
1223                 } else
1224                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1225
1226                 /* IGDNG-A : disable cpu panel fitter ? */
1227                 temp = I915_READ(pf_ctl_reg);
1228                 if ((temp & PF_ENABLE) != 0) {
1229                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1230                         I915_READ(pf_ctl_reg);
1231                 }
1232
1233                 /* disable CPU FDI tx and PCH FDI rx */
1234                 temp = I915_READ(fdi_tx_reg);
1235                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1236                 I915_READ(fdi_tx_reg);
1237
1238                 temp = I915_READ(fdi_rx_reg);
1239                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1240                 I915_READ(fdi_rx_reg);
1241
1242                 /* still set train pattern 1 */
1243                 temp = I915_READ(fdi_tx_reg);
1244                 temp &= ~FDI_LINK_TRAIN_NONE;
1245                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1246                 I915_WRITE(fdi_tx_reg, temp);
1247
1248                 temp = I915_READ(fdi_rx_reg);
1249                 temp &= ~FDI_LINK_TRAIN_NONE;
1250                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1251                 I915_WRITE(fdi_rx_reg, temp);
1252
1253                 /* disable PCH transcoder */
1254                 temp = I915_READ(transconf_reg);
1255                 if ((temp & TRANS_ENABLE) != 0) {
1256                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1257                         I915_READ(transconf_reg);
1258                         /* wait for PCH transcoder off, transcoder state */
1259                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
1260                                 ;
1261                 }
1262
1263                 /* disable PCH DPLL */
1264                 temp = I915_READ(pch_dpll_reg);
1265                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1266                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1267                         I915_READ(pch_dpll_reg);
1268                 }
1269
1270                 temp = I915_READ(fdi_rx_reg);
1271                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1272                         temp &= ~FDI_SEL_PCDCLK;
1273                         temp &= ~FDI_RX_PLL_ENABLE;
1274                         I915_WRITE(fdi_rx_reg, temp);
1275                         I915_READ(fdi_rx_reg);
1276                 }
1277
1278                 /* Wait for the clocks to turn off. */
1279                 udelay(150);
1280                 break;
1281         }
1282 }
1283
1284 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1285 {
1286         struct drm_device *dev = crtc->dev;
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1289         int pipe = intel_crtc->pipe;
1290         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1291         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1292         int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1293         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1294         u32 temp;
1295
1296         /* XXX: When our outputs are all unaware of DPMS modes other than off
1297          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1298          */
1299         switch (mode) {
1300         case DRM_MODE_DPMS_ON:
1301         case DRM_MODE_DPMS_STANDBY:
1302         case DRM_MODE_DPMS_SUSPEND:
1303                 /* Enable the DPLL */
1304                 temp = I915_READ(dpll_reg);
1305                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1306                         I915_WRITE(dpll_reg, temp);
1307                         I915_READ(dpll_reg);
1308                         /* Wait for the clocks to stabilize. */
1309                         udelay(150);
1310                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1311                         I915_READ(dpll_reg);
1312                         /* Wait for the clocks to stabilize. */
1313                         udelay(150);
1314                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1315                         I915_READ(dpll_reg);
1316                         /* Wait for the clocks to stabilize. */
1317                         udelay(150);
1318                 }
1319
1320                 /* Enable the pipe */
1321                 temp = I915_READ(pipeconf_reg);
1322                 if ((temp & PIPEACONF_ENABLE) == 0)
1323                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1324
1325                 /* Enable the plane */
1326                 temp = I915_READ(dspcntr_reg);
1327                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1328                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1329                         /* Flush the plane changes */
1330                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1331                 }
1332
1333                 intel_crtc_load_lut(crtc);
1334
1335                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1336                 //intel_crtc_dpms_video(crtc, true); TODO
1337                 intel_update_watermarks(dev);
1338         break;
1339         case DRM_MODE_DPMS_OFF:
1340                 intel_update_watermarks(dev);
1341                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1342                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1343
1344                 /* Disable the VGA plane that we never use */
1345                 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
1346
1347                 /* Disable display plane */
1348                 temp = I915_READ(dspcntr_reg);
1349                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1350                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1351                         /* Flush the plane changes */
1352                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1353                         I915_READ(dspbase_reg);
1354                 }
1355
1356                 if (!IS_I9XX(dev)) {
1357                         /* Wait for vblank for the disable to take effect */
1358                         intel_wait_for_vblank(dev);
1359                 }
1360
1361                 /* Next, disable display pipes */
1362                 temp = I915_READ(pipeconf_reg);
1363                 if ((temp & PIPEACONF_ENABLE) != 0) {
1364                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1365                         I915_READ(pipeconf_reg);
1366                 }
1367
1368                 /* Wait for vblank for the disable to take effect. */
1369                 intel_wait_for_vblank(dev);
1370
1371                 temp = I915_READ(dpll_reg);
1372                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1373                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1374                         I915_READ(dpll_reg);
1375                 }
1376
1377                 /* Wait for the clocks to turn off. */
1378                 udelay(150);
1379                 break;
1380         }
1381 }
1382
1383 /**
1384  * Sets the power management mode of the pipe and plane.
1385  *
1386  * This code should probably grow support for turning the cursor off and back
1387  * on appropriately at the same time as we're turning the pipe off/on.
1388  */
1389 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1390 {
1391         struct drm_device *dev = crtc->dev;
1392         struct drm_i915_master_private *master_priv;
1393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1394         int pipe = intel_crtc->pipe;
1395         bool enabled;
1396
1397         if (IS_IGDNG(dev))
1398                 igdng_crtc_dpms(crtc, mode);
1399         else
1400                 i9xx_crtc_dpms(crtc, mode);
1401
1402         if (!dev->primary->master)
1403                 return;
1404
1405         master_priv = dev->primary->master->driver_priv;
1406         if (!master_priv->sarea_priv)
1407                 return;
1408
1409         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1410
1411         switch (pipe) {
1412         case 0:
1413                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1414                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1415                 break;
1416         case 1:
1417                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1418                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1419                 break;
1420         default:
1421                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1422                 break;
1423         }
1424
1425         intel_crtc->dpms_mode = mode;
1426 }
1427
1428 static void intel_crtc_prepare (struct drm_crtc *crtc)
1429 {
1430         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1431         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1432 }
1433
1434 static void intel_crtc_commit (struct drm_crtc *crtc)
1435 {
1436         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1437         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1438 }
1439
1440 void intel_encoder_prepare (struct drm_encoder *encoder)
1441 {
1442         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1443         /* lvds has its own version of prepare see intel_lvds_prepare */
1444         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1445 }
1446
1447 void intel_encoder_commit (struct drm_encoder *encoder)
1448 {
1449         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1450         /* lvds has its own version of commit see intel_lvds_commit */
1451         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1452 }
1453
1454 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1455                                   struct drm_display_mode *mode,
1456                                   struct drm_display_mode *adjusted_mode)
1457 {
1458         struct drm_device *dev = crtc->dev;
1459         if (IS_IGDNG(dev)) {
1460                 /* FDI link clock is fixed at 2.7G */
1461                 if (mode->clock * 3 > 27000 * 4)
1462                         return MODE_CLOCK_HIGH;
1463         }
1464         return true;
1465 }
1466
1467
1468 /** Returns the core display clock speed for i830 - i945 */
1469 static int intel_get_core_clock_speed(struct drm_device *dev)
1470 {
1471
1472         /* Core clock values taken from the published datasheets.
1473          * The 830 may go up to 166 Mhz, which we should check.
1474          */
1475         if (IS_I945G(dev))
1476                 return 400000;
1477         else if (IS_I915G(dev))
1478                 return 333000;
1479         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1480                 return 200000;
1481         else if (IS_I915GM(dev)) {
1482                 u16 gcfgc = 0;
1483
1484                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1485
1486                 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1487                         return 133000;
1488                 else {
1489                         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1490                         case GC_DISPLAY_CLOCK_333_MHZ:
1491                                 return 333000;
1492                         default:
1493                         case GC_DISPLAY_CLOCK_190_200_MHZ:
1494                                 return 190000;
1495                         }
1496                 }
1497         } else if (IS_I865G(dev))
1498                 return 266000;
1499         else if (IS_I855(dev)) {
1500                 u16 hpllcc = 0;
1501                 /* Assume that the hardware is in the high speed state.  This
1502                  * should be the default.
1503                  */
1504                 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1505                 case GC_CLOCK_133_200:
1506                 case GC_CLOCK_100_200:
1507                         return 200000;
1508                 case GC_CLOCK_166_250:
1509                         return 250000;
1510                 case GC_CLOCK_100_133:
1511                         return 133000;
1512                 }
1513         } else /* 852, 830 */
1514                 return 133000;
1515
1516         return 0; /* Silence gcc warning */
1517 }
1518
1519 /**
1520  * Return the pipe currently connected to the panel fitter,
1521  * or -1 if the panel fitter is not present or not in use
1522  */
1523 static int intel_panel_fitter_pipe (struct drm_device *dev)
1524 {
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526         u32  pfit_control;
1527
1528         /* i830 doesn't have a panel fitter */
1529         if (IS_I830(dev))
1530                 return -1;
1531
1532         pfit_control = I915_READ(PFIT_CONTROL);
1533
1534         /* See if the panel fitter is in use */
1535         if ((pfit_control & PFIT_ENABLE) == 0)
1536                 return -1;
1537
1538         /* 965 can place panel fitter on either pipe */
1539         if (IS_I965G(dev))
1540                 return (pfit_control >> 29) & 0x3;
1541
1542         /* older chips can only use pipe 1 */
1543         return 1;
1544 }
1545
1546 struct fdi_m_n {
1547         u32        tu;
1548         u32        gmch_m;
1549         u32        gmch_n;
1550         u32        link_m;
1551         u32        link_n;
1552 };
1553
1554 static void
1555 fdi_reduce_ratio(u32 *num, u32 *den)
1556 {
1557         while (*num > 0xffffff || *den > 0xffffff) {
1558                 *num >>= 1;
1559                 *den >>= 1;
1560         }
1561 }
1562
1563 #define DATA_N 0x800000
1564 #define LINK_N 0x80000
1565
1566 static void
1567 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1568                 int pixel_clock, int link_clock,
1569                 struct fdi_m_n *m_n)
1570 {
1571         u64 temp;
1572
1573         m_n->tu = 64; /* default size */
1574
1575         temp = (u64) DATA_N * pixel_clock;
1576         temp = div_u64(temp, link_clock);
1577         m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
1578         m_n->gmch_n = DATA_N;
1579         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1580
1581         temp = (u64) LINK_N * pixel_clock;
1582         m_n->link_m = div_u64(temp, link_clock);
1583         m_n->link_n = LINK_N;
1584         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1585 }
1586
1587
1588 struct intel_watermark_params {
1589         unsigned long fifo_size;
1590         unsigned long max_wm;
1591         unsigned long default_wm;
1592         unsigned long guard_size;
1593         unsigned long cacheline_size;
1594 };
1595
1596 /* IGD has different values for various configs */
1597 static struct intel_watermark_params igd_display_wm = {
1598         IGD_DISPLAY_FIFO,
1599         IGD_MAX_WM,
1600         IGD_DFT_WM,
1601         IGD_GUARD_WM,
1602         IGD_FIFO_LINE_SIZE
1603 };
1604 static struct intel_watermark_params igd_display_hplloff_wm = {
1605         IGD_DISPLAY_FIFO,
1606         IGD_MAX_WM,
1607         IGD_DFT_HPLLOFF_WM,
1608         IGD_GUARD_WM,
1609         IGD_FIFO_LINE_SIZE
1610 };
1611 static struct intel_watermark_params igd_cursor_wm = {
1612         IGD_CURSOR_FIFO,
1613         IGD_CURSOR_MAX_WM,
1614         IGD_CURSOR_DFT_WM,
1615         IGD_CURSOR_GUARD_WM,
1616         IGD_FIFO_LINE_SIZE,
1617 };
1618 static struct intel_watermark_params igd_cursor_hplloff_wm = {
1619         IGD_CURSOR_FIFO,
1620         IGD_CURSOR_MAX_WM,
1621         IGD_CURSOR_DFT_WM,
1622         IGD_CURSOR_GUARD_WM,
1623         IGD_FIFO_LINE_SIZE
1624 };
1625 static struct intel_watermark_params i945_wm_info = {
1626         I945_FIFO_SIZE,
1627         I915_MAX_WM,
1628         1,
1629         2,
1630         I915_FIFO_LINE_SIZE
1631 };
1632 static struct intel_watermark_params i915_wm_info = {
1633         I915_FIFO_SIZE,
1634         I915_MAX_WM,
1635         1,
1636         2,
1637         I915_FIFO_LINE_SIZE
1638 };
1639 static struct intel_watermark_params i855_wm_info = {
1640         I855GM_FIFO_SIZE,
1641         I915_MAX_WM,
1642         1,
1643         2,
1644         I830_FIFO_LINE_SIZE
1645 };
1646 static struct intel_watermark_params i830_wm_info = {
1647         I830_FIFO_SIZE,
1648         I915_MAX_WM,
1649         1,
1650         2,
1651         I830_FIFO_LINE_SIZE
1652 };
1653
1654 /**
1655  * intel_calculate_wm - calculate watermark level
1656  * @clock_in_khz: pixel clock
1657  * @wm: chip FIFO params
1658  * @pixel_size: display pixel size
1659  * @latency_ns: memory latency for the platform
1660  *
1661  * Calculate the watermark level (the level at which the display plane will
1662  * start fetching from memory again).  Each chip has a different display
1663  * FIFO size and allocation, so the caller needs to figure that out and pass
1664  * in the correct intel_watermark_params structure.
1665  *
1666  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1667  * on the pixel size.  When it reaches the watermark level, it'll start
1668  * fetching FIFO line sized based chunks from memory until the FIFO fills
1669  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1670  * will occur, and a display engine hang could result.
1671  */
1672 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1673                                         struct intel_watermark_params *wm,
1674                                         int pixel_size,
1675                                         unsigned long latency_ns)
1676 {
1677         long entries_required, wm_size;
1678
1679         entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
1680         entries_required /= wm->cacheline_size;
1681
1682         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
1683
1684         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
1685
1686         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
1687
1688         /* Don't promote wm_size to unsigned... */
1689         if (wm_size > (long)wm->max_wm)
1690                 wm_size = wm->max_wm;
1691         if (wm_size <= 0)
1692                 wm_size = wm->default_wm;
1693         return wm_size;
1694 }
1695
1696 struct cxsr_latency {
1697         int is_desktop;
1698         unsigned long fsb_freq;
1699         unsigned long mem_freq;
1700         unsigned long display_sr;
1701         unsigned long display_hpll_disable;
1702         unsigned long cursor_sr;
1703         unsigned long cursor_hpll_disable;
1704 };
1705
1706 static struct cxsr_latency cxsr_latency_table[] = {
1707         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
1708         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
1709         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
1710
1711         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
1712         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
1713         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
1714
1715         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
1716         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
1717         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
1718
1719         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
1720         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
1721         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
1722
1723         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
1724         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
1725         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
1726
1727         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
1728         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
1729         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
1730 };
1731
1732 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1733                                                    int mem)
1734 {
1735         int i;
1736         struct cxsr_latency *latency;
1737
1738         if (fsb == 0 || mem == 0)
1739                 return NULL;
1740
1741         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1742                 latency = &cxsr_latency_table[i];
1743                 if (is_desktop == latency->is_desktop &&
1744                         fsb == latency->fsb_freq && mem == latency->mem_freq)
1745                         break;
1746         }
1747         if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1748                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1749                 return NULL;
1750         }
1751         return latency;
1752 }
1753
1754 static void igd_disable_cxsr(struct drm_device *dev)
1755 {
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         u32 reg;
1758
1759         /* deactivate cxsr */
1760         reg = I915_READ(DSPFW3);
1761         reg &= ~(IGD_SELF_REFRESH_EN);
1762         I915_WRITE(DSPFW3, reg);
1763         DRM_INFO("Big FIFO is disabled\n");
1764 }
1765
1766 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1767                             int pixel_size)
1768 {
1769         struct drm_i915_private *dev_priv = dev->dev_private;
1770         u32 reg;
1771         unsigned long wm;
1772         struct cxsr_latency *latency;
1773
1774         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
1775                 dev_priv->mem_freq);
1776         if (!latency) {
1777                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1778                 igd_disable_cxsr(dev);
1779                 return;
1780         }
1781
1782         /* Display SR */
1783         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
1784                                 latency->display_sr);
1785         reg = I915_READ(DSPFW1);
1786         reg &= 0x7fffff;
1787         reg |= wm << 23;
1788         I915_WRITE(DSPFW1, reg);
1789         DRM_DEBUG("DSPFW1 register is %x\n", reg);
1790
1791         /* cursor SR */
1792         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
1793                                 latency->cursor_sr);
1794         reg = I915_READ(DSPFW3);
1795         reg &= ~(0x3f << 24);
1796         reg |= (wm & 0x3f) << 24;
1797         I915_WRITE(DSPFW3, reg);
1798
1799         /* Display HPLL off SR */
1800         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
1801                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
1802         reg = I915_READ(DSPFW3);
1803         reg &= 0xfffffe00;
1804         reg |= wm & 0x1ff;
1805         I915_WRITE(DSPFW3, reg);
1806
1807         /* cursor HPLL off SR */
1808         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
1809                                 latency->cursor_hpll_disable);
1810         reg = I915_READ(DSPFW3);
1811         reg &= ~(0x3f << 16);
1812         reg |= (wm & 0x3f) << 16;
1813         I915_WRITE(DSPFW3, reg);
1814         DRM_DEBUG("DSPFW3 register is %x\n", reg);
1815
1816         /* activate cxsr */
1817         reg = I915_READ(DSPFW3);
1818         reg |= IGD_SELF_REFRESH_EN;
1819         I915_WRITE(DSPFW3, reg);
1820
1821         DRM_INFO("Big FIFO is enabled\n");
1822
1823         return;
1824 }
1825
1826 const static int latency_ns = 3000; /* default for non-igd platforms */
1827
1828 static int intel_get_fifo_size(struct drm_device *dev, int plane)
1829 {
1830         struct drm_i915_private *dev_priv = dev->dev_private;
1831         uint32_t dsparb = I915_READ(DSPARB);
1832         int size;
1833
1834         if (IS_I9XX(dev)) {
1835                 if (plane == 0)
1836                         size = dsparb & 0x7f;
1837                 else
1838                         size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
1839                                 (dsparb & 0x7f);
1840         } else if (IS_I85X(dev)) {
1841                 if (plane == 0)
1842                         size = dsparb & 0x1ff;
1843                 else
1844                         size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
1845                                 (dsparb & 0x1ff);
1846                 size >>= 1; /* Convert to cachelines */
1847         } else {
1848                 size = dsparb & 0x7f;
1849                 size >>= 1; /* Convert to cachelines */
1850         }
1851
1852         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
1853                   size);
1854
1855         return size;
1856 }
1857
1858 static void i965_update_wm(struct drm_device *dev)
1859 {
1860         struct drm_i915_private *dev_priv = dev->dev_private;
1861
1862         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
1863
1864         /* 965 has limitations... */
1865         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
1866         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1867 }
1868
1869 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
1870                            int planeb_clock, int sr_hdisplay, int pixel_size)
1871 {
1872         struct drm_i915_private *dev_priv = dev->dev_private;
1873         uint32_t fwater_lo;
1874         uint32_t fwater_hi;
1875         int total_size, cacheline_size, cwm, srwm = 1;
1876         int planea_wm, planeb_wm;
1877         struct intel_watermark_params planea_params, planeb_params;
1878         unsigned long line_time_us;
1879         int sr_clock, sr_entries = 0;
1880
1881         /* Create copies of the base settings for each pipe */
1882         if (IS_I965GM(dev) || IS_I945GM(dev))
1883                 planea_params = planeb_params = i945_wm_info;
1884         else if (IS_I9XX(dev))
1885                 planea_params = planeb_params = i915_wm_info;
1886         else
1887                 planea_params = planeb_params = i855_wm_info;
1888
1889         /* Grab a couple of global values before we overwrite them */
1890         total_size = planea_params.fifo_size;
1891         cacheline_size = planea_params.cacheline_size;
1892
1893         /* Update per-plane FIFO sizes */
1894         planea_params.fifo_size = intel_get_fifo_size(dev, 0);
1895         planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
1896
1897         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
1898                                        pixel_size, latency_ns);
1899         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
1900                                        pixel_size, latency_ns);
1901         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1902
1903         /*
1904          * Overlay gets an aggressive default since video jitter is bad.
1905          */
1906         cwm = 2;
1907
1908         /* Calc sr entries for one plane configs */
1909         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
1910                 /* self-refresh has much higher latency */
1911                 const static int sr_latency_ns = 6000;
1912
1913                 sr_clock = planea_clock ? planea_clock : planeb_clock;
1914                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
1915
1916                 /* Use ns/us then divide to preserve precision */
1917                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
1918                               pixel_size * sr_hdisplay) / 1000;
1919                 sr_entries = roundup(sr_entries / cacheline_size, 1);
1920                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
1921                 srwm = total_size - sr_entries;
1922                 if (srwm < 0)
1923                         srwm = 1;
1924                 if (IS_I9XX(dev))
1925                         I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
1926         }
1927
1928         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1929                   planea_wm, planeb_wm, cwm, srwm);
1930
1931         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1932         fwater_hi = (cwm & 0x1f);
1933
1934         /* Set request length to 8 cachelines per fetch */
1935         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1936         fwater_hi = fwater_hi | (1 << 8);
1937
1938         I915_WRITE(FW_BLC, fwater_lo);
1939         I915_WRITE(FW_BLC2, fwater_hi);
1940 }
1941
1942 static void i830_update_wm(struct drm_device *dev, int planea_clock,
1943                            int pixel_size)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
1947         int planea_wm;
1948
1949         i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
1950
1951         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
1952                                        pixel_size, latency_ns);
1953         fwater_lo = fwater_lo | planea_wm;
1954
1955         I915_WRITE(FW_BLC, fwater_lo);
1956 }
1957
1958 /**
1959  * intel_update_watermarks - update FIFO watermark values based on current modes
1960  *
1961  * Calculate watermark values for the various WM regs based on current mode
1962  * and plane configuration.
1963  *
1964  * There are several cases to deal with here:
1965  *   - normal (i.e. non-self-refresh)
1966  *   - self-refresh (SR) mode
1967  *   - lines are large relative to FIFO size (buffer can hold up to 2)
1968  *   - lines are small relative to FIFO size (buffer can hold more than 2
1969  *     lines), so need to account for TLB latency
1970  *
1971  *   The normal calculation is:
1972  *     watermark = dotclock * bytes per pixel * latency
1973  *   where latency is platform & configuration dependent (we assume pessimal
1974  *   values here).
1975  *
1976  *   The SR calculation is:
1977  *     watermark = (trunc(latency/line time)+1) * surface width *
1978  *       bytes per pixel
1979  *   where
1980  *     line time = htotal / dotclock
1981  *   and latency is assumed to be high, as above.
1982  *
1983  * The final value programmed to the register should always be rounded up,
1984  * and include an extra 2 entries to account for clock crossings.
1985  *
1986  * We don't use the sprite, so we can ignore that.  And on Crestline we have
1987  * to set the non-SR watermarks to 8.
1988   */
1989 static void intel_update_watermarks(struct drm_device *dev)
1990 {
1991         struct drm_crtc *crtc;
1992         struct intel_crtc *intel_crtc;
1993         int sr_hdisplay = 0;
1994         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
1995         int enabled = 0, pixel_size = 0;
1996
1997         if (DSPARB_HWCONTROL(dev))
1998                 return;
1999
2000         /* Get the clock config from both planes */
2001         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2002                 intel_crtc = to_intel_crtc(crtc);
2003                 if (crtc->enabled) {
2004                         enabled++;
2005                         if (intel_crtc->plane == 0) {
2006                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2007                                           intel_crtc->pipe, crtc->mode.clock);
2008                                 planea_clock = crtc->mode.clock;
2009                         } else {
2010                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2011                                           intel_crtc->pipe, crtc->mode.clock);
2012                                 planeb_clock = crtc->mode.clock;
2013                         }
2014                         sr_hdisplay = crtc->mode.hdisplay;
2015                         sr_clock = crtc->mode.clock;
2016                         if (crtc->fb)
2017                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2018                         else
2019                                 pixel_size = 4; /* by default */
2020                 }
2021         }
2022
2023         if (enabled <= 0)
2024                 return;
2025
2026         /* Single plane configs can enable self refresh */
2027         if (enabled == 1 && IS_IGD(dev))
2028                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2029         else if (IS_IGD(dev))
2030                 igd_disable_cxsr(dev);
2031
2032         if (IS_I965G(dev))
2033                 i965_update_wm(dev);
2034         else if (IS_I9XX(dev) || IS_MOBILE(dev))
2035                 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2036                                pixel_size);
2037         else
2038                 i830_update_wm(dev, planea_clock, pixel_size);
2039 }
2040
2041 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2042                                struct drm_display_mode *mode,
2043                                struct drm_display_mode *adjusted_mode,
2044                                int x, int y,
2045                                struct drm_framebuffer *old_fb)
2046 {
2047         struct drm_device *dev = crtc->dev;
2048         struct drm_i915_private *dev_priv = dev->dev_private;
2049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2050         int pipe = intel_crtc->pipe;
2051         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2052         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2053         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2054         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2055         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2056         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2057         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2058         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2059         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2060         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2061         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2062         int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2063         int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2064         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2065         int refclk, num_outputs = 0;
2066         intel_clock_t clock;
2067         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2068         bool ok, is_sdvo = false, is_dvo = false;
2069         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2070         struct drm_mode_config *mode_config = &dev->mode_config;
2071         struct drm_connector *connector;
2072         const intel_limit_t *limit;
2073         int ret;
2074         struct fdi_m_n m_n = {0};
2075         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2076         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2077         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2078         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2079         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2080         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2081         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2082         int lvds_reg = LVDS;
2083         u32 temp;
2084         int sdvo_pixel_multiply;
2085
2086         drm_vblank_pre_modeset(dev, pipe);
2087
2088         list_for_each_entry(connector, &mode_config->connector_list, head) {
2089                 struct intel_output *intel_output = to_intel_output(connector);
2090
2091                 if (!connector->encoder || connector->encoder->crtc != crtc)
2092                         continue;
2093
2094                 switch (intel_output->type) {
2095                 case INTEL_OUTPUT_LVDS:
2096                         is_lvds = true;
2097                         break;
2098                 case INTEL_OUTPUT_SDVO:
2099                 case INTEL_OUTPUT_HDMI:
2100                         is_sdvo = true;
2101                         if (intel_output->needs_tv_clock)
2102                                 is_tv = true;
2103                         break;
2104                 case INTEL_OUTPUT_DVO:
2105                         is_dvo = true;
2106                         break;
2107                 case INTEL_OUTPUT_TVOUT:
2108                         is_tv = true;
2109                         break;
2110                 case INTEL_OUTPUT_ANALOG:
2111                         is_crt = true;
2112                         break;
2113                 case INTEL_OUTPUT_DISPLAYPORT:
2114                         is_dp = true;
2115                         break;
2116                 }
2117
2118                 num_outputs++;
2119         }
2120
2121         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2122                 refclk = dev_priv->lvds_ssc_freq * 1000;
2123                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2124         } else if (IS_I9XX(dev)) {
2125                 refclk = 96000;
2126                 if (IS_IGDNG(dev))
2127                         refclk = 120000; /* 120Mhz refclk */
2128         } else {
2129                 refclk = 48000;
2130         }
2131         
2132
2133         /*
2134          * Returns a set of divisors for the desired target clock with the given
2135          * refclk, or FALSE.  The returned values represent the clock equation:
2136          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2137          */
2138         limit = intel_limit(crtc);
2139         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2140         if (!ok) {
2141                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2142                 drm_vblank_post_modeset(dev, pipe);
2143                 return -EINVAL;
2144         }
2145
2146         /* SDVO TV has fixed PLL values depend on its clock range,
2147            this mirrors vbios setting. */
2148         if (is_sdvo && is_tv) {
2149                 if (adjusted_mode->clock >= 100000
2150                                 && adjusted_mode->clock < 140500) {
2151                         clock.p1 = 2;
2152                         clock.p2 = 10;
2153                         clock.n = 3;
2154                         clock.m1 = 16;
2155                         clock.m2 = 8;
2156                 } else if (adjusted_mode->clock >= 140500
2157                                 && adjusted_mode->clock <= 200000) {
2158                         clock.p1 = 1;
2159                         clock.p2 = 10;
2160                         clock.n = 6;
2161                         clock.m1 = 12;
2162                         clock.m2 = 8;
2163                 }
2164         }
2165
2166         /* FDI link */
2167         if (IS_IGDNG(dev))
2168                 igdng_compute_m_n(3, 4, /* lane num 4 */
2169                                 adjusted_mode->clock,
2170                                 270000, /* lane clock */
2171                                 &m_n);
2172
2173         if (IS_IGD(dev))
2174                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2175         else
2176                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2177
2178         if (!IS_IGDNG(dev))
2179                 dpll = DPLL_VGA_MODE_DIS;
2180
2181         if (IS_I9XX(dev)) {
2182                 if (is_lvds)
2183                         dpll |= DPLLB_MODE_LVDS;
2184                 else
2185                         dpll |= DPLLB_MODE_DAC_SERIAL;
2186                 if (is_sdvo) {
2187                         dpll |= DPLL_DVO_HIGH_SPEED;
2188                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2189                         if (IS_I945G(dev) || IS_I945GM(dev))
2190                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2191                         else if (IS_IGDNG(dev))
2192                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2193                 }
2194                 if (is_dp)
2195                         dpll |= DPLL_DVO_HIGH_SPEED;
2196
2197                 /* compute bitmask from p1 value */
2198                 if (IS_IGD(dev))
2199                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2200                 else {
2201                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2202                         /* also FPA1 */
2203                         if (IS_IGDNG(dev))
2204                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2205                 }
2206                 switch (clock.p2) {
2207                 case 5:
2208                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2209                         break;
2210                 case 7:
2211                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2212                         break;
2213                 case 10:
2214                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2215                         break;
2216                 case 14:
2217                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2218                         break;
2219                 }
2220                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2221                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2222         } else {
2223                 if (is_lvds) {
2224                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2225                 } else {
2226                         if (clock.p1 == 2)
2227                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2228                         else
2229                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2230                         if (clock.p2 == 4)
2231                                 dpll |= PLL_P2_DIVIDE_BY_4;
2232                 }
2233         }
2234
2235         if (is_sdvo && is_tv)
2236                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2237         else if (is_tv)
2238                 /* XXX: just matching BIOS for now */
2239                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2240                 dpll |= 3;
2241         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2242                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2243         else
2244                 dpll |= PLL_REF_INPUT_DREFCLK;
2245
2246         /* setup pipeconf */
2247         pipeconf = I915_READ(pipeconf_reg);
2248
2249         /* Set up the display plane register */
2250         dspcntr = DISPPLANE_GAMMA_ENABLE;
2251
2252         /* IGDNG's plane is forced to pipe, bit 24 is to
2253            enable color space conversion */
2254         if (!IS_IGDNG(dev)) {
2255                 if (pipe == 0)
2256                         dspcntr |= DISPPLANE_SEL_PIPE_A;
2257                 else
2258                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2259         }
2260
2261         if (pipe == 0 && !IS_I965G(dev)) {
2262                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2263                  * core speed.
2264                  *
2265                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2266                  * pipe == 0 check?
2267                  */
2268                 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2269                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
2270                 else
2271                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2272         }
2273
2274         dspcntr |= DISPLAY_PLANE_ENABLE;
2275         pipeconf |= PIPEACONF_ENABLE;
2276         dpll |= DPLL_VCO_ENABLE;
2277
2278
2279         /* Disable the panel fitter if it was on our pipe */
2280         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2281                 I915_WRITE(PFIT_CONTROL, 0);
2282
2283         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2284         drm_mode_debug_printmodeline(mode);
2285
2286         /* assign to IGDNG registers */
2287         if (IS_IGDNG(dev)) {
2288                 fp_reg = pch_fp_reg;
2289                 dpll_reg = pch_dpll_reg;
2290         }
2291
2292         if (dpll & DPLL_VCO_ENABLE) {
2293                 I915_WRITE(fp_reg, fp);
2294                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2295                 I915_READ(dpll_reg);
2296                 udelay(150);
2297         }
2298
2299         if (IS_IGDNG(dev)) {
2300                 /* enable PCH clock reference source */
2301                 /* XXX need to change the setting for other outputs */
2302                 u32 temp;
2303                 temp = I915_READ(PCH_DREF_CONTROL);
2304                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2305                 temp |= DREF_NONSPREAD_CK505_ENABLE;
2306                 temp &= ~DREF_SSC_SOURCE_MASK;
2307                 temp |= DREF_SSC_SOURCE_ENABLE;
2308                 temp &= ~DREF_SSC1_ENABLE;
2309                 /* if no eDP, disable source output to CPU */
2310                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2311                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2312                 I915_WRITE(PCH_DREF_CONTROL, temp);
2313         }
2314
2315         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2316          * This is an exception to the general rule that mode_set doesn't turn
2317          * things on.
2318          */
2319         if (is_lvds) {
2320                 u32 lvds;
2321
2322                 if (IS_IGDNG(dev))
2323                         lvds_reg = PCH_LVDS;
2324
2325                 lvds = I915_READ(lvds_reg);
2326                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2327                 /* Set the B0-B3 data pairs corresponding to whether we're going to
2328                  * set the DPLLs for dual-channel mode or not.
2329                  */
2330                 if (clock.p2 == 7)
2331                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2332                 else
2333                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2334
2335                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2336                  * appropriately here, but we need to look more thoroughly into how
2337                  * panels behave in the two modes.
2338                  */
2339
2340                 I915_WRITE(lvds_reg, lvds);
2341                 I915_READ(lvds_reg);
2342         }
2343         if (is_dp)
2344                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2345
2346         I915_WRITE(fp_reg, fp);
2347         I915_WRITE(dpll_reg, dpll);
2348         I915_READ(dpll_reg);
2349         /* Wait for the clocks to stabilize. */
2350         udelay(150);
2351
2352         if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2353                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2354                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2355                            ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2356         } else {
2357                 /* write it again -- the BIOS does, after all */
2358                 I915_WRITE(dpll_reg, dpll);
2359         }
2360         I915_READ(dpll_reg);
2361         /* Wait for the clocks to stabilize. */
2362         udelay(150);
2363
2364         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2365                    ((adjusted_mode->crtc_htotal - 1) << 16));
2366         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2367                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
2368         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2369                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
2370         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2371                    ((adjusted_mode->crtc_vtotal - 1) << 16));
2372         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2373                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
2374         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2375                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
2376         /* pipesrc and dspsize control the size that is scaled from, which should
2377          * always be the user's requested size.
2378          */
2379         if (!IS_IGDNG(dev)) {
2380                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2381                                 (mode->hdisplay - 1));
2382                 I915_WRITE(dsppos_reg, 0);
2383         }
2384         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2385
2386         if (IS_IGDNG(dev)) {
2387                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2388                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2389                 I915_WRITE(link_m1_reg, m_n.link_m);
2390                 I915_WRITE(link_n1_reg, m_n.link_n);
2391
2392                  /* enable FDI RX PLL too */
2393                 temp = I915_READ(fdi_rx_reg);
2394                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2395                 udelay(200);
2396         }
2397
2398         I915_WRITE(pipeconf_reg, pipeconf);
2399         I915_READ(pipeconf_reg);
2400
2401         intel_wait_for_vblank(dev);
2402
2403         I915_WRITE(dspcntr_reg, dspcntr);
2404
2405         /* Flush the plane changes */
2406         ret = intel_pipe_set_base(crtc, x, y, old_fb);
2407
2408         intel_update_watermarks(dev);
2409
2410         drm_vblank_post_modeset(dev, pipe);
2411
2412         return ret;
2413 }
2414
2415 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2416 void intel_crtc_load_lut(struct drm_crtc *crtc)
2417 {
2418         struct drm_device *dev = crtc->dev;
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2421         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2422         int i;
2423
2424         /* The clocks have to be on to load the palette. */
2425         if (!crtc->enabled)
2426                 return;
2427
2428         /* use legacy palette for IGDNG */
2429         if (IS_IGDNG(dev))
2430                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2431                                                    LGC_PALETTE_B;
2432
2433         for (i = 0; i < 256; i++) {
2434                 I915_WRITE(palreg + 4 * i,
2435                            (intel_crtc->lut_r[i] << 16) |
2436                            (intel_crtc->lut_g[i] << 8) |
2437                            intel_crtc->lut_b[i]);
2438         }
2439 }
2440
2441 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2442                                  struct drm_file *file_priv,
2443                                  uint32_t handle,
2444                                  uint32_t width, uint32_t height)
2445 {
2446         struct drm_device *dev = crtc->dev;
2447         struct drm_i915_private *dev_priv = dev->dev_private;
2448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2449         struct drm_gem_object *bo;
2450         struct drm_i915_gem_object *obj_priv;
2451         int pipe = intel_crtc->pipe;
2452         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2453         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2454         uint32_t temp = I915_READ(control);
2455         size_t addr;
2456         int ret;
2457
2458         DRM_DEBUG("\n");
2459
2460         /* if we want to turn off the cursor ignore width and height */
2461         if (!handle) {
2462                 DRM_DEBUG("cursor off\n");
2463                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2464                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2465                         temp |= CURSOR_MODE_DISABLE;
2466                 } else {
2467                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2468                 }
2469                 addr = 0;
2470                 bo = NULL;
2471                 mutex_lock(&dev->struct_mutex);
2472                 goto finish;
2473         }
2474
2475         /* Currently we only support 64x64 cursors */
2476         if (width != 64 || height != 64) {
2477                 DRM_ERROR("we currently only support 64x64 cursors\n");
2478                 return -EINVAL;
2479         }
2480
2481         bo = drm_gem_object_lookup(dev, file_priv, handle);
2482         if (!bo)
2483                 return -ENOENT;
2484
2485         obj_priv = bo->driver_private;
2486
2487         if (bo->size < width * height * 4) {
2488                 DRM_ERROR("buffer is to small\n");
2489                 ret = -ENOMEM;
2490                 goto fail;
2491         }
2492
2493         /* we only need to pin inside GTT if cursor is non-phy */
2494         mutex_lock(&dev->struct_mutex);
2495         if (!dev_priv->cursor_needs_physical) {
2496                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2497                 if (ret) {
2498                         DRM_ERROR("failed to pin cursor bo\n");
2499                         goto fail_locked;
2500                 }
2501                 addr = obj_priv->gtt_offset;
2502         } else {
2503                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2504                 if (ret) {
2505                         DRM_ERROR("failed to attach phys object\n");
2506                         goto fail_locked;
2507                 }
2508                 addr = obj_priv->phys_obj->handle->busaddr;
2509         }
2510
2511         if (!IS_I9XX(dev))
2512                 I915_WRITE(CURSIZE, (height << 12) | width);
2513
2514         /* Hooray for CUR*CNTR differences */
2515         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2516                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2517                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2518                 temp |= (pipe << 28); /* Connect to correct pipe */
2519         } else {
2520                 temp &= ~(CURSOR_FORMAT_MASK);
2521                 temp |= CURSOR_ENABLE;
2522                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2523         }
2524
2525  finish:
2526         I915_WRITE(control, temp);
2527         I915_WRITE(base, addr);
2528
2529         if (intel_crtc->cursor_bo) {
2530                 if (dev_priv->cursor_needs_physical) {
2531                         if (intel_crtc->cursor_bo != bo)
2532                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2533                 } else
2534                         i915_gem_object_unpin(intel_crtc->cursor_bo);
2535                 drm_gem_object_unreference(intel_crtc->cursor_bo);
2536         }
2537         mutex_unlock(&dev->struct_mutex);
2538
2539         intel_crtc->cursor_addr = addr;
2540         intel_crtc->cursor_bo = bo;
2541
2542         return 0;
2543 fail:
2544         mutex_lock(&dev->struct_mutex);
2545 fail_locked:
2546         drm_gem_object_unreference(bo);
2547         mutex_unlock(&dev->struct_mutex);
2548         return ret;
2549 }
2550
2551 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2552 {
2553         struct drm_device *dev = crtc->dev;
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556         int pipe = intel_crtc->pipe;
2557         uint32_t temp = 0;
2558         uint32_t adder;
2559
2560         if (x < 0) {
2561                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2562                 x = -x;
2563         }
2564         if (y < 0) {
2565                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2566                 y = -y;
2567         }
2568
2569         temp |= x << CURSOR_X_SHIFT;
2570         temp |= y << CURSOR_Y_SHIFT;
2571
2572         adder = intel_crtc->cursor_addr;
2573         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2574         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2575
2576         return 0;
2577 }
2578
2579 /** Sets the color ramps on behalf of RandR */
2580 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2581                                  u16 blue, int regno)
2582 {
2583         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2584
2585         intel_crtc->lut_r[regno] = red >> 8;
2586         intel_crtc->lut_g[regno] = green >> 8;
2587         intel_crtc->lut_b[regno] = blue >> 8;
2588 }
2589
2590 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2591                                  u16 *blue, uint32_t size)
2592 {
2593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2594         int i;
2595
2596         if (size != 256)
2597                 return;
2598
2599         for (i = 0; i < 256; i++) {
2600                 intel_crtc->lut_r[i] = red[i] >> 8;
2601                 intel_crtc->lut_g[i] = green[i] >> 8;
2602                 intel_crtc->lut_b[i] = blue[i] >> 8;
2603         }
2604
2605         intel_crtc_load_lut(crtc);
2606 }
2607
2608 /**
2609  * Get a pipe with a simple mode set on it for doing load-based monitor
2610  * detection.
2611  *
2612  * It will be up to the load-detect code to adjust the pipe as appropriate for
2613  * its requirements.  The pipe will be connected to no other outputs.
2614  *
2615  * Currently this code will only succeed if there is a pipe with no outputs
2616  * configured for it.  In the future, it could choose to temporarily disable
2617  * some outputs to free up a pipe for its use.
2618  *
2619  * \return crtc, or NULL if no pipes are available.
2620  */
2621
2622 /* VESA 640x480x72Hz mode to set on the pipe */
2623 static struct drm_display_mode load_detect_mode = {
2624         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2625                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2626 };
2627
2628 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2629                                             struct drm_display_mode *mode,
2630                                             int *dpms_mode)
2631 {
2632         struct intel_crtc *intel_crtc;
2633         struct drm_crtc *possible_crtc;
2634         struct drm_crtc *supported_crtc =NULL;
2635         struct drm_encoder *encoder = &intel_output->enc;
2636         struct drm_crtc *crtc = NULL;
2637         struct drm_device *dev = encoder->dev;
2638         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2639         struct drm_crtc_helper_funcs *crtc_funcs;
2640         int i = -1;
2641
2642         /*
2643          * Algorithm gets a little messy:
2644          *   - if the connector already has an assigned crtc, use it (but make
2645          *     sure it's on first)
2646          *   - try to find the first unused crtc that can drive this connector,
2647          *     and use that if we find one
2648          *   - if there are no unused crtcs available, try to use the first
2649          *     one we found that supports the connector
2650          */
2651
2652         /* See if we already have a CRTC for this connector */
2653         if (encoder->crtc) {
2654                 crtc = encoder->crtc;
2655                 /* Make sure the crtc and connector are running */
2656                 intel_crtc = to_intel_crtc(crtc);
2657                 *dpms_mode = intel_crtc->dpms_mode;
2658                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2659                         crtc_funcs = crtc->helper_private;
2660                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2661                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2662                 }
2663                 return crtc;
2664         }
2665
2666         /* Find an unused one (if possible) */
2667         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2668                 i++;
2669                 if (!(encoder->possible_crtcs & (1 << i)))
2670                         continue;
2671                 if (!possible_crtc->enabled) {
2672                         crtc = possible_crtc;
2673                         break;
2674                 }
2675                 if (!supported_crtc)
2676                         supported_crtc = possible_crtc;
2677         }
2678
2679         /*
2680          * If we didn't find an unused CRTC, don't use any.
2681          */
2682         if (!crtc) {
2683                 return NULL;
2684         }
2685
2686         encoder->crtc = crtc;
2687         intel_output->base.encoder = encoder;
2688         intel_output->load_detect_temp = true;
2689
2690         intel_crtc = to_intel_crtc(crtc);
2691         *dpms_mode = intel_crtc->dpms_mode;
2692
2693         if (!crtc->enabled) {
2694                 if (!mode)
2695                         mode = &load_detect_mode;
2696                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
2697         } else {
2698                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2699                         crtc_funcs = crtc->helper_private;
2700                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2701                 }
2702
2703                 /* Add this connector to the crtc */
2704                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2705                 encoder_funcs->commit(encoder);
2706         }
2707         /* let the connector get through one full cycle before testing */
2708         intel_wait_for_vblank(dev);
2709
2710         return crtc;
2711 }
2712
2713 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2714 {
2715         struct drm_encoder *encoder = &intel_output->enc;
2716         struct drm_device *dev = encoder->dev;
2717         struct drm_crtc *crtc = encoder->crtc;
2718         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2719         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2720
2721         if (intel_output->load_detect_temp) {
2722                 encoder->crtc = NULL;
2723                 intel_output->base.encoder = NULL;
2724                 intel_output->load_detect_temp = false;
2725                 crtc->enabled = drm_helper_crtc_in_use(crtc);
2726                 drm_helper_disable_unused_functions(dev);
2727         }
2728
2729         /* Switch crtc and output back off if necessary */
2730         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2731                 if (encoder->crtc == crtc)
2732                         encoder_funcs->dpms(encoder, dpms_mode);
2733                 crtc_funcs->dpms(crtc, dpms_mode);
2734         }
2735 }
2736
2737 /* Returns the clock of the currently programmed mode of the given pipe. */
2738 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2739 {
2740         struct drm_i915_private *dev_priv = dev->dev_private;
2741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2742         int pipe = intel_crtc->pipe;
2743         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2744         u32 fp;
2745         intel_clock_t clock;
2746
2747         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2748                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2749         else
2750                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2751
2752         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2753         if (IS_IGD(dev)) {
2754                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2755                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2756         } else {
2757                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2758                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2759         }
2760
2761         if (IS_I9XX(dev)) {
2762                 if (IS_IGD(dev))
2763                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2764                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2765                 else
2766                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
2767                                DPLL_FPA01_P1_POST_DIV_SHIFT);
2768
2769                 switch (dpll & DPLL_MODE_MASK) {
2770                 case DPLLB_MODE_DAC_SERIAL:
2771                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2772                                 5 : 10;
2773                         break;
2774                 case DPLLB_MODE_LVDS:
2775                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2776                                 7 : 14;
2777                         break;
2778                 default:
2779                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2780                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
2781                         return 0;
2782                 }
2783
2784                 /* XXX: Handle the 100Mhz refclk */
2785                 intel_clock(dev, 96000, &clock);
2786         } else {
2787                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2788
2789                 if (is_lvds) {
2790                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2791                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
2792                         clock.p2 = 14;
2793
2794                         if ((dpll & PLL_REF_INPUT_MASK) ==
2795                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2796                                 /* XXX: might not be 66MHz */
2797                                 intel_clock(dev, 66000, &clock);
2798                         } else
2799                                 intel_clock(dev, 48000, &clock);
2800                 } else {
2801                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
2802                                 clock.p1 = 2;
2803                         else {
2804                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2805                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2806                         }
2807                         if (dpll & PLL_P2_DIVIDE_BY_4)
2808                                 clock.p2 = 4;
2809                         else
2810                                 clock.p2 = 2;
2811
2812                         intel_clock(dev, 48000, &clock);
2813                 }
2814         }
2815
2816         /* XXX: It would be nice to validate the clocks, but we can't reuse
2817          * i830PllIsValid() because it relies on the xf86_config connector
2818          * configuration being accurate, which it isn't necessarily.
2819          */
2820
2821         return clock.dot;
2822 }
2823
2824 /** Returns the currently programmed mode of the given pipe. */
2825 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2826                                              struct drm_crtc *crtc)
2827 {
2828         struct drm_i915_private *dev_priv = dev->dev_private;
2829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2830         int pipe = intel_crtc->pipe;
2831         struct drm_display_mode *mode;
2832         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2833         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2834         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2835         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2836
2837         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2838         if (!mode)
2839                 return NULL;
2840
2841         mode->clock = intel_crtc_clock_get(dev, crtc);
2842         mode->hdisplay = (htot & 0xffff) + 1;
2843         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2844         mode->hsync_start = (hsync & 0xffff) + 1;
2845         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2846         mode->vdisplay = (vtot & 0xffff) + 1;
2847         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2848         mode->vsync_start = (vsync & 0xffff) + 1;
2849         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2850
2851         drm_mode_set_name(mode);
2852         drm_mode_set_crtcinfo(mode, 0);
2853
2854         return mode;
2855 }
2856
2857 static void intel_crtc_destroy(struct drm_crtc *crtc)
2858 {
2859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2860
2861         if (intel_crtc->mode_set.mode)
2862                 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
2863         drm_crtc_cleanup(crtc);
2864         kfree(intel_crtc);
2865 }
2866
2867 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2868         .dpms = intel_crtc_dpms,
2869         .mode_fixup = intel_crtc_mode_fixup,
2870         .mode_set = intel_crtc_mode_set,
2871         .mode_set_base = intel_pipe_set_base,
2872         .prepare = intel_crtc_prepare,
2873         .commit = intel_crtc_commit,
2874 };
2875
2876 static const struct drm_crtc_funcs intel_crtc_funcs = {
2877         .cursor_set = intel_crtc_cursor_set,
2878         .cursor_move = intel_crtc_cursor_move,
2879         .gamma_set = intel_crtc_gamma_set,
2880         .set_config = drm_crtc_helper_set_config,
2881         .destroy = intel_crtc_destroy,
2882 };
2883
2884
2885 static void intel_crtc_init(struct drm_device *dev, int pipe)
2886 {
2887         struct intel_crtc *intel_crtc;
2888         int i;
2889
2890         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2891         if (intel_crtc == NULL)
2892                 return;
2893
2894         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2895
2896         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2897         intel_crtc->pipe = pipe;
2898         intel_crtc->plane = pipe;
2899         for (i = 0; i < 256; i++) {
2900                 intel_crtc->lut_r[i] = i;
2901                 intel_crtc->lut_g[i] = i;
2902                 intel_crtc->lut_b[i] = i;
2903         }
2904
2905         intel_crtc->cursor_addr = 0;
2906         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
2907         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
2908
2909         intel_crtc->mode_set.crtc = &intel_crtc->base;
2910         intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
2911         intel_crtc->mode_set.num_connectors = 0;
2912
2913         if (i915_fbpercrtc) {
2914
2915
2916
2917         }
2918 }
2919
2920 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
2921                                 struct drm_file *file_priv)
2922 {
2923         drm_i915_private_t *dev_priv = dev->dev_private;
2924         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
2925         struct drm_crtc *crtc = NULL;
2926         int pipe = -1;
2927
2928         if (!dev_priv) {
2929                 DRM_ERROR("called with no initialization\n");
2930                 return -EINVAL;
2931         }
2932
2933         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2934                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2935                 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
2936                         pipe = intel_crtc->pipe;
2937                         break;
2938                 }
2939         }
2940
2941         if (pipe == -1) {
2942                 DRM_ERROR("no such CRTC id\n");
2943                 return -EINVAL;
2944         }
2945
2946         pipe_from_crtc_id->pipe = pipe;
2947
2948        return 0;
2949 }
2950
2951 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
2952 {
2953         struct drm_crtc *crtc = NULL;
2954
2955         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2956                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2957                 if (intel_crtc->pipe == pipe)
2958                         break;
2959         }
2960         return crtc;
2961 }
2962
2963 static int intel_connector_clones(struct drm_device *dev, int type_mask)
2964 {
2965         int index_mask = 0;
2966         struct drm_connector *connector;
2967         int entry = 0;
2968
2969         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2970                 struct intel_output *intel_output = to_intel_output(connector);
2971                 if (type_mask & (1 << intel_output->type))
2972                         index_mask |= (1 << entry);
2973                 entry++;
2974         }
2975         return index_mask;
2976 }
2977
2978
2979 static void intel_setup_outputs(struct drm_device *dev)
2980 {
2981         struct drm_i915_private *dev_priv = dev->dev_private;
2982         struct drm_connector *connector;
2983
2984         intel_crt_init(dev);
2985
2986         /* Set up integrated LVDS */
2987         if (IS_MOBILE(dev) && !IS_I830(dev))
2988                 intel_lvds_init(dev);
2989
2990         if (IS_IGDNG(dev)) {
2991                 int found;
2992
2993                 if (I915_READ(HDMIB) & PORT_DETECTED) {
2994                         /* check SDVOB */
2995                         /* found = intel_sdvo_init(dev, HDMIB); */
2996                         found = 0;
2997                         if (!found)
2998                                 intel_hdmi_init(dev, HDMIB);
2999                 }
3000
3001                 if (I915_READ(HDMIC) & PORT_DETECTED)
3002                         intel_hdmi_init(dev, HDMIC);
3003
3004                 if (I915_READ(HDMID) & PORT_DETECTED)
3005                         intel_hdmi_init(dev, HDMID);
3006
3007         } else if (IS_I9XX(dev)) {
3008                 int found;
3009                 u32 reg;
3010
3011                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3012                         found = intel_sdvo_init(dev, SDVOB);
3013                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3014                                 intel_hdmi_init(dev, SDVOB);
3015                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3016                                 intel_dp_init(dev, DP_B);
3017                 }
3018
3019                 /* Before G4X SDVOC doesn't have its own detect register */
3020                 if (IS_G4X(dev))
3021                         reg = SDVOC;
3022                 else
3023                         reg = SDVOB;
3024
3025                 if (I915_READ(reg) & SDVO_DETECTED) {
3026                         found = intel_sdvo_init(dev, SDVOC);
3027                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3028                                 intel_hdmi_init(dev, SDVOC);
3029                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3030                                 intel_dp_init(dev, DP_C);
3031                 }
3032                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3033                         intel_dp_init(dev, DP_D);
3034         } else
3035                 intel_dvo_init(dev);
3036
3037         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
3038                 intel_tv_init(dev);
3039
3040         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3041                 struct intel_output *intel_output = to_intel_output(connector);
3042                 struct drm_encoder *encoder = &intel_output->enc;
3043                 int crtc_mask = 0, clone_mask = 0;
3044
3045                 /* valid crtcs */
3046                 switch(intel_output->type) {
3047                 case INTEL_OUTPUT_HDMI:
3048                         crtc_mask = ((1 << 0)|
3049                                      (1 << 1));
3050                         clone_mask = ((1 << INTEL_OUTPUT_HDMI));
3051                         break;
3052                 case INTEL_OUTPUT_DVO:
3053                 case INTEL_OUTPUT_SDVO:
3054                         crtc_mask = ((1 << 0)|
3055                                      (1 << 1));
3056                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3057                                       (1 << INTEL_OUTPUT_DVO) |
3058                                       (1 << INTEL_OUTPUT_SDVO));
3059                         break;
3060                 case INTEL_OUTPUT_ANALOG:
3061                         crtc_mask = ((1 << 0)|
3062                                      (1 << 1));
3063                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3064                                       (1 << INTEL_OUTPUT_DVO) |
3065                                       (1 << INTEL_OUTPUT_SDVO));
3066                         break;
3067                 case INTEL_OUTPUT_LVDS:
3068                         crtc_mask = (1 << 1);
3069                         clone_mask = (1 << INTEL_OUTPUT_LVDS);
3070                         break;
3071                 case INTEL_OUTPUT_TVOUT:
3072                         crtc_mask = ((1 << 0) |
3073                                      (1 << 1));
3074                         clone_mask = (1 << INTEL_OUTPUT_TVOUT);
3075                         break;
3076                 case INTEL_OUTPUT_DISPLAYPORT:
3077                         crtc_mask = ((1 << 0) |
3078                                      (1 << 1));
3079                         clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
3080                         break;
3081                 }
3082                 encoder->possible_crtcs = crtc_mask;
3083                 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
3084         }
3085 }
3086
3087 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3088 {
3089         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3090         struct drm_device *dev = fb->dev;
3091
3092         if (fb->fbdev)
3093                 intelfb_remove(dev, fb);
3094
3095         drm_framebuffer_cleanup(fb);
3096         mutex_lock(&dev->struct_mutex);
3097         drm_gem_object_unreference(intel_fb->obj);
3098         mutex_unlock(&dev->struct_mutex);
3099
3100         kfree(intel_fb);
3101 }
3102
3103 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3104                                                 struct drm_file *file_priv,
3105                                                 unsigned int *handle)
3106 {
3107         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3108         struct drm_gem_object *object = intel_fb->obj;
3109
3110         return drm_gem_handle_create(file_priv, object, handle);
3111 }
3112
3113 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3114         .destroy = intel_user_framebuffer_destroy,
3115         .create_handle = intel_user_framebuffer_create_handle,
3116 };
3117
3118 int intel_framebuffer_create(struct drm_device *dev,
3119                              struct drm_mode_fb_cmd *mode_cmd,
3120                              struct drm_framebuffer **fb,
3121                              struct drm_gem_object *obj)
3122 {
3123         struct intel_framebuffer *intel_fb;
3124         int ret;
3125
3126         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3127         if (!intel_fb)
3128                 return -ENOMEM;
3129
3130         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3131         if (ret) {
3132                 DRM_ERROR("framebuffer init failed %d\n", ret);
3133                 return ret;
3134         }
3135
3136         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3137
3138         intel_fb->obj = obj;
3139
3140         *fb = &intel_fb->base;
3141
3142         return 0;
3143 }
3144
3145
3146 static struct drm_framebuffer *
3147 intel_user_framebuffer_create(struct drm_device *dev,
3148                               struct drm_file *filp,
3149                               struct drm_mode_fb_cmd *mode_cmd)
3150 {
3151         struct drm_gem_object *obj;
3152         struct drm_framebuffer *fb;
3153         int ret;
3154
3155         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3156         if (!obj)
3157                 return NULL;
3158
3159         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3160         if (ret) {
3161                 mutex_lock(&dev->struct_mutex);
3162                 drm_gem_object_unreference(obj);
3163                 mutex_unlock(&dev->struct_mutex);
3164                 return NULL;
3165         }
3166
3167         return fb;
3168 }
3169
3170 static const struct drm_mode_config_funcs intel_mode_funcs = {
3171         .fb_create = intel_user_framebuffer_create,
3172         .fb_changed = intelfb_probe,
3173 };
3174
3175 void intel_modeset_init(struct drm_device *dev)
3176 {
3177         int num_pipe;
3178         int i;
3179
3180         drm_mode_config_init(dev);
3181
3182         dev->mode_config.min_width = 0;
3183         dev->mode_config.min_height = 0;
3184
3185         dev->mode_config.funcs = (void *)&intel_mode_funcs;
3186
3187         if (IS_I965G(dev)) {
3188                 dev->mode_config.max_width = 8192;
3189                 dev->mode_config.max_height = 8192;
3190         } else if (IS_I9XX(dev)) {
3191                 dev->mode_config.max_width = 4096;
3192                 dev->mode_config.max_height = 4096;
3193         } else {
3194                 dev->mode_config.max_width = 2048;
3195                 dev->mode_config.max_height = 2048;
3196         }
3197
3198         /* set memory base */
3199         if (IS_I9XX(dev))
3200                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3201         else
3202                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3203
3204         if (IS_MOBILE(dev) || IS_I9XX(dev))
3205                 num_pipe = 2;
3206         else
3207                 num_pipe = 1;
3208         DRM_DEBUG("%d display pipe%s available.\n",
3209                   num_pipe, num_pipe > 1 ? "s" : "");
3210
3211         for (i = 0; i < num_pipe; i++) {
3212                 intel_crtc_init(dev, i);
3213         }
3214
3215         intel_setup_outputs(dev);
3216 }
3217
3218 void intel_modeset_cleanup(struct drm_device *dev)
3219 {
3220         drm_mode_config_cleanup(dev);
3221 }
3222
3223
3224 /* current intel driver doesn't take advantage of encoders
3225    always give back the encoder for the connector
3226 */
3227 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3228 {
3229         struct intel_output *intel_output = to_intel_output(connector);
3230
3231         return &intel_output->enc;
3232 }