drm/i915: add GEM GTT mapping support
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33
34 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
35
36 static void
37 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
38                                   uint32_t read_domains,
39                                   uint32_t write_domain);
40 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj,
44                                              int write);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46                                              int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48                                                      uint64_t offset,
49                                                      uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
52 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
53 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
54 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
55                                            unsigned alignment);
56 static void i915_gem_object_get_fence_reg(struct drm_gem_object *obj);
57 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
58 static int i915_gem_evict_something(struct drm_device *dev);
59
60 static void
61 i915_gem_cleanup_ringbuffer(struct drm_device *dev);
62
63 int
64 i915_gem_init_ioctl(struct drm_device *dev, void *data,
65                     struct drm_file *file_priv)
66 {
67         drm_i915_private_t *dev_priv = dev->dev_private;
68         struct drm_i915_gem_init *args = data;
69
70         mutex_lock(&dev->struct_mutex);
71
72         if (args->gtt_start >= args->gtt_end ||
73             (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
74             (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
75                 mutex_unlock(&dev->struct_mutex);
76                 return -EINVAL;
77         }
78
79         drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
80             args->gtt_end - args->gtt_start);
81
82         dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
83
84         mutex_unlock(&dev->struct_mutex);
85
86         return 0;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int handle, ret;
116
117         args->size = roundup(args->size, PAGE_SIZE);
118
119         /* Allocate the new object */
120         obj = drm_gem_object_alloc(dev, args->size);
121         if (obj == NULL)
122                 return -ENOMEM;
123
124         ret = drm_gem_handle_create(file_priv, obj, &handle);
125         mutex_lock(&dev->struct_mutex);
126         drm_gem_object_handle_unreference(obj);
127         mutex_unlock(&dev->struct_mutex);
128
129         if (ret)
130                 return ret;
131
132         args->handle = handle;
133
134         return 0;
135 }
136
137 /**
138  * Reads data from the object referenced by handle.
139  *
140  * On error, the contents of *data are undefined.
141  */
142 int
143 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
144                      struct drm_file *file_priv)
145 {
146         struct drm_i915_gem_pread *args = data;
147         struct drm_gem_object *obj;
148         struct drm_i915_gem_object *obj_priv;
149         ssize_t read;
150         loff_t offset;
151         int ret;
152
153         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
154         if (obj == NULL)
155                 return -EBADF;
156         obj_priv = obj->driver_private;
157
158         /* Bounds check source.
159          *
160          * XXX: This could use review for overflow issues...
161          */
162         if (args->offset > obj->size || args->size > obj->size ||
163             args->offset + args->size > obj->size) {
164                 drm_gem_object_unreference(obj);
165                 return -EINVAL;
166         }
167
168         mutex_lock(&dev->struct_mutex);
169
170         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
171                                                         args->size);
172         if (ret != 0) {
173                 drm_gem_object_unreference(obj);
174                 mutex_unlock(&dev->struct_mutex);
175                 return ret;
176         }
177
178         offset = args->offset;
179
180         read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
181                         args->size, &offset);
182         if (read != args->size) {
183                 drm_gem_object_unreference(obj);
184                 mutex_unlock(&dev->struct_mutex);
185                 if (read < 0)
186                         return read;
187                 else
188                         return -EINVAL;
189         }
190
191         drm_gem_object_unreference(obj);
192         mutex_unlock(&dev->struct_mutex);
193
194         return 0;
195 }
196
197 /* This is the fast write path which cannot handle
198  * page faults in the source data
199  */
200
201 static inline int
202 fast_user_write(struct io_mapping *mapping,
203                 loff_t page_base, int page_offset,
204                 char __user *user_data,
205                 int length)
206 {
207         char *vaddr_atomic;
208         unsigned long unwritten;
209
210         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
211         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
212                                                       user_data, length);
213         io_mapping_unmap_atomic(vaddr_atomic);
214         if (unwritten)
215                 return -EFAULT;
216         return 0;
217 }
218
219 /* Here's the write path which can sleep for
220  * page faults
221  */
222
223 static inline int
224 slow_user_write(struct io_mapping *mapping,
225                 loff_t page_base, int page_offset,
226                 char __user *user_data,
227                 int length)
228 {
229         char __iomem *vaddr;
230         unsigned long unwritten;
231
232         vaddr = io_mapping_map_wc(mapping, page_base);
233         if (vaddr == NULL)
234                 return -EFAULT;
235         unwritten = __copy_from_user(vaddr + page_offset,
236                                      user_data, length);
237         io_mapping_unmap(vaddr);
238         if (unwritten)
239                 return -EFAULT;
240         return 0;
241 }
242
243 static int
244 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
245                     struct drm_i915_gem_pwrite *args,
246                     struct drm_file *file_priv)
247 {
248         struct drm_i915_gem_object *obj_priv = obj->driver_private;
249         drm_i915_private_t *dev_priv = dev->dev_private;
250         ssize_t remain;
251         loff_t offset, page_base;
252         char __user *user_data;
253         int page_offset, page_length;
254         int ret;
255
256         user_data = (char __user *) (uintptr_t) args->data_ptr;
257         remain = args->size;
258         if (!access_ok(VERIFY_READ, user_data, remain))
259                 return -EFAULT;
260
261
262         mutex_lock(&dev->struct_mutex);
263         ret = i915_gem_object_pin(obj, 0);
264         if (ret) {
265                 mutex_unlock(&dev->struct_mutex);
266                 return ret;
267         }
268         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
269         if (ret)
270                 goto fail;
271
272         obj_priv = obj->driver_private;
273         offset = obj_priv->gtt_offset + args->offset;
274         obj_priv->dirty = 1;
275
276         while (remain > 0) {
277                 /* Operation in this page
278                  *
279                  * page_base = page offset within aperture
280                  * page_offset = offset within page
281                  * page_length = bytes to copy for this page
282                  */
283                 page_base = (offset & ~(PAGE_SIZE-1));
284                 page_offset = offset & (PAGE_SIZE-1);
285                 page_length = remain;
286                 if ((page_offset + remain) > PAGE_SIZE)
287                         page_length = PAGE_SIZE - page_offset;
288
289                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
290                                        page_offset, user_data, page_length);
291
292                 /* If we get a fault while copying data, then (presumably) our
293                  * source page isn't available. In this case, use the
294                  * non-atomic function
295                  */
296                 if (ret) {
297                         ret = slow_user_write (dev_priv->mm.gtt_mapping,
298                                                page_base, page_offset,
299                                                user_data, page_length);
300                         if (ret)
301                                 goto fail;
302                 }
303
304                 remain -= page_length;
305                 user_data += page_length;
306                 offset += page_length;
307         }
308
309 fail:
310         i915_gem_object_unpin(obj);
311         mutex_unlock(&dev->struct_mutex);
312
313         return ret;
314 }
315
316 static int
317 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
318                       struct drm_i915_gem_pwrite *args,
319                       struct drm_file *file_priv)
320 {
321         int ret;
322         loff_t offset;
323         ssize_t written;
324
325         mutex_lock(&dev->struct_mutex);
326
327         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
328         if (ret) {
329                 mutex_unlock(&dev->struct_mutex);
330                 return ret;
331         }
332
333         offset = args->offset;
334
335         written = vfs_write(obj->filp,
336                             (char __user *)(uintptr_t) args->data_ptr,
337                             args->size, &offset);
338         if (written != args->size) {
339                 mutex_unlock(&dev->struct_mutex);
340                 if (written < 0)
341                         return written;
342                 else
343                         return -EINVAL;
344         }
345
346         mutex_unlock(&dev->struct_mutex);
347
348         return 0;
349 }
350
351 /**
352  * Writes data to the object referenced by handle.
353  *
354  * On error, the contents of the buffer that were to be modified are undefined.
355  */
356 int
357 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
358                       struct drm_file *file_priv)
359 {
360         struct drm_i915_gem_pwrite *args = data;
361         struct drm_gem_object *obj;
362         struct drm_i915_gem_object *obj_priv;
363         int ret = 0;
364
365         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
366         if (obj == NULL)
367                 return -EBADF;
368         obj_priv = obj->driver_private;
369
370         /* Bounds check destination.
371          *
372          * XXX: This could use review for overflow issues...
373          */
374         if (args->offset > obj->size || args->size > obj->size ||
375             args->offset + args->size > obj->size) {
376                 drm_gem_object_unreference(obj);
377                 return -EINVAL;
378         }
379
380         /* We can only do the GTT pwrite on untiled buffers, as otherwise
381          * it would end up going through the fenced access, and we'll get
382          * different detiling behavior between reading and writing.
383          * pread/pwrite currently are reading and writing from the CPU
384          * perspective, requiring manual detiling by the client.
385          */
386         if (obj_priv->tiling_mode == I915_TILING_NONE &&
387             dev->gtt_total != 0)
388                 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
389         else
390                 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
391
392 #if WATCH_PWRITE
393         if (ret)
394                 DRM_INFO("pwrite failed %d\n", ret);
395 #endif
396
397         drm_gem_object_unreference(obj);
398
399         return ret;
400 }
401
402 /**
403  * Called when user space prepares to use an object with the CPU, either
404  * through the mmap ioctl's mapping or a GTT mapping.
405  */
406 int
407 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
408                           struct drm_file *file_priv)
409 {
410         struct drm_i915_gem_set_domain *args = data;
411         struct drm_gem_object *obj;
412         uint32_t read_domains = args->read_domains;
413         uint32_t write_domain = args->write_domain;
414         int ret;
415
416         if (!(dev->driver->driver_features & DRIVER_GEM))
417                 return -ENODEV;
418
419         /* Only handle setting domains to types used by the CPU. */
420         if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
421                 return -EINVAL;
422
423         if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
424                 return -EINVAL;
425
426         /* Having something in the write domain implies it's in the read
427          * domain, and only that read domain.  Enforce that in the request.
428          */
429         if (write_domain != 0 && read_domains != write_domain)
430                 return -EINVAL;
431
432         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
433         if (obj == NULL)
434                 return -EBADF;
435
436         mutex_lock(&dev->struct_mutex);
437 #if WATCH_BUF
438         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
439                  obj, obj->size, read_domains, write_domain);
440 #endif
441         if (read_domains & I915_GEM_DOMAIN_GTT) {
442                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
443
444                 /* Silently promote "you're not bound, there was nothing to do"
445                  * to success, since the client was just asking us to
446                  * make sure everything was done.
447                  */
448                 if (ret == -EINVAL)
449                         ret = 0;
450         } else {
451                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
452         }
453
454         drm_gem_object_unreference(obj);
455         mutex_unlock(&dev->struct_mutex);
456         return ret;
457 }
458
459 /**
460  * Called when user space has done writes to this buffer
461  */
462 int
463 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
464                       struct drm_file *file_priv)
465 {
466         struct drm_i915_gem_sw_finish *args = data;
467         struct drm_gem_object *obj;
468         struct drm_i915_gem_object *obj_priv;
469         int ret = 0;
470
471         if (!(dev->driver->driver_features & DRIVER_GEM))
472                 return -ENODEV;
473
474         mutex_lock(&dev->struct_mutex);
475         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
476         if (obj == NULL) {
477                 mutex_unlock(&dev->struct_mutex);
478                 return -EBADF;
479         }
480
481 #if WATCH_BUF
482         DRM_INFO("%s: sw_finish %d (%p %d)\n",
483                  __func__, args->handle, obj, obj->size);
484 #endif
485         obj_priv = obj->driver_private;
486
487         /* Pinned buffers may be scanout, so flush the cache */
488         if (obj_priv->pin_count)
489                 i915_gem_object_flush_cpu_write_domain(obj);
490
491         drm_gem_object_unreference(obj);
492         mutex_unlock(&dev->struct_mutex);
493         return ret;
494 }
495
496 /**
497  * Maps the contents of an object, returning the address it is mapped
498  * into.
499  *
500  * While the mapping holds a reference on the contents of the object, it doesn't
501  * imply a ref on the object itself.
502  */
503 int
504 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
505                    struct drm_file *file_priv)
506 {
507         struct drm_i915_gem_mmap *args = data;
508         struct drm_gem_object *obj;
509         loff_t offset;
510         unsigned long addr;
511
512         if (!(dev->driver->driver_features & DRIVER_GEM))
513                 return -ENODEV;
514
515         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
516         if (obj == NULL)
517                 return -EBADF;
518
519         offset = args->offset;
520
521         down_write(&current->mm->mmap_sem);
522         addr = do_mmap(obj->filp, 0, args->size,
523                        PROT_READ | PROT_WRITE, MAP_SHARED,
524                        args->offset);
525         up_write(&current->mm->mmap_sem);
526         mutex_lock(&dev->struct_mutex);
527         drm_gem_object_unreference(obj);
528         mutex_unlock(&dev->struct_mutex);
529         if (IS_ERR((void *)addr))
530                 return addr;
531
532         args->addr_ptr = (uint64_t) addr;
533
534         return 0;
535 }
536
537 /**
538  * i915_gem_fault - fault a page into the GTT
539  * vma: VMA in question
540  * vmf: fault info
541  *
542  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
543  * from userspace.  The fault handler takes care of binding the object to
544  * the GTT (if needed), allocating and programming a fence register (again,
545  * only if needed based on whether the old reg is still valid or the object
546  * is tiled) and inserting a new PTE into the faulting process.
547  *
548  * Note that the faulting process may involve evicting existing objects
549  * from the GTT and/or fence registers to make room.  So performance may
550  * suffer if the GTT working set is large or there are few fence registers
551  * left.
552  */
553 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
554 {
555         struct drm_gem_object *obj = vma->vm_private_data;
556         struct drm_device *dev = obj->dev;
557         struct drm_i915_private *dev_priv = dev->dev_private;
558         struct drm_i915_gem_object *obj_priv = obj->driver_private;
559         pgoff_t page_offset;
560         unsigned long pfn;
561         int ret = 0;
562
563         /* We don't use vmf->pgoff since that has the fake offset */
564         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
565                 PAGE_SHIFT;
566
567         /* Now bind it into the GTT if needed */
568         mutex_lock(&dev->struct_mutex);
569         if (!obj_priv->gtt_space) {
570                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
571                 if (ret) {
572                         mutex_unlock(&dev->struct_mutex);
573                         return VM_FAULT_SIGBUS;
574                 }
575                 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
576         }
577
578         /* Need a new fence register? */
579         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
580             obj_priv->tiling_mode != I915_TILING_NONE)
581                 i915_gem_object_get_fence_reg(obj);
582
583         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
584                 page_offset;
585
586         /* Finally, remap it using the new GTT offset */
587         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
588
589         mutex_unlock(&dev->struct_mutex);
590
591         switch (ret) {
592         case -ENOMEM:
593         case -EAGAIN:
594                 return VM_FAULT_OOM;
595         case -EFAULT:
596         case -EBUSY:
597                 DRM_ERROR("can't insert pfn??  fault or busy...\n");
598                 return VM_FAULT_SIGBUS;
599         default:
600                 return VM_FAULT_NOPAGE;
601         }
602 }
603
604 /**
605  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
606  * @obj: obj in question
607  *
608  * GEM memory mapping works by handing back to userspace a fake mmap offset
609  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
610  * up the object based on the offset and sets up the various memory mapping
611  * structures.
612  *
613  * This routine allocates and attaches a fake offset for @obj.
614  */
615 static int
616 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
617 {
618         struct drm_device *dev = obj->dev;
619         struct drm_gem_mm *mm = dev->mm_private;
620         struct drm_i915_gem_object *obj_priv = obj->driver_private;
621         struct drm_map_list *list;
622         struct drm_map *map;
623         int ret = 0;
624
625         /* Set the object up for mmap'ing */
626         list = &obj->map_list;
627         list->map = drm_calloc(1, sizeof(struct drm_map_list),
628                                DRM_MEM_DRIVER);
629         if (!list->map)
630                 return -ENOMEM;
631
632         map = list->map;
633         map->type = _DRM_GEM;
634         map->size = obj->size;
635         map->handle = obj;
636
637         /* Get a DRM GEM mmap offset allocated... */
638         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
639                                                     obj->size / PAGE_SIZE, 0, 0);
640         if (!list->file_offset_node) {
641                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
642                 ret = -ENOMEM;
643                 goto out_free_list;
644         }
645
646         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
647                                                   obj->size / PAGE_SIZE, 0);
648         if (!list->file_offset_node) {
649                 ret = -ENOMEM;
650                 goto out_free_list;
651         }
652
653         list->hash.key = list->file_offset_node->start;
654         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
655                 DRM_ERROR("failed to add to map hash\n");
656                 goto out_free_mm;
657         }
658
659         /* By now we should be all set, any drm_mmap request on the offset
660          * below will get to our mmap & fault handler */
661         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
662
663         return 0;
664
665 out_free_mm:
666         drm_mm_put_block(list->file_offset_node);
667 out_free_list:
668         drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
669
670         return ret;
671 }
672
673 /**
674  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
675  * @obj: object to check
676  *
677  * Return the required GTT alignment for an object, taking into account
678  * potential fence register mapping if needed.
679  */
680 static uint32_t
681 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
682 {
683         struct drm_device *dev = obj->dev;
684         struct drm_i915_gem_object *obj_priv = obj->driver_private;
685         int start, i;
686
687         /*
688          * Minimum alignment is 4k (GTT page size), but might be greater
689          * if a fence register is needed for the object.
690          */
691         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
692                 return 4096;
693
694         /*
695          * Previous chips need to be aligned to the size of the smallest
696          * fence register that can contain the object.
697          */
698         if (IS_I9XX(dev))
699                 start = 1024*1024;
700         else
701                 start = 512*1024;
702
703         for (i = start; i < obj->size; i <<= 1)
704                 ;
705
706         return i;
707 }
708
709 /**
710  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
711  * @dev: DRM device
712  * @data: GTT mapping ioctl data
713  * @file_priv: GEM object info
714  *
715  * Simply returns the fake offset to userspace so it can mmap it.
716  * The mmap call will end up in drm_gem_mmap(), which will set things
717  * up so we can get faults in the handler above.
718  *
719  * The fault handler will take care of binding the object into the GTT
720  * (since it may have been evicted to make room for something), allocating
721  * a fence register, and mapping the appropriate aperture address into
722  * userspace.
723  */
724 int
725 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
726                         struct drm_file *file_priv)
727 {
728         struct drm_i915_gem_mmap_gtt *args = data;
729         struct drm_i915_private *dev_priv = dev->dev_private;
730         struct drm_gem_object *obj;
731         struct drm_i915_gem_object *obj_priv;
732         int ret;
733
734         if (!(dev->driver->driver_features & DRIVER_GEM))
735                 return -ENODEV;
736
737         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
738         if (obj == NULL)
739                 return -EBADF;
740
741         mutex_lock(&dev->struct_mutex);
742
743         obj_priv = obj->driver_private;
744
745         if (!obj_priv->mmap_offset) {
746                 ret = i915_gem_create_mmap_offset(obj);
747                 if (ret)
748                         return ret;
749         }
750
751         args->offset = obj_priv->mmap_offset;
752
753         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
754
755         /* Make sure the alignment is correct for fence regs etc */
756         if (obj_priv->agp_mem &&
757             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
758                 drm_gem_object_unreference(obj);
759                 mutex_unlock(&dev->struct_mutex);
760                 return -EINVAL;
761         }
762
763         /*
764          * Pull it into the GTT so that we have a page list (makes the
765          * initial fault faster and any subsequent flushing possible).
766          */
767         if (!obj_priv->agp_mem) {
768                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
769                 if (ret) {
770                         drm_gem_object_unreference(obj);
771                         mutex_unlock(&dev->struct_mutex);
772                         return ret;
773                 }
774                 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
775         }
776
777         drm_gem_object_unreference(obj);
778         mutex_unlock(&dev->struct_mutex);
779
780         return 0;
781 }
782
783 static void
784 i915_gem_object_free_page_list(struct drm_gem_object *obj)
785 {
786         struct drm_i915_gem_object *obj_priv = obj->driver_private;
787         int page_count = obj->size / PAGE_SIZE;
788         int i;
789
790         if (obj_priv->page_list == NULL)
791                 return;
792
793
794         for (i = 0; i < page_count; i++)
795                 if (obj_priv->page_list[i] != NULL) {
796                         if (obj_priv->dirty)
797                                 set_page_dirty(obj_priv->page_list[i]);
798                         mark_page_accessed(obj_priv->page_list[i]);
799                         page_cache_release(obj_priv->page_list[i]);
800                 }
801         obj_priv->dirty = 0;
802
803         drm_free(obj_priv->page_list,
804                  page_count * sizeof(struct page *),
805                  DRM_MEM_DRIVER);
806         obj_priv->page_list = NULL;
807 }
808
809 static void
810 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
811 {
812         struct drm_device *dev = obj->dev;
813         drm_i915_private_t *dev_priv = dev->dev_private;
814         struct drm_i915_gem_object *obj_priv = obj->driver_private;
815
816         /* Add a reference if we're newly entering the active list. */
817         if (!obj_priv->active) {
818                 drm_gem_object_reference(obj);
819                 obj_priv->active = 1;
820         }
821         /* Move from whatever list we were on to the tail of execution. */
822         list_move_tail(&obj_priv->list,
823                        &dev_priv->mm.active_list);
824         obj_priv->last_rendering_seqno = seqno;
825 }
826
827 static void
828 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
829 {
830         struct drm_device *dev = obj->dev;
831         drm_i915_private_t *dev_priv = dev->dev_private;
832         struct drm_i915_gem_object *obj_priv = obj->driver_private;
833
834         BUG_ON(!obj_priv->active);
835         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
836         obj_priv->last_rendering_seqno = 0;
837 }
838
839 static void
840 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
841 {
842         struct drm_device *dev = obj->dev;
843         drm_i915_private_t *dev_priv = dev->dev_private;
844         struct drm_i915_gem_object *obj_priv = obj->driver_private;
845
846         i915_verify_inactive(dev, __FILE__, __LINE__);
847         if (obj_priv->pin_count != 0)
848                 list_del_init(&obj_priv->list);
849         else
850                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
851
852         obj_priv->last_rendering_seqno = 0;
853         if (obj_priv->active) {
854                 obj_priv->active = 0;
855                 drm_gem_object_unreference(obj);
856         }
857         i915_verify_inactive(dev, __FILE__, __LINE__);
858 }
859
860 /**
861  * Creates a new sequence number, emitting a write of it to the status page
862  * plus an interrupt, which will trigger i915_user_interrupt_handler.
863  *
864  * Must be called with struct_lock held.
865  *
866  * Returned sequence numbers are nonzero on success.
867  */
868 static uint32_t
869 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
870 {
871         drm_i915_private_t *dev_priv = dev->dev_private;
872         struct drm_i915_gem_request *request;
873         uint32_t seqno;
874         int was_empty;
875         RING_LOCALS;
876
877         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
878         if (request == NULL)
879                 return 0;
880
881         /* Grab the seqno we're going to make this request be, and bump the
882          * next (skipping 0 so it can be the reserved no-seqno value).
883          */
884         seqno = dev_priv->mm.next_gem_seqno;
885         dev_priv->mm.next_gem_seqno++;
886         if (dev_priv->mm.next_gem_seqno == 0)
887                 dev_priv->mm.next_gem_seqno++;
888
889         BEGIN_LP_RING(4);
890         OUT_RING(MI_STORE_DWORD_INDEX);
891         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
892         OUT_RING(seqno);
893
894         OUT_RING(MI_USER_INTERRUPT);
895         ADVANCE_LP_RING();
896
897         DRM_DEBUG("%d\n", seqno);
898
899         request->seqno = seqno;
900         request->emitted_jiffies = jiffies;
901         was_empty = list_empty(&dev_priv->mm.request_list);
902         list_add_tail(&request->list, &dev_priv->mm.request_list);
903
904         /* Associate any objects on the flushing list matching the write
905          * domain we're flushing with our flush.
906          */
907         if (flush_domains != 0) {
908                 struct drm_i915_gem_object *obj_priv, *next;
909
910                 list_for_each_entry_safe(obj_priv, next,
911                                          &dev_priv->mm.flushing_list, list) {
912                         struct drm_gem_object *obj = obj_priv->obj;
913
914                         if ((obj->write_domain & flush_domains) ==
915                             obj->write_domain) {
916                                 obj->write_domain = 0;
917                                 i915_gem_object_move_to_active(obj, seqno);
918                         }
919                 }
920
921         }
922
923         if (was_empty && !dev_priv->mm.suspended)
924                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
925         return seqno;
926 }
927
928 /**
929  * Command execution barrier
930  *
931  * Ensures that all commands in the ring are finished
932  * before signalling the CPU
933  */
934 static uint32_t
935 i915_retire_commands(struct drm_device *dev)
936 {
937         drm_i915_private_t *dev_priv = dev->dev_private;
938         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
939         uint32_t flush_domains = 0;
940         RING_LOCALS;
941
942         /* The sampler always gets flushed on i965 (sigh) */
943         if (IS_I965G(dev))
944                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
945         BEGIN_LP_RING(2);
946         OUT_RING(cmd);
947         OUT_RING(0); /* noop */
948         ADVANCE_LP_RING();
949         return flush_domains;
950 }
951
952 /**
953  * Moves buffers associated only with the given active seqno from the active
954  * to inactive list, potentially freeing them.
955  */
956 static void
957 i915_gem_retire_request(struct drm_device *dev,
958                         struct drm_i915_gem_request *request)
959 {
960         drm_i915_private_t *dev_priv = dev->dev_private;
961
962         /* Move any buffers on the active list that are no longer referenced
963          * by the ringbuffer to the flushing/inactive lists as appropriate.
964          */
965         while (!list_empty(&dev_priv->mm.active_list)) {
966                 struct drm_gem_object *obj;
967                 struct drm_i915_gem_object *obj_priv;
968
969                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
970                                             struct drm_i915_gem_object,
971                                             list);
972                 obj = obj_priv->obj;
973
974                 /* If the seqno being retired doesn't match the oldest in the
975                  * list, then the oldest in the list must still be newer than
976                  * this seqno.
977                  */
978                 if (obj_priv->last_rendering_seqno != request->seqno)
979                         return;
980
981 #if WATCH_LRU
982                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
983                          __func__, request->seqno, obj);
984 #endif
985
986                 if (obj->write_domain != 0)
987                         i915_gem_object_move_to_flushing(obj);
988                 else
989                         i915_gem_object_move_to_inactive(obj);
990         }
991 }
992
993 /**
994  * Returns true if seq1 is later than seq2.
995  */
996 static int
997 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
998 {
999         return (int32_t)(seq1 - seq2) >= 0;
1000 }
1001
1002 uint32_t
1003 i915_get_gem_seqno(struct drm_device *dev)
1004 {
1005         drm_i915_private_t *dev_priv = dev->dev_private;
1006
1007         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1008 }
1009
1010 /**
1011  * This function clears the request list as sequence numbers are passed.
1012  */
1013 void
1014 i915_gem_retire_requests(struct drm_device *dev)
1015 {
1016         drm_i915_private_t *dev_priv = dev->dev_private;
1017         uint32_t seqno;
1018
1019         seqno = i915_get_gem_seqno(dev);
1020
1021         while (!list_empty(&dev_priv->mm.request_list)) {
1022                 struct drm_i915_gem_request *request;
1023                 uint32_t retiring_seqno;
1024
1025                 request = list_first_entry(&dev_priv->mm.request_list,
1026                                            struct drm_i915_gem_request,
1027                                            list);
1028                 retiring_seqno = request->seqno;
1029
1030                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1031                     dev_priv->mm.wedged) {
1032                         i915_gem_retire_request(dev, request);
1033
1034                         list_del(&request->list);
1035                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1036                 } else
1037                         break;
1038         }
1039 }
1040
1041 void
1042 i915_gem_retire_work_handler(struct work_struct *work)
1043 {
1044         drm_i915_private_t *dev_priv;
1045         struct drm_device *dev;
1046
1047         dev_priv = container_of(work, drm_i915_private_t,
1048                                 mm.retire_work.work);
1049         dev = dev_priv->dev;
1050
1051         mutex_lock(&dev->struct_mutex);
1052         i915_gem_retire_requests(dev);
1053         if (!dev_priv->mm.suspended &&
1054             !list_empty(&dev_priv->mm.request_list))
1055                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1056         mutex_unlock(&dev->struct_mutex);
1057 }
1058
1059 /**
1060  * Waits for a sequence number to be signaled, and cleans up the
1061  * request and object lists appropriately for that event.
1062  */
1063 static int
1064 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1065 {
1066         drm_i915_private_t *dev_priv = dev->dev_private;
1067         int ret = 0;
1068
1069         BUG_ON(seqno == 0);
1070
1071         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1072                 dev_priv->mm.waiting_gem_seqno = seqno;
1073                 i915_user_irq_get(dev);
1074                 ret = wait_event_interruptible(dev_priv->irq_queue,
1075                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1076                                                                  seqno) ||
1077                                                dev_priv->mm.wedged);
1078                 i915_user_irq_put(dev);
1079                 dev_priv->mm.waiting_gem_seqno = 0;
1080         }
1081         if (dev_priv->mm.wedged)
1082                 ret = -EIO;
1083
1084         if (ret && ret != -ERESTARTSYS)
1085                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1086                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1087
1088         /* Directly dispatch request retiring.  While we have the work queue
1089          * to handle this, the waiter on a request often wants an associated
1090          * buffer to have made it to the inactive list, and we would need
1091          * a separate wait queue to handle that.
1092          */
1093         if (ret == 0)
1094                 i915_gem_retire_requests(dev);
1095
1096         return ret;
1097 }
1098
1099 static void
1100 i915_gem_flush(struct drm_device *dev,
1101                uint32_t invalidate_domains,
1102                uint32_t flush_domains)
1103 {
1104         drm_i915_private_t *dev_priv = dev->dev_private;
1105         uint32_t cmd;
1106         RING_LOCALS;
1107
1108 #if WATCH_EXEC
1109         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1110                   invalidate_domains, flush_domains);
1111 #endif
1112
1113         if (flush_domains & I915_GEM_DOMAIN_CPU)
1114                 drm_agp_chipset_flush(dev);
1115
1116         if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1117                                                      I915_GEM_DOMAIN_GTT)) {
1118                 /*
1119                  * read/write caches:
1120                  *
1121                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1122                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1123                  * also flushed at 2d versus 3d pipeline switches.
1124                  *
1125                  * read-only caches:
1126                  *
1127                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1128                  * MI_READ_FLUSH is set, and is always flushed on 965.
1129                  *
1130                  * I915_GEM_DOMAIN_COMMAND may not exist?
1131                  *
1132                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1133                  * invalidated when MI_EXE_FLUSH is set.
1134                  *
1135                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1136                  * invalidated with every MI_FLUSH.
1137                  *
1138                  * TLBs:
1139                  *
1140                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1141                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1142                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1143                  * are flushed at any MI_FLUSH.
1144                  */
1145
1146                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1147                 if ((invalidate_domains|flush_domains) &
1148                     I915_GEM_DOMAIN_RENDER)
1149                         cmd &= ~MI_NO_WRITE_FLUSH;
1150                 if (!IS_I965G(dev)) {
1151                         /*
1152                          * On the 965, the sampler cache always gets flushed
1153                          * and this bit is reserved.
1154                          */
1155                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1156                                 cmd |= MI_READ_FLUSH;
1157                 }
1158                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1159                         cmd |= MI_EXE_FLUSH;
1160
1161 #if WATCH_EXEC
1162                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1163 #endif
1164                 BEGIN_LP_RING(2);
1165                 OUT_RING(cmd);
1166                 OUT_RING(0); /* noop */
1167                 ADVANCE_LP_RING();
1168         }
1169 }
1170
1171 /**
1172  * Ensures that all rendering to the object has completed and the object is
1173  * safe to unbind from the GTT or access from the CPU.
1174  */
1175 static int
1176 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1177 {
1178         struct drm_device *dev = obj->dev;
1179         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1180         int ret;
1181
1182         /* This function only exists to support waiting for existing rendering,
1183          * not for emitting required flushes.
1184          */
1185         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1186
1187         /* If there is rendering queued on the buffer being evicted, wait for
1188          * it.
1189          */
1190         if (obj_priv->active) {
1191 #if WATCH_BUF
1192                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1193                           __func__, obj, obj_priv->last_rendering_seqno);
1194 #endif
1195                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1196                 if (ret != 0)
1197                         return ret;
1198         }
1199
1200         return 0;
1201 }
1202
1203 /**
1204  * Unbinds an object from the GTT aperture.
1205  */
1206 static int
1207 i915_gem_object_unbind(struct drm_gem_object *obj)
1208 {
1209         struct drm_device *dev = obj->dev;
1210         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1211         loff_t offset;
1212         int ret = 0;
1213
1214 #if WATCH_BUF
1215         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1216         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1217 #endif
1218         if (obj_priv->gtt_space == NULL)
1219                 return 0;
1220
1221         if (obj_priv->pin_count != 0) {
1222                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1223                 return -EINVAL;
1224         }
1225
1226         /* Move the object to the CPU domain to ensure that
1227          * any possible CPU writes while it's not in the GTT
1228          * are flushed when we go to remap it. This will
1229          * also ensure that all pending GPU writes are finished
1230          * before we unbind.
1231          */
1232         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1233         if (ret) {
1234                 if (ret != -ERESTARTSYS)
1235                         DRM_ERROR("set_domain failed: %d\n", ret);
1236                 return ret;
1237         }
1238
1239         if (obj_priv->agp_mem != NULL) {
1240                 drm_unbind_agp(obj_priv->agp_mem);
1241                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1242                 obj_priv->agp_mem = NULL;
1243         }
1244
1245         BUG_ON(obj_priv->active);
1246
1247         /* blow away mappings if mapped through GTT */
1248         offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1249         unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1250
1251         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1252                 i915_gem_clear_fence_reg(obj);
1253
1254         i915_gem_object_free_page_list(obj);
1255
1256         if (obj_priv->gtt_space) {
1257                 atomic_dec(&dev->gtt_count);
1258                 atomic_sub(obj->size, &dev->gtt_memory);
1259
1260                 drm_mm_put_block(obj_priv->gtt_space);
1261                 obj_priv->gtt_space = NULL;
1262         }
1263
1264         /* Remove ourselves from the LRU list if present. */
1265         if (!list_empty(&obj_priv->list))
1266                 list_del_init(&obj_priv->list);
1267
1268         return 0;
1269 }
1270
1271 static int
1272 i915_gem_evict_something(struct drm_device *dev)
1273 {
1274         drm_i915_private_t *dev_priv = dev->dev_private;
1275         struct drm_gem_object *obj;
1276         struct drm_i915_gem_object *obj_priv;
1277         int ret = 0;
1278
1279         for (;;) {
1280                 /* If there's an inactive buffer available now, grab it
1281                  * and be done.
1282                  */
1283                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1284                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1285                                                     struct drm_i915_gem_object,
1286                                                     list);
1287                         obj = obj_priv->obj;
1288                         BUG_ON(obj_priv->pin_count != 0);
1289 #if WATCH_LRU
1290                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1291 #endif
1292                         BUG_ON(obj_priv->active);
1293
1294                         /* Wait on the rendering and unbind the buffer. */
1295                         ret = i915_gem_object_unbind(obj);
1296                         break;
1297                 }
1298
1299                 /* If we didn't get anything, but the ring is still processing
1300                  * things, wait for one of those things to finish and hopefully
1301                  * leave us a buffer to evict.
1302                  */
1303                 if (!list_empty(&dev_priv->mm.request_list)) {
1304                         struct drm_i915_gem_request *request;
1305
1306                         request = list_first_entry(&dev_priv->mm.request_list,
1307                                                    struct drm_i915_gem_request,
1308                                                    list);
1309
1310                         ret = i915_wait_request(dev, request->seqno);
1311                         if (ret)
1312                                 break;
1313
1314                         /* if waiting caused an object to become inactive,
1315                          * then loop around and wait for it. Otherwise, we
1316                          * assume that waiting freed and unbound something,
1317                          * so there should now be some space in the GTT
1318                          */
1319                         if (!list_empty(&dev_priv->mm.inactive_list))
1320                                 continue;
1321                         break;
1322                 }
1323
1324                 /* If we didn't have anything on the request list but there
1325                  * are buffers awaiting a flush, emit one and try again.
1326                  * When we wait on it, those buffers waiting for that flush
1327                  * will get moved to inactive.
1328                  */
1329                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1330                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1331                                                     struct drm_i915_gem_object,
1332                                                     list);
1333                         obj = obj_priv->obj;
1334
1335                         i915_gem_flush(dev,
1336                                        obj->write_domain,
1337                                        obj->write_domain);
1338                         i915_add_request(dev, obj->write_domain);
1339
1340                         obj = NULL;
1341                         continue;
1342                 }
1343
1344                 DRM_ERROR("inactive empty %d request empty %d "
1345                           "flushing empty %d\n",
1346                           list_empty(&dev_priv->mm.inactive_list),
1347                           list_empty(&dev_priv->mm.request_list),
1348                           list_empty(&dev_priv->mm.flushing_list));
1349                 /* If we didn't do any of the above, there's nothing to be done
1350                  * and we just can't fit it in.
1351                  */
1352                 return -ENOMEM;
1353         }
1354         return ret;
1355 }
1356
1357 static int
1358 i915_gem_evict_everything(struct drm_device *dev)
1359 {
1360         int ret;
1361
1362         for (;;) {
1363                 ret = i915_gem_evict_something(dev);
1364                 if (ret != 0)
1365                         break;
1366         }
1367         if (ret == -ENOMEM)
1368                 return 0;
1369         return ret;
1370 }
1371
1372 static int
1373 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1374 {
1375         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1376         int page_count, i;
1377         struct address_space *mapping;
1378         struct inode *inode;
1379         struct page *page;
1380         int ret;
1381
1382         if (obj_priv->page_list)
1383                 return 0;
1384
1385         /* Get the list of pages out of our struct file.  They'll be pinned
1386          * at this point until we release them.
1387          */
1388         page_count = obj->size / PAGE_SIZE;
1389         BUG_ON(obj_priv->page_list != NULL);
1390         obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1391                                          DRM_MEM_DRIVER);
1392         if (obj_priv->page_list == NULL) {
1393                 DRM_ERROR("Faled to allocate page list\n");
1394                 return -ENOMEM;
1395         }
1396
1397         inode = obj->filp->f_path.dentry->d_inode;
1398         mapping = inode->i_mapping;
1399         for (i = 0; i < page_count; i++) {
1400                 page = read_mapping_page(mapping, i, NULL);
1401                 if (IS_ERR(page)) {
1402                         ret = PTR_ERR(page);
1403                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
1404                         i915_gem_object_free_page_list(obj);
1405                         return ret;
1406                 }
1407                 obj_priv->page_list[i] = page;
1408         }
1409         return 0;
1410 }
1411
1412 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1413 {
1414         struct drm_gem_object *obj = reg->obj;
1415         struct drm_device *dev = obj->dev;
1416         drm_i915_private_t *dev_priv = dev->dev_private;
1417         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1418         int regnum = obj_priv->fence_reg;
1419         uint64_t val;
1420
1421         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1422                     0xfffff000) << 32;
1423         val |= obj_priv->gtt_offset & 0xfffff000;
1424         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1425         if (obj_priv->tiling_mode == I915_TILING_Y)
1426                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1427         val |= I965_FENCE_REG_VALID;
1428
1429         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1430 }
1431
1432 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1433 {
1434         struct drm_gem_object *obj = reg->obj;
1435         struct drm_device *dev = obj->dev;
1436         drm_i915_private_t *dev_priv = dev->dev_private;
1437         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1438         int regnum = obj_priv->fence_reg;
1439         uint32_t val;
1440         uint32_t pitch_val;
1441
1442         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1443             (obj_priv->gtt_offset & (obj->size - 1))) {
1444                 WARN(1, "%s: object not 1M or size aligned\n", __FUNCTION__);
1445                 return;
1446         }
1447
1448         if (obj_priv->tiling_mode == I915_TILING_Y && (IS_I945G(dev) ||
1449                                                        IS_I945GM(dev) ||
1450                                                        IS_G33(dev)))
1451                 pitch_val = (obj_priv->stride / 128) - 1;
1452         else
1453                 pitch_val = (obj_priv->stride / 512) - 1;
1454
1455         val = obj_priv->gtt_offset;
1456         if (obj_priv->tiling_mode == I915_TILING_Y)
1457                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1458         val |= I915_FENCE_SIZE_BITS(obj->size);
1459         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1460         val |= I830_FENCE_REG_VALID;
1461
1462         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1463 }
1464
1465 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1466 {
1467         struct drm_gem_object *obj = reg->obj;
1468         struct drm_device *dev = obj->dev;
1469         drm_i915_private_t *dev_priv = dev->dev_private;
1470         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1471         int regnum = obj_priv->fence_reg;
1472         uint32_t val;
1473         uint32_t pitch_val;
1474
1475         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1476             (obj_priv->gtt_offset & (obj->size - 1))) {
1477                 WARN(1, "%s: object not 1M or size aligned\n", __FUNCTION__);
1478                 return;
1479         }
1480
1481         pitch_val = (obj_priv->stride / 128) - 1;
1482
1483         val = obj_priv->gtt_offset;
1484         if (obj_priv->tiling_mode == I915_TILING_Y)
1485                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1486         val |= I830_FENCE_SIZE_BITS(obj->size);
1487         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1488         val |= I830_FENCE_REG_VALID;
1489
1490         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1491
1492 }
1493
1494 /**
1495  * i915_gem_object_get_fence_reg - set up a fence reg for an object
1496  * @obj: object to map through a fence reg
1497  *
1498  * When mapping objects through the GTT, userspace wants to be able to write
1499  * to them without having to worry about swizzling if the object is tiled.
1500  *
1501  * This function walks the fence regs looking for a free one for @obj,
1502  * stealing one if it can't find any.
1503  *
1504  * It then sets up the reg based on the object's properties: address, pitch
1505  * and tiling format.
1506  */
1507 static void
1508 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
1509 {
1510         struct drm_device *dev = obj->dev;
1511         drm_i915_private_t *dev_priv = dev->dev_private;
1512         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1513         struct drm_i915_fence_reg *reg = NULL;
1514         int i, ret;
1515
1516         switch (obj_priv->tiling_mode) {
1517         case I915_TILING_NONE:
1518                 WARN(1, "allocating a fence for non-tiled object?\n");
1519                 break;
1520         case I915_TILING_X:
1521                 WARN(obj_priv->stride & (512 - 1),
1522                      "object is X tiled but has non-512B pitch\n");
1523                 break;
1524         case I915_TILING_Y:
1525                 WARN(obj_priv->stride & (128 - 1),
1526                      "object is Y tiled but has non-128B pitch\n");
1527                 break;
1528         }
1529
1530         /* First try to find a free reg */
1531         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1532                 reg = &dev_priv->fence_regs[i];
1533                 if (!reg->obj)
1534                         break;
1535         }
1536
1537         /* None available, try to steal one or wait for a user to finish */
1538         if (i == dev_priv->num_fence_regs) {
1539                 struct drm_i915_gem_object *old_obj_priv = NULL;
1540                 loff_t offset;
1541
1542 try_again:
1543                 /* Could try to use LRU here instead... */
1544                 for (i = dev_priv->fence_reg_start;
1545                      i < dev_priv->num_fence_regs; i++) {
1546                         reg = &dev_priv->fence_regs[i];
1547                         old_obj_priv = reg->obj->driver_private;
1548                         if (!old_obj_priv->pin_count)
1549                                 break;
1550                 }
1551
1552                 /*
1553                  * Now things get ugly... we have to wait for one of the
1554                  * objects to finish before trying again.
1555                  */
1556                 if (i == dev_priv->num_fence_regs) {
1557                         ret = i915_gem_object_wait_rendering(reg->obj);
1558                         if (ret) {
1559                                 WARN(ret, "wait_rendering failed: %d\n", ret);
1560                                 return;
1561                         }
1562                         goto try_again;
1563                 }
1564
1565                 /*
1566                  * Zap this virtual mapping so we can set up a fence again
1567                  * for this object next time we need it.
1568                  */
1569                 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1570                 unmap_mapping_range(dev->dev_mapping, offset,
1571                                     reg->obj->size, 1);
1572                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1573         }
1574
1575         obj_priv->fence_reg = i;
1576         reg->obj = obj;
1577
1578         if (IS_I965G(dev))
1579                 i965_write_fence_reg(reg);
1580         else if (IS_I9XX(dev))
1581                 i915_write_fence_reg(reg);
1582         else
1583                 i830_write_fence_reg(reg);
1584 }
1585
1586 /**
1587  * i915_gem_clear_fence_reg - clear out fence register info
1588  * @obj: object to clear
1589  *
1590  * Zeroes out the fence register itself and clears out the associated
1591  * data structures in dev_priv and obj_priv.
1592  */
1593 static void
1594 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1595 {
1596         struct drm_device *dev = obj->dev;
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1599
1600         if (IS_I965G(dev))
1601                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1602         else
1603                 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1604
1605         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1606         obj_priv->fence_reg = I915_FENCE_REG_NONE;
1607 }
1608
1609 /**
1610  * Finds free space in the GTT aperture and binds the object there.
1611  */
1612 static int
1613 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1614 {
1615         struct drm_device *dev = obj->dev;
1616         drm_i915_private_t *dev_priv = dev->dev_private;
1617         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1618         struct drm_mm_node *free_space;
1619         int page_count, ret;
1620
1621         if (alignment == 0)
1622                 alignment = PAGE_SIZE;
1623         if (alignment & (PAGE_SIZE - 1)) {
1624                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1625                 return -EINVAL;
1626         }
1627
1628  search_free:
1629         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1630                                         obj->size, alignment, 0);
1631         if (free_space != NULL) {
1632                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1633                                                        alignment);
1634                 if (obj_priv->gtt_space != NULL) {
1635                         obj_priv->gtt_space->private = obj;
1636                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
1637                 }
1638         }
1639         if (obj_priv->gtt_space == NULL) {
1640                 /* If the gtt is empty and we're still having trouble
1641                  * fitting our object in, we're out of memory.
1642                  */
1643 #if WATCH_LRU
1644                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1645 #endif
1646                 if (list_empty(&dev_priv->mm.inactive_list) &&
1647                     list_empty(&dev_priv->mm.flushing_list) &&
1648                     list_empty(&dev_priv->mm.active_list)) {
1649                         DRM_ERROR("GTT full, but LRU list empty\n");
1650                         return -ENOMEM;
1651                 }
1652
1653                 ret = i915_gem_evict_something(dev);
1654                 if (ret != 0) {
1655                         if (ret != -ERESTARTSYS)
1656                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1657                         return ret;
1658                 }
1659                 goto search_free;
1660         }
1661
1662 #if WATCH_BUF
1663         DRM_INFO("Binding object of size %d at 0x%08x\n",
1664                  obj->size, obj_priv->gtt_offset);
1665 #endif
1666         ret = i915_gem_object_get_page_list(obj);
1667         if (ret) {
1668                 drm_mm_put_block(obj_priv->gtt_space);
1669                 obj_priv->gtt_space = NULL;
1670                 return ret;
1671         }
1672
1673         page_count = obj->size / PAGE_SIZE;
1674         /* Create an AGP memory structure pointing at our pages, and bind it
1675          * into the GTT.
1676          */
1677         obj_priv->agp_mem = drm_agp_bind_pages(dev,
1678                                                obj_priv->page_list,
1679                                                page_count,
1680                                                obj_priv->gtt_offset,
1681                                                obj_priv->agp_type);
1682         if (obj_priv->agp_mem == NULL) {
1683                 i915_gem_object_free_page_list(obj);
1684                 drm_mm_put_block(obj_priv->gtt_space);
1685                 obj_priv->gtt_space = NULL;
1686                 return -ENOMEM;
1687         }
1688         atomic_inc(&dev->gtt_count);
1689         atomic_add(obj->size, &dev->gtt_memory);
1690
1691         /* Assert that the object is not currently in any GPU domain. As it
1692          * wasn't in the GTT, there shouldn't be any way it could have been in
1693          * a GPU cache
1694          */
1695         BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1696         BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1697
1698         return 0;
1699 }
1700
1701 void
1702 i915_gem_clflush_object(struct drm_gem_object *obj)
1703 {
1704         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1705
1706         /* If we don't have a page list set up, then we're not pinned
1707          * to GPU, and we can ignore the cache flush because it'll happen
1708          * again at bind time.
1709          */
1710         if (obj_priv->page_list == NULL)
1711                 return;
1712
1713         drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1714 }
1715
1716 /** Flushes any GPU write domain for the object if it's dirty. */
1717 static void
1718 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1719 {
1720         struct drm_device *dev = obj->dev;
1721         uint32_t seqno;
1722
1723         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1724                 return;
1725
1726         /* Queue the GPU write cache flushing we need. */
1727         i915_gem_flush(dev, 0, obj->write_domain);
1728         seqno = i915_add_request(dev, obj->write_domain);
1729         obj->write_domain = 0;
1730         i915_gem_object_move_to_active(obj, seqno);
1731 }
1732
1733 /** Flushes the GTT write domain for the object if it's dirty. */
1734 static void
1735 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1736 {
1737         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1738                 return;
1739
1740         /* No actual flushing is required for the GTT write domain.   Writes
1741          * to it immediately go to main memory as far as we know, so there's
1742          * no chipset flush.  It also doesn't land in render cache.
1743          */
1744         obj->write_domain = 0;
1745 }
1746
1747 /** Flushes the CPU write domain for the object if it's dirty. */
1748 static void
1749 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1750 {
1751         struct drm_device *dev = obj->dev;
1752
1753         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1754                 return;
1755
1756         i915_gem_clflush_object(obj);
1757         drm_agp_chipset_flush(dev);
1758         obj->write_domain = 0;
1759 }
1760
1761 /**
1762  * Moves a single object to the GTT read, and possibly write domain.
1763  *
1764  * This function returns when the move is complete, including waiting on
1765  * flushes to occur.
1766  */
1767 static int
1768 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1769 {
1770         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1771         int ret;
1772
1773         /* Not valid to be called on unbound objects. */
1774         if (obj_priv->gtt_space == NULL)
1775                 return -EINVAL;
1776
1777         i915_gem_object_flush_gpu_write_domain(obj);
1778         /* Wait on any GPU rendering and flushing to occur. */
1779         ret = i915_gem_object_wait_rendering(obj);
1780         if (ret != 0)
1781                 return ret;
1782
1783         /* If we're writing through the GTT domain, then CPU and GPU caches
1784          * will need to be invalidated at next use.
1785          */
1786         if (write)
1787                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1788
1789         i915_gem_object_flush_cpu_write_domain(obj);
1790
1791         /* It should now be out of any other write domains, and we can update
1792          * the domain values for our changes.
1793          */
1794         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1795         obj->read_domains |= I915_GEM_DOMAIN_GTT;
1796         if (write) {
1797                 obj->write_domain = I915_GEM_DOMAIN_GTT;
1798                 obj_priv->dirty = 1;
1799         }
1800
1801         return 0;
1802 }
1803
1804 /**
1805  * Moves a single object to the CPU read, and possibly write domain.
1806  *
1807  * This function returns when the move is complete, including waiting on
1808  * flushes to occur.
1809  */
1810 static int
1811 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1812 {
1813         struct drm_device *dev = obj->dev;
1814         int ret;
1815
1816         i915_gem_object_flush_gpu_write_domain(obj);
1817         /* Wait on any GPU rendering and flushing to occur. */
1818         ret = i915_gem_object_wait_rendering(obj);
1819         if (ret != 0)
1820                 return ret;
1821
1822         i915_gem_object_flush_gtt_write_domain(obj);
1823
1824         /* If we have a partially-valid cache of the object in the CPU,
1825          * finish invalidating it and free the per-page flags.
1826          */
1827         i915_gem_object_set_to_full_cpu_read_domain(obj);
1828
1829         /* Flush the CPU cache if it's still invalid. */
1830         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1831                 i915_gem_clflush_object(obj);
1832                 drm_agp_chipset_flush(dev);
1833
1834                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1835         }
1836
1837         /* It should now be out of any other write domains, and we can update
1838          * the domain values for our changes.
1839          */
1840         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1841
1842         /* If we're writing through the CPU, then the GPU read domains will
1843          * need to be invalidated at next use.
1844          */
1845         if (write) {
1846                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1847                 obj->write_domain = I915_GEM_DOMAIN_CPU;
1848         }
1849
1850         return 0;
1851 }
1852
1853 /*
1854  * Set the next domain for the specified object. This
1855  * may not actually perform the necessary flushing/invaliding though,
1856  * as that may want to be batched with other set_domain operations
1857  *
1858  * This is (we hope) the only really tricky part of gem. The goal
1859  * is fairly simple -- track which caches hold bits of the object
1860  * and make sure they remain coherent. A few concrete examples may
1861  * help to explain how it works. For shorthand, we use the notation
1862  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1863  * a pair of read and write domain masks.
1864  *
1865  * Case 1: the batch buffer
1866  *
1867  *      1. Allocated
1868  *      2. Written by CPU
1869  *      3. Mapped to GTT
1870  *      4. Read by GPU
1871  *      5. Unmapped from GTT
1872  *      6. Freed
1873  *
1874  *      Let's take these a step at a time
1875  *
1876  *      1. Allocated
1877  *              Pages allocated from the kernel may still have
1878  *              cache contents, so we set them to (CPU, CPU) always.
1879  *      2. Written by CPU (using pwrite)
1880  *              The pwrite function calls set_domain (CPU, CPU) and
1881  *              this function does nothing (as nothing changes)
1882  *      3. Mapped by GTT
1883  *              This function asserts that the object is not
1884  *              currently in any GPU-based read or write domains
1885  *      4. Read by GPU
1886  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
1887  *              As write_domain is zero, this function adds in the
1888  *              current read domains (CPU+COMMAND, 0).
1889  *              flush_domains is set to CPU.
1890  *              invalidate_domains is set to COMMAND
1891  *              clflush is run to get data out of the CPU caches
1892  *              then i915_dev_set_domain calls i915_gem_flush to
1893  *              emit an MI_FLUSH and drm_agp_chipset_flush
1894  *      5. Unmapped from GTT
1895  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
1896  *              flush_domains and invalidate_domains end up both zero
1897  *              so no flushing/invalidating happens
1898  *      6. Freed
1899  *              yay, done
1900  *
1901  * Case 2: The shared render buffer
1902  *
1903  *      1. Allocated
1904  *      2. Mapped to GTT
1905  *      3. Read/written by GPU
1906  *      4. set_domain to (CPU,CPU)
1907  *      5. Read/written by CPU
1908  *      6. Read/written by GPU
1909  *
1910  *      1. Allocated
1911  *              Same as last example, (CPU, CPU)
1912  *      2. Mapped to GTT
1913  *              Nothing changes (assertions find that it is not in the GPU)
1914  *      3. Read/written by GPU
1915  *              execbuffer calls set_domain (RENDER, RENDER)
1916  *              flush_domains gets CPU
1917  *              invalidate_domains gets GPU
1918  *              clflush (obj)
1919  *              MI_FLUSH and drm_agp_chipset_flush
1920  *      4. set_domain (CPU, CPU)
1921  *              flush_domains gets GPU
1922  *              invalidate_domains gets CPU
1923  *              wait_rendering (obj) to make sure all drawing is complete.
1924  *              This will include an MI_FLUSH to get the data from GPU
1925  *              to memory
1926  *              clflush (obj) to invalidate the CPU cache
1927  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1928  *      5. Read/written by CPU
1929  *              cache lines are loaded and dirtied
1930  *      6. Read written by GPU
1931  *              Same as last GPU access
1932  *
1933  * Case 3: The constant buffer
1934  *
1935  *      1. Allocated
1936  *      2. Written by CPU
1937  *      3. Read by GPU
1938  *      4. Updated (written) by CPU again
1939  *      5. Read by GPU
1940  *
1941  *      1. Allocated
1942  *              (CPU, CPU)
1943  *      2. Written by CPU
1944  *              (CPU, CPU)
1945  *      3. Read by GPU
1946  *              (CPU+RENDER, 0)
1947  *              flush_domains = CPU
1948  *              invalidate_domains = RENDER
1949  *              clflush (obj)
1950  *              MI_FLUSH
1951  *              drm_agp_chipset_flush
1952  *      4. Updated (written) by CPU again
1953  *              (CPU, CPU)
1954  *              flush_domains = 0 (no previous write domain)
1955  *              invalidate_domains = 0 (no new read domains)
1956  *      5. Read by GPU
1957  *              (CPU+RENDER, 0)
1958  *              flush_domains = CPU
1959  *              invalidate_domains = RENDER
1960  *              clflush (obj)
1961  *              MI_FLUSH
1962  *              drm_agp_chipset_flush
1963  */
1964 static void
1965 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1966                                   uint32_t read_domains,
1967                                   uint32_t write_domain)
1968 {
1969         struct drm_device               *dev = obj->dev;
1970         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1971         uint32_t                        invalidate_domains = 0;
1972         uint32_t                        flush_domains = 0;
1973
1974         BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1975         BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
1976
1977 #if WATCH_BUF
1978         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1979                  __func__, obj,
1980                  obj->read_domains, read_domains,
1981                  obj->write_domain, write_domain);
1982 #endif
1983         /*
1984          * If the object isn't moving to a new write domain,
1985          * let the object stay in multiple read domains
1986          */
1987         if (write_domain == 0)
1988                 read_domains |= obj->read_domains;
1989         else
1990                 obj_priv->dirty = 1;
1991
1992         /*
1993          * Flush the current write domain if
1994          * the new read domains don't match. Invalidate
1995          * any read domains which differ from the old
1996          * write domain
1997          */
1998         if (obj->write_domain && obj->write_domain != read_domains) {
1999                 flush_domains |= obj->write_domain;
2000                 invalidate_domains |= read_domains & ~obj->write_domain;
2001         }
2002         /*
2003          * Invalidate any read caches which may have
2004          * stale data. That is, any new read domains.
2005          */
2006         invalidate_domains |= read_domains & ~obj->read_domains;
2007         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2008 #if WATCH_BUF
2009                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2010                          __func__, flush_domains, invalidate_domains);
2011 #endif
2012                 i915_gem_clflush_object(obj);
2013         }
2014
2015         if ((write_domain | flush_domains) != 0)
2016                 obj->write_domain = write_domain;
2017         obj->read_domains = read_domains;
2018
2019         dev->invalidate_domains |= invalidate_domains;
2020         dev->flush_domains |= flush_domains;
2021 #if WATCH_BUF
2022         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2023                  __func__,
2024                  obj->read_domains, obj->write_domain,
2025                  dev->invalidate_domains, dev->flush_domains);
2026 #endif
2027 }
2028
2029 /**
2030  * Moves the object from a partially CPU read to a full one.
2031  *
2032  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2033  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2034  */
2035 static void
2036 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2037 {
2038         struct drm_device *dev = obj->dev;
2039         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2040
2041         if (!obj_priv->page_cpu_valid)
2042                 return;
2043
2044         /* If we're partially in the CPU read domain, finish moving it in.
2045          */
2046         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2047                 int i;
2048
2049                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2050                         if (obj_priv->page_cpu_valid[i])
2051                                 continue;
2052                         drm_clflush_pages(obj_priv->page_list + i, 1);
2053                 }
2054                 drm_agp_chipset_flush(dev);
2055         }
2056
2057         /* Free the page_cpu_valid mappings which are now stale, whether
2058          * or not we've got I915_GEM_DOMAIN_CPU.
2059          */
2060         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2061                  DRM_MEM_DRIVER);
2062         obj_priv->page_cpu_valid = NULL;
2063 }
2064
2065 /**
2066  * Set the CPU read domain on a range of the object.
2067  *
2068  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2069  * not entirely valid.  The page_cpu_valid member of the object flags which
2070  * pages have been flushed, and will be respected by
2071  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2072  * of the whole object.
2073  *
2074  * This function returns when the move is complete, including waiting on
2075  * flushes to occur.
2076  */
2077 static int
2078 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2079                                           uint64_t offset, uint64_t size)
2080 {
2081         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2082         int i, ret;
2083
2084         if (offset == 0 && size == obj->size)
2085                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2086
2087         i915_gem_object_flush_gpu_write_domain(obj);
2088         /* Wait on any GPU rendering and flushing to occur. */
2089         ret = i915_gem_object_wait_rendering(obj);
2090         if (ret != 0)
2091                 return ret;
2092         i915_gem_object_flush_gtt_write_domain(obj);
2093
2094         /* If we're already fully in the CPU read domain, we're done. */
2095         if (obj_priv->page_cpu_valid == NULL &&
2096             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2097                 return 0;
2098
2099         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2100          * newly adding I915_GEM_DOMAIN_CPU
2101          */
2102         if (obj_priv->page_cpu_valid == NULL) {
2103                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2104                                                       DRM_MEM_DRIVER);
2105                 if (obj_priv->page_cpu_valid == NULL)
2106                         return -ENOMEM;
2107         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2108                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2109
2110         /* Flush the cache on any pages that are still invalid from the CPU's
2111          * perspective.
2112          */
2113         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2114              i++) {
2115                 if (obj_priv->page_cpu_valid[i])
2116                         continue;
2117
2118                 drm_clflush_pages(obj_priv->page_list + i, 1);
2119
2120                 obj_priv->page_cpu_valid[i] = 1;
2121         }
2122
2123         /* It should now be out of any other write domains, and we can update
2124          * the domain values for our changes.
2125          */
2126         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2127
2128         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2129
2130         return 0;
2131 }
2132
2133 /**
2134  * Pin an object to the GTT and evaluate the relocations landing in it.
2135  */
2136 static int
2137 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2138                                  struct drm_file *file_priv,
2139                                  struct drm_i915_gem_exec_object *entry)
2140 {
2141         struct drm_device *dev = obj->dev;
2142         drm_i915_private_t *dev_priv = dev->dev_private;
2143         struct drm_i915_gem_relocation_entry reloc;
2144         struct drm_i915_gem_relocation_entry __user *relocs;
2145         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2146         int i, ret;
2147         void __iomem *reloc_page;
2148
2149         /* Choose the GTT offset for our buffer and put it there. */
2150         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2151         if (ret)
2152                 return ret;
2153
2154         entry->offset = obj_priv->gtt_offset;
2155
2156         relocs = (struct drm_i915_gem_relocation_entry __user *)
2157                  (uintptr_t) entry->relocs_ptr;
2158         /* Apply the relocations, using the GTT aperture to avoid cache
2159          * flushing requirements.
2160          */
2161         for (i = 0; i < entry->relocation_count; i++) {
2162                 struct drm_gem_object *target_obj;
2163                 struct drm_i915_gem_object *target_obj_priv;
2164                 uint32_t reloc_val, reloc_offset;
2165                 uint32_t __iomem *reloc_entry;
2166
2167                 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2168                 if (ret != 0) {
2169                         i915_gem_object_unpin(obj);
2170                         return ret;
2171                 }
2172
2173                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2174                                                    reloc.target_handle);
2175                 if (target_obj == NULL) {
2176                         i915_gem_object_unpin(obj);
2177                         return -EBADF;
2178                 }
2179                 target_obj_priv = target_obj->driver_private;
2180
2181                 /* The target buffer should have appeared before us in the
2182                  * exec_object list, so it should have a GTT space bound by now.
2183                  */
2184                 if (target_obj_priv->gtt_space == NULL) {
2185                         DRM_ERROR("No GTT space found for object %d\n",
2186                                   reloc.target_handle);
2187                         drm_gem_object_unreference(target_obj);
2188                         i915_gem_object_unpin(obj);
2189                         return -EINVAL;
2190                 }
2191
2192                 if (reloc.offset > obj->size - 4) {
2193                         DRM_ERROR("Relocation beyond object bounds: "
2194                                   "obj %p target %d offset %d size %d.\n",
2195                                   obj, reloc.target_handle,
2196                                   (int) reloc.offset, (int) obj->size);
2197                         drm_gem_object_unreference(target_obj);
2198                         i915_gem_object_unpin(obj);
2199                         return -EINVAL;
2200                 }
2201                 if (reloc.offset & 3) {
2202                         DRM_ERROR("Relocation not 4-byte aligned: "
2203                                   "obj %p target %d offset %d.\n",
2204                                   obj, reloc.target_handle,
2205                                   (int) reloc.offset);
2206                         drm_gem_object_unreference(target_obj);
2207                         i915_gem_object_unpin(obj);
2208                         return -EINVAL;
2209                 }
2210
2211                 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2212                     reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2213                         DRM_ERROR("reloc with read/write CPU domains: "
2214                                   "obj %p target %d offset %d "
2215                                   "read %08x write %08x",
2216                                   obj, reloc.target_handle,
2217                                   (int) reloc.offset,
2218                                   reloc.read_domains,
2219                                   reloc.write_domain);
2220                         return -EINVAL;
2221                 }
2222
2223                 if (reloc.write_domain && target_obj->pending_write_domain &&
2224                     reloc.write_domain != target_obj->pending_write_domain) {
2225                         DRM_ERROR("Write domain conflict: "
2226                                   "obj %p target %d offset %d "
2227                                   "new %08x old %08x\n",
2228                                   obj, reloc.target_handle,
2229                                   (int) reloc.offset,
2230                                   reloc.write_domain,
2231                                   target_obj->pending_write_domain);
2232                         drm_gem_object_unreference(target_obj);
2233                         i915_gem_object_unpin(obj);
2234                         return -EINVAL;
2235                 }
2236
2237 #if WATCH_RELOC
2238                 DRM_INFO("%s: obj %p offset %08x target %d "
2239                          "read %08x write %08x gtt %08x "
2240                          "presumed %08x delta %08x\n",
2241                          __func__,
2242                          obj,
2243                          (int) reloc.offset,
2244                          (int) reloc.target_handle,
2245                          (int) reloc.read_domains,
2246                          (int) reloc.write_domain,
2247                          (int) target_obj_priv->gtt_offset,
2248                          (int) reloc.presumed_offset,
2249                          reloc.delta);
2250 #endif
2251
2252                 target_obj->pending_read_domains |= reloc.read_domains;
2253                 target_obj->pending_write_domain |= reloc.write_domain;
2254
2255                 /* If the relocation already has the right value in it, no
2256                  * more work needs to be done.
2257                  */
2258                 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2259                         drm_gem_object_unreference(target_obj);
2260                         continue;
2261                 }
2262
2263                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2264                 if (ret != 0) {
2265                         drm_gem_object_unreference(target_obj);
2266                         i915_gem_object_unpin(obj);
2267                         return -EINVAL;
2268                 }
2269
2270                 /* Map the page containing the relocation we're going to
2271                  * perform.
2272                  */
2273                 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2274                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2275                                                       (reloc_offset &
2276                                                        ~(PAGE_SIZE - 1)));
2277                 reloc_entry = (uint32_t __iomem *)(reloc_page +
2278                                                    (reloc_offset & (PAGE_SIZE - 1)));
2279                 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2280
2281 #if WATCH_BUF
2282                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2283                           obj, (unsigned int) reloc.offset,
2284                           readl(reloc_entry), reloc_val);
2285 #endif
2286                 writel(reloc_val, reloc_entry);
2287                 io_mapping_unmap_atomic(reloc_page);
2288
2289                 /* Write the updated presumed offset for this entry back out
2290                  * to the user.
2291                  */
2292                 reloc.presumed_offset = target_obj_priv->gtt_offset;
2293                 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2294                 if (ret != 0) {
2295                         drm_gem_object_unreference(target_obj);
2296                         i915_gem_object_unpin(obj);
2297                         return ret;
2298                 }
2299
2300                 drm_gem_object_unreference(target_obj);
2301         }
2302
2303 #if WATCH_BUF
2304         if (0)
2305                 i915_gem_dump_object(obj, 128, __func__, ~0);
2306 #endif
2307         return 0;
2308 }
2309
2310 /** Dispatch a batchbuffer to the ring
2311  */
2312 static int
2313 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2314                               struct drm_i915_gem_execbuffer *exec,
2315                               uint64_t exec_offset)
2316 {
2317         drm_i915_private_t *dev_priv = dev->dev_private;
2318         struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2319                                              (uintptr_t) exec->cliprects_ptr;
2320         int nbox = exec->num_cliprects;
2321         int i = 0, count;
2322         uint32_t        exec_start, exec_len;
2323         RING_LOCALS;
2324
2325         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2326         exec_len = (uint32_t) exec->batch_len;
2327
2328         if ((exec_start | exec_len) & 0x7) {
2329                 DRM_ERROR("alignment\n");
2330                 return -EINVAL;
2331         }
2332
2333         if (!exec_start)
2334                 return -EINVAL;
2335
2336         count = nbox ? nbox : 1;
2337
2338         for (i = 0; i < count; i++) {
2339                 if (i < nbox) {
2340                         int ret = i915_emit_box(dev, boxes, i,
2341                                                 exec->DR1, exec->DR4);
2342                         if (ret)
2343                                 return ret;
2344                 }
2345
2346                 if (IS_I830(dev) || IS_845G(dev)) {
2347                         BEGIN_LP_RING(4);
2348                         OUT_RING(MI_BATCH_BUFFER);
2349                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2350                         OUT_RING(exec_start + exec_len - 4);
2351                         OUT_RING(0);
2352                         ADVANCE_LP_RING();
2353                 } else {
2354                         BEGIN_LP_RING(2);
2355                         if (IS_I965G(dev)) {
2356                                 OUT_RING(MI_BATCH_BUFFER_START |
2357                                          (2 << 6) |
2358                                          MI_BATCH_NON_SECURE_I965);
2359                                 OUT_RING(exec_start);
2360                         } else {
2361                                 OUT_RING(MI_BATCH_BUFFER_START |
2362                                          (2 << 6));
2363                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2364                         }
2365                         ADVANCE_LP_RING();
2366                 }
2367         }
2368
2369         /* XXX breadcrumb */
2370         return 0;
2371 }
2372
2373 /* Throttle our rendering by waiting until the ring has completed our requests
2374  * emitted over 20 msec ago.
2375  *
2376  * This should get us reasonable parallelism between CPU and GPU but also
2377  * relatively low latency when blocking on a particular request to finish.
2378  */
2379 static int
2380 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2381 {
2382         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2383         int ret = 0;
2384         uint32_t seqno;
2385
2386         mutex_lock(&dev->struct_mutex);
2387         seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2388         i915_file_priv->mm.last_gem_throttle_seqno =
2389                 i915_file_priv->mm.last_gem_seqno;
2390         if (seqno)
2391                 ret = i915_wait_request(dev, seqno);
2392         mutex_unlock(&dev->struct_mutex);
2393         return ret;
2394 }
2395
2396 int
2397 i915_gem_execbuffer(struct drm_device *dev, void *data,
2398                     struct drm_file *file_priv)
2399 {
2400         drm_i915_private_t *dev_priv = dev->dev_private;
2401         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2402         struct drm_i915_gem_execbuffer *args = data;
2403         struct drm_i915_gem_exec_object *exec_list = NULL;
2404         struct drm_gem_object **object_list = NULL;
2405         struct drm_gem_object *batch_obj;
2406         int ret, i, pinned = 0;
2407         uint64_t exec_offset;
2408         uint32_t seqno, flush_domains;
2409         int pin_tries;
2410
2411 #if WATCH_EXEC
2412         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2413                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2414 #endif
2415
2416         if (args->buffer_count < 1) {
2417                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2418                 return -EINVAL;
2419         }
2420         /* Copy in the exec list from userland */
2421         exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2422                                DRM_MEM_DRIVER);
2423         object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2424                                  DRM_MEM_DRIVER);
2425         if (exec_list == NULL || object_list == NULL) {
2426                 DRM_ERROR("Failed to allocate exec or object list "
2427                           "for %d buffers\n",
2428                           args->buffer_count);
2429                 ret = -ENOMEM;
2430                 goto pre_mutex_err;
2431         }
2432         ret = copy_from_user(exec_list,
2433                              (struct drm_i915_relocation_entry __user *)
2434                              (uintptr_t) args->buffers_ptr,
2435                              sizeof(*exec_list) * args->buffer_count);
2436         if (ret != 0) {
2437                 DRM_ERROR("copy %d exec entries failed %d\n",
2438                           args->buffer_count, ret);
2439                 goto pre_mutex_err;
2440         }
2441
2442         mutex_lock(&dev->struct_mutex);
2443
2444         i915_verify_inactive(dev, __FILE__, __LINE__);
2445
2446         if (dev_priv->mm.wedged) {
2447                 DRM_ERROR("Execbuf while wedged\n");
2448                 mutex_unlock(&dev->struct_mutex);
2449                 return -EIO;
2450         }
2451
2452         if (dev_priv->mm.suspended) {
2453                 DRM_ERROR("Execbuf while VT-switched.\n");
2454                 mutex_unlock(&dev->struct_mutex);
2455                 return -EBUSY;
2456         }
2457
2458         /* Look up object handles */
2459         for (i = 0; i < args->buffer_count; i++) {
2460                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2461                                                        exec_list[i].handle);
2462                 if (object_list[i] == NULL) {
2463                         DRM_ERROR("Invalid object handle %d at index %d\n",
2464                                    exec_list[i].handle, i);
2465                         ret = -EBADF;
2466                         goto err;
2467                 }
2468         }
2469
2470         /* Pin and relocate */
2471         for (pin_tries = 0; ; pin_tries++) {
2472                 ret = 0;
2473                 for (i = 0; i < args->buffer_count; i++) {
2474                         object_list[i]->pending_read_domains = 0;
2475                         object_list[i]->pending_write_domain = 0;
2476                         ret = i915_gem_object_pin_and_relocate(object_list[i],
2477                                                                file_priv,
2478                                                                &exec_list[i]);
2479                         if (ret)
2480                                 break;
2481                         pinned = i + 1;
2482                 }
2483                 /* success */
2484                 if (ret == 0)
2485                         break;
2486
2487                 /* error other than GTT full, or we've already tried again */
2488                 if (ret != -ENOMEM || pin_tries >= 1) {
2489                         DRM_ERROR("Failed to pin buffers %d\n", ret);
2490                         goto err;
2491                 }
2492
2493                 /* unpin all of our buffers */
2494                 for (i = 0; i < pinned; i++)
2495                         i915_gem_object_unpin(object_list[i]);
2496
2497                 /* evict everyone we can from the aperture */
2498                 ret = i915_gem_evict_everything(dev);
2499                 if (ret)
2500                         goto err;
2501         }
2502
2503         /* Set the pending read domains for the batch buffer to COMMAND */
2504         batch_obj = object_list[args->buffer_count-1];
2505         batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2506         batch_obj->pending_write_domain = 0;
2507
2508         i915_verify_inactive(dev, __FILE__, __LINE__);
2509
2510         /* Zero the global flush/invalidate flags. These
2511          * will be modified as new domains are computed
2512          * for each object
2513          */
2514         dev->invalidate_domains = 0;
2515         dev->flush_domains = 0;
2516
2517         for (i = 0; i < args->buffer_count; i++) {
2518                 struct drm_gem_object *obj = object_list[i];
2519
2520                 /* Compute new gpu domains and update invalidate/flush */
2521                 i915_gem_object_set_to_gpu_domain(obj,
2522                                                   obj->pending_read_domains,
2523                                                   obj->pending_write_domain);
2524         }
2525
2526         i915_verify_inactive(dev, __FILE__, __LINE__);
2527
2528         if (dev->invalidate_domains | dev->flush_domains) {
2529 #if WATCH_EXEC
2530                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2531                           __func__,
2532                          dev->invalidate_domains,
2533                          dev->flush_domains);
2534 #endif
2535                 i915_gem_flush(dev,
2536                                dev->invalidate_domains,
2537                                dev->flush_domains);
2538                 if (dev->flush_domains)
2539                         (void)i915_add_request(dev, dev->flush_domains);
2540         }
2541
2542         i915_verify_inactive(dev, __FILE__, __LINE__);
2543
2544 #if WATCH_COHERENCY
2545         for (i = 0; i < args->buffer_count; i++) {
2546                 i915_gem_object_check_coherency(object_list[i],
2547                                                 exec_list[i].handle);
2548         }
2549 #endif
2550
2551         exec_offset = exec_list[args->buffer_count - 1].offset;
2552
2553 #if WATCH_EXEC
2554         i915_gem_dump_object(object_list[args->buffer_count - 1],
2555                               args->batch_len,
2556                               __func__,
2557                               ~0);
2558 #endif
2559
2560         /* Exec the batchbuffer */
2561         ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2562         if (ret) {
2563                 DRM_ERROR("dispatch failed %d\n", ret);
2564                 goto err;
2565         }
2566
2567         /*
2568          * Ensure that the commands in the batch buffer are
2569          * finished before the interrupt fires
2570          */
2571         flush_domains = i915_retire_commands(dev);
2572
2573         i915_verify_inactive(dev, __FILE__, __LINE__);
2574
2575         /*
2576          * Get a seqno representing the execution of the current buffer,
2577          * which we can wait on.  We would like to mitigate these interrupts,
2578          * likely by only creating seqnos occasionally (so that we have
2579          * *some* interrupts representing completion of buffers that we can
2580          * wait on when trying to clear up gtt space).
2581          */
2582         seqno = i915_add_request(dev, flush_domains);
2583         BUG_ON(seqno == 0);
2584         i915_file_priv->mm.last_gem_seqno = seqno;
2585         for (i = 0; i < args->buffer_count; i++) {
2586                 struct drm_gem_object *obj = object_list[i];
2587
2588                 i915_gem_object_move_to_active(obj, seqno);
2589 #if WATCH_LRU
2590                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2591 #endif
2592         }
2593 #if WATCH_LRU
2594         i915_dump_lru(dev, __func__);
2595 #endif
2596
2597         i915_verify_inactive(dev, __FILE__, __LINE__);
2598
2599         /* Copy the new buffer offsets back to the user's exec list. */
2600         ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2601                            (uintptr_t) args->buffers_ptr,
2602                            exec_list,
2603                            sizeof(*exec_list) * args->buffer_count);
2604         if (ret)
2605                 DRM_ERROR("failed to copy %d exec entries "
2606                           "back to user (%d)\n",
2607                            args->buffer_count, ret);
2608 err:
2609         if (object_list != NULL) {
2610                 for (i = 0; i < pinned; i++)
2611                         i915_gem_object_unpin(object_list[i]);
2612
2613                 for (i = 0; i < args->buffer_count; i++)
2614                         drm_gem_object_unreference(object_list[i]);
2615         }
2616         mutex_unlock(&dev->struct_mutex);
2617
2618 pre_mutex_err:
2619         drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2620                  DRM_MEM_DRIVER);
2621         drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2622                  DRM_MEM_DRIVER);
2623
2624         return ret;
2625 }
2626
2627 int
2628 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2629 {
2630         struct drm_device *dev = obj->dev;
2631         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2632         int ret;
2633
2634         i915_verify_inactive(dev, __FILE__, __LINE__);
2635         if (obj_priv->gtt_space == NULL) {
2636                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2637                 if (ret != 0) {
2638                         DRM_ERROR("Failure to bind: %d", ret);
2639                         return ret;
2640                 }
2641         }
2642         obj_priv->pin_count++;
2643
2644         /* If the object is not active and not pending a flush,
2645          * remove it from the inactive list
2646          */
2647         if (obj_priv->pin_count == 1) {
2648                 atomic_inc(&dev->pin_count);
2649                 atomic_add(obj->size, &dev->pin_memory);
2650                 if (!obj_priv->active &&
2651                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2652                                            I915_GEM_DOMAIN_GTT)) == 0 &&
2653                     !list_empty(&obj_priv->list))
2654                         list_del_init(&obj_priv->list);
2655         }
2656         i915_verify_inactive(dev, __FILE__, __LINE__);
2657
2658         return 0;
2659 }
2660
2661 void
2662 i915_gem_object_unpin(struct drm_gem_object *obj)
2663 {
2664         struct drm_device *dev = obj->dev;
2665         drm_i915_private_t *dev_priv = dev->dev_private;
2666         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2667
2668         i915_verify_inactive(dev, __FILE__, __LINE__);
2669         obj_priv->pin_count--;
2670         BUG_ON(obj_priv->pin_count < 0);
2671         BUG_ON(obj_priv->gtt_space == NULL);
2672
2673         /* If the object is no longer pinned, and is
2674          * neither active nor being flushed, then stick it on
2675          * the inactive list
2676          */
2677         if (obj_priv->pin_count == 0) {
2678                 if (!obj_priv->active &&
2679                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2680                                            I915_GEM_DOMAIN_GTT)) == 0)
2681                         list_move_tail(&obj_priv->list,
2682                                        &dev_priv->mm.inactive_list);
2683                 atomic_dec(&dev->pin_count);
2684                 atomic_sub(obj->size, &dev->pin_memory);
2685         }
2686         i915_verify_inactive(dev, __FILE__, __LINE__);
2687 }
2688
2689 int
2690 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2691                    struct drm_file *file_priv)
2692 {
2693         struct drm_i915_gem_pin *args = data;
2694         struct drm_gem_object *obj;
2695         struct drm_i915_gem_object *obj_priv;
2696         int ret;
2697
2698         mutex_lock(&dev->struct_mutex);
2699
2700         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2701         if (obj == NULL) {
2702                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2703                           args->handle);
2704                 mutex_unlock(&dev->struct_mutex);
2705                 return -EBADF;
2706         }
2707         obj_priv = obj->driver_private;
2708
2709         ret = i915_gem_object_pin(obj, args->alignment);
2710         if (ret != 0) {
2711                 drm_gem_object_unreference(obj);
2712                 mutex_unlock(&dev->struct_mutex);
2713                 return ret;
2714         }
2715
2716         /* XXX - flush the CPU caches for pinned objects
2717          * as the X server doesn't manage domains yet
2718          */
2719         i915_gem_object_flush_cpu_write_domain(obj);
2720         args->offset = obj_priv->gtt_offset;
2721         drm_gem_object_unreference(obj);
2722         mutex_unlock(&dev->struct_mutex);
2723
2724         return 0;
2725 }
2726
2727 int
2728 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2729                      struct drm_file *file_priv)
2730 {
2731         struct drm_i915_gem_pin *args = data;
2732         struct drm_gem_object *obj;
2733
2734         mutex_lock(&dev->struct_mutex);
2735
2736         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2737         if (obj == NULL) {
2738                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2739                           args->handle);
2740                 mutex_unlock(&dev->struct_mutex);
2741                 return -EBADF;
2742         }
2743
2744         i915_gem_object_unpin(obj);
2745
2746         drm_gem_object_unreference(obj);
2747         mutex_unlock(&dev->struct_mutex);
2748         return 0;
2749 }
2750
2751 int
2752 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2753                     struct drm_file *file_priv)
2754 {
2755         struct drm_i915_gem_busy *args = data;
2756         struct drm_gem_object *obj;
2757         struct drm_i915_gem_object *obj_priv;
2758
2759         mutex_lock(&dev->struct_mutex);
2760         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2761         if (obj == NULL) {
2762                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2763                           args->handle);
2764                 mutex_unlock(&dev->struct_mutex);
2765                 return -EBADF;
2766         }
2767
2768         obj_priv = obj->driver_private;
2769         /* Don't count being on the flushing list against the object being
2770          * done.  Otherwise, a buffer left on the flushing list but not getting
2771          * flushed (because nobody's flushing that domain) won't ever return
2772          * unbusy and get reused by libdrm's bo cache.  The other expected
2773          * consumer of this interface, OpenGL's occlusion queries, also specs
2774          * that the objects get unbusy "eventually" without any interference.
2775          */
2776         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2777
2778         drm_gem_object_unreference(obj);
2779         mutex_unlock(&dev->struct_mutex);
2780         return 0;
2781 }
2782
2783 int
2784 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2785                         struct drm_file *file_priv)
2786 {
2787     return i915_gem_ring_throttle(dev, file_priv);
2788 }
2789
2790 int i915_gem_init_object(struct drm_gem_object *obj)
2791 {
2792         struct drm_i915_gem_object *obj_priv;
2793
2794         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2795         if (obj_priv == NULL)
2796                 return -ENOMEM;
2797
2798         /*
2799          * We've just allocated pages from the kernel,
2800          * so they've just been written by the CPU with
2801          * zeros. They'll need to be clflushed before we
2802          * use them with the GPU.
2803          */
2804         obj->write_domain = I915_GEM_DOMAIN_CPU;
2805         obj->read_domains = I915_GEM_DOMAIN_CPU;
2806
2807         obj_priv->agp_type = AGP_USER_MEMORY;
2808
2809         obj->driver_private = obj_priv;
2810         obj_priv->obj = obj;
2811         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2812         INIT_LIST_HEAD(&obj_priv->list);
2813
2814         return 0;
2815 }
2816
2817 void i915_gem_free_object(struct drm_gem_object *obj)
2818 {
2819         struct drm_device *dev = obj->dev;
2820         struct drm_gem_mm *mm = dev->mm_private;
2821         struct drm_map_list *list;
2822         struct drm_map *map;
2823         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2824
2825         while (obj_priv->pin_count > 0)
2826                 i915_gem_object_unpin(obj);
2827
2828         i915_gem_object_unbind(obj);
2829
2830         list = &obj->map_list;
2831         drm_ht_remove_item(&mm->offset_hash, &list->hash);
2832
2833         if (list->file_offset_node) {
2834                 drm_mm_put_block(list->file_offset_node);
2835                 list->file_offset_node = NULL;
2836         }
2837
2838         map = list->map;
2839         if (map) {
2840                 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2841                 list->map = NULL;
2842         }
2843
2844         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2845         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2846 }
2847
2848 /** Unbinds all objects that are on the given buffer list. */
2849 static int
2850 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2851 {
2852         struct drm_gem_object *obj;
2853         struct drm_i915_gem_object *obj_priv;
2854         int ret;
2855
2856         while (!list_empty(head)) {
2857                 obj_priv = list_first_entry(head,
2858                                             struct drm_i915_gem_object,
2859                                             list);
2860                 obj = obj_priv->obj;
2861
2862                 if (obj_priv->pin_count != 0) {
2863                         DRM_ERROR("Pinned object in unbind list\n");
2864                         mutex_unlock(&dev->struct_mutex);
2865                         return -EINVAL;
2866                 }
2867
2868                 ret = i915_gem_object_unbind(obj);
2869                 if (ret != 0) {
2870                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2871                                   ret);
2872                         mutex_unlock(&dev->struct_mutex);
2873                         return ret;
2874                 }
2875         }
2876
2877
2878         return 0;
2879 }
2880
2881 static int
2882 i915_gem_idle(struct drm_device *dev)
2883 {
2884         drm_i915_private_t *dev_priv = dev->dev_private;
2885         uint32_t seqno, cur_seqno, last_seqno;
2886         int stuck, ret;
2887
2888         mutex_lock(&dev->struct_mutex);
2889
2890         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2891                 mutex_unlock(&dev->struct_mutex);
2892                 return 0;
2893         }
2894
2895         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
2896          * We need to replace this with a semaphore, or something.
2897          */
2898         dev_priv->mm.suspended = 1;
2899
2900         /* Cancel the retire work handler, wait for it to finish if running
2901          */
2902         mutex_unlock(&dev->struct_mutex);
2903         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2904         mutex_lock(&dev->struct_mutex);
2905
2906         i915_kernel_lost_context(dev);
2907
2908         /* Flush the GPU along with all non-CPU write domains
2909          */
2910         i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2911                        ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2912         seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
2913
2914         if (seqno == 0) {
2915                 mutex_unlock(&dev->struct_mutex);
2916                 return -ENOMEM;
2917         }
2918
2919         dev_priv->mm.waiting_gem_seqno = seqno;
2920         last_seqno = 0;
2921         stuck = 0;
2922         for (;;) {
2923                 cur_seqno = i915_get_gem_seqno(dev);
2924                 if (i915_seqno_passed(cur_seqno, seqno))
2925                         break;
2926                 if (last_seqno == cur_seqno) {
2927                         if (stuck++ > 100) {
2928                                 DRM_ERROR("hardware wedged\n");
2929                                 dev_priv->mm.wedged = 1;
2930                                 DRM_WAKEUP(&dev_priv->irq_queue);
2931                                 break;
2932                         }
2933                 }
2934                 msleep(10);
2935                 last_seqno = cur_seqno;
2936         }
2937         dev_priv->mm.waiting_gem_seqno = 0;
2938
2939         i915_gem_retire_requests(dev);
2940
2941         if (!dev_priv->mm.wedged) {
2942                 /* Active and flushing should now be empty as we've
2943                  * waited for a sequence higher than any pending execbuffer
2944                  */
2945                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2946                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2947                 /* Request should now be empty as we've also waited
2948                  * for the last request in the list
2949                  */
2950                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2951         }
2952
2953         /* Empty the active and flushing lists to inactive.  If there's
2954          * anything left at this point, it means that we're wedged and
2955          * nothing good's going to happen by leaving them there.  So strip
2956          * the GPU domains and just stuff them onto inactive.
2957          */
2958         while (!list_empty(&dev_priv->mm.active_list)) {
2959                 struct drm_i915_gem_object *obj_priv;
2960
2961                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2962                                             struct drm_i915_gem_object,
2963                                             list);
2964                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2965                 i915_gem_object_move_to_inactive(obj_priv->obj);
2966         }
2967
2968         while (!list_empty(&dev_priv->mm.flushing_list)) {
2969                 struct drm_i915_gem_object *obj_priv;
2970
2971                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2972                                             struct drm_i915_gem_object,
2973                                             list);
2974                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2975                 i915_gem_object_move_to_inactive(obj_priv->obj);
2976         }
2977
2978
2979         /* Move all inactive buffers out of the GTT. */
2980         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2981         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
2982         if (ret) {
2983                 mutex_unlock(&dev->struct_mutex);
2984                 return ret;
2985         }
2986
2987         i915_gem_cleanup_ringbuffer(dev);
2988         mutex_unlock(&dev->struct_mutex);
2989
2990         return 0;
2991 }
2992
2993 static int
2994 i915_gem_init_hws(struct drm_device *dev)
2995 {
2996         drm_i915_private_t *dev_priv = dev->dev_private;
2997         struct drm_gem_object *obj;
2998         struct drm_i915_gem_object *obj_priv;
2999         int ret;
3000
3001         /* If we need a physical address for the status page, it's already
3002          * initialized at driver load time.
3003          */
3004         if (!I915_NEED_GFX_HWS(dev))
3005                 return 0;
3006
3007         obj = drm_gem_object_alloc(dev, 4096);
3008         if (obj == NULL) {
3009                 DRM_ERROR("Failed to allocate status page\n");
3010                 return -ENOMEM;
3011         }
3012         obj_priv = obj->driver_private;
3013         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3014
3015         ret = i915_gem_object_pin(obj, 4096);
3016         if (ret != 0) {
3017                 drm_gem_object_unreference(obj);
3018                 return ret;
3019         }
3020
3021         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3022
3023         dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3024         if (dev_priv->hw_status_page == NULL) {
3025                 DRM_ERROR("Failed to map status page.\n");
3026                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3027                 drm_gem_object_unreference(obj);
3028                 return -EINVAL;
3029         }
3030         dev_priv->hws_obj = obj;
3031         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3032         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3033         I915_READ(HWS_PGA); /* posting read */
3034         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3035
3036         return 0;
3037 }
3038
3039 static int
3040 i915_gem_init_ringbuffer(struct drm_device *dev)
3041 {
3042         drm_i915_private_t *dev_priv = dev->dev_private;
3043         struct drm_gem_object *obj;
3044         struct drm_i915_gem_object *obj_priv;
3045         int ret;
3046         u32 head;
3047
3048         ret = i915_gem_init_hws(dev);
3049         if (ret != 0)
3050                 return ret;
3051
3052         obj = drm_gem_object_alloc(dev, 128 * 1024);
3053         if (obj == NULL) {
3054                 DRM_ERROR("Failed to allocate ringbuffer\n");
3055                 return -ENOMEM;
3056         }
3057         obj_priv = obj->driver_private;
3058
3059         ret = i915_gem_object_pin(obj, 4096);
3060         if (ret != 0) {
3061                 drm_gem_object_unreference(obj);
3062                 return ret;
3063         }
3064
3065         /* Set up the kernel mapping for the ring. */
3066         dev_priv->ring.Size = obj->size;
3067         dev_priv->ring.tail_mask = obj->size - 1;
3068
3069         dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
3070         dev_priv->ring.map.size = obj->size;
3071         dev_priv->ring.map.type = 0;
3072         dev_priv->ring.map.flags = 0;
3073         dev_priv->ring.map.mtrr = 0;
3074
3075         drm_core_ioremap_wc(&dev_priv->ring.map, dev);
3076         if (dev_priv->ring.map.handle == NULL) {
3077                 DRM_ERROR("Failed to map ringbuffer.\n");
3078                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3079                 drm_gem_object_unreference(obj);
3080                 return -EINVAL;
3081         }
3082         dev_priv->ring.ring_obj = obj;
3083         dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
3084
3085         /* Stop the ring if it's running. */
3086         I915_WRITE(PRB0_CTL, 0);
3087         I915_WRITE(PRB0_TAIL, 0);
3088         I915_WRITE(PRB0_HEAD, 0);
3089
3090         /* Initialize the ring. */
3091         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3092         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3093
3094         /* G45 ring initialization fails to reset head to zero */
3095         if (head != 0) {
3096                 DRM_ERROR("Ring head not reset to zero "
3097                           "ctl %08x head %08x tail %08x start %08x\n",
3098                           I915_READ(PRB0_CTL),
3099                           I915_READ(PRB0_HEAD),
3100                           I915_READ(PRB0_TAIL),
3101                           I915_READ(PRB0_START));
3102                 I915_WRITE(PRB0_HEAD, 0);
3103
3104                 DRM_ERROR("Ring head forced to zero "
3105                           "ctl %08x head %08x tail %08x start %08x\n",
3106                           I915_READ(PRB0_CTL),
3107                           I915_READ(PRB0_HEAD),
3108                           I915_READ(PRB0_TAIL),
3109                           I915_READ(PRB0_START));
3110         }
3111
3112         I915_WRITE(PRB0_CTL,
3113                    ((obj->size - 4096) & RING_NR_PAGES) |
3114                    RING_NO_REPORT |
3115                    RING_VALID);
3116
3117         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3118
3119         /* If the head is still not zero, the ring is dead */
3120         if (head != 0) {
3121                 DRM_ERROR("Ring initialization failed "
3122                           "ctl %08x head %08x tail %08x start %08x\n",
3123                           I915_READ(PRB0_CTL),
3124                           I915_READ(PRB0_HEAD),
3125                           I915_READ(PRB0_TAIL),
3126                           I915_READ(PRB0_START));
3127                 return -EIO;
3128         }
3129
3130         /* Update our cache of the ring state */
3131         i915_kernel_lost_context(dev);
3132
3133         return 0;
3134 }
3135
3136 static void
3137 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3138 {
3139         drm_i915_private_t *dev_priv = dev->dev_private;
3140
3141         if (dev_priv->ring.ring_obj == NULL)
3142                 return;
3143
3144         drm_core_ioremapfree(&dev_priv->ring.map, dev);
3145
3146         i915_gem_object_unpin(dev_priv->ring.ring_obj);
3147         drm_gem_object_unreference(dev_priv->ring.ring_obj);
3148         dev_priv->ring.ring_obj = NULL;
3149         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3150
3151         if (dev_priv->hws_obj != NULL) {
3152                 struct drm_gem_object *obj = dev_priv->hws_obj;
3153                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3154
3155                 kunmap(obj_priv->page_list[0]);
3156                 i915_gem_object_unpin(obj);
3157                 drm_gem_object_unreference(obj);
3158                 dev_priv->hws_obj = NULL;
3159                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3160                 dev_priv->hw_status_page = NULL;
3161
3162                 /* Write high address into HWS_PGA when disabling. */
3163                 I915_WRITE(HWS_PGA, 0x1ffff000);
3164         }
3165 }
3166
3167 int
3168 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3169                        struct drm_file *file_priv)
3170 {
3171         drm_i915_private_t *dev_priv = dev->dev_private;
3172         int ret;
3173
3174         if (dev_priv->mm.wedged) {
3175                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3176                 dev_priv->mm.wedged = 0;
3177         }
3178
3179         ret = i915_gem_init_ringbuffer(dev);
3180         if (ret != 0)
3181                 return ret;
3182
3183         dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
3184                                                         dev->agp->agp_info.aper_size
3185                                                         * 1024 * 1024);
3186
3187         mutex_lock(&dev->struct_mutex);
3188         BUG_ON(!list_empty(&dev_priv->mm.active_list));
3189         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3190         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3191         BUG_ON(!list_empty(&dev_priv->mm.request_list));
3192         dev_priv->mm.suspended = 0;
3193         mutex_unlock(&dev->struct_mutex);
3194
3195         drm_irq_install(dev);
3196
3197         return 0;
3198 }
3199
3200 int
3201 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3202                        struct drm_file *file_priv)
3203 {
3204         drm_i915_private_t *dev_priv = dev->dev_private;
3205         int ret;
3206
3207         ret = i915_gem_idle(dev);
3208         drm_irq_uninstall(dev);
3209
3210         io_mapping_free(dev_priv->mm.gtt_mapping);
3211         return ret;
3212 }
3213
3214 void
3215 i915_gem_lastclose(struct drm_device *dev)
3216 {
3217         int ret;
3218
3219         ret = i915_gem_idle(dev);
3220         if (ret)
3221                 DRM_ERROR("failed to idle hardware: %d\n", ret);
3222 }
3223
3224 void
3225 i915_gem_load(struct drm_device *dev)
3226 {
3227         drm_i915_private_t *dev_priv = dev->dev_private;
3228
3229         INIT_LIST_HEAD(&dev_priv->mm.active_list);
3230         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3231         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3232         INIT_LIST_HEAD(&dev_priv->mm.request_list);
3233         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3234                           i915_gem_retire_work_handler);
3235         dev_priv->mm.next_gem_seqno = 1;
3236
3237         /* Old X drivers will take 0-2 for front, back, depth buffers */
3238         dev_priv->fence_reg_start = 3;
3239
3240         if (IS_I965G(dev))
3241                 dev_priv->num_fence_regs = 16;
3242         else
3243                 dev_priv->num_fence_regs = 8;
3244
3245         i915_gem_detect_bit_6_swizzle(dev);
3246 }