drm/i915: Retry execbuffer pinning after clearing the GTT
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33
34 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
35
36 static void
37 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
38                                   uint32_t read_domains,
39                                   uint32_t write_domain);
40 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj,
44                                              int write);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46                                              int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48                                                      uint64_t offset,
49                                                      uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
52 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
53 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
54
55 static void
56 i915_gem_cleanup_ringbuffer(struct drm_device *dev);
57
58 int
59 i915_gem_init_ioctl(struct drm_device *dev, void *data,
60                     struct drm_file *file_priv)
61 {
62         drm_i915_private_t *dev_priv = dev->dev_private;
63         struct drm_i915_gem_init *args = data;
64
65         mutex_lock(&dev->struct_mutex);
66
67         if (args->gtt_start >= args->gtt_end ||
68             (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
69             (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
70                 mutex_unlock(&dev->struct_mutex);
71                 return -EINVAL;
72         }
73
74         drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
75             args->gtt_end - args->gtt_start);
76
77         dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
78
79         mutex_unlock(&dev->struct_mutex);
80
81         return 0;
82 }
83
84 int
85 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
86                             struct drm_file *file_priv)
87 {
88         struct drm_i915_gem_get_aperture *args = data;
89
90         if (!(dev->driver->driver_features & DRIVER_GEM))
91                 return -ENODEV;
92
93         args->aper_size = dev->gtt_total;
94         args->aper_available_size = (args->aper_size -
95                                      atomic_read(&dev->pin_memory));
96
97         return 0;
98 }
99
100
101 /**
102  * Creates a new mm object and returns a handle to it.
103  */
104 int
105 i915_gem_create_ioctl(struct drm_device *dev, void *data,
106                       struct drm_file *file_priv)
107 {
108         struct drm_i915_gem_create *args = data;
109         struct drm_gem_object *obj;
110         int handle, ret;
111
112         args->size = roundup(args->size, PAGE_SIZE);
113
114         /* Allocate the new object */
115         obj = drm_gem_object_alloc(dev, args->size);
116         if (obj == NULL)
117                 return -ENOMEM;
118
119         ret = drm_gem_handle_create(file_priv, obj, &handle);
120         mutex_lock(&dev->struct_mutex);
121         drm_gem_object_handle_unreference(obj);
122         mutex_unlock(&dev->struct_mutex);
123
124         if (ret)
125                 return ret;
126
127         args->handle = handle;
128
129         return 0;
130 }
131
132 /**
133  * Reads data from the object referenced by handle.
134  *
135  * On error, the contents of *data are undefined.
136  */
137 int
138 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
139                      struct drm_file *file_priv)
140 {
141         struct drm_i915_gem_pread *args = data;
142         struct drm_gem_object *obj;
143         struct drm_i915_gem_object *obj_priv;
144         ssize_t read;
145         loff_t offset;
146         int ret;
147
148         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
149         if (obj == NULL)
150                 return -EBADF;
151         obj_priv = obj->driver_private;
152
153         /* Bounds check source.
154          *
155          * XXX: This could use review for overflow issues...
156          */
157         if (args->offset > obj->size || args->size > obj->size ||
158             args->offset + args->size > obj->size) {
159                 drm_gem_object_unreference(obj);
160                 return -EINVAL;
161         }
162
163         mutex_lock(&dev->struct_mutex);
164
165         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
166                                                         args->size);
167         if (ret != 0) {
168                 drm_gem_object_unreference(obj);
169                 mutex_unlock(&dev->struct_mutex);
170                 return ret;
171         }
172
173         offset = args->offset;
174
175         read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
176                         args->size, &offset);
177         if (read != args->size) {
178                 drm_gem_object_unreference(obj);
179                 mutex_unlock(&dev->struct_mutex);
180                 if (read < 0)
181                         return read;
182                 else
183                         return -EINVAL;
184         }
185
186         drm_gem_object_unreference(obj);
187         mutex_unlock(&dev->struct_mutex);
188
189         return 0;
190 }
191
192 /* This is the fast write path which cannot handle
193  * page faults in the source data
194  */
195
196 static inline int
197 fast_user_write(struct io_mapping *mapping,
198                 loff_t page_base, int page_offset,
199                 char __user *user_data,
200                 int length)
201 {
202         char *vaddr_atomic;
203         unsigned long unwritten;
204
205         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
206         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
207                                                       user_data, length);
208         io_mapping_unmap_atomic(vaddr_atomic);
209         if (unwritten)
210                 return -EFAULT;
211         return 0;
212 }
213
214 /* Here's the write path which can sleep for
215  * page faults
216  */
217
218 static inline int
219 slow_user_write(struct io_mapping *mapping,
220                 loff_t page_base, int page_offset,
221                 char __user *user_data,
222                 int length)
223 {
224         char __iomem *vaddr;
225         unsigned long unwritten;
226
227         vaddr = io_mapping_map_wc(mapping, page_base);
228         if (vaddr == NULL)
229                 return -EFAULT;
230         unwritten = __copy_from_user(vaddr + page_offset,
231                                      user_data, length);
232         io_mapping_unmap(vaddr);
233         if (unwritten)
234                 return -EFAULT;
235         return 0;
236 }
237
238 static int
239 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
240                     struct drm_i915_gem_pwrite *args,
241                     struct drm_file *file_priv)
242 {
243         struct drm_i915_gem_object *obj_priv = obj->driver_private;
244         drm_i915_private_t *dev_priv = dev->dev_private;
245         ssize_t remain;
246         loff_t offset, page_base;
247         char __user *user_data;
248         int page_offset, page_length;
249         int ret;
250
251         user_data = (char __user *) (uintptr_t) args->data_ptr;
252         remain = args->size;
253         if (!access_ok(VERIFY_READ, user_data, remain))
254                 return -EFAULT;
255
256
257         mutex_lock(&dev->struct_mutex);
258         ret = i915_gem_object_pin(obj, 0);
259         if (ret) {
260                 mutex_unlock(&dev->struct_mutex);
261                 return ret;
262         }
263         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
264         if (ret)
265                 goto fail;
266
267         obj_priv = obj->driver_private;
268         offset = obj_priv->gtt_offset + args->offset;
269         obj_priv->dirty = 1;
270
271         while (remain > 0) {
272                 /* Operation in this page
273                  *
274                  * page_base = page offset within aperture
275                  * page_offset = offset within page
276                  * page_length = bytes to copy for this page
277                  */
278                 page_base = (offset & ~(PAGE_SIZE-1));
279                 page_offset = offset & (PAGE_SIZE-1);
280                 page_length = remain;
281                 if ((page_offset + remain) > PAGE_SIZE)
282                         page_length = PAGE_SIZE - page_offset;
283
284                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
285                                        page_offset, user_data, page_length);
286
287                 /* If we get a fault while copying data, then (presumably) our
288                  * source page isn't available. In this case, use the
289                  * non-atomic function
290                  */
291                 if (ret) {
292                         ret = slow_user_write (dev_priv->mm.gtt_mapping,
293                                                page_base, page_offset,
294                                                user_data, page_length);
295                         if (ret)
296                                 goto fail;
297                 }
298
299                 remain -= page_length;
300                 user_data += page_length;
301                 offset += page_length;
302         }
303
304 fail:
305         i915_gem_object_unpin(obj);
306         mutex_unlock(&dev->struct_mutex);
307
308         return ret;
309 }
310
311 static int
312 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
313                       struct drm_i915_gem_pwrite *args,
314                       struct drm_file *file_priv)
315 {
316         int ret;
317         loff_t offset;
318         ssize_t written;
319
320         mutex_lock(&dev->struct_mutex);
321
322         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
323         if (ret) {
324                 mutex_unlock(&dev->struct_mutex);
325                 return ret;
326         }
327
328         offset = args->offset;
329
330         written = vfs_write(obj->filp,
331                             (char __user *)(uintptr_t) args->data_ptr,
332                             args->size, &offset);
333         if (written != args->size) {
334                 mutex_unlock(&dev->struct_mutex);
335                 if (written < 0)
336                         return written;
337                 else
338                         return -EINVAL;
339         }
340
341         mutex_unlock(&dev->struct_mutex);
342
343         return 0;
344 }
345
346 /**
347  * Writes data to the object referenced by handle.
348  *
349  * On error, the contents of the buffer that were to be modified are undefined.
350  */
351 int
352 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
353                       struct drm_file *file_priv)
354 {
355         struct drm_i915_gem_pwrite *args = data;
356         struct drm_gem_object *obj;
357         struct drm_i915_gem_object *obj_priv;
358         int ret = 0;
359
360         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
361         if (obj == NULL)
362                 return -EBADF;
363         obj_priv = obj->driver_private;
364
365         /* Bounds check destination.
366          *
367          * XXX: This could use review for overflow issues...
368          */
369         if (args->offset > obj->size || args->size > obj->size ||
370             args->offset + args->size > obj->size) {
371                 drm_gem_object_unreference(obj);
372                 return -EINVAL;
373         }
374
375         /* We can only do the GTT pwrite on untiled buffers, as otherwise
376          * it would end up going through the fenced access, and we'll get
377          * different detiling behavior between reading and writing.
378          * pread/pwrite currently are reading and writing from the CPU
379          * perspective, requiring manual detiling by the client.
380          */
381         if (obj_priv->tiling_mode == I915_TILING_NONE &&
382             dev->gtt_total != 0)
383                 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
384         else
385                 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
386
387 #if WATCH_PWRITE
388         if (ret)
389                 DRM_INFO("pwrite failed %d\n", ret);
390 #endif
391
392         drm_gem_object_unreference(obj);
393
394         return ret;
395 }
396
397 /**
398  * Called when user space prepares to use an object with the CPU, either
399  * through the mmap ioctl's mapping or a GTT mapping.
400  */
401 int
402 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
403                           struct drm_file *file_priv)
404 {
405         struct drm_i915_gem_set_domain *args = data;
406         struct drm_gem_object *obj;
407         uint32_t read_domains = args->read_domains;
408         uint32_t write_domain = args->write_domain;
409         int ret;
410
411         if (!(dev->driver->driver_features & DRIVER_GEM))
412                 return -ENODEV;
413
414         /* Only handle setting domains to types used by the CPU. */
415         if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
416                 return -EINVAL;
417
418         if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
419                 return -EINVAL;
420
421         /* Having something in the write domain implies it's in the read
422          * domain, and only that read domain.  Enforce that in the request.
423          */
424         if (write_domain != 0 && read_domains != write_domain)
425                 return -EINVAL;
426
427         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
428         if (obj == NULL)
429                 return -EBADF;
430
431         mutex_lock(&dev->struct_mutex);
432 #if WATCH_BUF
433         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
434                  obj, obj->size, read_domains, write_domain);
435 #endif
436         if (read_domains & I915_GEM_DOMAIN_GTT) {
437                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
438         } else {
439                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
440         }
441
442         drm_gem_object_unreference(obj);
443         mutex_unlock(&dev->struct_mutex);
444         return ret;
445 }
446
447 /**
448  * Called when user space has done writes to this buffer
449  */
450 int
451 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
452                       struct drm_file *file_priv)
453 {
454         struct drm_i915_gem_sw_finish *args = data;
455         struct drm_gem_object *obj;
456         struct drm_i915_gem_object *obj_priv;
457         int ret = 0;
458
459         if (!(dev->driver->driver_features & DRIVER_GEM))
460                 return -ENODEV;
461
462         mutex_lock(&dev->struct_mutex);
463         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
464         if (obj == NULL) {
465                 mutex_unlock(&dev->struct_mutex);
466                 return -EBADF;
467         }
468
469 #if WATCH_BUF
470         DRM_INFO("%s: sw_finish %d (%p %d)\n",
471                  __func__, args->handle, obj, obj->size);
472 #endif
473         obj_priv = obj->driver_private;
474
475         /* Pinned buffers may be scanout, so flush the cache */
476         if (obj_priv->pin_count)
477                 i915_gem_object_flush_cpu_write_domain(obj);
478
479         drm_gem_object_unreference(obj);
480         mutex_unlock(&dev->struct_mutex);
481         return ret;
482 }
483
484 /**
485  * Maps the contents of an object, returning the address it is mapped
486  * into.
487  *
488  * While the mapping holds a reference on the contents of the object, it doesn't
489  * imply a ref on the object itself.
490  */
491 int
492 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
493                    struct drm_file *file_priv)
494 {
495         struct drm_i915_gem_mmap *args = data;
496         struct drm_gem_object *obj;
497         loff_t offset;
498         unsigned long addr;
499
500         if (!(dev->driver->driver_features & DRIVER_GEM))
501                 return -ENODEV;
502
503         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
504         if (obj == NULL)
505                 return -EBADF;
506
507         offset = args->offset;
508
509         down_write(&current->mm->mmap_sem);
510         addr = do_mmap(obj->filp, 0, args->size,
511                        PROT_READ | PROT_WRITE, MAP_SHARED,
512                        args->offset);
513         up_write(&current->mm->mmap_sem);
514         mutex_lock(&dev->struct_mutex);
515         drm_gem_object_unreference(obj);
516         mutex_unlock(&dev->struct_mutex);
517         if (IS_ERR((void *)addr))
518                 return addr;
519
520         args->addr_ptr = (uint64_t) addr;
521
522         return 0;
523 }
524
525 static void
526 i915_gem_object_free_page_list(struct drm_gem_object *obj)
527 {
528         struct drm_i915_gem_object *obj_priv = obj->driver_private;
529         int page_count = obj->size / PAGE_SIZE;
530         int i;
531
532         if (obj_priv->page_list == NULL)
533                 return;
534
535
536         for (i = 0; i < page_count; i++)
537                 if (obj_priv->page_list[i] != NULL) {
538                         if (obj_priv->dirty)
539                                 set_page_dirty(obj_priv->page_list[i]);
540                         mark_page_accessed(obj_priv->page_list[i]);
541                         page_cache_release(obj_priv->page_list[i]);
542                 }
543         obj_priv->dirty = 0;
544
545         drm_free(obj_priv->page_list,
546                  page_count * sizeof(struct page *),
547                  DRM_MEM_DRIVER);
548         obj_priv->page_list = NULL;
549 }
550
551 static void
552 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
553 {
554         struct drm_device *dev = obj->dev;
555         drm_i915_private_t *dev_priv = dev->dev_private;
556         struct drm_i915_gem_object *obj_priv = obj->driver_private;
557
558         /* Add a reference if we're newly entering the active list. */
559         if (!obj_priv->active) {
560                 drm_gem_object_reference(obj);
561                 obj_priv->active = 1;
562         }
563         /* Move from whatever list we were on to the tail of execution. */
564         list_move_tail(&obj_priv->list,
565                        &dev_priv->mm.active_list);
566         obj_priv->last_rendering_seqno = seqno;
567 }
568
569 static void
570 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
571 {
572         struct drm_device *dev = obj->dev;
573         drm_i915_private_t *dev_priv = dev->dev_private;
574         struct drm_i915_gem_object *obj_priv = obj->driver_private;
575
576         BUG_ON(!obj_priv->active);
577         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
578         obj_priv->last_rendering_seqno = 0;
579 }
580
581 static void
582 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
583 {
584         struct drm_device *dev = obj->dev;
585         drm_i915_private_t *dev_priv = dev->dev_private;
586         struct drm_i915_gem_object *obj_priv = obj->driver_private;
587
588         i915_verify_inactive(dev, __FILE__, __LINE__);
589         if (obj_priv->pin_count != 0)
590                 list_del_init(&obj_priv->list);
591         else
592                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
593
594         obj_priv->last_rendering_seqno = 0;
595         if (obj_priv->active) {
596                 obj_priv->active = 0;
597                 drm_gem_object_unreference(obj);
598         }
599         i915_verify_inactive(dev, __FILE__, __LINE__);
600 }
601
602 /**
603  * Creates a new sequence number, emitting a write of it to the status page
604  * plus an interrupt, which will trigger i915_user_interrupt_handler.
605  *
606  * Must be called with struct_lock held.
607  *
608  * Returned sequence numbers are nonzero on success.
609  */
610 static uint32_t
611 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
612 {
613         drm_i915_private_t *dev_priv = dev->dev_private;
614         struct drm_i915_gem_request *request;
615         uint32_t seqno;
616         int was_empty;
617         RING_LOCALS;
618
619         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
620         if (request == NULL)
621                 return 0;
622
623         /* Grab the seqno we're going to make this request be, and bump the
624          * next (skipping 0 so it can be the reserved no-seqno value).
625          */
626         seqno = dev_priv->mm.next_gem_seqno;
627         dev_priv->mm.next_gem_seqno++;
628         if (dev_priv->mm.next_gem_seqno == 0)
629                 dev_priv->mm.next_gem_seqno++;
630
631         BEGIN_LP_RING(4);
632         OUT_RING(MI_STORE_DWORD_INDEX);
633         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
634         OUT_RING(seqno);
635
636         OUT_RING(MI_USER_INTERRUPT);
637         ADVANCE_LP_RING();
638
639         DRM_DEBUG("%d\n", seqno);
640
641         request->seqno = seqno;
642         request->emitted_jiffies = jiffies;
643         was_empty = list_empty(&dev_priv->mm.request_list);
644         list_add_tail(&request->list, &dev_priv->mm.request_list);
645
646         /* Associate any objects on the flushing list matching the write
647          * domain we're flushing with our flush.
648          */
649         if (flush_domains != 0) {
650                 struct drm_i915_gem_object *obj_priv, *next;
651
652                 list_for_each_entry_safe(obj_priv, next,
653                                          &dev_priv->mm.flushing_list, list) {
654                         struct drm_gem_object *obj = obj_priv->obj;
655
656                         if ((obj->write_domain & flush_domains) ==
657                             obj->write_domain) {
658                                 obj->write_domain = 0;
659                                 i915_gem_object_move_to_active(obj, seqno);
660                         }
661                 }
662
663         }
664
665         if (was_empty && !dev_priv->mm.suspended)
666                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
667         return seqno;
668 }
669
670 /**
671  * Command execution barrier
672  *
673  * Ensures that all commands in the ring are finished
674  * before signalling the CPU
675  */
676 static uint32_t
677 i915_retire_commands(struct drm_device *dev)
678 {
679         drm_i915_private_t *dev_priv = dev->dev_private;
680         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
681         uint32_t flush_domains = 0;
682         RING_LOCALS;
683
684         /* The sampler always gets flushed on i965 (sigh) */
685         if (IS_I965G(dev))
686                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
687         BEGIN_LP_RING(2);
688         OUT_RING(cmd);
689         OUT_RING(0); /* noop */
690         ADVANCE_LP_RING();
691         return flush_domains;
692 }
693
694 /**
695  * Moves buffers associated only with the given active seqno from the active
696  * to inactive list, potentially freeing them.
697  */
698 static void
699 i915_gem_retire_request(struct drm_device *dev,
700                         struct drm_i915_gem_request *request)
701 {
702         drm_i915_private_t *dev_priv = dev->dev_private;
703
704         /* Move any buffers on the active list that are no longer referenced
705          * by the ringbuffer to the flushing/inactive lists as appropriate.
706          */
707         while (!list_empty(&dev_priv->mm.active_list)) {
708                 struct drm_gem_object *obj;
709                 struct drm_i915_gem_object *obj_priv;
710
711                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
712                                             struct drm_i915_gem_object,
713                                             list);
714                 obj = obj_priv->obj;
715
716                 /* If the seqno being retired doesn't match the oldest in the
717                  * list, then the oldest in the list must still be newer than
718                  * this seqno.
719                  */
720                 if (obj_priv->last_rendering_seqno != request->seqno)
721                         return;
722 #if WATCH_LRU
723                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
724                          __func__, request->seqno, obj);
725 #endif
726
727                 if (obj->write_domain != 0)
728                         i915_gem_object_move_to_flushing(obj);
729                 else
730                         i915_gem_object_move_to_inactive(obj);
731         }
732 }
733
734 /**
735  * Returns true if seq1 is later than seq2.
736  */
737 static int
738 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
739 {
740         return (int32_t)(seq1 - seq2) >= 0;
741 }
742
743 uint32_t
744 i915_get_gem_seqno(struct drm_device *dev)
745 {
746         drm_i915_private_t *dev_priv = dev->dev_private;
747
748         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
749 }
750
751 /**
752  * This function clears the request list as sequence numbers are passed.
753  */
754 void
755 i915_gem_retire_requests(struct drm_device *dev)
756 {
757         drm_i915_private_t *dev_priv = dev->dev_private;
758         uint32_t seqno;
759
760         seqno = i915_get_gem_seqno(dev);
761
762         while (!list_empty(&dev_priv->mm.request_list)) {
763                 struct drm_i915_gem_request *request;
764                 uint32_t retiring_seqno;
765
766                 request = list_first_entry(&dev_priv->mm.request_list,
767                                            struct drm_i915_gem_request,
768                                            list);
769                 retiring_seqno = request->seqno;
770
771                 if (i915_seqno_passed(seqno, retiring_seqno) ||
772                     dev_priv->mm.wedged) {
773                         i915_gem_retire_request(dev, request);
774
775                         list_del(&request->list);
776                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
777                 } else
778                         break;
779         }
780 }
781
782 void
783 i915_gem_retire_work_handler(struct work_struct *work)
784 {
785         drm_i915_private_t *dev_priv;
786         struct drm_device *dev;
787
788         dev_priv = container_of(work, drm_i915_private_t,
789                                 mm.retire_work.work);
790         dev = dev_priv->dev;
791
792         mutex_lock(&dev->struct_mutex);
793         i915_gem_retire_requests(dev);
794         if (!dev_priv->mm.suspended &&
795             !list_empty(&dev_priv->mm.request_list))
796                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
797         mutex_unlock(&dev->struct_mutex);
798 }
799
800 /**
801  * Waits for a sequence number to be signaled, and cleans up the
802  * request and object lists appropriately for that event.
803  */
804 static int
805 i915_wait_request(struct drm_device *dev, uint32_t seqno)
806 {
807         drm_i915_private_t *dev_priv = dev->dev_private;
808         int ret = 0;
809
810         BUG_ON(seqno == 0);
811
812         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
813                 dev_priv->mm.waiting_gem_seqno = seqno;
814                 i915_user_irq_get(dev);
815                 ret = wait_event_interruptible(dev_priv->irq_queue,
816                                                i915_seqno_passed(i915_get_gem_seqno(dev),
817                                                                  seqno) ||
818                                                dev_priv->mm.wedged);
819                 i915_user_irq_put(dev);
820                 dev_priv->mm.waiting_gem_seqno = 0;
821         }
822         if (dev_priv->mm.wedged)
823                 ret = -EIO;
824
825         if (ret && ret != -ERESTARTSYS)
826                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
827                           __func__, ret, seqno, i915_get_gem_seqno(dev));
828
829         /* Directly dispatch request retiring.  While we have the work queue
830          * to handle this, the waiter on a request often wants an associated
831          * buffer to have made it to the inactive list, and we would need
832          * a separate wait queue to handle that.
833          */
834         if (ret == 0)
835                 i915_gem_retire_requests(dev);
836
837         return ret;
838 }
839
840 static void
841 i915_gem_flush(struct drm_device *dev,
842                uint32_t invalidate_domains,
843                uint32_t flush_domains)
844 {
845         drm_i915_private_t *dev_priv = dev->dev_private;
846         uint32_t cmd;
847         RING_LOCALS;
848
849 #if WATCH_EXEC
850         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
851                   invalidate_domains, flush_domains);
852 #endif
853
854         if (flush_domains & I915_GEM_DOMAIN_CPU)
855                 drm_agp_chipset_flush(dev);
856
857         if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
858                                                      I915_GEM_DOMAIN_GTT)) {
859                 /*
860                  * read/write caches:
861                  *
862                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
863                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
864                  * also flushed at 2d versus 3d pipeline switches.
865                  *
866                  * read-only caches:
867                  *
868                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
869                  * MI_READ_FLUSH is set, and is always flushed on 965.
870                  *
871                  * I915_GEM_DOMAIN_COMMAND may not exist?
872                  *
873                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
874                  * invalidated when MI_EXE_FLUSH is set.
875                  *
876                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
877                  * invalidated with every MI_FLUSH.
878                  *
879                  * TLBs:
880                  *
881                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
882                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
883                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
884                  * are flushed at any MI_FLUSH.
885                  */
886
887                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
888                 if ((invalidate_domains|flush_domains) &
889                     I915_GEM_DOMAIN_RENDER)
890                         cmd &= ~MI_NO_WRITE_FLUSH;
891                 if (!IS_I965G(dev)) {
892                         /*
893                          * On the 965, the sampler cache always gets flushed
894                          * and this bit is reserved.
895                          */
896                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
897                                 cmd |= MI_READ_FLUSH;
898                 }
899                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
900                         cmd |= MI_EXE_FLUSH;
901
902 #if WATCH_EXEC
903                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
904 #endif
905                 BEGIN_LP_RING(2);
906                 OUT_RING(cmd);
907                 OUT_RING(0); /* noop */
908                 ADVANCE_LP_RING();
909         }
910 }
911
912 /**
913  * Ensures that all rendering to the object has completed and the object is
914  * safe to unbind from the GTT or access from the CPU.
915  */
916 static int
917 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
918 {
919         struct drm_device *dev = obj->dev;
920         struct drm_i915_gem_object *obj_priv = obj->driver_private;
921         int ret;
922
923         /* This function only exists to support waiting for existing rendering,
924          * not for emitting required flushes.
925          */
926         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
927
928         /* If there is rendering queued on the buffer being evicted, wait for
929          * it.
930          */
931         if (obj_priv->active) {
932 #if WATCH_BUF
933                 DRM_INFO("%s: object %p wait for seqno %08x\n",
934                           __func__, obj, obj_priv->last_rendering_seqno);
935 #endif
936                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
937                 if (ret != 0)
938                         return ret;
939         }
940
941         return 0;
942 }
943
944 /**
945  * Unbinds an object from the GTT aperture.
946  */
947 static int
948 i915_gem_object_unbind(struct drm_gem_object *obj)
949 {
950         struct drm_device *dev = obj->dev;
951         struct drm_i915_gem_object *obj_priv = obj->driver_private;
952         int ret = 0;
953
954 #if WATCH_BUF
955         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
956         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
957 #endif
958         if (obj_priv->gtt_space == NULL)
959                 return 0;
960
961         if (obj_priv->pin_count != 0) {
962                 DRM_ERROR("Attempting to unbind pinned buffer\n");
963                 return -EINVAL;
964         }
965
966         /* Move the object to the CPU domain to ensure that
967          * any possible CPU writes while it's not in the GTT
968          * are flushed when we go to remap it. This will
969          * also ensure that all pending GPU writes are finished
970          * before we unbind.
971          */
972         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
973         if (ret) {
974                 if (ret != -ERESTARTSYS)
975                         DRM_ERROR("set_domain failed: %d\n", ret);
976                 return ret;
977         }
978
979         if (obj_priv->agp_mem != NULL) {
980                 drm_unbind_agp(obj_priv->agp_mem);
981                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
982                 obj_priv->agp_mem = NULL;
983         }
984
985         BUG_ON(obj_priv->active);
986
987         i915_gem_object_free_page_list(obj);
988
989         if (obj_priv->gtt_space) {
990                 atomic_dec(&dev->gtt_count);
991                 atomic_sub(obj->size, &dev->gtt_memory);
992
993                 drm_mm_put_block(obj_priv->gtt_space);
994                 obj_priv->gtt_space = NULL;
995         }
996
997         /* Remove ourselves from the LRU list if present. */
998         if (!list_empty(&obj_priv->list))
999                 list_del_init(&obj_priv->list);
1000
1001         return 0;
1002 }
1003
1004 static int
1005 i915_gem_evict_something(struct drm_device *dev)
1006 {
1007         drm_i915_private_t *dev_priv = dev->dev_private;
1008         struct drm_gem_object *obj;
1009         struct drm_i915_gem_object *obj_priv;
1010         int ret = 0;
1011
1012         for (;;) {
1013                 /* If there's an inactive buffer available now, grab it
1014                  * and be done.
1015                  */
1016                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1017                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1018                                                     struct drm_i915_gem_object,
1019                                                     list);
1020                         obj = obj_priv->obj;
1021                         BUG_ON(obj_priv->pin_count != 0);
1022 #if WATCH_LRU
1023                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1024 #endif
1025                         BUG_ON(obj_priv->active);
1026
1027                         /* Wait on the rendering and unbind the buffer. */
1028                         ret = i915_gem_object_unbind(obj);
1029                         break;
1030                 }
1031
1032                 /* If we didn't get anything, but the ring is still processing
1033                  * things, wait for one of those things to finish and hopefully
1034                  * leave us a buffer to evict.
1035                  */
1036                 if (!list_empty(&dev_priv->mm.request_list)) {
1037                         struct drm_i915_gem_request *request;
1038
1039                         request = list_first_entry(&dev_priv->mm.request_list,
1040                                                    struct drm_i915_gem_request,
1041                                                    list);
1042
1043                         ret = i915_wait_request(dev, request->seqno);
1044                         if (ret)
1045                                 break;
1046
1047                         /* if waiting caused an object to become inactive,
1048                          * then loop around and wait for it. Otherwise, we
1049                          * assume that waiting freed and unbound something,
1050                          * so there should now be some space in the GTT
1051                          */
1052                         if (!list_empty(&dev_priv->mm.inactive_list))
1053                                 continue;
1054                         break;
1055                 }
1056
1057                 /* If we didn't have anything on the request list but there
1058                  * are buffers awaiting a flush, emit one and try again.
1059                  * When we wait on it, those buffers waiting for that flush
1060                  * will get moved to inactive.
1061                  */
1062                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1063                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1064                                                     struct drm_i915_gem_object,
1065                                                     list);
1066                         obj = obj_priv->obj;
1067
1068                         i915_gem_flush(dev,
1069                                        obj->write_domain,
1070                                        obj->write_domain);
1071                         i915_add_request(dev, obj->write_domain);
1072
1073                         obj = NULL;
1074                         continue;
1075                 }
1076
1077                 DRM_ERROR("inactive empty %d request empty %d "
1078                           "flushing empty %d\n",
1079                           list_empty(&dev_priv->mm.inactive_list),
1080                           list_empty(&dev_priv->mm.request_list),
1081                           list_empty(&dev_priv->mm.flushing_list));
1082                 /* If we didn't do any of the above, there's nothing to be done
1083                  * and we just can't fit it in.
1084                  */
1085                 return -ENOMEM;
1086         }
1087         return ret;
1088 }
1089
1090 static int
1091 i915_gem_evict_everything(struct drm_device *dev)
1092 {
1093         int ret;
1094
1095         for (;;) {
1096                 ret = i915_gem_evict_something(dev);
1097                 if (ret != 0)
1098                         break;
1099         }
1100         return ret;
1101 }
1102
1103 static int
1104 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1105 {
1106         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1107         int page_count, i;
1108         struct address_space *mapping;
1109         struct inode *inode;
1110         struct page *page;
1111         int ret;
1112
1113         if (obj_priv->page_list)
1114                 return 0;
1115
1116         /* Get the list of pages out of our struct file.  They'll be pinned
1117          * at this point until we release them.
1118          */
1119         page_count = obj->size / PAGE_SIZE;
1120         BUG_ON(obj_priv->page_list != NULL);
1121         obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1122                                          DRM_MEM_DRIVER);
1123         if (obj_priv->page_list == NULL) {
1124                 DRM_ERROR("Faled to allocate page list\n");
1125                 return -ENOMEM;
1126         }
1127
1128         inode = obj->filp->f_path.dentry->d_inode;
1129         mapping = inode->i_mapping;
1130         for (i = 0; i < page_count; i++) {
1131                 page = read_mapping_page(mapping, i, NULL);
1132                 if (IS_ERR(page)) {
1133                         ret = PTR_ERR(page);
1134                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
1135                         i915_gem_object_free_page_list(obj);
1136                         return ret;
1137                 }
1138                 obj_priv->page_list[i] = page;
1139         }
1140         return 0;
1141 }
1142
1143 /**
1144  * Finds free space in the GTT aperture and binds the object there.
1145  */
1146 static int
1147 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1148 {
1149         struct drm_device *dev = obj->dev;
1150         drm_i915_private_t *dev_priv = dev->dev_private;
1151         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1152         struct drm_mm_node *free_space;
1153         int page_count, ret;
1154
1155         if (alignment == 0)
1156                 alignment = PAGE_SIZE;
1157         if (alignment & (PAGE_SIZE - 1)) {
1158                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1159                 return -EINVAL;
1160         }
1161
1162  search_free:
1163         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1164                                         obj->size, alignment, 0);
1165         if (free_space != NULL) {
1166                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1167                                                        alignment);
1168                 if (obj_priv->gtt_space != NULL) {
1169                         obj_priv->gtt_space->private = obj;
1170                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
1171                 }
1172         }
1173         if (obj_priv->gtt_space == NULL) {
1174                 /* If the gtt is empty and we're still having trouble
1175                  * fitting our object in, we're out of memory.
1176                  */
1177 #if WATCH_LRU
1178                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1179 #endif
1180                 if (list_empty(&dev_priv->mm.inactive_list) &&
1181                     list_empty(&dev_priv->mm.flushing_list) &&
1182                     list_empty(&dev_priv->mm.active_list)) {
1183                         DRM_ERROR("GTT full, but LRU list empty\n");
1184                         return -ENOMEM;
1185                 }
1186
1187                 ret = i915_gem_evict_something(dev);
1188                 if (ret != 0) {
1189                         if (ret != -ERESTARTSYS)
1190                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1191                         return ret;
1192                 }
1193                 goto search_free;
1194         }
1195
1196 #if WATCH_BUF
1197         DRM_INFO("Binding object of size %d at 0x%08x\n",
1198                  obj->size, obj_priv->gtt_offset);
1199 #endif
1200         ret = i915_gem_object_get_page_list(obj);
1201         if (ret) {
1202                 drm_mm_put_block(obj_priv->gtt_space);
1203                 obj_priv->gtt_space = NULL;
1204                 return ret;
1205         }
1206
1207         page_count = obj->size / PAGE_SIZE;
1208         /* Create an AGP memory structure pointing at our pages, and bind it
1209          * into the GTT.
1210          */
1211         obj_priv->agp_mem = drm_agp_bind_pages(dev,
1212                                                obj_priv->page_list,
1213                                                page_count,
1214                                                obj_priv->gtt_offset,
1215                                                obj_priv->agp_type);
1216         if (obj_priv->agp_mem == NULL) {
1217                 i915_gem_object_free_page_list(obj);
1218                 drm_mm_put_block(obj_priv->gtt_space);
1219                 obj_priv->gtt_space = NULL;
1220                 return -ENOMEM;
1221         }
1222         atomic_inc(&dev->gtt_count);
1223         atomic_add(obj->size, &dev->gtt_memory);
1224
1225         /* Assert that the object is not currently in any GPU domain. As it
1226          * wasn't in the GTT, there shouldn't be any way it could have been in
1227          * a GPU cache
1228          */
1229         BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1230         BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1231
1232         return 0;
1233 }
1234
1235 void
1236 i915_gem_clflush_object(struct drm_gem_object *obj)
1237 {
1238         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1239
1240         /* If we don't have a page list set up, then we're not pinned
1241          * to GPU, and we can ignore the cache flush because it'll happen
1242          * again at bind time.
1243          */
1244         if (obj_priv->page_list == NULL)
1245                 return;
1246
1247         drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1248 }
1249
1250 /** Flushes any GPU write domain for the object if it's dirty. */
1251 static void
1252 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1253 {
1254         struct drm_device *dev = obj->dev;
1255         uint32_t seqno;
1256
1257         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1258                 return;
1259
1260         /* Queue the GPU write cache flushing we need. */
1261         i915_gem_flush(dev, 0, obj->write_domain);
1262         seqno = i915_add_request(dev, obj->write_domain);
1263         obj->write_domain = 0;
1264         i915_gem_object_move_to_active(obj, seqno);
1265 }
1266
1267 /** Flushes the GTT write domain for the object if it's dirty. */
1268 static void
1269 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1270 {
1271         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1272                 return;
1273
1274         /* No actual flushing is required for the GTT write domain.   Writes
1275          * to it immediately go to main memory as far as we know, so there's
1276          * no chipset flush.  It also doesn't land in render cache.
1277          */
1278         obj->write_domain = 0;
1279 }
1280
1281 /** Flushes the CPU write domain for the object if it's dirty. */
1282 static void
1283 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1284 {
1285         struct drm_device *dev = obj->dev;
1286
1287         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1288                 return;
1289
1290         i915_gem_clflush_object(obj);
1291         drm_agp_chipset_flush(dev);
1292         obj->write_domain = 0;
1293 }
1294
1295 /**
1296  * Moves a single object to the GTT read, and possibly write domain.
1297  *
1298  * This function returns when the move is complete, including waiting on
1299  * flushes to occur.
1300  */
1301 static int
1302 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1303 {
1304         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1305         int ret;
1306
1307         i915_gem_object_flush_gpu_write_domain(obj);
1308         /* Wait on any GPU rendering and flushing to occur. */
1309         ret = i915_gem_object_wait_rendering(obj);
1310         if (ret != 0)
1311                 return ret;
1312
1313         /* If we're writing through the GTT domain, then CPU and GPU caches
1314          * will need to be invalidated at next use.
1315          */
1316         if (write)
1317                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1318
1319         i915_gem_object_flush_cpu_write_domain(obj);
1320
1321         /* It should now be out of any other write domains, and we can update
1322          * the domain values for our changes.
1323          */
1324         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1325         obj->read_domains |= I915_GEM_DOMAIN_GTT;
1326         if (write) {
1327                 obj->write_domain = I915_GEM_DOMAIN_GTT;
1328                 obj_priv->dirty = 1;
1329         }
1330
1331         return 0;
1332 }
1333
1334 /**
1335  * Moves a single object to the CPU read, and possibly write domain.
1336  *
1337  * This function returns when the move is complete, including waiting on
1338  * flushes to occur.
1339  */
1340 static int
1341 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1342 {
1343         struct drm_device *dev = obj->dev;
1344         int ret;
1345
1346         i915_gem_object_flush_gpu_write_domain(obj);
1347         /* Wait on any GPU rendering and flushing to occur. */
1348         ret = i915_gem_object_wait_rendering(obj);
1349         if (ret != 0)
1350                 return ret;
1351
1352         i915_gem_object_flush_gtt_write_domain(obj);
1353
1354         /* If we have a partially-valid cache of the object in the CPU,
1355          * finish invalidating it and free the per-page flags.
1356          */
1357         i915_gem_object_set_to_full_cpu_read_domain(obj);
1358
1359         /* Flush the CPU cache if it's still invalid. */
1360         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1361                 i915_gem_clflush_object(obj);
1362                 drm_agp_chipset_flush(dev);
1363
1364                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1365         }
1366
1367         /* It should now be out of any other write domains, and we can update
1368          * the domain values for our changes.
1369          */
1370         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1371
1372         /* If we're writing through the CPU, then the GPU read domains will
1373          * need to be invalidated at next use.
1374          */
1375         if (write) {
1376                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1377                 obj->write_domain = I915_GEM_DOMAIN_CPU;
1378         }
1379
1380         return 0;
1381 }
1382
1383 /*
1384  * Set the next domain for the specified object. This
1385  * may not actually perform the necessary flushing/invaliding though,
1386  * as that may want to be batched with other set_domain operations
1387  *
1388  * This is (we hope) the only really tricky part of gem. The goal
1389  * is fairly simple -- track which caches hold bits of the object
1390  * and make sure they remain coherent. A few concrete examples may
1391  * help to explain how it works. For shorthand, we use the notation
1392  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1393  * a pair of read and write domain masks.
1394  *
1395  * Case 1: the batch buffer
1396  *
1397  *      1. Allocated
1398  *      2. Written by CPU
1399  *      3. Mapped to GTT
1400  *      4. Read by GPU
1401  *      5. Unmapped from GTT
1402  *      6. Freed
1403  *
1404  *      Let's take these a step at a time
1405  *
1406  *      1. Allocated
1407  *              Pages allocated from the kernel may still have
1408  *              cache contents, so we set them to (CPU, CPU) always.
1409  *      2. Written by CPU (using pwrite)
1410  *              The pwrite function calls set_domain (CPU, CPU) and
1411  *              this function does nothing (as nothing changes)
1412  *      3. Mapped by GTT
1413  *              This function asserts that the object is not
1414  *              currently in any GPU-based read or write domains
1415  *      4. Read by GPU
1416  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
1417  *              As write_domain is zero, this function adds in the
1418  *              current read domains (CPU+COMMAND, 0).
1419  *              flush_domains is set to CPU.
1420  *              invalidate_domains is set to COMMAND
1421  *              clflush is run to get data out of the CPU caches
1422  *              then i915_dev_set_domain calls i915_gem_flush to
1423  *              emit an MI_FLUSH and drm_agp_chipset_flush
1424  *      5. Unmapped from GTT
1425  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
1426  *              flush_domains and invalidate_domains end up both zero
1427  *              so no flushing/invalidating happens
1428  *      6. Freed
1429  *              yay, done
1430  *
1431  * Case 2: The shared render buffer
1432  *
1433  *      1. Allocated
1434  *      2. Mapped to GTT
1435  *      3. Read/written by GPU
1436  *      4. set_domain to (CPU,CPU)
1437  *      5. Read/written by CPU
1438  *      6. Read/written by GPU
1439  *
1440  *      1. Allocated
1441  *              Same as last example, (CPU, CPU)
1442  *      2. Mapped to GTT
1443  *              Nothing changes (assertions find that it is not in the GPU)
1444  *      3. Read/written by GPU
1445  *              execbuffer calls set_domain (RENDER, RENDER)
1446  *              flush_domains gets CPU
1447  *              invalidate_domains gets GPU
1448  *              clflush (obj)
1449  *              MI_FLUSH and drm_agp_chipset_flush
1450  *      4. set_domain (CPU, CPU)
1451  *              flush_domains gets GPU
1452  *              invalidate_domains gets CPU
1453  *              wait_rendering (obj) to make sure all drawing is complete.
1454  *              This will include an MI_FLUSH to get the data from GPU
1455  *              to memory
1456  *              clflush (obj) to invalidate the CPU cache
1457  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1458  *      5. Read/written by CPU
1459  *              cache lines are loaded and dirtied
1460  *      6. Read written by GPU
1461  *              Same as last GPU access
1462  *
1463  * Case 3: The constant buffer
1464  *
1465  *      1. Allocated
1466  *      2. Written by CPU
1467  *      3. Read by GPU
1468  *      4. Updated (written) by CPU again
1469  *      5. Read by GPU
1470  *
1471  *      1. Allocated
1472  *              (CPU, CPU)
1473  *      2. Written by CPU
1474  *              (CPU, CPU)
1475  *      3. Read by GPU
1476  *              (CPU+RENDER, 0)
1477  *              flush_domains = CPU
1478  *              invalidate_domains = RENDER
1479  *              clflush (obj)
1480  *              MI_FLUSH
1481  *              drm_agp_chipset_flush
1482  *      4. Updated (written) by CPU again
1483  *              (CPU, CPU)
1484  *              flush_domains = 0 (no previous write domain)
1485  *              invalidate_domains = 0 (no new read domains)
1486  *      5. Read by GPU
1487  *              (CPU+RENDER, 0)
1488  *              flush_domains = CPU
1489  *              invalidate_domains = RENDER
1490  *              clflush (obj)
1491  *              MI_FLUSH
1492  *              drm_agp_chipset_flush
1493  */
1494 static void
1495 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1496                                   uint32_t read_domains,
1497                                   uint32_t write_domain)
1498 {
1499         struct drm_device               *dev = obj->dev;
1500         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
1501         uint32_t                        invalidate_domains = 0;
1502         uint32_t                        flush_domains = 0;
1503
1504         BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1505         BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
1506
1507 #if WATCH_BUF
1508         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1509                  __func__, obj,
1510                  obj->read_domains, read_domains,
1511                  obj->write_domain, write_domain);
1512 #endif
1513         /*
1514          * If the object isn't moving to a new write domain,
1515          * let the object stay in multiple read domains
1516          */
1517         if (write_domain == 0)
1518                 read_domains |= obj->read_domains;
1519         else
1520                 obj_priv->dirty = 1;
1521
1522         /*
1523          * Flush the current write domain if
1524          * the new read domains don't match. Invalidate
1525          * any read domains which differ from the old
1526          * write domain
1527          */
1528         if (obj->write_domain && obj->write_domain != read_domains) {
1529                 flush_domains |= obj->write_domain;
1530                 invalidate_domains |= read_domains & ~obj->write_domain;
1531         }
1532         /*
1533          * Invalidate any read caches which may have
1534          * stale data. That is, any new read domains.
1535          */
1536         invalidate_domains |= read_domains & ~obj->read_domains;
1537         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1538 #if WATCH_BUF
1539                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1540                          __func__, flush_domains, invalidate_domains);
1541 #endif
1542                 i915_gem_clflush_object(obj);
1543         }
1544
1545         if ((write_domain | flush_domains) != 0)
1546                 obj->write_domain = write_domain;
1547         obj->read_domains = read_domains;
1548
1549         dev->invalidate_domains |= invalidate_domains;
1550         dev->flush_domains |= flush_domains;
1551 #if WATCH_BUF
1552         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1553                  __func__,
1554                  obj->read_domains, obj->write_domain,
1555                  dev->invalidate_domains, dev->flush_domains);
1556 #endif
1557 }
1558
1559 /**
1560  * Moves the object from a partially CPU read to a full one.
1561  *
1562  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
1563  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
1564  */
1565 static void
1566 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
1567 {
1568         struct drm_device *dev = obj->dev;
1569         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1570
1571         if (!obj_priv->page_cpu_valid)
1572                 return;
1573
1574         /* If we're partially in the CPU read domain, finish moving it in.
1575          */
1576         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
1577                 int i;
1578
1579                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
1580                         if (obj_priv->page_cpu_valid[i])
1581                                 continue;
1582                         drm_clflush_pages(obj_priv->page_list + i, 1);
1583                 }
1584                 drm_agp_chipset_flush(dev);
1585         }
1586
1587         /* Free the page_cpu_valid mappings which are now stale, whether
1588          * or not we've got I915_GEM_DOMAIN_CPU.
1589          */
1590         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1591                  DRM_MEM_DRIVER);
1592         obj_priv->page_cpu_valid = NULL;
1593 }
1594
1595 /**
1596  * Set the CPU read domain on a range of the object.
1597  *
1598  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
1599  * not entirely valid.  The page_cpu_valid member of the object flags which
1600  * pages have been flushed, and will be respected by
1601  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
1602  * of the whole object.
1603  *
1604  * This function returns when the move is complete, including waiting on
1605  * flushes to occur.
1606  */
1607 static int
1608 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
1609                                           uint64_t offset, uint64_t size)
1610 {
1611         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1612         int i, ret;
1613
1614         if (offset == 0 && size == obj->size)
1615                 return i915_gem_object_set_to_cpu_domain(obj, 0);
1616
1617         i915_gem_object_flush_gpu_write_domain(obj);
1618         /* Wait on any GPU rendering and flushing to occur. */
1619         ret = i915_gem_object_wait_rendering(obj);
1620         if (ret != 0)
1621                 return ret;
1622         i915_gem_object_flush_gtt_write_domain(obj);
1623
1624         /* If we're already fully in the CPU read domain, we're done. */
1625         if (obj_priv->page_cpu_valid == NULL &&
1626             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
1627                 return 0;
1628
1629         /* Otherwise, create/clear the per-page CPU read domain flag if we're
1630          * newly adding I915_GEM_DOMAIN_CPU
1631          */
1632         if (obj_priv->page_cpu_valid == NULL) {
1633                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1634                                                       DRM_MEM_DRIVER);
1635                 if (obj_priv->page_cpu_valid == NULL)
1636                         return -ENOMEM;
1637         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
1638                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
1639
1640         /* Flush the cache on any pages that are still invalid from the CPU's
1641          * perspective.
1642          */
1643         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
1644              i++) {
1645                 if (obj_priv->page_cpu_valid[i])
1646                         continue;
1647
1648                 drm_clflush_pages(obj_priv->page_list + i, 1);
1649
1650                 obj_priv->page_cpu_valid[i] = 1;
1651         }
1652
1653         /* It should now be out of any other write domains, and we can update
1654          * the domain values for our changes.
1655          */
1656         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1657
1658         obj->read_domains |= I915_GEM_DOMAIN_CPU;
1659
1660         return 0;
1661 }
1662
1663 /**
1664  * Pin an object to the GTT and evaluate the relocations landing in it.
1665  */
1666 static int
1667 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1668                                  struct drm_file *file_priv,
1669                                  struct drm_i915_gem_exec_object *entry)
1670 {
1671         struct drm_device *dev = obj->dev;
1672         drm_i915_private_t *dev_priv = dev->dev_private;
1673         struct drm_i915_gem_relocation_entry reloc;
1674         struct drm_i915_gem_relocation_entry __user *relocs;
1675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1676         int i, ret;
1677         void __iomem *reloc_page;
1678
1679         /* Choose the GTT offset for our buffer and put it there. */
1680         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1681         if (ret)
1682                 return ret;
1683
1684         entry->offset = obj_priv->gtt_offset;
1685
1686         relocs = (struct drm_i915_gem_relocation_entry __user *)
1687                  (uintptr_t) entry->relocs_ptr;
1688         /* Apply the relocations, using the GTT aperture to avoid cache
1689          * flushing requirements.
1690          */
1691         for (i = 0; i < entry->relocation_count; i++) {
1692                 struct drm_gem_object *target_obj;
1693                 struct drm_i915_gem_object *target_obj_priv;
1694                 uint32_t reloc_val, reloc_offset;
1695                 uint32_t __iomem *reloc_entry;
1696
1697                 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1698                 if (ret != 0) {
1699                         i915_gem_object_unpin(obj);
1700                         return ret;
1701                 }
1702
1703                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1704                                                    reloc.target_handle);
1705                 if (target_obj == NULL) {
1706                         i915_gem_object_unpin(obj);
1707                         return -EBADF;
1708                 }
1709                 target_obj_priv = target_obj->driver_private;
1710
1711                 /* The target buffer should have appeared before us in the
1712                  * exec_object list, so it should have a GTT space bound by now.
1713                  */
1714                 if (target_obj_priv->gtt_space == NULL) {
1715                         DRM_ERROR("No GTT space found for object %d\n",
1716                                   reloc.target_handle);
1717                         drm_gem_object_unreference(target_obj);
1718                         i915_gem_object_unpin(obj);
1719                         return -EINVAL;
1720                 }
1721
1722                 if (reloc.offset > obj->size - 4) {
1723                         DRM_ERROR("Relocation beyond object bounds: "
1724                                   "obj %p target %d offset %d size %d.\n",
1725                                   obj, reloc.target_handle,
1726                                   (int) reloc.offset, (int) obj->size);
1727                         drm_gem_object_unreference(target_obj);
1728                         i915_gem_object_unpin(obj);
1729                         return -EINVAL;
1730                 }
1731                 if (reloc.offset & 3) {
1732                         DRM_ERROR("Relocation not 4-byte aligned: "
1733                                   "obj %p target %d offset %d.\n",
1734                                   obj, reloc.target_handle,
1735                                   (int) reloc.offset);
1736                         drm_gem_object_unreference(target_obj);
1737                         i915_gem_object_unpin(obj);
1738                         return -EINVAL;
1739                 }
1740
1741                 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
1742                     reloc.read_domains & I915_GEM_DOMAIN_CPU) {
1743                         DRM_ERROR("reloc with read/write CPU domains: "
1744                                   "obj %p target %d offset %d "
1745                                   "read %08x write %08x",
1746                                   obj, reloc.target_handle,
1747                                   (int) reloc.offset,
1748                                   reloc.read_domains,
1749                                   reloc.write_domain);
1750                         return -EINVAL;
1751                 }
1752
1753                 if (reloc.write_domain && target_obj->pending_write_domain &&
1754                     reloc.write_domain != target_obj->pending_write_domain) {
1755                         DRM_ERROR("Write domain conflict: "
1756                                   "obj %p target %d offset %d "
1757                                   "new %08x old %08x\n",
1758                                   obj, reloc.target_handle,
1759                                   (int) reloc.offset,
1760                                   reloc.write_domain,
1761                                   target_obj->pending_write_domain);
1762                         drm_gem_object_unreference(target_obj);
1763                         i915_gem_object_unpin(obj);
1764                         return -EINVAL;
1765                 }
1766
1767 #if WATCH_RELOC
1768                 DRM_INFO("%s: obj %p offset %08x target %d "
1769                          "read %08x write %08x gtt %08x "
1770                          "presumed %08x delta %08x\n",
1771                          __func__,
1772                          obj,
1773                          (int) reloc.offset,
1774                          (int) reloc.target_handle,
1775                          (int) reloc.read_domains,
1776                          (int) reloc.write_domain,
1777                          (int) target_obj_priv->gtt_offset,
1778                          (int) reloc.presumed_offset,
1779                          reloc.delta);
1780 #endif
1781
1782                 target_obj->pending_read_domains |= reloc.read_domains;
1783                 target_obj->pending_write_domain |= reloc.write_domain;
1784
1785                 /* If the relocation already has the right value in it, no
1786                  * more work needs to be done.
1787                  */
1788                 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1789                         drm_gem_object_unreference(target_obj);
1790                         continue;
1791                 }
1792
1793                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1794                 if (ret != 0) {
1795                         drm_gem_object_unreference(target_obj);
1796                         i915_gem_object_unpin(obj);
1797                         return -EINVAL;
1798                 }
1799
1800                 /* Map the page containing the relocation we're going to
1801                  * perform.
1802                  */
1803                 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1804                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
1805                                                       (reloc_offset &
1806                                                        ~(PAGE_SIZE - 1)));
1807                 reloc_entry = (uint32_t __iomem *)(reloc_page +
1808                                                    (reloc_offset & (PAGE_SIZE - 1)));
1809                 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1810
1811 #if WATCH_BUF
1812                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1813                           obj, (unsigned int) reloc.offset,
1814                           readl(reloc_entry), reloc_val);
1815 #endif
1816                 writel(reloc_val, reloc_entry);
1817                 io_mapping_unmap_atomic(reloc_page);
1818
1819                 /* Write the updated presumed offset for this entry back out
1820                  * to the user.
1821                  */
1822                 reloc.presumed_offset = target_obj_priv->gtt_offset;
1823                 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1824                 if (ret != 0) {
1825                         drm_gem_object_unreference(target_obj);
1826                         i915_gem_object_unpin(obj);
1827                         return ret;
1828                 }
1829
1830                 drm_gem_object_unreference(target_obj);
1831         }
1832
1833 #if WATCH_BUF
1834         if (0)
1835                 i915_gem_dump_object(obj, 128, __func__, ~0);
1836 #endif
1837         return 0;
1838 }
1839
1840 /** Dispatch a batchbuffer to the ring
1841  */
1842 static int
1843 i915_dispatch_gem_execbuffer(struct drm_device *dev,
1844                               struct drm_i915_gem_execbuffer *exec,
1845                               uint64_t exec_offset)
1846 {
1847         drm_i915_private_t *dev_priv = dev->dev_private;
1848         struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1849                                              (uintptr_t) exec->cliprects_ptr;
1850         int nbox = exec->num_cliprects;
1851         int i = 0, count;
1852         uint32_t        exec_start, exec_len;
1853         RING_LOCALS;
1854
1855         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1856         exec_len = (uint32_t) exec->batch_len;
1857
1858         if ((exec_start | exec_len) & 0x7) {
1859                 DRM_ERROR("alignment\n");
1860                 return -EINVAL;
1861         }
1862
1863         if (!exec_start)
1864                 return -EINVAL;
1865
1866         count = nbox ? nbox : 1;
1867
1868         for (i = 0; i < count; i++) {
1869                 if (i < nbox) {
1870                         int ret = i915_emit_box(dev, boxes, i,
1871                                                 exec->DR1, exec->DR4);
1872                         if (ret)
1873                                 return ret;
1874                 }
1875
1876                 if (IS_I830(dev) || IS_845G(dev)) {
1877                         BEGIN_LP_RING(4);
1878                         OUT_RING(MI_BATCH_BUFFER);
1879                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1880                         OUT_RING(exec_start + exec_len - 4);
1881                         OUT_RING(0);
1882                         ADVANCE_LP_RING();
1883                 } else {
1884                         BEGIN_LP_RING(2);
1885                         if (IS_I965G(dev)) {
1886                                 OUT_RING(MI_BATCH_BUFFER_START |
1887                                          (2 << 6) |
1888                                          MI_BATCH_NON_SECURE_I965);
1889                                 OUT_RING(exec_start);
1890                         } else {
1891                                 OUT_RING(MI_BATCH_BUFFER_START |
1892                                          (2 << 6));
1893                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1894                         }
1895                         ADVANCE_LP_RING();
1896                 }
1897         }
1898
1899         /* XXX breadcrumb */
1900         return 0;
1901 }
1902
1903 /* Throttle our rendering by waiting until the ring has completed our requests
1904  * emitted over 20 msec ago.
1905  *
1906  * This should get us reasonable parallelism between CPU and GPU but also
1907  * relatively low latency when blocking on a particular request to finish.
1908  */
1909 static int
1910 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1911 {
1912         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1913         int ret = 0;
1914         uint32_t seqno;
1915
1916         mutex_lock(&dev->struct_mutex);
1917         seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1918         i915_file_priv->mm.last_gem_throttle_seqno =
1919                 i915_file_priv->mm.last_gem_seqno;
1920         if (seqno)
1921                 ret = i915_wait_request(dev, seqno);
1922         mutex_unlock(&dev->struct_mutex);
1923         return ret;
1924 }
1925
1926 int
1927 i915_gem_execbuffer(struct drm_device *dev, void *data,
1928                     struct drm_file *file_priv)
1929 {
1930         drm_i915_private_t *dev_priv = dev->dev_private;
1931         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1932         struct drm_i915_gem_execbuffer *args = data;
1933         struct drm_i915_gem_exec_object *exec_list = NULL;
1934         struct drm_gem_object **object_list = NULL;
1935         struct drm_gem_object *batch_obj;
1936         int ret, i, pinned = 0;
1937         uint64_t exec_offset;
1938         uint32_t seqno, flush_domains;
1939         int pin_tries;
1940
1941 #if WATCH_EXEC
1942         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1943                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1944 #endif
1945
1946         if (args->buffer_count < 1) {
1947                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1948                 return -EINVAL;
1949         }
1950         /* Copy in the exec list from userland */
1951         exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1952                                DRM_MEM_DRIVER);
1953         object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1954                                  DRM_MEM_DRIVER);
1955         if (exec_list == NULL || object_list == NULL) {
1956                 DRM_ERROR("Failed to allocate exec or object list "
1957                           "for %d buffers\n",
1958                           args->buffer_count);
1959                 ret = -ENOMEM;
1960                 goto pre_mutex_err;
1961         }
1962         ret = copy_from_user(exec_list,
1963                              (struct drm_i915_relocation_entry __user *)
1964                              (uintptr_t) args->buffers_ptr,
1965                              sizeof(*exec_list) * args->buffer_count);
1966         if (ret != 0) {
1967                 DRM_ERROR("copy %d exec entries failed %d\n",
1968                           args->buffer_count, ret);
1969                 goto pre_mutex_err;
1970         }
1971
1972         mutex_lock(&dev->struct_mutex);
1973
1974         i915_verify_inactive(dev, __FILE__, __LINE__);
1975
1976         if (dev_priv->mm.wedged) {
1977                 DRM_ERROR("Execbuf while wedged\n");
1978                 mutex_unlock(&dev->struct_mutex);
1979                 return -EIO;
1980         }
1981
1982         if (dev_priv->mm.suspended) {
1983                 DRM_ERROR("Execbuf while VT-switched.\n");
1984                 mutex_unlock(&dev->struct_mutex);
1985                 return -EBUSY;
1986         }
1987
1988         /* Look up object handles */
1989         for (i = 0; i < args->buffer_count; i++) {
1990                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
1991                                                        exec_list[i].handle);
1992                 if (object_list[i] == NULL) {
1993                         DRM_ERROR("Invalid object handle %d at index %d\n",
1994                                    exec_list[i].handle, i);
1995                         ret = -EBADF;
1996                         goto err;
1997                 }
1998         }
1999
2000         /* Pin and relocate */
2001         for (pin_tries = 0; ; pin_tries++) {
2002                 ret = 0;
2003                 for (i = 0; i < args->buffer_count; i++) {
2004                         object_list[i]->pending_read_domains = 0;
2005                         object_list[i]->pending_write_domain = 0;
2006                         ret = i915_gem_object_pin_and_relocate(object_list[i],
2007                                                                file_priv,
2008                                                                &exec_list[i]);
2009                         if (ret)
2010                                 break;
2011                         pinned = i + 1;
2012                 }
2013                 /* success */
2014                 if (ret == 0)
2015                         break;
2016
2017                 /* error other than GTT full, or we've already tried again */
2018                 if (ret != -ENOMEM || pin_tries >= 1) {
2019                         DRM_ERROR("Failed to pin buffers %d\n", ret);
2020                         goto err;
2021                 }
2022
2023                 /* unpin all of our buffers */
2024                 for (i = 0; i < pinned; i++)
2025                         i915_gem_object_unpin(object_list[i]);
2026
2027                 /* evict everyone we can from the aperture */
2028                 ret = i915_gem_evict_everything(dev);
2029                 if (ret)
2030                         goto err;
2031         }
2032
2033         /* Set the pending read domains for the batch buffer to COMMAND */
2034         batch_obj = object_list[args->buffer_count-1];
2035         batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2036         batch_obj->pending_write_domain = 0;
2037
2038         i915_verify_inactive(dev, __FILE__, __LINE__);
2039
2040         /* Zero the global flush/invalidate flags. These
2041          * will be modified as new domains are computed
2042          * for each object
2043          */
2044         dev->invalidate_domains = 0;
2045         dev->flush_domains = 0;
2046
2047         for (i = 0; i < args->buffer_count; i++) {
2048                 struct drm_gem_object *obj = object_list[i];
2049
2050                 /* Compute new gpu domains and update invalidate/flush */
2051                 i915_gem_object_set_to_gpu_domain(obj,
2052                                                   obj->pending_read_domains,
2053                                                   obj->pending_write_domain);
2054         }
2055
2056         i915_verify_inactive(dev, __FILE__, __LINE__);
2057
2058         if (dev->invalidate_domains | dev->flush_domains) {
2059 #if WATCH_EXEC
2060                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2061                           __func__,
2062                          dev->invalidate_domains,
2063                          dev->flush_domains);
2064 #endif
2065                 i915_gem_flush(dev,
2066                                dev->invalidate_domains,
2067                                dev->flush_domains);
2068                 if (dev->flush_domains)
2069                         (void)i915_add_request(dev, dev->flush_domains);
2070         }
2071
2072         i915_verify_inactive(dev, __FILE__, __LINE__);
2073
2074 #if WATCH_COHERENCY
2075         for (i = 0; i < args->buffer_count; i++) {
2076                 i915_gem_object_check_coherency(object_list[i],
2077                                                 exec_list[i].handle);
2078         }
2079 #endif
2080
2081         exec_offset = exec_list[args->buffer_count - 1].offset;
2082
2083 #if WATCH_EXEC
2084         i915_gem_dump_object(object_list[args->buffer_count - 1],
2085                               args->batch_len,
2086                               __func__,
2087                               ~0);
2088 #endif
2089
2090         /* Exec the batchbuffer */
2091         ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2092         if (ret) {
2093                 DRM_ERROR("dispatch failed %d\n", ret);
2094                 goto err;
2095         }
2096
2097         /*
2098          * Ensure that the commands in the batch buffer are
2099          * finished before the interrupt fires
2100          */
2101         flush_domains = i915_retire_commands(dev);
2102
2103         i915_verify_inactive(dev, __FILE__, __LINE__);
2104
2105         /*
2106          * Get a seqno representing the execution of the current buffer,
2107          * which we can wait on.  We would like to mitigate these interrupts,
2108          * likely by only creating seqnos occasionally (so that we have
2109          * *some* interrupts representing completion of buffers that we can
2110          * wait on when trying to clear up gtt space).
2111          */
2112         seqno = i915_add_request(dev, flush_domains);
2113         BUG_ON(seqno == 0);
2114         i915_file_priv->mm.last_gem_seqno = seqno;
2115         for (i = 0; i < args->buffer_count; i++) {
2116                 struct drm_gem_object *obj = object_list[i];
2117
2118                 i915_gem_object_move_to_active(obj, seqno);
2119 #if WATCH_LRU
2120                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2121 #endif
2122         }
2123 #if WATCH_LRU
2124         i915_dump_lru(dev, __func__);
2125 #endif
2126
2127         i915_verify_inactive(dev, __FILE__, __LINE__);
2128
2129         /* Copy the new buffer offsets back to the user's exec list. */
2130         ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2131                            (uintptr_t) args->buffers_ptr,
2132                            exec_list,
2133                            sizeof(*exec_list) * args->buffer_count);
2134         if (ret)
2135                 DRM_ERROR("failed to copy %d exec entries "
2136                           "back to user (%d)\n",
2137                            args->buffer_count, ret);
2138 err:
2139         if (object_list != NULL) {
2140                 for (i = 0; i < pinned; i++)
2141                         i915_gem_object_unpin(object_list[i]);
2142
2143                 for (i = 0; i < args->buffer_count; i++)
2144                         drm_gem_object_unreference(object_list[i]);
2145         }
2146         mutex_unlock(&dev->struct_mutex);
2147
2148 pre_mutex_err:
2149         drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2150                  DRM_MEM_DRIVER);
2151         drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2152                  DRM_MEM_DRIVER);
2153
2154         return ret;
2155 }
2156
2157 int
2158 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2159 {
2160         struct drm_device *dev = obj->dev;
2161         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2162         int ret;
2163
2164         i915_verify_inactive(dev, __FILE__, __LINE__);
2165         if (obj_priv->gtt_space == NULL) {
2166                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2167                 if (ret != 0) {
2168                         DRM_ERROR("Failure to bind: %d", ret);
2169                         return ret;
2170                 }
2171         }
2172         obj_priv->pin_count++;
2173
2174         /* If the object is not active and not pending a flush,
2175          * remove it from the inactive list
2176          */
2177         if (obj_priv->pin_count == 1) {
2178                 atomic_inc(&dev->pin_count);
2179                 atomic_add(obj->size, &dev->pin_memory);
2180                 if (!obj_priv->active &&
2181                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2182                                            I915_GEM_DOMAIN_GTT)) == 0 &&
2183                     !list_empty(&obj_priv->list))
2184                         list_del_init(&obj_priv->list);
2185         }
2186         i915_verify_inactive(dev, __FILE__, __LINE__);
2187
2188         return 0;
2189 }
2190
2191 void
2192 i915_gem_object_unpin(struct drm_gem_object *obj)
2193 {
2194         struct drm_device *dev = obj->dev;
2195         drm_i915_private_t *dev_priv = dev->dev_private;
2196         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2197
2198         i915_verify_inactive(dev, __FILE__, __LINE__);
2199         obj_priv->pin_count--;
2200         BUG_ON(obj_priv->pin_count < 0);
2201         BUG_ON(obj_priv->gtt_space == NULL);
2202
2203         /* If the object is no longer pinned, and is
2204          * neither active nor being flushed, then stick it on
2205          * the inactive list
2206          */
2207         if (obj_priv->pin_count == 0) {
2208                 if (!obj_priv->active &&
2209                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2210                                            I915_GEM_DOMAIN_GTT)) == 0)
2211                         list_move_tail(&obj_priv->list,
2212                                        &dev_priv->mm.inactive_list);
2213                 atomic_dec(&dev->pin_count);
2214                 atomic_sub(obj->size, &dev->pin_memory);
2215         }
2216         i915_verify_inactive(dev, __FILE__, __LINE__);
2217 }
2218
2219 int
2220 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2221                    struct drm_file *file_priv)
2222 {
2223         struct drm_i915_gem_pin *args = data;
2224         struct drm_gem_object *obj;
2225         struct drm_i915_gem_object *obj_priv;
2226         int ret;
2227
2228         mutex_lock(&dev->struct_mutex);
2229
2230         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2231         if (obj == NULL) {
2232                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2233                           args->handle);
2234                 mutex_unlock(&dev->struct_mutex);
2235                 return -EBADF;
2236         }
2237         obj_priv = obj->driver_private;
2238
2239         ret = i915_gem_object_pin(obj, args->alignment);
2240         if (ret != 0) {
2241                 drm_gem_object_unreference(obj);
2242                 mutex_unlock(&dev->struct_mutex);
2243                 return ret;
2244         }
2245
2246         /* XXX - flush the CPU caches for pinned objects
2247          * as the X server doesn't manage domains yet
2248          */
2249         i915_gem_object_flush_cpu_write_domain(obj);
2250         args->offset = obj_priv->gtt_offset;
2251         drm_gem_object_unreference(obj);
2252         mutex_unlock(&dev->struct_mutex);
2253
2254         return 0;
2255 }
2256
2257 int
2258 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2259                      struct drm_file *file_priv)
2260 {
2261         struct drm_i915_gem_pin *args = data;
2262         struct drm_gem_object *obj;
2263
2264         mutex_lock(&dev->struct_mutex);
2265
2266         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2267         if (obj == NULL) {
2268                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2269                           args->handle);
2270                 mutex_unlock(&dev->struct_mutex);
2271                 return -EBADF;
2272         }
2273
2274         i915_gem_object_unpin(obj);
2275
2276         drm_gem_object_unreference(obj);
2277         mutex_unlock(&dev->struct_mutex);
2278         return 0;
2279 }
2280
2281 int
2282 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2283                     struct drm_file *file_priv)
2284 {
2285         struct drm_i915_gem_busy *args = data;
2286         struct drm_gem_object *obj;
2287         struct drm_i915_gem_object *obj_priv;
2288
2289         mutex_lock(&dev->struct_mutex);
2290         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2291         if (obj == NULL) {
2292                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2293                           args->handle);
2294                 mutex_unlock(&dev->struct_mutex);
2295                 return -EBADF;
2296         }
2297
2298         obj_priv = obj->driver_private;
2299         args->busy = obj_priv->active;
2300
2301         drm_gem_object_unreference(obj);
2302         mutex_unlock(&dev->struct_mutex);
2303         return 0;
2304 }
2305
2306 int
2307 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2308                         struct drm_file *file_priv)
2309 {
2310     return i915_gem_ring_throttle(dev, file_priv);
2311 }
2312
2313 int i915_gem_init_object(struct drm_gem_object *obj)
2314 {
2315         struct drm_i915_gem_object *obj_priv;
2316
2317         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2318         if (obj_priv == NULL)
2319                 return -ENOMEM;
2320
2321         /*
2322          * We've just allocated pages from the kernel,
2323          * so they've just been written by the CPU with
2324          * zeros. They'll need to be clflushed before we
2325          * use them with the GPU.
2326          */
2327         obj->write_domain = I915_GEM_DOMAIN_CPU;
2328         obj->read_domains = I915_GEM_DOMAIN_CPU;
2329
2330         obj_priv->agp_type = AGP_USER_MEMORY;
2331
2332         obj->driver_private = obj_priv;
2333         obj_priv->obj = obj;
2334         INIT_LIST_HEAD(&obj_priv->list);
2335         return 0;
2336 }
2337
2338 void i915_gem_free_object(struct drm_gem_object *obj)
2339 {
2340         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2341
2342         while (obj_priv->pin_count > 0)
2343                 i915_gem_object_unpin(obj);
2344
2345         i915_gem_object_unbind(obj);
2346
2347         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2348         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2349 }
2350
2351 /** Unbinds all objects that are on the given buffer list. */
2352 static int
2353 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2354 {
2355         struct drm_gem_object *obj;
2356         struct drm_i915_gem_object *obj_priv;
2357         int ret;
2358
2359         while (!list_empty(head)) {
2360                 obj_priv = list_first_entry(head,
2361                                             struct drm_i915_gem_object,
2362                                             list);
2363                 obj = obj_priv->obj;
2364
2365                 if (obj_priv->pin_count != 0) {
2366                         DRM_ERROR("Pinned object in unbind list\n");
2367                         mutex_unlock(&dev->struct_mutex);
2368                         return -EINVAL;
2369                 }
2370
2371                 ret = i915_gem_object_unbind(obj);
2372                 if (ret != 0) {
2373                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2374                                   ret);
2375                         mutex_unlock(&dev->struct_mutex);
2376                         return ret;
2377                 }
2378         }
2379
2380
2381         return 0;
2382 }
2383
2384 static int
2385 i915_gem_idle(struct drm_device *dev)
2386 {
2387         drm_i915_private_t *dev_priv = dev->dev_private;
2388         uint32_t seqno, cur_seqno, last_seqno;
2389         int stuck, ret;
2390
2391         mutex_lock(&dev->struct_mutex);
2392
2393         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2394                 mutex_unlock(&dev->struct_mutex);
2395                 return 0;
2396         }
2397
2398         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
2399          * We need to replace this with a semaphore, or something.
2400          */
2401         dev_priv->mm.suspended = 1;
2402
2403         /* Cancel the retire work handler, wait for it to finish if running
2404          */
2405         mutex_unlock(&dev->struct_mutex);
2406         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2407         mutex_lock(&dev->struct_mutex);
2408
2409         i915_kernel_lost_context(dev);
2410
2411         /* Flush the GPU along with all non-CPU write domains
2412          */
2413         i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2414                        ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2415         seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2416                                         I915_GEM_DOMAIN_GTT));
2417
2418         if (seqno == 0) {
2419                 mutex_unlock(&dev->struct_mutex);
2420                 return -ENOMEM;
2421         }
2422
2423         dev_priv->mm.waiting_gem_seqno = seqno;
2424         last_seqno = 0;
2425         stuck = 0;
2426         for (;;) {
2427                 cur_seqno = i915_get_gem_seqno(dev);
2428                 if (i915_seqno_passed(cur_seqno, seqno))
2429                         break;
2430                 if (last_seqno == cur_seqno) {
2431                         if (stuck++ > 100) {
2432                                 DRM_ERROR("hardware wedged\n");
2433                                 dev_priv->mm.wedged = 1;
2434                                 DRM_WAKEUP(&dev_priv->irq_queue);
2435                                 break;
2436                         }
2437                 }
2438                 msleep(10);
2439                 last_seqno = cur_seqno;
2440         }
2441         dev_priv->mm.waiting_gem_seqno = 0;
2442
2443         i915_gem_retire_requests(dev);
2444
2445         if (!dev_priv->mm.wedged) {
2446                 /* Active and flushing should now be empty as we've
2447                  * waited for a sequence higher than any pending execbuffer
2448                  */
2449                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2450                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2451                 /* Request should now be empty as we've also waited
2452                  * for the last request in the list
2453                  */
2454                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2455         }
2456
2457         /* Empty the active and flushing lists to inactive.  If there's
2458          * anything left at this point, it means that we're wedged and
2459          * nothing good's going to happen by leaving them there.  So strip
2460          * the GPU domains and just stuff them onto inactive.
2461          */
2462         while (!list_empty(&dev_priv->mm.active_list)) {
2463                 struct drm_i915_gem_object *obj_priv;
2464
2465                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2466                                             struct drm_i915_gem_object,
2467                                             list);
2468                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2469                 i915_gem_object_move_to_inactive(obj_priv->obj);
2470         }
2471
2472         while (!list_empty(&dev_priv->mm.flushing_list)) {
2473                 struct drm_i915_gem_object *obj_priv;
2474
2475                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2476                                             struct drm_i915_gem_object,
2477                                             list);
2478                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2479                 i915_gem_object_move_to_inactive(obj_priv->obj);
2480         }
2481
2482
2483         /* Move all inactive buffers out of the GTT. */
2484         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2485         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
2486         if (ret) {
2487                 mutex_unlock(&dev->struct_mutex);
2488                 return ret;
2489         }
2490
2491         i915_gem_cleanup_ringbuffer(dev);
2492         mutex_unlock(&dev->struct_mutex);
2493
2494         return 0;
2495 }
2496
2497 static int
2498 i915_gem_init_hws(struct drm_device *dev)
2499 {
2500         drm_i915_private_t *dev_priv = dev->dev_private;
2501         struct drm_gem_object *obj;
2502         struct drm_i915_gem_object *obj_priv;
2503         int ret;
2504
2505         /* If we need a physical address for the status page, it's already
2506          * initialized at driver load time.
2507          */
2508         if (!I915_NEED_GFX_HWS(dev))
2509                 return 0;
2510
2511         obj = drm_gem_object_alloc(dev, 4096);
2512         if (obj == NULL) {
2513                 DRM_ERROR("Failed to allocate status page\n");
2514                 return -ENOMEM;
2515         }
2516         obj_priv = obj->driver_private;
2517         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
2518
2519         ret = i915_gem_object_pin(obj, 4096);
2520         if (ret != 0) {
2521                 drm_gem_object_unreference(obj);
2522                 return ret;
2523         }
2524
2525         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
2526
2527         dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2528         if (dev_priv->hw_status_page == NULL) {
2529                 DRM_ERROR("Failed to map status page.\n");
2530                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2531                 drm_gem_object_unreference(obj);
2532                 return -EINVAL;
2533         }
2534         dev_priv->hws_obj = obj;
2535         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2536         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
2537         I915_READ(HWS_PGA); /* posting read */
2538         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2539
2540         return 0;
2541 }
2542
2543 static int
2544 i915_gem_init_ringbuffer(struct drm_device *dev)
2545 {
2546         drm_i915_private_t *dev_priv = dev->dev_private;
2547         struct drm_gem_object *obj;
2548         struct drm_i915_gem_object *obj_priv;
2549         int ret;
2550         u32 head;
2551
2552         ret = i915_gem_init_hws(dev);
2553         if (ret != 0)
2554                 return ret;
2555
2556         obj = drm_gem_object_alloc(dev, 128 * 1024);
2557         if (obj == NULL) {
2558                 DRM_ERROR("Failed to allocate ringbuffer\n");
2559                 return -ENOMEM;
2560         }
2561         obj_priv = obj->driver_private;
2562
2563         ret = i915_gem_object_pin(obj, 4096);
2564         if (ret != 0) {
2565                 drm_gem_object_unreference(obj);
2566                 return ret;
2567         }
2568
2569         /* Set up the kernel mapping for the ring. */
2570         dev_priv->ring.Size = obj->size;
2571         dev_priv->ring.tail_mask = obj->size - 1;
2572
2573         dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2574         dev_priv->ring.map.size = obj->size;
2575         dev_priv->ring.map.type = 0;
2576         dev_priv->ring.map.flags = 0;
2577         dev_priv->ring.map.mtrr = 0;
2578
2579         drm_core_ioremap_wc(&dev_priv->ring.map, dev);
2580         if (dev_priv->ring.map.handle == NULL) {
2581                 DRM_ERROR("Failed to map ringbuffer.\n");
2582                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2583                 drm_gem_object_unreference(obj);
2584                 return -EINVAL;
2585         }
2586         dev_priv->ring.ring_obj = obj;
2587         dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2588
2589         /* Stop the ring if it's running. */
2590         I915_WRITE(PRB0_CTL, 0);
2591         I915_WRITE(PRB0_TAIL, 0);
2592         I915_WRITE(PRB0_HEAD, 0);
2593
2594         /* Initialize the ring. */
2595         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
2596         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2597
2598         /* G45 ring initialization fails to reset head to zero */
2599         if (head != 0) {
2600                 DRM_ERROR("Ring head not reset to zero "
2601                           "ctl %08x head %08x tail %08x start %08x\n",
2602                           I915_READ(PRB0_CTL),
2603                           I915_READ(PRB0_HEAD),
2604                           I915_READ(PRB0_TAIL),
2605                           I915_READ(PRB0_START));
2606                 I915_WRITE(PRB0_HEAD, 0);
2607
2608                 DRM_ERROR("Ring head forced to zero "
2609                           "ctl %08x head %08x tail %08x start %08x\n",
2610                           I915_READ(PRB0_CTL),
2611                           I915_READ(PRB0_HEAD),
2612                           I915_READ(PRB0_TAIL),
2613                           I915_READ(PRB0_START));
2614         }
2615
2616         I915_WRITE(PRB0_CTL,
2617                    ((obj->size - 4096) & RING_NR_PAGES) |
2618                    RING_NO_REPORT |
2619                    RING_VALID);
2620
2621         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2622
2623         /* If the head is still not zero, the ring is dead */
2624         if (head != 0) {
2625                 DRM_ERROR("Ring initialization failed "
2626                           "ctl %08x head %08x tail %08x start %08x\n",
2627                           I915_READ(PRB0_CTL),
2628                           I915_READ(PRB0_HEAD),
2629                           I915_READ(PRB0_TAIL),
2630                           I915_READ(PRB0_START));
2631                 return -EIO;
2632         }
2633
2634         /* Update our cache of the ring state */
2635         i915_kernel_lost_context(dev);
2636
2637         return 0;
2638 }
2639
2640 static void
2641 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2642 {
2643         drm_i915_private_t *dev_priv = dev->dev_private;
2644
2645         if (dev_priv->ring.ring_obj == NULL)
2646                 return;
2647
2648         drm_core_ioremapfree(&dev_priv->ring.map, dev);
2649
2650         i915_gem_object_unpin(dev_priv->ring.ring_obj);
2651         drm_gem_object_unreference(dev_priv->ring.ring_obj);
2652         dev_priv->ring.ring_obj = NULL;
2653         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2654
2655         if (dev_priv->hws_obj != NULL) {
2656                 struct drm_gem_object *obj = dev_priv->hws_obj;
2657                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2658
2659                 kunmap(obj_priv->page_list[0]);
2660                 i915_gem_object_unpin(obj);
2661                 drm_gem_object_unreference(obj);
2662                 dev_priv->hws_obj = NULL;
2663                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2664                 dev_priv->hw_status_page = NULL;
2665
2666                 /* Write high address into HWS_PGA when disabling. */
2667                 I915_WRITE(HWS_PGA, 0x1ffff000);
2668         }
2669 }
2670
2671 int
2672 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2673                        struct drm_file *file_priv)
2674 {
2675         drm_i915_private_t *dev_priv = dev->dev_private;
2676         int ret;
2677
2678         if (dev_priv->mm.wedged) {
2679                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2680                 dev_priv->mm.wedged = 0;
2681         }
2682
2683         ret = i915_gem_init_ringbuffer(dev);
2684         if (ret != 0)
2685                 return ret;
2686
2687         dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
2688                                                         dev->agp->agp_info.aper_size
2689                                                         * 1024 * 1024);
2690
2691         mutex_lock(&dev->struct_mutex);
2692         BUG_ON(!list_empty(&dev_priv->mm.active_list));
2693         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2694         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2695         BUG_ON(!list_empty(&dev_priv->mm.request_list));
2696         dev_priv->mm.suspended = 0;
2697         mutex_unlock(&dev->struct_mutex);
2698
2699         drm_irq_install(dev);
2700
2701         return 0;
2702 }
2703
2704 int
2705 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2706                        struct drm_file *file_priv)
2707 {
2708         drm_i915_private_t *dev_priv = dev->dev_private;
2709         int ret;
2710
2711         ret = i915_gem_idle(dev);
2712         drm_irq_uninstall(dev);
2713
2714         io_mapping_free(dev_priv->mm.gtt_mapping);
2715         return ret;
2716 }
2717
2718 void
2719 i915_gem_lastclose(struct drm_device *dev)
2720 {
2721         int ret;
2722
2723         ret = i915_gem_idle(dev);
2724         if (ret)
2725                 DRM_ERROR("failed to idle hardware: %d\n", ret);
2726 }
2727
2728 void
2729 i915_gem_load(struct drm_device *dev)
2730 {
2731         drm_i915_private_t *dev_priv = dev->dev_private;
2732
2733         INIT_LIST_HEAD(&dev_priv->mm.active_list);
2734         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2735         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2736         INIT_LIST_HEAD(&dev_priv->mm.request_list);
2737         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2738                           i915_gem_retire_work_handler);
2739         dev_priv->mm.next_gem_seqno = 1;
2740
2741         i915_gem_detect_bit_6_swizzle(dev);
2742 }