drm: GEM handles are u32, not int
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41                                              int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43                                                      uint64_t offset,
44                                                      uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48                                            unsigned alignment);
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52                                 struct drm_i915_gem_pwrite *args,
53                                 struct drm_file *file_priv);
54
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56                      unsigned long end)
57 {
58         drm_i915_private_t *dev_priv = dev->dev_private;
59
60         if (start >= end ||
61             (start & (PAGE_SIZE - 1)) != 0 ||
62             (end & (PAGE_SIZE - 1)) != 0) {
63                 return -EINVAL;
64         }
65
66         drm_mm_init(&dev_priv->mm.gtt_space, start,
67                     end - start);
68
69         dev->gtt_total = (uint32_t) (end - start);
70
71         return 0;
72 }
73
74 int
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76                     struct drm_file *file_priv)
77 {
78         struct drm_i915_gem_init *args = data;
79         int ret;
80
81         mutex_lock(&dev->struct_mutex);
82         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83         mutex_unlock(&dev->struct_mutex);
84
85         return ret;
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90                             struct drm_file *file_priv)
91 {
92         struct drm_i915_gem_get_aperture *args = data;
93
94         if (!(dev->driver->driver_features & DRIVER_GEM))
95                 return -ENODEV;
96
97         args->aper_size = dev->gtt_total;
98         args->aper_available_size = (args->aper_size -
99                                      atomic_read(&dev->pin_memory));
100
101         return 0;
102 }
103
104
105 /**
106  * Creates a new mm object and returns a handle to it.
107  */
108 int
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110                       struct drm_file *file_priv)
111 {
112         struct drm_i915_gem_create *args = data;
113         struct drm_gem_object *obj;
114         int ret;
115         u32 handle;
116
117         args->size = roundup(args->size, PAGE_SIZE);
118
119         /* Allocate the new object */
120         obj = drm_gem_object_alloc(dev, args->size);
121         if (obj == NULL)
122                 return -ENOMEM;
123
124         ret = drm_gem_handle_create(file_priv, obj, &handle);
125         mutex_lock(&dev->struct_mutex);
126         drm_gem_object_handle_unreference(obj);
127         mutex_unlock(&dev->struct_mutex);
128
129         if (ret)
130                 return ret;
131
132         args->handle = handle;
133
134         return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139                 loff_t page_base, int page_offset,
140                 char __user *data,
141                 int length)
142 {
143         char __iomem *vaddr;
144         int unwritten;
145
146         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147         if (vaddr == NULL)
148                 return -ENOMEM;
149         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150         kunmap_atomic(vaddr, KM_USER0);
151
152         if (unwritten)
153                 return -EFAULT;
154
155         return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160         drm_i915_private_t *dev_priv = obj->dev->dev_private;
161         struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164                 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169                 int dst_offset,
170                 struct page *src_page,
171                 int src_offset,
172                 int length)
173 {
174         char *dst_vaddr, *src_vaddr;
175
176         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177         if (dst_vaddr == NULL)
178                 return -ENOMEM;
179
180         src_vaddr = kmap_atomic(src_page, KM_USER1);
181         if (src_vaddr == NULL) {
182                 kunmap_atomic(dst_vaddr, KM_USER0);
183                 return -ENOMEM;
184         }
185
186         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188         kunmap_atomic(src_vaddr, KM_USER1);
189         kunmap_atomic(dst_vaddr, KM_USER0);
190
191         return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196                       int gpu_offset,
197                       struct page *cpu_page,
198                       int cpu_offset,
199                       int length,
200                       int is_read)
201 {
202         char *gpu_vaddr, *cpu_vaddr;
203
204         /* Use the unswizzled path if this page isn't affected. */
205         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206                 if (is_read)
207                         return slow_shmem_copy(cpu_page, cpu_offset,
208                                                gpu_page, gpu_offset, length);
209                 else
210                         return slow_shmem_copy(gpu_page, gpu_offset,
211                                                cpu_page, cpu_offset, length);
212         }
213
214         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215         if (gpu_vaddr == NULL)
216                 return -ENOMEM;
217
218         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219         if (cpu_vaddr == NULL) {
220                 kunmap_atomic(gpu_vaddr, KM_USER0);
221                 return -ENOMEM;
222         }
223
224         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225          * XORing with the other bits (A9 for Y, A9 and A10 for X)
226          */
227         while (length > 0) {
228                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229                 int this_length = min(cacheline_end - gpu_offset, length);
230                 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232                 if (is_read) {
233                         memcpy(cpu_vaddr + cpu_offset,
234                                gpu_vaddr + swizzled_gpu_offset,
235                                this_length);
236                 } else {
237                         memcpy(gpu_vaddr + swizzled_gpu_offset,
238                                cpu_vaddr + cpu_offset,
239                                this_length);
240                 }
241                 cpu_offset += this_length;
242                 gpu_offset += this_length;
243                 length -= this_length;
244         }
245
246         kunmap_atomic(cpu_vaddr, KM_USER1);
247         kunmap_atomic(gpu_vaddr, KM_USER0);
248
249         return 0;
250 }
251
252 /**
253  * This is the fast shmem pread path, which attempts to copy_from_user directly
254  * from the backing pages of the object to the user's address space.  On a
255  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256  */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259                           struct drm_i915_gem_pread *args,
260                           struct drm_file *file_priv)
261 {
262         struct drm_i915_gem_object *obj_priv = obj->driver_private;
263         ssize_t remain;
264         loff_t offset, page_base;
265         char __user *user_data;
266         int page_offset, page_length;
267         int ret;
268
269         user_data = (char __user *) (uintptr_t) args->data_ptr;
270         remain = args->size;
271
272         mutex_lock(&dev->struct_mutex);
273
274         ret = i915_gem_object_get_pages(obj);
275         if (ret != 0)
276                 goto fail_unlock;
277
278         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279                                                         args->size);
280         if (ret != 0)
281                 goto fail_put_pages;
282
283         obj_priv = obj->driver_private;
284         offset = args->offset;
285
286         while (remain > 0) {
287                 /* Operation in this page
288                  *
289                  * page_base = page offset within aperture
290                  * page_offset = offset within page
291                  * page_length = bytes to copy for this page
292                  */
293                 page_base = (offset & ~(PAGE_SIZE-1));
294                 page_offset = offset & (PAGE_SIZE-1);
295                 page_length = remain;
296                 if ((page_offset + remain) > PAGE_SIZE)
297                         page_length = PAGE_SIZE - page_offset;
298
299                 ret = fast_shmem_read(obj_priv->pages,
300                                       page_base, page_offset,
301                                       user_data, page_length);
302                 if (ret)
303                         goto fail_put_pages;
304
305                 remain -= page_length;
306                 user_data += page_length;
307                 offset += page_length;
308         }
309
310 fail_put_pages:
311         i915_gem_object_put_pages(obj);
312 fail_unlock:
313         mutex_unlock(&dev->struct_mutex);
314
315         return ret;
316 }
317
318 /**
319  * This is the fallback shmem pread path, which allocates temporary storage
320  * in kernel space to copy_to_user into outside of the struct_mutex, so we
321  * can copy out of the object's backing pages while holding the struct mutex
322  * and not take page faults.
323  */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326                           struct drm_i915_gem_pread *args,
327                           struct drm_file *file_priv)
328 {
329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
330         struct mm_struct *mm = current->mm;
331         struct page **user_pages;
332         ssize_t remain;
333         loff_t offset, pinned_pages, i;
334         loff_t first_data_page, last_data_page, num_pages;
335         int shmem_page_index, shmem_page_offset;
336         int data_page_index,  data_page_offset;
337         int page_length;
338         int ret;
339         uint64_t data_ptr = args->data_ptr;
340         int do_bit17_swizzling;
341
342         remain = args->size;
343
344         /* Pin the user pages containing the data.  We can't fault while
345          * holding the struct mutex, yet we want to hold it while
346          * dereferencing the user data.
347          */
348         first_data_page = data_ptr / PAGE_SIZE;
349         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350         num_pages = last_data_page - first_data_page + 1;
351
352         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353         if (user_pages == NULL)
354                 return -ENOMEM;
355
356         down_read(&mm->mmap_sem);
357         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358                                       num_pages, 1, 0, user_pages, NULL);
359         up_read(&mm->mmap_sem);
360         if (pinned_pages < num_pages) {
361                 ret = -EFAULT;
362                 goto fail_put_user_pages;
363         }
364
365         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367         mutex_lock(&dev->struct_mutex);
368
369         ret = i915_gem_object_get_pages(obj);
370         if (ret != 0)
371                 goto fail_unlock;
372
373         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374                                                         args->size);
375         if (ret != 0)
376                 goto fail_put_pages;
377
378         obj_priv = obj->driver_private;
379         offset = args->offset;
380
381         while (remain > 0) {
382                 /* Operation in this page
383                  *
384                  * shmem_page_index = page number within shmem file
385                  * shmem_page_offset = offset within page in shmem file
386                  * data_page_index = page number in get_user_pages return
387                  * data_page_offset = offset with data_page_index page.
388                  * page_length = bytes to copy for this page
389                  */
390                 shmem_page_index = offset / PAGE_SIZE;
391                 shmem_page_offset = offset & ~PAGE_MASK;
392                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393                 data_page_offset = data_ptr & ~PAGE_MASK;
394
395                 page_length = remain;
396                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397                         page_length = PAGE_SIZE - shmem_page_offset;
398                 if ((data_page_offset + page_length) > PAGE_SIZE)
399                         page_length = PAGE_SIZE - data_page_offset;
400
401                 if (do_bit17_swizzling) {
402                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403                                                     shmem_page_offset,
404                                                     user_pages[data_page_index],
405                                                     data_page_offset,
406                                                     page_length,
407                                                     1);
408                 } else {
409                         ret = slow_shmem_copy(user_pages[data_page_index],
410                                               data_page_offset,
411                                               obj_priv->pages[shmem_page_index],
412                                               shmem_page_offset,
413                                               page_length);
414                 }
415                 if (ret)
416                         goto fail_put_pages;
417
418                 remain -= page_length;
419                 data_ptr += page_length;
420                 offset += page_length;
421         }
422
423 fail_put_pages:
424         i915_gem_object_put_pages(obj);
425 fail_unlock:
426         mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428         for (i = 0; i < pinned_pages; i++) {
429                 SetPageDirty(user_pages[i]);
430                 page_cache_release(user_pages[i]);
431         }
432         drm_free_large(user_pages);
433
434         return ret;
435 }
436
437 /**
438  * Reads data from the object referenced by handle.
439  *
440  * On error, the contents of *data are undefined.
441  */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444                      struct drm_file *file_priv)
445 {
446         struct drm_i915_gem_pread *args = data;
447         struct drm_gem_object *obj;
448         struct drm_i915_gem_object *obj_priv;
449         int ret;
450
451         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452         if (obj == NULL)
453                 return -EBADF;
454         obj_priv = obj->driver_private;
455
456         /* Bounds check source.
457          *
458          * XXX: This could use review for overflow issues...
459          */
460         if (args->offset > obj->size || args->size > obj->size ||
461             args->offset + args->size > obj->size) {
462                 drm_gem_object_unreference(obj);
463                 return -EINVAL;
464         }
465
466         if (i915_gem_object_needs_bit17_swizzle(obj)) {
467                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468         } else {
469                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470                 if (ret != 0)
471                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
472                                                         file_priv);
473         }
474
475         drm_gem_object_unreference(obj);
476
477         return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481  * page faults in the source data
482  */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486                 loff_t page_base, int page_offset,
487                 char __user *user_data,
488                 int length)
489 {
490         char *vaddr_atomic;
491         unsigned long unwritten;
492
493         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495                                                       user_data, length);
496         io_mapping_unmap_atomic(vaddr_atomic);
497         if (unwritten)
498                 return -EFAULT;
499         return 0;
500 }
501
502 /* Here's the write path which can sleep for
503  * page faults
504  */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508                   loff_t gtt_base, int gtt_offset,
509                   struct page *user_page, int user_offset,
510                   int length)
511 {
512         char *src_vaddr, *dst_vaddr;
513         unsigned long unwritten;
514
515         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516         src_vaddr = kmap_atomic(user_page, KM_USER1);
517         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518                                                       src_vaddr + user_offset,
519                                                       length);
520         kunmap_atomic(src_vaddr, KM_USER1);
521         io_mapping_unmap_atomic(dst_vaddr);
522         if (unwritten)
523                 return -EFAULT;
524         return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529                  loff_t page_base, int page_offset,
530                  char __user *data,
531                  int length)
532 {
533         char __iomem *vaddr;
534         unsigned long unwritten;
535
536         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537         if (vaddr == NULL)
538                 return -ENOMEM;
539         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540         kunmap_atomic(vaddr, KM_USER0);
541
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /**
548  * This is the fast pwrite path, where we copy the data directly from the
549  * user into the GTT, uncached.
550  */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553                          struct drm_i915_gem_pwrite *args,
554                          struct drm_file *file_priv)
555 {
556         struct drm_i915_gem_object *obj_priv = obj->driver_private;
557         drm_i915_private_t *dev_priv = dev->dev_private;
558         ssize_t remain;
559         loff_t offset, page_base;
560         char __user *user_data;
561         int page_offset, page_length;
562         int ret;
563
564         user_data = (char __user *) (uintptr_t) args->data_ptr;
565         remain = args->size;
566         if (!access_ok(VERIFY_READ, user_data, remain))
567                 return -EFAULT;
568
569
570         mutex_lock(&dev->struct_mutex);
571         ret = i915_gem_object_pin(obj, 0);
572         if (ret) {
573                 mutex_unlock(&dev->struct_mutex);
574                 return ret;
575         }
576         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577         if (ret)
578                 goto fail;
579
580         obj_priv = obj->driver_private;
581         offset = obj_priv->gtt_offset + args->offset;
582
583         while (remain > 0) {
584                 /* Operation in this page
585                  *
586                  * page_base = page offset within aperture
587                  * page_offset = offset within page
588                  * page_length = bytes to copy for this page
589                  */
590                 page_base = (offset & ~(PAGE_SIZE-1));
591                 page_offset = offset & (PAGE_SIZE-1);
592                 page_length = remain;
593                 if ((page_offset + remain) > PAGE_SIZE)
594                         page_length = PAGE_SIZE - page_offset;
595
596                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597                                        page_offset, user_data, page_length);
598
599                 /* If we get a fault while copying data, then (presumably) our
600                  * source page isn't available.  Return the error and we'll
601                  * retry in the slow path.
602                  */
603                 if (ret)
604                         goto fail;
605
606                 remain -= page_length;
607                 user_data += page_length;
608                 offset += page_length;
609         }
610
611 fail:
612         i915_gem_object_unpin(obj);
613         mutex_unlock(&dev->struct_mutex);
614
615         return ret;
616 }
617
618 /**
619  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620  * the memory and maps it using kmap_atomic for copying.
621  *
622  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624  */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627                          struct drm_i915_gem_pwrite *args,
628                          struct drm_file *file_priv)
629 {
630         struct drm_i915_gem_object *obj_priv = obj->driver_private;
631         drm_i915_private_t *dev_priv = dev->dev_private;
632         ssize_t remain;
633         loff_t gtt_page_base, offset;
634         loff_t first_data_page, last_data_page, num_pages;
635         loff_t pinned_pages, i;
636         struct page **user_pages;
637         struct mm_struct *mm = current->mm;
638         int gtt_page_offset, data_page_offset, data_page_index, page_length;
639         int ret;
640         uint64_t data_ptr = args->data_ptr;
641
642         remain = args->size;
643
644         /* Pin the user pages containing the data.  We can't fault while
645          * holding the struct mutex, and all of the pwrite implementations
646          * want to hold it while dereferencing the user data.
647          */
648         first_data_page = data_ptr / PAGE_SIZE;
649         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650         num_pages = last_data_page - first_data_page + 1;
651
652         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653         if (user_pages == NULL)
654                 return -ENOMEM;
655
656         down_read(&mm->mmap_sem);
657         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658                                       num_pages, 0, 0, user_pages, NULL);
659         up_read(&mm->mmap_sem);
660         if (pinned_pages < num_pages) {
661                 ret = -EFAULT;
662                 goto out_unpin_pages;
663         }
664
665         mutex_lock(&dev->struct_mutex);
666         ret = i915_gem_object_pin(obj, 0);
667         if (ret)
668                 goto out_unlock;
669
670         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671         if (ret)
672                 goto out_unpin_object;
673
674         obj_priv = obj->driver_private;
675         offset = obj_priv->gtt_offset + args->offset;
676
677         while (remain > 0) {
678                 /* Operation in this page
679                  *
680                  * gtt_page_base = page offset within aperture
681                  * gtt_page_offset = offset within page in aperture
682                  * data_page_index = page number in get_user_pages return
683                  * data_page_offset = offset with data_page_index page.
684                  * page_length = bytes to copy for this page
685                  */
686                 gtt_page_base = offset & PAGE_MASK;
687                 gtt_page_offset = offset & ~PAGE_MASK;
688                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689                 data_page_offset = data_ptr & ~PAGE_MASK;
690
691                 page_length = remain;
692                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693                         page_length = PAGE_SIZE - gtt_page_offset;
694                 if ((data_page_offset + page_length) > PAGE_SIZE)
695                         page_length = PAGE_SIZE - data_page_offset;
696
697                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698                                         gtt_page_base, gtt_page_offset,
699                                         user_pages[data_page_index],
700                                         data_page_offset,
701                                         page_length);
702
703                 /* If we get a fault while copying data, then (presumably) our
704                  * source page isn't available.  Return the error and we'll
705                  * retry in the slow path.
706                  */
707                 if (ret)
708                         goto out_unpin_object;
709
710                 remain -= page_length;
711                 offset += page_length;
712                 data_ptr += page_length;
713         }
714
715 out_unpin_object:
716         i915_gem_object_unpin(obj);
717 out_unlock:
718         mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720         for (i = 0; i < pinned_pages; i++)
721                 page_cache_release(user_pages[i]);
722         drm_free_large(user_pages);
723
724         return ret;
725 }
726
727 /**
728  * This is the fast shmem pwrite path, which attempts to directly
729  * copy_from_user into the kmapped pages backing the object.
730  */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733                            struct drm_i915_gem_pwrite *args,
734                            struct drm_file *file_priv)
735 {
736         struct drm_i915_gem_object *obj_priv = obj->driver_private;
737         ssize_t remain;
738         loff_t offset, page_base;
739         char __user *user_data;
740         int page_offset, page_length;
741         int ret;
742
743         user_data = (char __user *) (uintptr_t) args->data_ptr;
744         remain = args->size;
745
746         mutex_lock(&dev->struct_mutex);
747
748         ret = i915_gem_object_get_pages(obj);
749         if (ret != 0)
750                 goto fail_unlock;
751
752         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753         if (ret != 0)
754                 goto fail_put_pages;
755
756         obj_priv = obj->driver_private;
757         offset = args->offset;
758         obj_priv->dirty = 1;
759
760         while (remain > 0) {
761                 /* Operation in this page
762                  *
763                  * page_base = page offset within aperture
764                  * page_offset = offset within page
765                  * page_length = bytes to copy for this page
766                  */
767                 page_base = (offset & ~(PAGE_SIZE-1));
768                 page_offset = offset & (PAGE_SIZE-1);
769                 page_length = remain;
770                 if ((page_offset + remain) > PAGE_SIZE)
771                         page_length = PAGE_SIZE - page_offset;
772
773                 ret = fast_shmem_write(obj_priv->pages,
774                                        page_base, page_offset,
775                                        user_data, page_length);
776                 if (ret)
777                         goto fail_put_pages;
778
779                 remain -= page_length;
780                 user_data += page_length;
781                 offset += page_length;
782         }
783
784 fail_put_pages:
785         i915_gem_object_put_pages(obj);
786 fail_unlock:
787         mutex_unlock(&dev->struct_mutex);
788
789         return ret;
790 }
791
792 /**
793  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794  * the memory and maps it using kmap_atomic for copying.
795  *
796  * This avoids taking mmap_sem for faulting on the user's address while the
797  * struct_mutex is held.
798  */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801                            struct drm_i915_gem_pwrite *args,
802                            struct drm_file *file_priv)
803 {
804         struct drm_i915_gem_object *obj_priv = obj->driver_private;
805         struct mm_struct *mm = current->mm;
806         struct page **user_pages;
807         ssize_t remain;
808         loff_t offset, pinned_pages, i;
809         loff_t first_data_page, last_data_page, num_pages;
810         int shmem_page_index, shmem_page_offset;
811         int data_page_index,  data_page_offset;
812         int page_length;
813         int ret;
814         uint64_t data_ptr = args->data_ptr;
815         int do_bit17_swizzling;
816
817         remain = args->size;
818
819         /* Pin the user pages containing the data.  We can't fault while
820          * holding the struct mutex, and all of the pwrite implementations
821          * want to hold it while dereferencing the user data.
822          */
823         first_data_page = data_ptr / PAGE_SIZE;
824         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825         num_pages = last_data_page - first_data_page + 1;
826
827         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828         if (user_pages == NULL)
829                 return -ENOMEM;
830
831         down_read(&mm->mmap_sem);
832         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833                                       num_pages, 0, 0, user_pages, NULL);
834         up_read(&mm->mmap_sem);
835         if (pinned_pages < num_pages) {
836                 ret = -EFAULT;
837                 goto fail_put_user_pages;
838         }
839
840         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842         mutex_lock(&dev->struct_mutex);
843
844         ret = i915_gem_object_get_pages(obj);
845         if (ret != 0)
846                 goto fail_unlock;
847
848         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849         if (ret != 0)
850                 goto fail_put_pages;
851
852         obj_priv = obj->driver_private;
853         offset = args->offset;
854         obj_priv->dirty = 1;
855
856         while (remain > 0) {
857                 /* Operation in this page
858                  *
859                  * shmem_page_index = page number within shmem file
860                  * shmem_page_offset = offset within page in shmem file
861                  * data_page_index = page number in get_user_pages return
862                  * data_page_offset = offset with data_page_index page.
863                  * page_length = bytes to copy for this page
864                  */
865                 shmem_page_index = offset / PAGE_SIZE;
866                 shmem_page_offset = offset & ~PAGE_MASK;
867                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868                 data_page_offset = data_ptr & ~PAGE_MASK;
869
870                 page_length = remain;
871                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872                         page_length = PAGE_SIZE - shmem_page_offset;
873                 if ((data_page_offset + page_length) > PAGE_SIZE)
874                         page_length = PAGE_SIZE - data_page_offset;
875
876                 if (do_bit17_swizzling) {
877                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878                                                     shmem_page_offset,
879                                                     user_pages[data_page_index],
880                                                     data_page_offset,
881                                                     page_length,
882                                                     0);
883                 } else {
884                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885                                               shmem_page_offset,
886                                               user_pages[data_page_index],
887                                               data_page_offset,
888                                               page_length);
889                 }
890                 if (ret)
891                         goto fail_put_pages;
892
893                 remain -= page_length;
894                 data_ptr += page_length;
895                 offset += page_length;
896         }
897
898 fail_put_pages:
899         i915_gem_object_put_pages(obj);
900 fail_unlock:
901         mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903         for (i = 0; i < pinned_pages; i++)
904                 page_cache_release(user_pages[i]);
905         drm_free_large(user_pages);
906
907         return ret;
908 }
909
910 /**
911  * Writes data to the object referenced by handle.
912  *
913  * On error, the contents of the buffer that were to be modified are undefined.
914  */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917                       struct drm_file *file_priv)
918 {
919         struct drm_i915_gem_pwrite *args = data;
920         struct drm_gem_object *obj;
921         struct drm_i915_gem_object *obj_priv;
922         int ret = 0;
923
924         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925         if (obj == NULL)
926                 return -EBADF;
927         obj_priv = obj->driver_private;
928
929         /* Bounds check destination.
930          *
931          * XXX: This could use review for overflow issues...
932          */
933         if (args->offset > obj->size || args->size > obj->size ||
934             args->offset + args->size > obj->size) {
935                 drm_gem_object_unreference(obj);
936                 return -EINVAL;
937         }
938
939         /* We can only do the GTT pwrite on untiled buffers, as otherwise
940          * it would end up going through the fenced access, and we'll get
941          * different detiling behavior between reading and writing.
942          * pread/pwrite currently are reading and writing from the CPU
943          * perspective, requiring manual detiling by the client.
944          */
945         if (obj_priv->phys_obj)
946                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948                  dev->gtt_total != 0) {
949                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950                 if (ret == -EFAULT) {
951                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952                                                        file_priv);
953                 }
954         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956         } else {
957                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958                 if (ret == -EFAULT) {
959                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960                                                          file_priv);
961                 }
962         }
963
964 #if WATCH_PWRITE
965         if (ret)
966                 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969         drm_gem_object_unreference(obj);
970
971         return ret;
972 }
973
974 /**
975  * Called when user space prepares to use an object with the CPU, either
976  * through the mmap ioctl's mapping or a GTT mapping.
977  */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980                           struct drm_file *file_priv)
981 {
982         struct drm_i915_gem_set_domain *args = data;
983         struct drm_gem_object *obj;
984         uint32_t read_domains = args->read_domains;
985         uint32_t write_domain = args->write_domain;
986         int ret;
987
988         if (!(dev->driver->driver_features & DRIVER_GEM))
989                 return -ENODEV;
990
991         /* Only handle setting domains to types used by the CPU. */
992         if (write_domain & I915_GEM_GPU_DOMAINS)
993                 return -EINVAL;
994
995         if (read_domains & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         /* Having something in the write domain implies it's in the read
999          * domain, and only that read domain.  Enforce that in the request.
1000          */
1001         if (write_domain != 0 && read_domains != write_domain)
1002                 return -EINVAL;
1003
1004         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005         if (obj == NULL)
1006                 return -EBADF;
1007
1008         mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1011                  obj, obj->size, read_domains, write_domain);
1012 #endif
1013         if (read_domains & I915_GEM_DOMAIN_GTT) {
1014                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015
1016                 /* Silently promote "you're not bound, there was nothing to do"
1017                  * to success, since the client was just asking us to
1018                  * make sure everything was done.
1019                  */
1020                 if (ret == -EINVAL)
1021                         ret = 0;
1022         } else {
1023                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1024         }
1025
1026         drm_gem_object_unreference(obj);
1027         mutex_unlock(&dev->struct_mutex);
1028         return ret;
1029 }
1030
1031 /**
1032  * Called when user space has done writes to this buffer
1033  */
1034 int
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036                       struct drm_file *file_priv)
1037 {
1038         struct drm_i915_gem_sw_finish *args = data;
1039         struct drm_gem_object *obj;
1040         struct drm_i915_gem_object *obj_priv;
1041         int ret = 0;
1042
1043         if (!(dev->driver->driver_features & DRIVER_GEM))
1044                 return -ENODEV;
1045
1046         mutex_lock(&dev->struct_mutex);
1047         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048         if (obj == NULL) {
1049                 mutex_unlock(&dev->struct_mutex);
1050                 return -EBADF;
1051         }
1052
1053 #if WATCH_BUF
1054         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1055                  __func__, args->handle, obj, obj->size);
1056 #endif
1057         obj_priv = obj->driver_private;
1058
1059         /* Pinned buffers may be scanout, so flush the cache */
1060         if (obj_priv->pin_count)
1061                 i915_gem_object_flush_cpu_write_domain(obj);
1062
1063         drm_gem_object_unreference(obj);
1064         mutex_unlock(&dev->struct_mutex);
1065         return ret;
1066 }
1067
1068 /**
1069  * Maps the contents of an object, returning the address it is mapped
1070  * into.
1071  *
1072  * While the mapping holds a reference on the contents of the object, it doesn't
1073  * imply a ref on the object itself.
1074  */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077                    struct drm_file *file_priv)
1078 {
1079         struct drm_i915_gem_mmap *args = data;
1080         struct drm_gem_object *obj;
1081         loff_t offset;
1082         unsigned long addr;
1083
1084         if (!(dev->driver->driver_features & DRIVER_GEM))
1085                 return -ENODEV;
1086
1087         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088         if (obj == NULL)
1089                 return -EBADF;
1090
1091         offset = args->offset;
1092
1093         down_write(&current->mm->mmap_sem);
1094         addr = do_mmap(obj->filp, 0, args->size,
1095                        PROT_READ | PROT_WRITE, MAP_SHARED,
1096                        args->offset);
1097         up_write(&current->mm->mmap_sem);
1098         mutex_lock(&dev->struct_mutex);
1099         drm_gem_object_unreference(obj);
1100         mutex_unlock(&dev->struct_mutex);
1101         if (IS_ERR((void *)addr))
1102                 return addr;
1103
1104         args->addr_ptr = (uint64_t) addr;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * i915_gem_fault - fault a page into the GTT
1111  * vma: VMA in question
1112  * vmf: fault info
1113  *
1114  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115  * from userspace.  The fault handler takes care of binding the object to
1116  * the GTT (if needed), allocating and programming a fence register (again,
1117  * only if needed based on whether the old reg is still valid or the object
1118  * is tiled) and inserting a new PTE into the faulting process.
1119  *
1120  * Note that the faulting process may involve evicting existing objects
1121  * from the GTT and/or fence registers to make room.  So performance may
1122  * suffer if the GTT working set is large or there are few fence registers
1123  * left.
1124  */
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 {
1127         struct drm_gem_object *obj = vma->vm_private_data;
1128         struct drm_device *dev = obj->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131         pgoff_t page_offset;
1132         unsigned long pfn;
1133         int ret = 0;
1134         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135
1136         /* We don't use vmf->pgoff since that has the fake offset */
1137         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138                 PAGE_SHIFT;
1139
1140         /* Now bind it into the GTT if needed */
1141         mutex_lock(&dev->struct_mutex);
1142         if (!obj_priv->gtt_space) {
1143                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144                 if (ret) {
1145                         mutex_unlock(&dev->struct_mutex);
1146                         return VM_FAULT_SIGBUS;
1147                 }
1148
1149                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150                 if (ret) {
1151                         mutex_unlock(&dev->struct_mutex);
1152                         return VM_FAULT_SIGBUS;
1153                 }
1154
1155                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1156         }
1157
1158         /* Need a new fence register? */
1159         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1160             obj_priv->tiling_mode != I915_TILING_NONE) {
1161                 ret = i915_gem_object_get_fence_reg(obj);
1162                 if (ret) {
1163                         mutex_unlock(&dev->struct_mutex);
1164                         return VM_FAULT_SIGBUS;
1165                 }
1166         }
1167
1168         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1169                 page_offset;
1170
1171         /* Finally, remap it using the new GTT offset */
1172         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
1174         mutex_unlock(&dev->struct_mutex);
1175
1176         switch (ret) {
1177         case -ENOMEM:
1178         case -EAGAIN:
1179                 return VM_FAULT_OOM;
1180         case -EFAULT:
1181         case -EINVAL:
1182                 return VM_FAULT_SIGBUS;
1183         default:
1184                 return VM_FAULT_NOPAGE;
1185         }
1186 }
1187
1188 /**
1189  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190  * @obj: obj in question
1191  *
1192  * GEM memory mapping works by handing back to userspace a fake mmap offset
1193  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1194  * up the object based on the offset and sets up the various memory mapping
1195  * structures.
1196  *
1197  * This routine allocates and attaches a fake offset for @obj.
1198  */
1199 static int
1200 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201 {
1202         struct drm_device *dev = obj->dev;
1203         struct drm_gem_mm *mm = dev->mm_private;
1204         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205         struct drm_map_list *list;
1206         struct drm_local_map *map;
1207         int ret = 0;
1208
1209         /* Set the object up for mmap'ing */
1210         list = &obj->map_list;
1211         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1212         if (!list->map)
1213                 return -ENOMEM;
1214
1215         map = list->map;
1216         map->type = _DRM_GEM;
1217         map->size = obj->size;
1218         map->handle = obj;
1219
1220         /* Get a DRM GEM mmap offset allocated... */
1221         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1222                                                     obj->size / PAGE_SIZE, 0, 0);
1223         if (!list->file_offset_node) {
1224                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1225                 ret = -ENOMEM;
1226                 goto out_free_list;
1227         }
1228
1229         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1230                                                   obj->size / PAGE_SIZE, 0);
1231         if (!list->file_offset_node) {
1232                 ret = -ENOMEM;
1233                 goto out_free_list;
1234         }
1235
1236         list->hash.key = list->file_offset_node->start;
1237         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1238                 DRM_ERROR("failed to add to map hash\n");
1239                 goto out_free_mm;
1240         }
1241
1242         /* By now we should be all set, any drm_mmap request on the offset
1243          * below will get to our mmap & fault handler */
1244         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1245
1246         return 0;
1247
1248 out_free_mm:
1249         drm_mm_put_block(list->file_offset_node);
1250 out_free_list:
1251         kfree(list->map);
1252
1253         return ret;
1254 }
1255
1256 /**
1257  * i915_gem_release_mmap - remove physical page mappings
1258  * @obj: obj in question
1259  *
1260  * Preserve the reservation of the mmaping with the DRM core code, but
1261  * relinquish ownership of the pages back to the system.
1262  *
1263  * It is vital that we remove the page mapping if we have mapped a tiled
1264  * object through the GTT and then lose the fence register due to
1265  * resource pressure. Similarly if the object has been moved out of the
1266  * aperture, than pages mapped into userspace must be revoked. Removing the
1267  * mapping will then trigger a page fault on the next user access, allowing
1268  * fixup by i915_gem_fault().
1269  */
1270 void
1271 i915_gem_release_mmap(struct drm_gem_object *obj)
1272 {
1273         struct drm_device *dev = obj->dev;
1274         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1275
1276         if (dev->dev_mapping)
1277                 unmap_mapping_range(dev->dev_mapping,
1278                                     obj_priv->mmap_offset, obj->size, 1);
1279 }
1280
1281 static void
1282 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1283 {
1284         struct drm_device *dev = obj->dev;
1285         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1286         struct drm_gem_mm *mm = dev->mm_private;
1287         struct drm_map_list *list;
1288
1289         list = &obj->map_list;
1290         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1291
1292         if (list->file_offset_node) {
1293                 drm_mm_put_block(list->file_offset_node);
1294                 list->file_offset_node = NULL;
1295         }
1296
1297         if (list->map) {
1298                 kfree(list->map);
1299                 list->map = NULL;
1300         }
1301
1302         obj_priv->mmap_offset = 0;
1303 }
1304
1305 /**
1306  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1307  * @obj: object to check
1308  *
1309  * Return the required GTT alignment for an object, taking into account
1310  * potential fence register mapping if needed.
1311  */
1312 static uint32_t
1313 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1314 {
1315         struct drm_device *dev = obj->dev;
1316         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1317         int start, i;
1318
1319         /*
1320          * Minimum alignment is 4k (GTT page size), but might be greater
1321          * if a fence register is needed for the object.
1322          */
1323         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1324                 return 4096;
1325
1326         /*
1327          * Previous chips need to be aligned to the size of the smallest
1328          * fence register that can contain the object.
1329          */
1330         if (IS_I9XX(dev))
1331                 start = 1024*1024;
1332         else
1333                 start = 512*1024;
1334
1335         for (i = start; i < obj->size; i <<= 1)
1336                 ;
1337
1338         return i;
1339 }
1340
1341 /**
1342  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1343  * @dev: DRM device
1344  * @data: GTT mapping ioctl data
1345  * @file_priv: GEM object info
1346  *
1347  * Simply returns the fake offset to userspace so it can mmap it.
1348  * The mmap call will end up in drm_gem_mmap(), which will set things
1349  * up so we can get faults in the handler above.
1350  *
1351  * The fault handler will take care of binding the object into the GTT
1352  * (since it may have been evicted to make room for something), allocating
1353  * a fence register, and mapping the appropriate aperture address into
1354  * userspace.
1355  */
1356 int
1357 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1358                         struct drm_file *file_priv)
1359 {
1360         struct drm_i915_gem_mmap_gtt *args = data;
1361         struct drm_i915_private *dev_priv = dev->dev_private;
1362         struct drm_gem_object *obj;
1363         struct drm_i915_gem_object *obj_priv;
1364         int ret;
1365
1366         if (!(dev->driver->driver_features & DRIVER_GEM))
1367                 return -ENODEV;
1368
1369         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1370         if (obj == NULL)
1371                 return -EBADF;
1372
1373         mutex_lock(&dev->struct_mutex);
1374
1375         obj_priv = obj->driver_private;
1376
1377         if (!obj_priv->mmap_offset) {
1378                 ret = i915_gem_create_mmap_offset(obj);
1379                 if (ret) {
1380                         drm_gem_object_unreference(obj);
1381                         mutex_unlock(&dev->struct_mutex);
1382                         return ret;
1383                 }
1384         }
1385
1386         args->offset = obj_priv->mmap_offset;
1387
1388         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1389
1390         /* Make sure the alignment is correct for fence regs etc */
1391         if (obj_priv->agp_mem &&
1392             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1393                 drm_gem_object_unreference(obj);
1394                 mutex_unlock(&dev->struct_mutex);
1395                 return -EINVAL;
1396         }
1397
1398         /*
1399          * Pull it into the GTT so that we have a page list (makes the
1400          * initial fault faster and any subsequent flushing possible).
1401          */
1402         if (!obj_priv->agp_mem) {
1403                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1404                 if (ret) {
1405                         drm_gem_object_unreference(obj);
1406                         mutex_unlock(&dev->struct_mutex);
1407                         return ret;
1408                 }
1409                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1410         }
1411
1412         drm_gem_object_unreference(obj);
1413         mutex_unlock(&dev->struct_mutex);
1414
1415         return 0;
1416 }
1417
1418 void
1419 i915_gem_object_put_pages(struct drm_gem_object *obj)
1420 {
1421         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1422         int page_count = obj->size / PAGE_SIZE;
1423         int i;
1424
1425         BUG_ON(obj_priv->pages_refcount == 0);
1426
1427         if (--obj_priv->pages_refcount != 0)
1428                 return;
1429
1430         if (obj_priv->tiling_mode != I915_TILING_NONE)
1431                 i915_gem_object_save_bit_17_swizzle(obj);
1432
1433         for (i = 0; i < page_count; i++)
1434                 if (obj_priv->pages[i] != NULL) {
1435                         if (obj_priv->dirty)
1436                                 set_page_dirty(obj_priv->pages[i]);
1437                         mark_page_accessed(obj_priv->pages[i]);
1438                         page_cache_release(obj_priv->pages[i]);
1439                 }
1440         obj_priv->dirty = 0;
1441
1442         drm_free_large(obj_priv->pages);
1443         obj_priv->pages = NULL;
1444 }
1445
1446 static void
1447 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1448 {
1449         struct drm_device *dev = obj->dev;
1450         drm_i915_private_t *dev_priv = dev->dev_private;
1451         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1452
1453         /* Add a reference if we're newly entering the active list. */
1454         if (!obj_priv->active) {
1455                 drm_gem_object_reference(obj);
1456                 obj_priv->active = 1;
1457         }
1458         /* Move from whatever list we were on to the tail of execution. */
1459         spin_lock(&dev_priv->mm.active_list_lock);
1460         list_move_tail(&obj_priv->list,
1461                        &dev_priv->mm.active_list);
1462         spin_unlock(&dev_priv->mm.active_list_lock);
1463         obj_priv->last_rendering_seqno = seqno;
1464 }
1465
1466 static void
1467 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1468 {
1469         struct drm_device *dev = obj->dev;
1470         drm_i915_private_t *dev_priv = dev->dev_private;
1471         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472
1473         BUG_ON(!obj_priv->active);
1474         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1475         obj_priv->last_rendering_seqno = 0;
1476 }
1477
1478 static void
1479 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1480 {
1481         struct drm_device *dev = obj->dev;
1482         drm_i915_private_t *dev_priv = dev->dev_private;
1483         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1484
1485         i915_verify_inactive(dev, __FILE__, __LINE__);
1486         if (obj_priv->pin_count != 0)
1487                 list_del_init(&obj_priv->list);
1488         else
1489                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1490
1491         obj_priv->last_rendering_seqno = 0;
1492         if (obj_priv->active) {
1493                 obj_priv->active = 0;
1494                 drm_gem_object_unreference(obj);
1495         }
1496         i915_verify_inactive(dev, __FILE__, __LINE__);
1497 }
1498
1499 /**
1500  * Creates a new sequence number, emitting a write of it to the status page
1501  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1502  *
1503  * Must be called with struct_lock held.
1504  *
1505  * Returned sequence numbers are nonzero on success.
1506  */
1507 static uint32_t
1508 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1509                  uint32_t flush_domains)
1510 {
1511         drm_i915_private_t *dev_priv = dev->dev_private;
1512         struct drm_i915_file_private *i915_file_priv = NULL;
1513         struct drm_i915_gem_request *request;
1514         uint32_t seqno;
1515         int was_empty;
1516         RING_LOCALS;
1517
1518         if (file_priv != NULL)
1519                 i915_file_priv = file_priv->driver_priv;
1520
1521         request = kzalloc(sizeof(*request), GFP_KERNEL);
1522         if (request == NULL)
1523                 return 0;
1524
1525         /* Grab the seqno we're going to make this request be, and bump the
1526          * next (skipping 0 so it can be the reserved no-seqno value).
1527          */
1528         seqno = dev_priv->mm.next_gem_seqno;
1529         dev_priv->mm.next_gem_seqno++;
1530         if (dev_priv->mm.next_gem_seqno == 0)
1531                 dev_priv->mm.next_gem_seqno++;
1532
1533         BEGIN_LP_RING(4);
1534         OUT_RING(MI_STORE_DWORD_INDEX);
1535         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1536         OUT_RING(seqno);
1537
1538         OUT_RING(MI_USER_INTERRUPT);
1539         ADVANCE_LP_RING();
1540
1541         DRM_DEBUG("%d\n", seqno);
1542
1543         request->seqno = seqno;
1544         request->emitted_jiffies = jiffies;
1545         was_empty = list_empty(&dev_priv->mm.request_list);
1546         list_add_tail(&request->list, &dev_priv->mm.request_list);
1547         if (i915_file_priv) {
1548                 list_add_tail(&request->client_list,
1549                               &i915_file_priv->mm.request_list);
1550         } else {
1551                 INIT_LIST_HEAD(&request->client_list);
1552         }
1553
1554         /* Associate any objects on the flushing list matching the write
1555          * domain we're flushing with our flush.
1556          */
1557         if (flush_domains != 0) {
1558                 struct drm_i915_gem_object *obj_priv, *next;
1559
1560                 list_for_each_entry_safe(obj_priv, next,
1561                                          &dev_priv->mm.flushing_list, list) {
1562                         struct drm_gem_object *obj = obj_priv->obj;
1563
1564                         if ((obj->write_domain & flush_domains) ==
1565                             obj->write_domain) {
1566                                 obj->write_domain = 0;
1567                                 i915_gem_object_move_to_active(obj, seqno);
1568                         }
1569                 }
1570
1571         }
1572
1573         if (was_empty && !dev_priv->mm.suspended)
1574                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1575         return seqno;
1576 }
1577
1578 /**
1579  * Command execution barrier
1580  *
1581  * Ensures that all commands in the ring are finished
1582  * before signalling the CPU
1583  */
1584 static uint32_t
1585 i915_retire_commands(struct drm_device *dev)
1586 {
1587         drm_i915_private_t *dev_priv = dev->dev_private;
1588         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1589         uint32_t flush_domains = 0;
1590         RING_LOCALS;
1591
1592         /* The sampler always gets flushed on i965 (sigh) */
1593         if (IS_I965G(dev))
1594                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1595         BEGIN_LP_RING(2);
1596         OUT_RING(cmd);
1597         OUT_RING(0); /* noop */
1598         ADVANCE_LP_RING();
1599         return flush_domains;
1600 }
1601
1602 /**
1603  * Moves buffers associated only with the given active seqno from the active
1604  * to inactive list, potentially freeing them.
1605  */
1606 static void
1607 i915_gem_retire_request(struct drm_device *dev,
1608                         struct drm_i915_gem_request *request)
1609 {
1610         drm_i915_private_t *dev_priv = dev->dev_private;
1611
1612         /* Move any buffers on the active list that are no longer referenced
1613          * by the ringbuffer to the flushing/inactive lists as appropriate.
1614          */
1615         spin_lock(&dev_priv->mm.active_list_lock);
1616         while (!list_empty(&dev_priv->mm.active_list)) {
1617                 struct drm_gem_object *obj;
1618                 struct drm_i915_gem_object *obj_priv;
1619
1620                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1621                                             struct drm_i915_gem_object,
1622                                             list);
1623                 obj = obj_priv->obj;
1624
1625                 /* If the seqno being retired doesn't match the oldest in the
1626                  * list, then the oldest in the list must still be newer than
1627                  * this seqno.
1628                  */
1629                 if (obj_priv->last_rendering_seqno != request->seqno)
1630                         goto out;
1631
1632 #if WATCH_LRU
1633                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1634                          __func__, request->seqno, obj);
1635 #endif
1636
1637                 if (obj->write_domain != 0)
1638                         i915_gem_object_move_to_flushing(obj);
1639                 else {
1640                         /* Take a reference on the object so it won't be
1641                          * freed while the spinlock is held.  The list
1642                          * protection for this spinlock is safe when breaking
1643                          * the lock like this since the next thing we do
1644                          * is just get the head of the list again.
1645                          */
1646                         drm_gem_object_reference(obj);
1647                         i915_gem_object_move_to_inactive(obj);
1648                         spin_unlock(&dev_priv->mm.active_list_lock);
1649                         drm_gem_object_unreference(obj);
1650                         spin_lock(&dev_priv->mm.active_list_lock);
1651                 }
1652         }
1653 out:
1654         spin_unlock(&dev_priv->mm.active_list_lock);
1655 }
1656
1657 /**
1658  * Returns true if seq1 is later than seq2.
1659  */
1660 static int
1661 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1662 {
1663         return (int32_t)(seq1 - seq2) >= 0;
1664 }
1665
1666 uint32_t
1667 i915_get_gem_seqno(struct drm_device *dev)
1668 {
1669         drm_i915_private_t *dev_priv = dev->dev_private;
1670
1671         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1672 }
1673
1674 /**
1675  * This function clears the request list as sequence numbers are passed.
1676  */
1677 void
1678 i915_gem_retire_requests(struct drm_device *dev)
1679 {
1680         drm_i915_private_t *dev_priv = dev->dev_private;
1681         uint32_t seqno;
1682
1683         if (!dev_priv->hw_status_page)
1684                 return;
1685
1686         seqno = i915_get_gem_seqno(dev);
1687
1688         while (!list_empty(&dev_priv->mm.request_list)) {
1689                 struct drm_i915_gem_request *request;
1690                 uint32_t retiring_seqno;
1691
1692                 request = list_first_entry(&dev_priv->mm.request_list,
1693                                            struct drm_i915_gem_request,
1694                                            list);
1695                 retiring_seqno = request->seqno;
1696
1697                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1698                     dev_priv->mm.wedged) {
1699                         i915_gem_retire_request(dev, request);
1700
1701                         list_del(&request->list);
1702                         list_del(&request->client_list);
1703                         kfree(request);
1704                 } else
1705                         break;
1706         }
1707 }
1708
1709 void
1710 i915_gem_retire_work_handler(struct work_struct *work)
1711 {
1712         drm_i915_private_t *dev_priv;
1713         struct drm_device *dev;
1714
1715         dev_priv = container_of(work, drm_i915_private_t,
1716                                 mm.retire_work.work);
1717         dev = dev_priv->dev;
1718
1719         mutex_lock(&dev->struct_mutex);
1720         i915_gem_retire_requests(dev);
1721         if (!dev_priv->mm.suspended &&
1722             !list_empty(&dev_priv->mm.request_list))
1723                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1724         mutex_unlock(&dev->struct_mutex);
1725 }
1726
1727 /**
1728  * Waits for a sequence number to be signaled, and cleans up the
1729  * request and object lists appropriately for that event.
1730  */
1731 static int
1732 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1733 {
1734         drm_i915_private_t *dev_priv = dev->dev_private;
1735         u32 ier;
1736         int ret = 0;
1737
1738         BUG_ON(seqno == 0);
1739
1740         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1741                 if (IS_IGDNG(dev))
1742                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1743                 else
1744                         ier = I915_READ(IER);
1745                 if (!ier) {
1746                         DRM_ERROR("something (likely vbetool) disabled "
1747                                   "interrupts, re-enabling\n");
1748                         i915_driver_irq_preinstall(dev);
1749                         i915_driver_irq_postinstall(dev);
1750                 }
1751
1752                 dev_priv->mm.waiting_gem_seqno = seqno;
1753                 i915_user_irq_get(dev);
1754                 ret = wait_event_interruptible(dev_priv->irq_queue,
1755                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1756                                                                  seqno) ||
1757                                                dev_priv->mm.wedged);
1758                 i915_user_irq_put(dev);
1759                 dev_priv->mm.waiting_gem_seqno = 0;
1760         }
1761         if (dev_priv->mm.wedged)
1762                 ret = -EIO;
1763
1764         if (ret && ret != -ERESTARTSYS)
1765                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1766                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1767
1768         /* Directly dispatch request retiring.  While we have the work queue
1769          * to handle this, the waiter on a request often wants an associated
1770          * buffer to have made it to the inactive list, and we would need
1771          * a separate wait queue to handle that.
1772          */
1773         if (ret == 0)
1774                 i915_gem_retire_requests(dev);
1775
1776         return ret;
1777 }
1778
1779 static void
1780 i915_gem_flush(struct drm_device *dev,
1781                uint32_t invalidate_domains,
1782                uint32_t flush_domains)
1783 {
1784         drm_i915_private_t *dev_priv = dev->dev_private;
1785         uint32_t cmd;
1786         RING_LOCALS;
1787
1788 #if WATCH_EXEC
1789         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1790                   invalidate_domains, flush_domains);
1791 #endif
1792
1793         if (flush_domains & I915_GEM_DOMAIN_CPU)
1794                 drm_agp_chipset_flush(dev);
1795
1796         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1797                 /*
1798                  * read/write caches:
1799                  *
1800                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1801                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1802                  * also flushed at 2d versus 3d pipeline switches.
1803                  *
1804                  * read-only caches:
1805                  *
1806                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1807                  * MI_READ_FLUSH is set, and is always flushed on 965.
1808                  *
1809                  * I915_GEM_DOMAIN_COMMAND may not exist?
1810                  *
1811                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1812                  * invalidated when MI_EXE_FLUSH is set.
1813                  *
1814                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1815                  * invalidated with every MI_FLUSH.
1816                  *
1817                  * TLBs:
1818                  *
1819                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1820                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1821                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1822                  * are flushed at any MI_FLUSH.
1823                  */
1824
1825                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1826                 if ((invalidate_domains|flush_domains) &
1827                     I915_GEM_DOMAIN_RENDER)
1828                         cmd &= ~MI_NO_WRITE_FLUSH;
1829                 if (!IS_I965G(dev)) {
1830                         /*
1831                          * On the 965, the sampler cache always gets flushed
1832                          * and this bit is reserved.
1833                          */
1834                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1835                                 cmd |= MI_READ_FLUSH;
1836                 }
1837                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1838                         cmd |= MI_EXE_FLUSH;
1839
1840 #if WATCH_EXEC
1841                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1842 #endif
1843                 BEGIN_LP_RING(2);
1844                 OUT_RING(cmd);
1845                 OUT_RING(0); /* noop */
1846                 ADVANCE_LP_RING();
1847         }
1848 }
1849
1850 /**
1851  * Ensures that all rendering to the object has completed and the object is
1852  * safe to unbind from the GTT or access from the CPU.
1853  */
1854 static int
1855 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1856 {
1857         struct drm_device *dev = obj->dev;
1858         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1859         int ret;
1860
1861         /* This function only exists to support waiting for existing rendering,
1862          * not for emitting required flushes.
1863          */
1864         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1865
1866         /* If there is rendering queued on the buffer being evicted, wait for
1867          * it.
1868          */
1869         if (obj_priv->active) {
1870 #if WATCH_BUF
1871                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1872                           __func__, obj, obj_priv->last_rendering_seqno);
1873 #endif
1874                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1875                 if (ret != 0)
1876                         return ret;
1877         }
1878
1879         return 0;
1880 }
1881
1882 /**
1883  * Unbinds an object from the GTT aperture.
1884  */
1885 int
1886 i915_gem_object_unbind(struct drm_gem_object *obj)
1887 {
1888         struct drm_device *dev = obj->dev;
1889         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1890         int ret = 0;
1891
1892 #if WATCH_BUF
1893         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1894         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1895 #endif
1896         if (obj_priv->gtt_space == NULL)
1897                 return 0;
1898
1899         if (obj_priv->pin_count != 0) {
1900                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1901                 return -EINVAL;
1902         }
1903
1904         /* Move the object to the CPU domain to ensure that
1905          * any possible CPU writes while it's not in the GTT
1906          * are flushed when we go to remap it. This will
1907          * also ensure that all pending GPU writes are finished
1908          * before we unbind.
1909          */
1910         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1911         if (ret) {
1912                 if (ret != -ERESTARTSYS)
1913                         DRM_ERROR("set_domain failed: %d\n", ret);
1914                 return ret;
1915         }
1916
1917         if (obj_priv->agp_mem != NULL) {
1918                 drm_unbind_agp(obj_priv->agp_mem);
1919                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1920                 obj_priv->agp_mem = NULL;
1921         }
1922
1923         BUG_ON(obj_priv->active);
1924
1925         /* blow away mappings if mapped through GTT */
1926         i915_gem_release_mmap(obj);
1927
1928         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1929                 i915_gem_clear_fence_reg(obj);
1930
1931         i915_gem_object_put_pages(obj);
1932
1933         if (obj_priv->gtt_space) {
1934                 atomic_dec(&dev->gtt_count);
1935                 atomic_sub(obj->size, &dev->gtt_memory);
1936
1937                 drm_mm_put_block(obj_priv->gtt_space);
1938                 obj_priv->gtt_space = NULL;
1939         }
1940
1941         /* Remove ourselves from the LRU list if present. */
1942         if (!list_empty(&obj_priv->list))
1943                 list_del_init(&obj_priv->list);
1944
1945         return 0;
1946 }
1947
1948 static int
1949 i915_gem_evict_something(struct drm_device *dev)
1950 {
1951         drm_i915_private_t *dev_priv = dev->dev_private;
1952         struct drm_gem_object *obj;
1953         struct drm_i915_gem_object *obj_priv;
1954         int ret = 0;
1955
1956         for (;;) {
1957                 /* If there's an inactive buffer available now, grab it
1958                  * and be done.
1959                  */
1960                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1961                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1962                                                     struct drm_i915_gem_object,
1963                                                     list);
1964                         obj = obj_priv->obj;
1965                         BUG_ON(obj_priv->pin_count != 0);
1966 #if WATCH_LRU
1967                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1968 #endif
1969                         BUG_ON(obj_priv->active);
1970
1971                         /* Wait on the rendering and unbind the buffer. */
1972                         ret = i915_gem_object_unbind(obj);
1973                         break;
1974                 }
1975
1976                 /* If we didn't get anything, but the ring is still processing
1977                  * things, wait for one of those things to finish and hopefully
1978                  * leave us a buffer to evict.
1979                  */
1980                 if (!list_empty(&dev_priv->mm.request_list)) {
1981                         struct drm_i915_gem_request *request;
1982
1983                         request = list_first_entry(&dev_priv->mm.request_list,
1984                                                    struct drm_i915_gem_request,
1985                                                    list);
1986
1987                         ret = i915_wait_request(dev, request->seqno);
1988                         if (ret)
1989                                 break;
1990
1991                         /* if waiting caused an object to become inactive,
1992                          * then loop around and wait for it. Otherwise, we
1993                          * assume that waiting freed and unbound something,
1994                          * so there should now be some space in the GTT
1995                          */
1996                         if (!list_empty(&dev_priv->mm.inactive_list))
1997                                 continue;
1998                         break;
1999                 }
2000
2001                 /* If we didn't have anything on the request list but there
2002                  * are buffers awaiting a flush, emit one and try again.
2003                  * When we wait on it, those buffers waiting for that flush
2004                  * will get moved to inactive.
2005                  */
2006                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2007                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2008                                                     struct drm_i915_gem_object,
2009                                                     list);
2010                         obj = obj_priv->obj;
2011
2012                         i915_gem_flush(dev,
2013                                        obj->write_domain,
2014                                        obj->write_domain);
2015                         i915_add_request(dev, NULL, obj->write_domain);
2016
2017                         obj = NULL;
2018                         continue;
2019                 }
2020
2021                 DRM_ERROR("inactive empty %d request empty %d "
2022                           "flushing empty %d\n",
2023                           list_empty(&dev_priv->mm.inactive_list),
2024                           list_empty(&dev_priv->mm.request_list),
2025                           list_empty(&dev_priv->mm.flushing_list));
2026                 /* If we didn't do any of the above, there's nothing to be done
2027                  * and we just can't fit it in.
2028                  */
2029                 return -ENOSPC;
2030         }
2031         return ret;
2032 }
2033
2034 static int
2035 i915_gem_evict_everything(struct drm_device *dev)
2036 {
2037         int ret;
2038
2039         for (;;) {
2040                 ret = i915_gem_evict_something(dev);
2041                 if (ret != 0)
2042                         break;
2043         }
2044         if (ret == -ENOSPC)
2045                 return 0;
2046         return ret;
2047 }
2048
2049 int
2050 i915_gem_object_get_pages(struct drm_gem_object *obj)
2051 {
2052         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2053         int page_count, i;
2054         struct address_space *mapping;
2055         struct inode *inode;
2056         struct page *page;
2057         int ret;
2058
2059         if (obj_priv->pages_refcount++ != 0)
2060                 return 0;
2061
2062         /* Get the list of pages out of our struct file.  They'll be pinned
2063          * at this point until we release them.
2064          */
2065         page_count = obj->size / PAGE_SIZE;
2066         BUG_ON(obj_priv->pages != NULL);
2067         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2068         if (obj_priv->pages == NULL) {
2069                 DRM_ERROR("Faled to allocate page list\n");
2070                 obj_priv->pages_refcount--;
2071                 return -ENOMEM;
2072         }
2073
2074         inode = obj->filp->f_path.dentry->d_inode;
2075         mapping = inode->i_mapping;
2076         for (i = 0; i < page_count; i++) {
2077                 page = read_mapping_page(mapping, i, NULL);
2078                 if (IS_ERR(page)) {
2079                         ret = PTR_ERR(page);
2080                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2081                         i915_gem_object_put_pages(obj);
2082                         return ret;
2083                 }
2084                 obj_priv->pages[i] = page;
2085         }
2086
2087         if (obj_priv->tiling_mode != I915_TILING_NONE)
2088                 i915_gem_object_do_bit_17_swizzle(obj);
2089
2090         return 0;
2091 }
2092
2093 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2094 {
2095         struct drm_gem_object *obj = reg->obj;
2096         struct drm_device *dev = obj->dev;
2097         drm_i915_private_t *dev_priv = dev->dev_private;
2098         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2099         int regnum = obj_priv->fence_reg;
2100         uint64_t val;
2101
2102         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2103                     0xfffff000) << 32;
2104         val |= obj_priv->gtt_offset & 0xfffff000;
2105         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2106         if (obj_priv->tiling_mode == I915_TILING_Y)
2107                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2108         val |= I965_FENCE_REG_VALID;
2109
2110         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2111 }
2112
2113 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2114 {
2115         struct drm_gem_object *obj = reg->obj;
2116         struct drm_device *dev = obj->dev;
2117         drm_i915_private_t *dev_priv = dev->dev_private;
2118         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2119         int regnum = obj_priv->fence_reg;
2120         int tile_width;
2121         uint32_t fence_reg, val;
2122         uint32_t pitch_val;
2123
2124         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2125             (obj_priv->gtt_offset & (obj->size - 1))) {
2126                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2127                      __func__, obj_priv->gtt_offset, obj->size);
2128                 return;
2129         }
2130
2131         if (obj_priv->tiling_mode == I915_TILING_Y &&
2132             HAS_128_BYTE_Y_TILING(dev))
2133                 tile_width = 128;
2134         else
2135                 tile_width = 512;
2136
2137         /* Note: pitch better be a power of two tile widths */
2138         pitch_val = obj_priv->stride / tile_width;
2139         pitch_val = ffs(pitch_val) - 1;
2140
2141         val = obj_priv->gtt_offset;
2142         if (obj_priv->tiling_mode == I915_TILING_Y)
2143                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2144         val |= I915_FENCE_SIZE_BITS(obj->size);
2145         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2146         val |= I830_FENCE_REG_VALID;
2147
2148         if (regnum < 8)
2149                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2150         else
2151                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2152         I915_WRITE(fence_reg, val);
2153 }
2154
2155 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2156 {
2157         struct drm_gem_object *obj = reg->obj;
2158         struct drm_device *dev = obj->dev;
2159         drm_i915_private_t *dev_priv = dev->dev_private;
2160         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2161         int regnum = obj_priv->fence_reg;
2162         uint32_t val;
2163         uint32_t pitch_val;
2164         uint32_t fence_size_bits;
2165
2166         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2167             (obj_priv->gtt_offset & (obj->size - 1))) {
2168                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2169                      __func__, obj_priv->gtt_offset);
2170                 return;
2171         }
2172
2173         pitch_val = obj_priv->stride / 128;
2174         pitch_val = ffs(pitch_val) - 1;
2175         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2176
2177         val = obj_priv->gtt_offset;
2178         if (obj_priv->tiling_mode == I915_TILING_Y)
2179                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2180         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2181         WARN_ON(fence_size_bits & ~0x00000f00);
2182         val |= fence_size_bits;
2183         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2184         val |= I830_FENCE_REG_VALID;
2185
2186         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2187 }
2188
2189 /**
2190  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2191  * @obj: object to map through a fence reg
2192  *
2193  * When mapping objects through the GTT, userspace wants to be able to write
2194  * to them without having to worry about swizzling if the object is tiled.
2195  *
2196  * This function walks the fence regs looking for a free one for @obj,
2197  * stealing one if it can't find any.
2198  *
2199  * It then sets up the reg based on the object's properties: address, pitch
2200  * and tiling format.
2201  */
2202 int
2203 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2204 {
2205         struct drm_device *dev = obj->dev;
2206         struct drm_i915_private *dev_priv = dev->dev_private;
2207         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2208         struct drm_i915_fence_reg *reg = NULL;
2209         struct drm_i915_gem_object *old_obj_priv = NULL;
2210         int i, ret, avail;
2211
2212         switch (obj_priv->tiling_mode) {
2213         case I915_TILING_NONE:
2214                 WARN(1, "allocating a fence for non-tiled object?\n");
2215                 break;
2216         case I915_TILING_X:
2217                 if (!obj_priv->stride)
2218                         return -EINVAL;
2219                 WARN((obj_priv->stride & (512 - 1)),
2220                      "object 0x%08x is X tiled but has non-512B pitch\n",
2221                      obj_priv->gtt_offset);
2222                 break;
2223         case I915_TILING_Y:
2224                 if (!obj_priv->stride)
2225                         return -EINVAL;
2226                 WARN((obj_priv->stride & (128 - 1)),
2227                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2228                      obj_priv->gtt_offset);
2229                 break;
2230         }
2231
2232         /* First try to find a free reg */
2233 try_again:
2234         avail = 0;
2235         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2236                 reg = &dev_priv->fence_regs[i];
2237                 if (!reg->obj)
2238                         break;
2239
2240                 old_obj_priv = reg->obj->driver_private;
2241                 if (!old_obj_priv->pin_count)
2242                     avail++;
2243         }
2244
2245         /* None available, try to steal one or wait for a user to finish */
2246         if (i == dev_priv->num_fence_regs) {
2247                 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2248
2249                 if (avail == 0)
2250                         return -ENOSPC;
2251
2252                 for (i = dev_priv->fence_reg_start;
2253                      i < dev_priv->num_fence_regs; i++) {
2254                         uint32_t this_seqno;
2255
2256                         reg = &dev_priv->fence_regs[i];
2257                         old_obj_priv = reg->obj->driver_private;
2258
2259                         if (old_obj_priv->pin_count)
2260                                 continue;
2261
2262                         /* i915 uses fences for GPU access to tiled buffers */
2263                         if (IS_I965G(dev) || !old_obj_priv->active)
2264                                 break;
2265
2266                         /* find the seqno of the first available fence */
2267                         this_seqno = old_obj_priv->last_rendering_seqno;
2268                         if (this_seqno != 0 &&
2269                             reg->obj->write_domain == 0 &&
2270                             i915_seqno_passed(seqno, this_seqno))
2271                                 seqno = this_seqno;
2272                 }
2273
2274                 /*
2275                  * Now things get ugly... we have to wait for one of the
2276                  * objects to finish before trying again.
2277                  */
2278                 if (i == dev_priv->num_fence_regs) {
2279                         if (seqno == dev_priv->mm.next_gem_seqno) {
2280                                 i915_gem_flush(dev,
2281                                                I915_GEM_GPU_DOMAINS,
2282                                                I915_GEM_GPU_DOMAINS);
2283                                 seqno = i915_add_request(dev, NULL,
2284                                                          I915_GEM_GPU_DOMAINS);
2285                                 if (seqno == 0)
2286                                         return -ENOMEM;
2287                         }
2288
2289                         ret = i915_wait_request(dev, seqno);
2290                         if (ret)
2291                                 return ret;
2292                         goto try_again;
2293                 }
2294
2295                 /*
2296                  * Zap this virtual mapping so we can set up a fence again
2297                  * for this object next time we need it.
2298                  */
2299                 i915_gem_release_mmap(reg->obj);
2300                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2301         }
2302
2303         obj_priv->fence_reg = i;
2304         reg->obj = obj;
2305
2306         if (IS_I965G(dev))
2307                 i965_write_fence_reg(reg);
2308         else if (IS_I9XX(dev))
2309                 i915_write_fence_reg(reg);
2310         else
2311                 i830_write_fence_reg(reg);
2312
2313         return 0;
2314 }
2315
2316 /**
2317  * i915_gem_clear_fence_reg - clear out fence register info
2318  * @obj: object to clear
2319  *
2320  * Zeroes out the fence register itself and clears out the associated
2321  * data structures in dev_priv and obj_priv.
2322  */
2323 static void
2324 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2325 {
2326         struct drm_device *dev = obj->dev;
2327         drm_i915_private_t *dev_priv = dev->dev_private;
2328         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2329
2330         if (IS_I965G(dev))
2331                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2332         else {
2333                 uint32_t fence_reg;
2334
2335                 if (obj_priv->fence_reg < 8)
2336                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2337                 else
2338                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2339                                                        8) * 4;
2340
2341                 I915_WRITE(fence_reg, 0);
2342         }
2343
2344         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2345         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2346 }
2347
2348 /**
2349  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2350  * to the buffer to finish, and then resets the fence register.
2351  * @obj: tiled object holding a fence register.
2352  *
2353  * Zeroes out the fence register itself and clears out the associated
2354  * data structures in dev_priv and obj_priv.
2355  */
2356 int
2357 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2358 {
2359         struct drm_device *dev = obj->dev;
2360         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2361
2362         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2363                 return 0;
2364
2365         /* On the i915, GPU access to tiled buffers is via a fence,
2366          * therefore we must wait for any outstanding access to complete
2367          * before clearing the fence.
2368          */
2369         if (!IS_I965G(dev)) {
2370                 int ret;
2371
2372                 i915_gem_object_flush_gpu_write_domain(obj);
2373                 i915_gem_object_flush_gtt_write_domain(obj);
2374                 ret = i915_gem_object_wait_rendering(obj);
2375                 if (ret != 0)
2376                         return ret;
2377         }
2378
2379         i915_gem_clear_fence_reg (obj);
2380
2381         return 0;
2382 }
2383
2384 /**
2385  * Finds free space in the GTT aperture and binds the object there.
2386  */
2387 static int
2388 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2389 {
2390         struct drm_device *dev = obj->dev;
2391         drm_i915_private_t *dev_priv = dev->dev_private;
2392         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2393         struct drm_mm_node *free_space;
2394         int page_count, ret;
2395
2396         if (dev_priv->mm.suspended)
2397                 return -EBUSY;
2398         if (alignment == 0)
2399                 alignment = i915_gem_get_gtt_alignment(obj);
2400         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2401                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2402                 return -EINVAL;
2403         }
2404
2405  search_free:
2406         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2407                                         obj->size, alignment, 0);
2408         if (free_space != NULL) {
2409                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2410                                                        alignment);
2411                 if (obj_priv->gtt_space != NULL) {
2412                         obj_priv->gtt_space->private = obj;
2413                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2414                 }
2415         }
2416         if (obj_priv->gtt_space == NULL) {
2417                 bool lists_empty;
2418
2419                 /* If the gtt is empty and we're still having trouble
2420                  * fitting our object in, we're out of memory.
2421                  */
2422 #if WATCH_LRU
2423                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2424 #endif
2425                 spin_lock(&dev_priv->mm.active_list_lock);
2426                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2427                                list_empty(&dev_priv->mm.flushing_list) &&
2428                                list_empty(&dev_priv->mm.active_list));
2429                 spin_unlock(&dev_priv->mm.active_list_lock);
2430                 if (lists_empty) {
2431                         DRM_ERROR("GTT full, but LRU list empty\n");
2432                         return -ENOSPC;
2433                 }
2434
2435                 ret = i915_gem_evict_something(dev);
2436                 if (ret != 0) {
2437                         if (ret != -ERESTARTSYS)
2438                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2439                         return ret;
2440                 }
2441                 goto search_free;
2442         }
2443
2444 #if WATCH_BUF
2445         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2446                  obj->size, obj_priv->gtt_offset);
2447 #endif
2448         ret = i915_gem_object_get_pages(obj);
2449         if (ret) {
2450                 drm_mm_put_block(obj_priv->gtt_space);
2451                 obj_priv->gtt_space = NULL;
2452                 return ret;
2453         }
2454
2455         page_count = obj->size / PAGE_SIZE;
2456         /* Create an AGP memory structure pointing at our pages, and bind it
2457          * into the GTT.
2458          */
2459         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2460                                                obj_priv->pages,
2461                                                page_count,
2462                                                obj_priv->gtt_offset,
2463                                                obj_priv->agp_type);
2464         if (obj_priv->agp_mem == NULL) {
2465                 i915_gem_object_put_pages(obj);
2466                 drm_mm_put_block(obj_priv->gtt_space);
2467                 obj_priv->gtt_space = NULL;
2468                 return -ENOMEM;
2469         }
2470         atomic_inc(&dev->gtt_count);
2471         atomic_add(obj->size, &dev->gtt_memory);
2472
2473         /* Assert that the object is not currently in any GPU domain. As it
2474          * wasn't in the GTT, there shouldn't be any way it could have been in
2475          * a GPU cache
2476          */
2477         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2478         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2479
2480         return 0;
2481 }
2482
2483 void
2484 i915_gem_clflush_object(struct drm_gem_object *obj)
2485 {
2486         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2487
2488         /* If we don't have a page list set up, then we're not pinned
2489          * to GPU, and we can ignore the cache flush because it'll happen
2490          * again at bind time.
2491          */
2492         if (obj_priv->pages == NULL)
2493                 return;
2494
2495         /* XXX: The 865 in particular appears to be weird in how it handles
2496          * cache flushing.  We haven't figured it out, but the
2497          * clflush+agp_chipset_flush doesn't appear to successfully get the
2498          * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2499          */
2500         if (IS_I865G(obj->dev)) {
2501                 wbinvd();
2502                 return;
2503         }
2504
2505         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2506 }
2507
2508 /** Flushes any GPU write domain for the object if it's dirty. */
2509 static void
2510 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2511 {
2512         struct drm_device *dev = obj->dev;
2513         uint32_t seqno;
2514
2515         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2516                 return;
2517
2518         /* Queue the GPU write cache flushing we need. */
2519         i915_gem_flush(dev, 0, obj->write_domain);
2520         seqno = i915_add_request(dev, NULL, obj->write_domain);
2521         obj->write_domain = 0;
2522         i915_gem_object_move_to_active(obj, seqno);
2523 }
2524
2525 /** Flushes the GTT write domain for the object if it's dirty. */
2526 static void
2527 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2528 {
2529         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2530                 return;
2531
2532         /* No actual flushing is required for the GTT write domain.   Writes
2533          * to it immediately go to main memory as far as we know, so there's
2534          * no chipset flush.  It also doesn't land in render cache.
2535          */
2536         obj->write_domain = 0;
2537 }
2538
2539 /** Flushes the CPU write domain for the object if it's dirty. */
2540 static void
2541 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2542 {
2543         struct drm_device *dev = obj->dev;
2544
2545         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2546                 return;
2547
2548         i915_gem_clflush_object(obj);
2549         drm_agp_chipset_flush(dev);
2550         obj->write_domain = 0;
2551 }
2552
2553 /**
2554  * Moves a single object to the GTT read, and possibly write domain.
2555  *
2556  * This function returns when the move is complete, including waiting on
2557  * flushes to occur.
2558  */
2559 int
2560 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2561 {
2562         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2563         int ret;
2564
2565         /* Not valid to be called on unbound objects. */
2566         if (obj_priv->gtt_space == NULL)
2567                 return -EINVAL;
2568
2569         i915_gem_object_flush_gpu_write_domain(obj);
2570         /* Wait on any GPU rendering and flushing to occur. */
2571         ret = i915_gem_object_wait_rendering(obj);
2572         if (ret != 0)
2573                 return ret;
2574
2575         /* If we're writing through the GTT domain, then CPU and GPU caches
2576          * will need to be invalidated at next use.
2577          */
2578         if (write)
2579                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2580
2581         i915_gem_object_flush_cpu_write_domain(obj);
2582
2583         /* It should now be out of any other write domains, and we can update
2584          * the domain values for our changes.
2585          */
2586         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2587         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2588         if (write) {
2589                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2590                 obj_priv->dirty = 1;
2591         }
2592
2593         return 0;
2594 }
2595
2596 /**
2597  * Moves a single object to the CPU read, and possibly write domain.
2598  *
2599  * This function returns when the move is complete, including waiting on
2600  * flushes to occur.
2601  */
2602 static int
2603 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2604 {
2605         int ret;
2606
2607         i915_gem_object_flush_gpu_write_domain(obj);
2608         /* Wait on any GPU rendering and flushing to occur. */
2609         ret = i915_gem_object_wait_rendering(obj);
2610         if (ret != 0)
2611                 return ret;
2612
2613         i915_gem_object_flush_gtt_write_domain(obj);
2614
2615         /* If we have a partially-valid cache of the object in the CPU,
2616          * finish invalidating it and free the per-page flags.
2617          */
2618         i915_gem_object_set_to_full_cpu_read_domain(obj);
2619
2620         /* Flush the CPU cache if it's still invalid. */
2621         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2622                 i915_gem_clflush_object(obj);
2623
2624                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2625         }
2626
2627         /* It should now be out of any other write domains, and we can update
2628          * the domain values for our changes.
2629          */
2630         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2631
2632         /* If we're writing through the CPU, then the GPU read domains will
2633          * need to be invalidated at next use.
2634          */
2635         if (write) {
2636                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2637                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2638         }
2639
2640         return 0;
2641 }
2642
2643 /*
2644  * Set the next domain for the specified object. This
2645  * may not actually perform the necessary flushing/invaliding though,
2646  * as that may want to be batched with other set_domain operations
2647  *
2648  * This is (we hope) the only really tricky part of gem. The goal
2649  * is fairly simple -- track which caches hold bits of the object
2650  * and make sure they remain coherent. A few concrete examples may
2651  * help to explain how it works. For shorthand, we use the notation
2652  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2653  * a pair of read and write domain masks.
2654  *
2655  * Case 1: the batch buffer
2656  *
2657  *      1. Allocated
2658  *      2. Written by CPU
2659  *      3. Mapped to GTT
2660  *      4. Read by GPU
2661  *      5. Unmapped from GTT
2662  *      6. Freed
2663  *
2664  *      Let's take these a step at a time
2665  *
2666  *      1. Allocated
2667  *              Pages allocated from the kernel may still have
2668  *              cache contents, so we set them to (CPU, CPU) always.
2669  *      2. Written by CPU (using pwrite)
2670  *              The pwrite function calls set_domain (CPU, CPU) and
2671  *              this function does nothing (as nothing changes)
2672  *      3. Mapped by GTT
2673  *              This function asserts that the object is not
2674  *              currently in any GPU-based read or write domains
2675  *      4. Read by GPU
2676  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2677  *              As write_domain is zero, this function adds in the
2678  *              current read domains (CPU+COMMAND, 0).
2679  *              flush_domains is set to CPU.
2680  *              invalidate_domains is set to COMMAND
2681  *              clflush is run to get data out of the CPU caches
2682  *              then i915_dev_set_domain calls i915_gem_flush to
2683  *              emit an MI_FLUSH and drm_agp_chipset_flush
2684  *      5. Unmapped from GTT
2685  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2686  *              flush_domains and invalidate_domains end up both zero
2687  *              so no flushing/invalidating happens
2688  *      6. Freed
2689  *              yay, done
2690  *
2691  * Case 2: The shared render buffer
2692  *
2693  *      1. Allocated
2694  *      2. Mapped to GTT
2695  *      3. Read/written by GPU
2696  *      4. set_domain to (CPU,CPU)
2697  *      5. Read/written by CPU
2698  *      6. Read/written by GPU
2699  *
2700  *      1. Allocated
2701  *              Same as last example, (CPU, CPU)
2702  *      2. Mapped to GTT
2703  *              Nothing changes (assertions find that it is not in the GPU)
2704  *      3. Read/written by GPU
2705  *              execbuffer calls set_domain (RENDER, RENDER)
2706  *              flush_domains gets CPU
2707  *              invalidate_domains gets GPU
2708  *              clflush (obj)
2709  *              MI_FLUSH and drm_agp_chipset_flush
2710  *      4. set_domain (CPU, CPU)
2711  *              flush_domains gets GPU
2712  *              invalidate_domains gets CPU
2713  *              wait_rendering (obj) to make sure all drawing is complete.
2714  *              This will include an MI_FLUSH to get the data from GPU
2715  *              to memory
2716  *              clflush (obj) to invalidate the CPU cache
2717  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2718  *      5. Read/written by CPU
2719  *              cache lines are loaded and dirtied
2720  *      6. Read written by GPU
2721  *              Same as last GPU access
2722  *
2723  * Case 3: The constant buffer
2724  *
2725  *      1. Allocated
2726  *      2. Written by CPU
2727  *      3. Read by GPU
2728  *      4. Updated (written) by CPU again
2729  *      5. Read by GPU
2730  *
2731  *      1. Allocated
2732  *              (CPU, CPU)
2733  *      2. Written by CPU
2734  *              (CPU, CPU)
2735  *      3. Read by GPU
2736  *              (CPU+RENDER, 0)
2737  *              flush_domains = CPU
2738  *              invalidate_domains = RENDER
2739  *              clflush (obj)
2740  *              MI_FLUSH
2741  *              drm_agp_chipset_flush
2742  *      4. Updated (written) by CPU again
2743  *              (CPU, CPU)
2744  *              flush_domains = 0 (no previous write domain)
2745  *              invalidate_domains = 0 (no new read domains)
2746  *      5. Read by GPU
2747  *              (CPU+RENDER, 0)
2748  *              flush_domains = CPU
2749  *              invalidate_domains = RENDER
2750  *              clflush (obj)
2751  *              MI_FLUSH
2752  *              drm_agp_chipset_flush
2753  */
2754 static void
2755 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2756 {
2757         struct drm_device               *dev = obj->dev;
2758         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2759         uint32_t                        invalidate_domains = 0;
2760         uint32_t                        flush_domains = 0;
2761
2762         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2763         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2764
2765 #if WATCH_BUF
2766         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2767                  __func__, obj,
2768                  obj->read_domains, obj->pending_read_domains,
2769                  obj->write_domain, obj->pending_write_domain);
2770 #endif
2771         /*
2772          * If the object isn't moving to a new write domain,
2773          * let the object stay in multiple read domains
2774          */
2775         if (obj->pending_write_domain == 0)
2776                 obj->pending_read_domains |= obj->read_domains;
2777         else
2778                 obj_priv->dirty = 1;
2779
2780         /*
2781          * Flush the current write domain if
2782          * the new read domains don't match. Invalidate
2783          * any read domains which differ from the old
2784          * write domain
2785          */
2786         if (obj->write_domain &&
2787             obj->write_domain != obj->pending_read_domains) {
2788                 flush_domains |= obj->write_domain;
2789                 invalidate_domains |=
2790                         obj->pending_read_domains & ~obj->write_domain;
2791         }
2792         /*
2793          * Invalidate any read caches which may have
2794          * stale data. That is, any new read domains.
2795          */
2796         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2797         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2798 #if WATCH_BUF
2799                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2800                          __func__, flush_domains, invalidate_domains);
2801 #endif
2802                 i915_gem_clflush_object(obj);
2803         }
2804
2805         /* The actual obj->write_domain will be updated with
2806          * pending_write_domain after we emit the accumulated flush for all
2807          * of our domain changes in execbuffers (which clears objects'
2808          * write_domains).  So if we have a current write domain that we
2809          * aren't changing, set pending_write_domain to that.
2810          */
2811         if (flush_domains == 0 && obj->pending_write_domain == 0)
2812                 obj->pending_write_domain = obj->write_domain;
2813         obj->read_domains = obj->pending_read_domains;
2814
2815         dev->invalidate_domains |= invalidate_domains;
2816         dev->flush_domains |= flush_domains;
2817 #if WATCH_BUF
2818         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2819                  __func__,
2820                  obj->read_domains, obj->write_domain,
2821                  dev->invalidate_domains, dev->flush_domains);
2822 #endif
2823 }
2824
2825 /**
2826  * Moves the object from a partially CPU read to a full one.
2827  *
2828  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2829  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2830  */
2831 static void
2832 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2833 {
2834         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2835
2836         if (!obj_priv->page_cpu_valid)
2837                 return;
2838
2839         /* If we're partially in the CPU read domain, finish moving it in.
2840          */
2841         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2842                 int i;
2843
2844                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2845                         if (obj_priv->page_cpu_valid[i])
2846                                 continue;
2847                         drm_clflush_pages(obj_priv->pages + i, 1);
2848                 }
2849         }
2850
2851         /* Free the page_cpu_valid mappings which are now stale, whether
2852          * or not we've got I915_GEM_DOMAIN_CPU.
2853          */
2854         kfree(obj_priv->page_cpu_valid);
2855         obj_priv->page_cpu_valid = NULL;
2856 }
2857
2858 /**
2859  * Set the CPU read domain on a range of the object.
2860  *
2861  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2862  * not entirely valid.  The page_cpu_valid member of the object flags which
2863  * pages have been flushed, and will be respected by
2864  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2865  * of the whole object.
2866  *
2867  * This function returns when the move is complete, including waiting on
2868  * flushes to occur.
2869  */
2870 static int
2871 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2872                                           uint64_t offset, uint64_t size)
2873 {
2874         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2875         int i, ret;
2876
2877         if (offset == 0 && size == obj->size)
2878                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2879
2880         i915_gem_object_flush_gpu_write_domain(obj);
2881         /* Wait on any GPU rendering and flushing to occur. */
2882         ret = i915_gem_object_wait_rendering(obj);
2883         if (ret != 0)
2884                 return ret;
2885         i915_gem_object_flush_gtt_write_domain(obj);
2886
2887         /* If we're already fully in the CPU read domain, we're done. */
2888         if (obj_priv->page_cpu_valid == NULL &&
2889             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2890                 return 0;
2891
2892         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2893          * newly adding I915_GEM_DOMAIN_CPU
2894          */
2895         if (obj_priv->page_cpu_valid == NULL) {
2896                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2897                                                    GFP_KERNEL);
2898                 if (obj_priv->page_cpu_valid == NULL)
2899                         return -ENOMEM;
2900         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2901                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2902
2903         /* Flush the cache on any pages that are still invalid from the CPU's
2904          * perspective.
2905          */
2906         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2907              i++) {
2908                 if (obj_priv->page_cpu_valid[i])
2909                         continue;
2910
2911                 drm_clflush_pages(obj_priv->pages + i, 1);
2912
2913                 obj_priv->page_cpu_valid[i] = 1;
2914         }
2915
2916         /* It should now be out of any other write domains, and we can update
2917          * the domain values for our changes.
2918          */
2919         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2920
2921         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2922
2923         return 0;
2924 }
2925
2926 /**
2927  * Pin an object to the GTT and evaluate the relocations landing in it.
2928  */
2929 static int
2930 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2931                                  struct drm_file *file_priv,
2932                                  struct drm_i915_gem_exec_object *entry,
2933                                  struct drm_i915_gem_relocation_entry *relocs)
2934 {
2935         struct drm_device *dev = obj->dev;
2936         drm_i915_private_t *dev_priv = dev->dev_private;
2937         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2938         int i, ret;
2939         void __iomem *reloc_page;
2940
2941         /* Choose the GTT offset for our buffer and put it there. */
2942         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2943         if (ret)
2944                 return ret;
2945
2946         entry->offset = obj_priv->gtt_offset;
2947
2948         /* Apply the relocations, using the GTT aperture to avoid cache
2949          * flushing requirements.
2950          */
2951         for (i = 0; i < entry->relocation_count; i++) {
2952                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2953                 struct drm_gem_object *target_obj;
2954                 struct drm_i915_gem_object *target_obj_priv;
2955                 uint32_t reloc_val, reloc_offset;
2956                 uint32_t __iomem *reloc_entry;
2957
2958                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2959                                                    reloc->target_handle);
2960                 if (target_obj == NULL) {
2961                         i915_gem_object_unpin(obj);
2962                         return -EBADF;
2963                 }
2964                 target_obj_priv = target_obj->driver_private;
2965
2966                 /* The target buffer should have appeared before us in the
2967                  * exec_object list, so it should have a GTT space bound by now.
2968                  */
2969                 if (target_obj_priv->gtt_space == NULL) {
2970                         DRM_ERROR("No GTT space found for object %d\n",
2971                                   reloc->target_handle);
2972                         drm_gem_object_unreference(target_obj);
2973                         i915_gem_object_unpin(obj);
2974                         return -EINVAL;
2975                 }
2976
2977                 if (reloc->offset > obj->size - 4) {
2978                         DRM_ERROR("Relocation beyond object bounds: "
2979                                   "obj %p target %d offset %d size %d.\n",
2980                                   obj, reloc->target_handle,
2981                                   (int) reloc->offset, (int) obj->size);
2982                         drm_gem_object_unreference(target_obj);
2983                         i915_gem_object_unpin(obj);
2984                         return -EINVAL;
2985                 }
2986                 if (reloc->offset & 3) {
2987                         DRM_ERROR("Relocation not 4-byte aligned: "
2988                                   "obj %p target %d offset %d.\n",
2989                                   obj, reloc->target_handle,
2990                                   (int) reloc->offset);
2991                         drm_gem_object_unreference(target_obj);
2992                         i915_gem_object_unpin(obj);
2993                         return -EINVAL;
2994                 }
2995
2996                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2997                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2998                         DRM_ERROR("reloc with read/write CPU domains: "
2999                                   "obj %p target %d offset %d "
3000                                   "read %08x write %08x",
3001                                   obj, reloc->target_handle,
3002                                   (int) reloc->offset,
3003                                   reloc->read_domains,
3004                                   reloc->write_domain);
3005                         drm_gem_object_unreference(target_obj);
3006                         i915_gem_object_unpin(obj);
3007                         return -EINVAL;
3008                 }
3009
3010                 if (reloc->write_domain && target_obj->pending_write_domain &&
3011                     reloc->write_domain != target_obj->pending_write_domain) {
3012                         DRM_ERROR("Write domain conflict: "
3013                                   "obj %p target %d offset %d "
3014                                   "new %08x old %08x\n",
3015                                   obj, reloc->target_handle,
3016                                   (int) reloc->offset,
3017                                   reloc->write_domain,
3018                                   target_obj->pending_write_domain);
3019                         drm_gem_object_unreference(target_obj);
3020                         i915_gem_object_unpin(obj);
3021                         return -EINVAL;
3022                 }
3023
3024 #if WATCH_RELOC
3025                 DRM_INFO("%s: obj %p offset %08x target %d "
3026                          "read %08x write %08x gtt %08x "
3027                          "presumed %08x delta %08x\n",
3028                          __func__,
3029                          obj,
3030                          (int) reloc->offset,
3031                          (int) reloc->target_handle,
3032                          (int) reloc->read_domains,
3033                          (int) reloc->write_domain,
3034                          (int) target_obj_priv->gtt_offset,
3035                          (int) reloc->presumed_offset,
3036                          reloc->delta);
3037 #endif
3038
3039                 target_obj->pending_read_domains |= reloc->read_domains;
3040                 target_obj->pending_write_domain |= reloc->write_domain;
3041
3042                 /* If the relocation already has the right value in it, no
3043                  * more work needs to be done.
3044                  */
3045                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3046                         drm_gem_object_unreference(target_obj);
3047                         continue;
3048                 }
3049
3050                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3051                 if (ret != 0) {
3052                         drm_gem_object_unreference(target_obj);
3053                         i915_gem_object_unpin(obj);
3054                         return -EINVAL;
3055                 }
3056
3057                 /* Map the page containing the relocation we're going to
3058                  * perform.
3059                  */
3060                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3061                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3062                                                       (reloc_offset &
3063                                                        ~(PAGE_SIZE - 1)));
3064                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3065                                                    (reloc_offset & (PAGE_SIZE - 1)));
3066                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3067
3068 #if WATCH_BUF
3069                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3070                           obj, (unsigned int) reloc->offset,
3071                           readl(reloc_entry), reloc_val);
3072 #endif
3073                 writel(reloc_val, reloc_entry);
3074                 io_mapping_unmap_atomic(reloc_page);
3075
3076                 /* The updated presumed offset for this entry will be
3077                  * copied back out to the user.
3078                  */
3079                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3080
3081                 drm_gem_object_unreference(target_obj);
3082         }
3083
3084 #if WATCH_BUF
3085         if (0)
3086                 i915_gem_dump_object(obj, 128, __func__, ~0);
3087 #endif
3088         return 0;
3089 }
3090
3091 /** Dispatch a batchbuffer to the ring
3092  */
3093 static int
3094 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3095                               struct drm_i915_gem_execbuffer *exec,
3096                               struct drm_clip_rect *cliprects,
3097                               uint64_t exec_offset)
3098 {
3099         drm_i915_private_t *dev_priv = dev->dev_private;
3100         int nbox = exec->num_cliprects;
3101         int i = 0, count;
3102         uint32_t exec_start, exec_len;
3103         RING_LOCALS;
3104
3105         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3106         exec_len = (uint32_t) exec->batch_len;
3107
3108         count = nbox ? nbox : 1;
3109
3110         for (i = 0; i < count; i++) {
3111                 if (i < nbox) {
3112                         int ret = i915_emit_box(dev, cliprects, i,
3113                                                 exec->DR1, exec->DR4);
3114                         if (ret)
3115                                 return ret;
3116                 }
3117
3118                 if (IS_I830(dev) || IS_845G(dev)) {
3119                         BEGIN_LP_RING(4);
3120                         OUT_RING(MI_BATCH_BUFFER);
3121                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3122                         OUT_RING(exec_start + exec_len - 4);
3123                         OUT_RING(0);
3124                         ADVANCE_LP_RING();
3125                 } else {
3126                         BEGIN_LP_RING(2);
3127                         if (IS_I965G(dev)) {
3128                                 OUT_RING(MI_BATCH_BUFFER_START |
3129                                          (2 << 6) |
3130                                          MI_BATCH_NON_SECURE_I965);
3131                                 OUT_RING(exec_start);
3132                         } else {
3133                                 OUT_RING(MI_BATCH_BUFFER_START |
3134                                          (2 << 6));
3135                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3136                         }
3137                         ADVANCE_LP_RING();
3138                 }
3139         }
3140
3141         /* XXX breadcrumb */
3142         return 0;
3143 }
3144
3145 /* Throttle our rendering by waiting until the ring has completed our requests
3146  * emitted over 20 msec ago.
3147  *
3148  * Note that if we were to use the current jiffies each time around the loop,
3149  * we wouldn't escape the function with any frames outstanding if the time to
3150  * render a frame was over 20ms.
3151  *
3152  * This should get us reasonable parallelism between CPU and GPU but also
3153  * relatively low latency when blocking on a particular request to finish.
3154  */
3155 static int
3156 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3157 {
3158         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3159         int ret = 0;
3160         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3161
3162         mutex_lock(&dev->struct_mutex);
3163         while (!list_empty(&i915_file_priv->mm.request_list)) {
3164                 struct drm_i915_gem_request *request;
3165
3166                 request = list_first_entry(&i915_file_priv->mm.request_list,
3167                                            struct drm_i915_gem_request,
3168                                            client_list);
3169
3170                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3171                         break;
3172
3173                 ret = i915_wait_request(dev, request->seqno);
3174                 if (ret != 0)
3175                         break;
3176         }
3177         mutex_unlock(&dev->struct_mutex);
3178
3179         return ret;
3180 }
3181
3182 static int
3183 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3184                               uint32_t buffer_count,
3185                               struct drm_i915_gem_relocation_entry **relocs)
3186 {
3187         uint32_t reloc_count = 0, reloc_index = 0, i;
3188         int ret;
3189
3190         *relocs = NULL;
3191         for (i = 0; i < buffer_count; i++) {
3192                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3193                         return -EINVAL;
3194                 reloc_count += exec_list[i].relocation_count;
3195         }
3196
3197         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3198         if (*relocs == NULL)
3199                 return -ENOMEM;
3200
3201         for (i = 0; i < buffer_count; i++) {
3202                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3203
3204                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3205
3206                 ret = copy_from_user(&(*relocs)[reloc_index],
3207                                      user_relocs,
3208                                      exec_list[i].relocation_count *
3209                                      sizeof(**relocs));
3210                 if (ret != 0) {
3211                         drm_free_large(*relocs);
3212                         *relocs = NULL;
3213                         return -EFAULT;
3214                 }
3215
3216                 reloc_index += exec_list[i].relocation_count;
3217         }
3218
3219         return 0;
3220 }
3221
3222 static int
3223 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3224                             uint32_t buffer_count,
3225                             struct drm_i915_gem_relocation_entry *relocs)
3226 {
3227         uint32_t reloc_count = 0, i;
3228         int ret = 0;
3229
3230         for (i = 0; i < buffer_count; i++) {
3231                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3232                 int unwritten;
3233
3234                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3235
3236                 unwritten = copy_to_user(user_relocs,
3237                                          &relocs[reloc_count],
3238                                          exec_list[i].relocation_count *
3239                                          sizeof(*relocs));
3240
3241                 if (unwritten) {
3242                         ret = -EFAULT;
3243                         goto err;
3244                 }
3245
3246                 reloc_count += exec_list[i].relocation_count;
3247         }
3248
3249 err:
3250         drm_free_large(relocs);
3251
3252         return ret;
3253 }
3254
3255 static int
3256 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3257                            uint64_t exec_offset)
3258 {
3259         uint32_t exec_start, exec_len;
3260
3261         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3262         exec_len = (uint32_t) exec->batch_len;
3263
3264         if ((exec_start | exec_len) & 0x7)
3265                 return -EINVAL;
3266
3267         if (!exec_start)
3268                 return -EINVAL;
3269
3270         return 0;
3271 }
3272
3273 int
3274 i915_gem_execbuffer(struct drm_device *dev, void *data,
3275                     struct drm_file *file_priv)
3276 {
3277         drm_i915_private_t *dev_priv = dev->dev_private;
3278         struct drm_i915_gem_execbuffer *args = data;
3279         struct drm_i915_gem_exec_object *exec_list = NULL;
3280         struct drm_gem_object **object_list = NULL;
3281         struct drm_gem_object *batch_obj;
3282         struct drm_i915_gem_object *obj_priv;
3283         struct drm_clip_rect *cliprects = NULL;
3284         struct drm_i915_gem_relocation_entry *relocs;
3285         int ret, ret2, i, pinned = 0;
3286         uint64_t exec_offset;
3287         uint32_t seqno, flush_domains, reloc_index;
3288         int pin_tries;
3289
3290 #if WATCH_EXEC
3291         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3292                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3293 #endif
3294
3295         if (args->buffer_count < 1) {
3296                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3297                 return -EINVAL;
3298         }
3299         /* Copy in the exec list from userland */
3300         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3301         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3302         if (exec_list == NULL || object_list == NULL) {
3303                 DRM_ERROR("Failed to allocate exec or object list "
3304                           "for %d buffers\n",
3305                           args->buffer_count);
3306                 ret = -ENOMEM;
3307                 goto pre_mutex_err;
3308         }
3309         ret = copy_from_user(exec_list,
3310                              (struct drm_i915_relocation_entry __user *)
3311                              (uintptr_t) args->buffers_ptr,
3312                              sizeof(*exec_list) * args->buffer_count);
3313         if (ret != 0) {
3314                 DRM_ERROR("copy %d exec entries failed %d\n",
3315                           args->buffer_count, ret);
3316                 goto pre_mutex_err;
3317         }
3318
3319         if (args->num_cliprects != 0) {
3320                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3321                                     GFP_KERNEL);
3322                 if (cliprects == NULL)
3323                         goto pre_mutex_err;
3324
3325                 ret = copy_from_user(cliprects,
3326                                      (struct drm_clip_rect __user *)
3327                                      (uintptr_t) args->cliprects_ptr,
3328                                      sizeof(*cliprects) * args->num_cliprects);
3329                 if (ret != 0) {
3330                         DRM_ERROR("copy %d cliprects failed: %d\n",
3331                                   args->num_cliprects, ret);
3332                         goto pre_mutex_err;
3333                 }
3334         }
3335
3336         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3337                                             &relocs);
3338         if (ret != 0)
3339                 goto pre_mutex_err;
3340
3341         mutex_lock(&dev->struct_mutex);
3342
3343         i915_verify_inactive(dev, __FILE__, __LINE__);
3344
3345         if (dev_priv->mm.wedged) {
3346                 DRM_ERROR("Execbuf while wedged\n");
3347                 mutex_unlock(&dev->struct_mutex);
3348                 ret = -EIO;
3349                 goto pre_mutex_err;
3350         }
3351
3352         if (dev_priv->mm.suspended) {
3353                 DRM_ERROR("Execbuf while VT-switched.\n");
3354                 mutex_unlock(&dev->struct_mutex);
3355                 ret = -EBUSY;
3356                 goto pre_mutex_err;
3357         }
3358
3359         /* Look up object handles */
3360         for (i = 0; i < args->buffer_count; i++) {
3361                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3362                                                        exec_list[i].handle);
3363                 if (object_list[i] == NULL) {
3364                         DRM_ERROR("Invalid object handle %d at index %d\n",
3365                                    exec_list[i].handle, i);
3366                         ret = -EBADF;
3367                         goto err;
3368                 }
3369
3370                 obj_priv = object_list[i]->driver_private;
3371                 if (obj_priv->in_execbuffer) {
3372                         DRM_ERROR("Object %p appears more than once in object list\n",
3373                                    object_list[i]);
3374                         ret = -EBADF;
3375                         goto err;
3376                 }
3377                 obj_priv->in_execbuffer = true;
3378         }
3379
3380         /* Pin and relocate */
3381         for (pin_tries = 0; ; pin_tries++) {
3382                 ret = 0;
3383                 reloc_index = 0;
3384
3385                 for (i = 0; i < args->buffer_count; i++) {
3386                         object_list[i]->pending_read_domains = 0;
3387                         object_list[i]->pending_write_domain = 0;
3388                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3389                                                                file_priv,
3390                                                                &exec_list[i],
3391                                                                &relocs[reloc_index]);
3392                         if (ret)
3393                                 break;
3394                         pinned = i + 1;
3395                         reloc_index += exec_list[i].relocation_count;
3396                 }
3397                 /* success */
3398                 if (ret == 0)
3399                         break;
3400
3401                 /* error other than GTT full, or we've already tried again */
3402                 if (ret != -ENOSPC || pin_tries >= 1) {
3403                         if (ret != -ERESTARTSYS)
3404                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3405                         goto err;
3406                 }
3407
3408                 /* unpin all of our buffers */
3409                 for (i = 0; i < pinned; i++)
3410                         i915_gem_object_unpin(object_list[i]);
3411                 pinned = 0;
3412
3413                 /* evict everyone we can from the aperture */
3414                 ret = i915_gem_evict_everything(dev);
3415                 if (ret)
3416                         goto err;
3417         }
3418
3419         /* Set the pending read domains for the batch buffer to COMMAND */
3420         batch_obj = object_list[args->buffer_count-1];
3421         if (batch_obj->pending_write_domain) {
3422                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3423                 ret = -EINVAL;
3424                 goto err;
3425         }
3426         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3427
3428         /* Sanity check the batch buffer, prior to moving objects */
3429         exec_offset = exec_list[args->buffer_count - 1].offset;
3430         ret = i915_gem_check_execbuffer (args, exec_offset);
3431         if (ret != 0) {
3432                 DRM_ERROR("execbuf with invalid offset/length\n");
3433                 goto err;
3434         }
3435
3436         i915_verify_inactive(dev, __FILE__, __LINE__);
3437
3438         /* Zero the global flush/invalidate flags. These
3439          * will be modified as new domains are computed
3440          * for each object
3441          */
3442         dev->invalidate_domains = 0;
3443         dev->flush_domains = 0;
3444
3445         for (i = 0; i < args->buffer_count; i++) {
3446                 struct drm_gem_object *obj = object_list[i];
3447
3448                 /* Compute new gpu domains and update invalidate/flush */
3449                 i915_gem_object_set_to_gpu_domain(obj);
3450         }
3451
3452         i915_verify_inactive(dev, __FILE__, __LINE__);
3453
3454         if (dev->invalidate_domains | dev->flush_domains) {
3455 #if WATCH_EXEC
3456                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3457                           __func__,
3458                          dev->invalidate_domains,
3459                          dev->flush_domains);
3460 #endif
3461                 i915_gem_flush(dev,
3462                                dev->invalidate_domains,
3463                                dev->flush_domains);
3464                 if (dev->flush_domains)
3465                         (void)i915_add_request(dev, file_priv,
3466                                                dev->flush_domains);
3467         }
3468
3469         for (i = 0; i < args->buffer_count; i++) {
3470                 struct drm_gem_object *obj = object_list[i];
3471
3472                 obj->write_domain = obj->pending_write_domain;
3473         }
3474
3475         i915_verify_inactive(dev, __FILE__, __LINE__);
3476
3477 #if WATCH_COHERENCY
3478         for (i = 0; i < args->buffer_count; i++) {
3479                 i915_gem_object_check_coherency(object_list[i],
3480                                                 exec_list[i].handle);
3481         }
3482 #endif
3483
3484 #if WATCH_EXEC
3485         i915_gem_dump_object(batch_obj,
3486                               args->batch_len,
3487                               __func__,
3488                               ~0);
3489 #endif
3490
3491         /* Exec the batchbuffer */
3492         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3493         if (ret) {
3494                 DRM_ERROR("dispatch failed %d\n", ret);
3495                 goto err;
3496         }
3497
3498         /*
3499          * Ensure that the commands in the batch buffer are
3500          * finished before the interrupt fires
3501          */
3502         flush_domains = i915_retire_commands(dev);
3503
3504         i915_verify_inactive(dev, __FILE__, __LINE__);
3505
3506         /*
3507          * Get a seqno representing the execution of the current buffer,
3508          * which we can wait on.  We would like to mitigate these interrupts,
3509          * likely by only creating seqnos occasionally (so that we have
3510          * *some* interrupts representing completion of buffers that we can
3511          * wait on when trying to clear up gtt space).
3512          */
3513         seqno = i915_add_request(dev, file_priv, flush_domains);
3514         BUG_ON(seqno == 0);
3515         for (i = 0; i < args->buffer_count; i++) {
3516                 struct drm_gem_object *obj = object_list[i];
3517
3518                 i915_gem_object_move_to_active(obj, seqno);
3519 #if WATCH_LRU
3520                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3521 #endif
3522         }
3523 #if WATCH_LRU
3524         i915_dump_lru(dev, __func__);
3525 #endif
3526
3527         i915_verify_inactive(dev, __FILE__, __LINE__);
3528
3529 err:
3530         for (i = 0; i < pinned; i++)
3531                 i915_gem_object_unpin(object_list[i]);
3532
3533         for (i = 0; i < args->buffer_count; i++) {
3534                 if (object_list[i]) {
3535                         obj_priv = object_list[i]->driver_private;
3536                         obj_priv->in_execbuffer = false;
3537                 }
3538                 drm_gem_object_unreference(object_list[i]);
3539         }
3540
3541         mutex_unlock(&dev->struct_mutex);
3542
3543         if (!ret) {
3544                 /* Copy the new buffer offsets back to the user's exec list. */
3545                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3546                                    (uintptr_t) args->buffers_ptr,
3547                                    exec_list,
3548                                    sizeof(*exec_list) * args->buffer_count);
3549                 if (ret) {
3550                         ret = -EFAULT;
3551                         DRM_ERROR("failed to copy %d exec entries "
3552                                   "back to user (%d)\n",
3553                                   args->buffer_count, ret);
3554                 }
3555         }
3556
3557         /* Copy the updated relocations out regardless of current error
3558          * state.  Failure to update the relocs would mean that the next
3559          * time userland calls execbuf, it would do so with presumed offset
3560          * state that didn't match the actual object state.
3561          */
3562         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3563                                            relocs);
3564         if (ret2 != 0) {
3565                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3566
3567                 if (ret == 0)
3568                         ret = ret2;
3569         }
3570
3571 pre_mutex_err:
3572         drm_free_large(object_list);
3573         drm_free_large(exec_list);
3574         kfree(cliprects);
3575
3576         return ret;
3577 }
3578
3579 int
3580 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3581 {
3582         struct drm_device *dev = obj->dev;
3583         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3584         int ret;
3585
3586         i915_verify_inactive(dev, __FILE__, __LINE__);
3587         if (obj_priv->gtt_space == NULL) {
3588                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3589                 if (ret != 0) {
3590                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3591                                 DRM_ERROR("Failure to bind: %d\n", ret);
3592                         return ret;
3593                 }
3594         }
3595         /*
3596          * Pre-965 chips need a fence register set up in order to
3597          * properly handle tiled surfaces.
3598          */
3599         if (!IS_I965G(dev) &&
3600             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3601             obj_priv->tiling_mode != I915_TILING_NONE) {
3602                 ret = i915_gem_object_get_fence_reg(obj);
3603                 if (ret != 0) {
3604                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3605                                 DRM_ERROR("Failure to install fence: %d\n",
3606                                           ret);
3607                         return ret;
3608                 }
3609         }
3610         obj_priv->pin_count++;
3611
3612         /* If the object is not active and not pending a flush,
3613          * remove it from the inactive list
3614          */
3615         if (obj_priv->pin_count == 1) {
3616                 atomic_inc(&dev->pin_count);
3617                 atomic_add(obj->size, &dev->pin_memory);
3618                 if (!obj_priv->active &&
3619                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3620                     !list_empty(&obj_priv->list))
3621                         list_del_init(&obj_priv->list);
3622         }
3623         i915_verify_inactive(dev, __FILE__, __LINE__);
3624
3625         return 0;
3626 }
3627
3628 void
3629 i915_gem_object_unpin(struct drm_gem_object *obj)
3630 {
3631         struct drm_device *dev = obj->dev;
3632         drm_i915_private_t *dev_priv = dev->dev_private;
3633         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3634
3635         i915_verify_inactive(dev, __FILE__, __LINE__);
3636         obj_priv->pin_count--;
3637         BUG_ON(obj_priv->pin_count < 0);
3638         BUG_ON(obj_priv->gtt_space == NULL);
3639
3640         /* If the object is no longer pinned, and is
3641          * neither active nor being flushed, then stick it on
3642          * the inactive list
3643          */
3644         if (obj_priv->pin_count == 0) {
3645                 if (!obj_priv->active &&
3646                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3647                         list_move_tail(&obj_priv->list,
3648                                        &dev_priv->mm.inactive_list);
3649                 atomic_dec(&dev->pin_count);
3650                 atomic_sub(obj->size, &dev->pin_memory);
3651         }
3652         i915_verify_inactive(dev, __FILE__, __LINE__);
3653 }
3654
3655 int
3656 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3657                    struct drm_file *file_priv)
3658 {
3659         struct drm_i915_gem_pin *args = data;
3660         struct drm_gem_object *obj;
3661         struct drm_i915_gem_object *obj_priv;
3662         int ret;
3663
3664         mutex_lock(&dev->struct_mutex);
3665
3666         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3667         if (obj == NULL) {
3668                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3669                           args->handle);
3670                 mutex_unlock(&dev->struct_mutex);
3671                 return -EBADF;
3672         }
3673         obj_priv = obj->driver_private;
3674
3675         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3676                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3677                           args->handle);
3678                 drm_gem_object_unreference(obj);
3679                 mutex_unlock(&dev->struct_mutex);
3680                 return -EINVAL;
3681         }
3682
3683         obj_priv->user_pin_count++;
3684         obj_priv->pin_filp = file_priv;
3685         if (obj_priv->user_pin_count == 1) {
3686                 ret = i915_gem_object_pin(obj, args->alignment);
3687                 if (ret != 0) {
3688                         drm_gem_object_unreference(obj);
3689                         mutex_unlock(&dev->struct_mutex);
3690                         return ret;
3691                 }
3692         }
3693
3694         /* XXX - flush the CPU caches for pinned objects
3695          * as the X server doesn't manage domains yet
3696          */
3697         i915_gem_object_flush_cpu_write_domain(obj);
3698         args->offset = obj_priv->gtt_offset;
3699         drm_gem_object_unreference(obj);
3700         mutex_unlock(&dev->struct_mutex);
3701
3702         return 0;
3703 }
3704
3705 int
3706 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3707                      struct drm_file *file_priv)
3708 {
3709         struct drm_i915_gem_pin *args = data;
3710         struct drm_gem_object *obj;
3711         struct drm_i915_gem_object *obj_priv;
3712
3713         mutex_lock(&dev->struct_mutex);
3714
3715         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3716         if (obj == NULL) {
3717                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3718                           args->handle);
3719                 mutex_unlock(&dev->struct_mutex);
3720                 return -EBADF;
3721         }
3722
3723         obj_priv = obj->driver_private;
3724         if (obj_priv->pin_filp != file_priv) {
3725                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3726                           args->handle);
3727                 drm_gem_object_unreference(obj);
3728                 mutex_unlock(&dev->struct_mutex);
3729                 return -EINVAL;
3730         }
3731         obj_priv->user_pin_count--;
3732         if (obj_priv->user_pin_count == 0) {
3733                 obj_priv->pin_filp = NULL;
3734                 i915_gem_object_unpin(obj);
3735         }
3736
3737         drm_gem_object_unreference(obj);
3738         mutex_unlock(&dev->struct_mutex);
3739         return 0;
3740 }
3741
3742 int
3743 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3744                     struct drm_file *file_priv)
3745 {
3746         struct drm_i915_gem_busy *args = data;
3747         struct drm_gem_object *obj;
3748         struct drm_i915_gem_object *obj_priv;
3749
3750         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3751         if (obj == NULL) {
3752                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3753                           args->handle);
3754                 return -EBADF;
3755         }
3756
3757         mutex_lock(&dev->struct_mutex);
3758         /* Update the active list for the hardware's current position.
3759          * Otherwise this only updates on a delayed timer or when irqs are
3760          * actually unmasked, and our working set ends up being larger than
3761          * required.
3762          */
3763         i915_gem_retire_requests(dev);
3764
3765         obj_priv = obj->driver_private;
3766         /* Don't count being on the flushing list against the object being
3767          * done.  Otherwise, a buffer left on the flushing list but not getting
3768          * flushed (because nobody's flushing that domain) won't ever return
3769          * unbusy and get reused by libdrm's bo cache.  The other expected
3770          * consumer of this interface, OpenGL's occlusion queries, also specs
3771          * that the objects get unbusy "eventually" without any interference.
3772          */
3773         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3774
3775         drm_gem_object_unreference(obj);
3776         mutex_unlock(&dev->struct_mutex);
3777         return 0;
3778 }
3779
3780 int
3781 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3782                         struct drm_file *file_priv)
3783 {
3784     return i915_gem_ring_throttle(dev, file_priv);
3785 }
3786
3787 int i915_gem_init_object(struct drm_gem_object *obj)
3788 {
3789         struct drm_i915_gem_object *obj_priv;
3790
3791         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3792         if (obj_priv == NULL)
3793                 return -ENOMEM;
3794
3795         /*
3796          * We've just allocated pages from the kernel,
3797          * so they've just been written by the CPU with
3798          * zeros. They'll need to be clflushed before we
3799          * use them with the GPU.
3800          */
3801         obj->write_domain = I915_GEM_DOMAIN_CPU;
3802         obj->read_domains = I915_GEM_DOMAIN_CPU;
3803
3804         obj_priv->agp_type = AGP_USER_MEMORY;
3805
3806         obj->driver_private = obj_priv;
3807         obj_priv->obj = obj;
3808         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3809         INIT_LIST_HEAD(&obj_priv->list);
3810
3811         return 0;
3812 }
3813
3814 void i915_gem_free_object(struct drm_gem_object *obj)
3815 {
3816         struct drm_device *dev = obj->dev;
3817         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3818
3819         while (obj_priv->pin_count > 0)
3820                 i915_gem_object_unpin(obj);
3821
3822         if (obj_priv->phys_obj)
3823                 i915_gem_detach_phys_object(dev, obj);
3824
3825         i915_gem_object_unbind(obj);
3826
3827         i915_gem_free_mmap_offset(obj);
3828
3829         kfree(obj_priv->page_cpu_valid);
3830         kfree(obj_priv->bit_17);
3831         kfree(obj->driver_private);
3832 }
3833
3834 /** Unbinds all objects that are on the given buffer list. */
3835 static int
3836 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3837 {
3838         struct drm_gem_object *obj;
3839         struct drm_i915_gem_object *obj_priv;
3840         int ret;
3841
3842         while (!list_empty(head)) {
3843                 obj_priv = list_first_entry(head,
3844                                             struct drm_i915_gem_object,
3845                                             list);
3846                 obj = obj_priv->obj;
3847
3848                 if (obj_priv->pin_count != 0) {
3849                         DRM_ERROR("Pinned object in unbind list\n");
3850                         mutex_unlock(&dev->struct_mutex);
3851                         return -EINVAL;
3852                 }
3853
3854                 ret = i915_gem_object_unbind(obj);
3855                 if (ret != 0) {
3856                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3857                                   ret);
3858                         mutex_unlock(&dev->struct_mutex);
3859                         return ret;
3860                 }
3861         }
3862
3863
3864         return 0;
3865 }
3866
3867 int
3868 i915_gem_idle(struct drm_device *dev)
3869 {
3870         drm_i915_private_t *dev_priv = dev->dev_private;
3871         uint32_t seqno, cur_seqno, last_seqno;
3872         int stuck, ret;
3873
3874         mutex_lock(&dev->struct_mutex);
3875
3876         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3877                 mutex_unlock(&dev->struct_mutex);
3878                 return 0;
3879         }
3880
3881         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3882          * We need to replace this with a semaphore, or something.
3883          */
3884         dev_priv->mm.suspended = 1;
3885
3886         /* Cancel the retire work handler, wait for it to finish if running
3887          */
3888         mutex_unlock(&dev->struct_mutex);
3889         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3890         mutex_lock(&dev->struct_mutex);
3891
3892         i915_kernel_lost_context(dev);
3893
3894         /* Flush the GPU along with all non-CPU write domains
3895          */
3896         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3897         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3898
3899         if (seqno == 0) {
3900                 mutex_unlock(&dev->struct_mutex);
3901                 return -ENOMEM;
3902         }
3903
3904         dev_priv->mm.waiting_gem_seqno = seqno;
3905         last_seqno = 0;
3906         stuck = 0;
3907         for (;;) {
3908                 cur_seqno = i915_get_gem_seqno(dev);
3909                 if (i915_seqno_passed(cur_seqno, seqno))
3910                         break;
3911                 if (last_seqno == cur_seqno) {
3912                         if (stuck++ > 100) {
3913                                 DRM_ERROR("hardware wedged\n");
3914                                 dev_priv->mm.wedged = 1;
3915                                 DRM_WAKEUP(&dev_priv->irq_queue);
3916                                 break;
3917                         }
3918                 }
3919                 msleep(10);
3920                 last_seqno = cur_seqno;
3921         }
3922         dev_priv->mm.waiting_gem_seqno = 0;
3923
3924         i915_gem_retire_requests(dev);
3925
3926         spin_lock(&dev_priv->mm.active_list_lock);
3927         if (!dev_priv->mm.wedged) {
3928                 /* Active and flushing should now be empty as we've
3929                  * waited for a sequence higher than any pending execbuffer
3930                  */
3931                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3932                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3933                 /* Request should now be empty as we've also waited
3934                  * for the last request in the list
3935                  */
3936                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3937         }
3938
3939         /* Empty the active and flushing lists to inactive.  If there's
3940          * anything left at this point, it means that we're wedged and
3941          * nothing good's going to happen by leaving them there.  So strip
3942          * the GPU domains and just stuff them onto inactive.
3943          */
3944         while (!list_empty(&dev_priv->mm.active_list)) {
3945                 struct drm_i915_gem_object *obj_priv;
3946
3947                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3948                                             struct drm_i915_gem_object,
3949                                             list);
3950                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3951                 i915_gem_object_move_to_inactive(obj_priv->obj);
3952         }
3953         spin_unlock(&dev_priv->mm.active_list_lock);
3954
3955         while (!list_empty(&dev_priv->mm.flushing_list)) {
3956                 struct drm_i915_gem_object *obj_priv;
3957
3958                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3959                                             struct drm_i915_gem_object,
3960                                             list);
3961                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3962                 i915_gem_object_move_to_inactive(obj_priv->obj);
3963         }
3964
3965
3966         /* Move all inactive buffers out of the GTT. */
3967         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3968         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3969         if (ret) {
3970                 mutex_unlock(&dev->struct_mutex);
3971                 return ret;
3972         }
3973
3974         i915_gem_cleanup_ringbuffer(dev);
3975         mutex_unlock(&dev->struct_mutex);
3976
3977         return 0;
3978 }
3979
3980 static int
3981 i915_gem_init_hws(struct drm_device *dev)
3982 {
3983         drm_i915_private_t *dev_priv = dev->dev_private;
3984         struct drm_gem_object *obj;
3985         struct drm_i915_gem_object *obj_priv;
3986         int ret;
3987
3988         /* If we need a physical address for the status page, it's already
3989          * initialized at driver load time.
3990          */
3991         if (!I915_NEED_GFX_HWS(dev))
3992                 return 0;
3993
3994         obj = drm_gem_object_alloc(dev, 4096);
3995         if (obj == NULL) {
3996                 DRM_ERROR("Failed to allocate status page\n");
3997                 return -ENOMEM;
3998         }
3999         obj_priv = obj->driver_private;
4000         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4001
4002         ret = i915_gem_object_pin(obj, 4096);
4003         if (ret != 0) {
4004                 drm_gem_object_unreference(obj);
4005                 return ret;
4006         }
4007
4008         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4009
4010         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4011         if (dev_priv->hw_status_page == NULL) {
4012                 DRM_ERROR("Failed to map status page.\n");
4013                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4014                 i915_gem_object_unpin(obj);
4015                 drm_gem_object_unreference(obj);
4016                 return -EINVAL;
4017         }
4018         dev_priv->hws_obj = obj;
4019         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4020         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4021         I915_READ(HWS_PGA); /* posting read */
4022         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4023
4024         return 0;
4025 }
4026
4027 static void
4028 i915_gem_cleanup_hws(struct drm_device *dev)
4029 {
4030         drm_i915_private_t *dev_priv = dev->dev_private;
4031         struct drm_gem_object *obj;
4032         struct drm_i915_gem_object *obj_priv;
4033
4034         if (dev_priv->hws_obj == NULL)
4035                 return;
4036
4037         obj = dev_priv->hws_obj;
4038         obj_priv = obj->driver_private;
4039
4040         kunmap(obj_priv->pages[0]);
4041         i915_gem_object_unpin(obj);
4042         drm_gem_object_unreference(obj);
4043         dev_priv->hws_obj = NULL;
4044
4045         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4046         dev_priv->hw_status_page = NULL;
4047
4048         /* Write high address into HWS_PGA when disabling. */
4049         I915_WRITE(HWS_PGA, 0x1ffff000);
4050 }
4051
4052 int
4053 i915_gem_init_ringbuffer(struct drm_device *dev)
4054 {
4055         drm_i915_private_t *dev_priv = dev->dev_private;
4056         struct drm_gem_object *obj;
4057         struct drm_i915_gem_object *obj_priv;
4058         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4059         int ret;
4060         u32 head;
4061
4062         ret = i915_gem_init_hws(dev);
4063         if (ret != 0)
4064                 return ret;
4065
4066         obj = drm_gem_object_alloc(dev, 128 * 1024);
4067         if (obj == NULL) {
4068                 DRM_ERROR("Failed to allocate ringbuffer\n");
4069                 i915_gem_cleanup_hws(dev);
4070                 return -ENOMEM;
4071         }
4072         obj_priv = obj->driver_private;
4073
4074         ret = i915_gem_object_pin(obj, 4096);
4075         if (ret != 0) {
4076                 drm_gem_object_unreference(obj);
4077                 i915_gem_cleanup_hws(dev);
4078                 return ret;
4079         }
4080
4081         /* Set up the kernel mapping for the ring. */
4082         ring->Size = obj->size;
4083         ring->tail_mask = obj->size - 1;
4084
4085         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4086         ring->map.size = obj->size;
4087         ring->map.type = 0;
4088         ring->map.flags = 0;
4089         ring->map.mtrr = 0;
4090
4091         drm_core_ioremap_wc(&ring->map, dev);
4092         if (ring->map.handle == NULL) {
4093                 DRM_ERROR("Failed to map ringbuffer.\n");
4094                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4095                 i915_gem_object_unpin(obj);
4096                 drm_gem_object_unreference(obj);
4097                 i915_gem_cleanup_hws(dev);
4098                 return -EINVAL;
4099         }
4100         ring->ring_obj = obj;
4101         ring->virtual_start = ring->map.handle;
4102
4103         /* Stop the ring if it's running. */
4104         I915_WRITE(PRB0_CTL, 0);
4105         I915_WRITE(PRB0_TAIL, 0);
4106         I915_WRITE(PRB0_HEAD, 0);
4107
4108         /* Initialize the ring. */
4109         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4110         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4111
4112         /* G45 ring initialization fails to reset head to zero */
4113         if (head != 0) {
4114                 DRM_ERROR("Ring head not reset to zero "
4115                           "ctl %08x head %08x tail %08x start %08x\n",
4116                           I915_READ(PRB0_CTL),
4117                           I915_READ(PRB0_HEAD),
4118                           I915_READ(PRB0_TAIL),
4119                           I915_READ(PRB0_START));
4120                 I915_WRITE(PRB0_HEAD, 0);
4121
4122                 DRM_ERROR("Ring head forced to zero "
4123                           "ctl %08x head %08x tail %08x start %08x\n",
4124                           I915_READ(PRB0_CTL),
4125                           I915_READ(PRB0_HEAD),
4126                           I915_READ(PRB0_TAIL),
4127                           I915_READ(PRB0_START));
4128         }
4129
4130         I915_WRITE(PRB0_CTL,
4131                    ((obj->size - 4096) & RING_NR_PAGES) |
4132                    RING_NO_REPORT |
4133                    RING_VALID);
4134
4135         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4136
4137         /* If the head is still not zero, the ring is dead */
4138         if (head != 0) {
4139                 DRM_ERROR("Ring initialization failed "
4140                           "ctl %08x head %08x tail %08x start %08x\n",
4141                           I915_READ(PRB0_CTL),
4142                           I915_READ(PRB0_HEAD),
4143                           I915_READ(PRB0_TAIL),
4144                           I915_READ(PRB0_START));
4145                 return -EIO;
4146         }
4147
4148         /* Update our cache of the ring state */
4149         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4150                 i915_kernel_lost_context(dev);
4151         else {
4152                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4153                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4154                 ring->space = ring->head - (ring->tail + 8);
4155                 if (ring->space < 0)
4156                         ring->space += ring->Size;
4157         }
4158
4159         return 0;
4160 }
4161
4162 void
4163 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4164 {
4165         drm_i915_private_t *dev_priv = dev->dev_private;
4166
4167         if (dev_priv->ring.ring_obj == NULL)
4168                 return;
4169
4170         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4171
4172         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4173         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4174         dev_priv->ring.ring_obj = NULL;
4175         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4176
4177         i915_gem_cleanup_hws(dev);
4178 }
4179
4180 int
4181 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4182                        struct drm_file *file_priv)
4183 {
4184         drm_i915_private_t *dev_priv = dev->dev_private;
4185         int ret;
4186
4187         if (drm_core_check_feature(dev, DRIVER_MODESET))
4188                 return 0;
4189
4190         if (dev_priv->mm.wedged) {
4191                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4192                 dev_priv->mm.wedged = 0;
4193         }
4194
4195         mutex_lock(&dev->struct_mutex);
4196         dev_priv->mm.suspended = 0;
4197
4198         ret = i915_gem_init_ringbuffer(dev);
4199         if (ret != 0) {
4200                 mutex_unlock(&dev->struct_mutex);
4201                 return ret;
4202         }
4203
4204         spin_lock(&dev_priv->mm.active_list_lock);
4205         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4206         spin_unlock(&dev_priv->mm.active_list_lock);
4207
4208         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4209         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4210         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4211         mutex_unlock(&dev->struct_mutex);
4212
4213         drm_irq_install(dev);
4214
4215         return 0;
4216 }
4217
4218 int
4219 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4220                        struct drm_file *file_priv)
4221 {
4222         int ret;
4223
4224         if (drm_core_check_feature(dev, DRIVER_MODESET))
4225                 return 0;
4226
4227         ret = i915_gem_idle(dev);
4228         drm_irq_uninstall(dev);
4229
4230         return ret;
4231 }
4232
4233 void
4234 i915_gem_lastclose(struct drm_device *dev)
4235 {
4236         int ret;
4237
4238         if (drm_core_check_feature(dev, DRIVER_MODESET))
4239                 return;
4240
4241         ret = i915_gem_idle(dev);
4242         if (ret)
4243                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4244 }
4245
4246 void
4247 i915_gem_load(struct drm_device *dev)
4248 {
4249         int i;
4250         drm_i915_private_t *dev_priv = dev->dev_private;
4251
4252         spin_lock_init(&dev_priv->mm.active_list_lock);
4253         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4254         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4255         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4256         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4257         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4258                           i915_gem_retire_work_handler);
4259         dev_priv->mm.next_gem_seqno = 1;
4260
4261         /* Old X drivers will take 0-2 for front, back, depth buffers */
4262         dev_priv->fence_reg_start = 3;
4263
4264         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4265                 dev_priv->num_fence_regs = 16;
4266         else
4267                 dev_priv->num_fence_regs = 8;
4268
4269         /* Initialize fence registers to zero */
4270         if (IS_I965G(dev)) {
4271                 for (i = 0; i < 16; i++)
4272                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4273         } else {
4274                 for (i = 0; i < 8; i++)
4275                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4276                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4277                         for (i = 0; i < 8; i++)
4278                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4279         }
4280
4281         i915_gem_detect_bit_6_swizzle(dev);
4282 }
4283
4284 /*
4285  * Create a physically contiguous memory object for this object
4286  * e.g. for cursor + overlay regs
4287  */
4288 int i915_gem_init_phys_object(struct drm_device *dev,
4289                               int id, int size)
4290 {
4291         drm_i915_private_t *dev_priv = dev->dev_private;
4292         struct drm_i915_gem_phys_object *phys_obj;
4293         int ret;
4294
4295         if (dev_priv->mm.phys_objs[id - 1] || !size)
4296                 return 0;
4297
4298         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4299         if (!phys_obj)
4300                 return -ENOMEM;
4301
4302         phys_obj->id = id;
4303
4304         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4305         if (!phys_obj->handle) {
4306                 ret = -ENOMEM;
4307                 goto kfree_obj;
4308         }
4309 #ifdef CONFIG_X86
4310         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4311 #endif
4312
4313         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4314
4315         return 0;
4316 kfree_obj:
4317         kfree(phys_obj);
4318         return ret;
4319 }
4320
4321 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4322 {
4323         drm_i915_private_t *dev_priv = dev->dev_private;
4324         struct drm_i915_gem_phys_object *phys_obj;
4325
4326         if (!dev_priv->mm.phys_objs[id - 1])
4327                 return;
4328
4329         phys_obj = dev_priv->mm.phys_objs[id - 1];
4330         if (phys_obj->cur_obj) {
4331                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4332         }
4333
4334 #ifdef CONFIG_X86
4335         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4336 #endif
4337         drm_pci_free(dev, phys_obj->handle);
4338         kfree(phys_obj);
4339         dev_priv->mm.phys_objs[id - 1] = NULL;
4340 }
4341
4342 void i915_gem_free_all_phys_object(struct drm_device *dev)
4343 {
4344         int i;
4345
4346         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4347                 i915_gem_free_phys_object(dev, i);
4348 }
4349
4350 void i915_gem_detach_phys_object(struct drm_device *dev,
4351                                  struct drm_gem_object *obj)
4352 {
4353         struct drm_i915_gem_object *obj_priv;
4354         int i;
4355         int ret;
4356         int page_count;
4357
4358         obj_priv = obj->driver_private;
4359         if (!obj_priv->phys_obj)
4360                 return;
4361
4362         ret = i915_gem_object_get_pages(obj);
4363         if (ret)
4364                 goto out;
4365
4366         page_count = obj->size / PAGE_SIZE;
4367
4368         for (i = 0; i < page_count; i++) {
4369                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4370                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4371
4372                 memcpy(dst, src, PAGE_SIZE);
4373                 kunmap_atomic(dst, KM_USER0);
4374         }
4375         drm_clflush_pages(obj_priv->pages, page_count);
4376         drm_agp_chipset_flush(dev);
4377
4378         i915_gem_object_put_pages(obj);
4379 out:
4380         obj_priv->phys_obj->cur_obj = NULL;
4381         obj_priv->phys_obj = NULL;
4382 }
4383
4384 int
4385 i915_gem_attach_phys_object(struct drm_device *dev,
4386                             struct drm_gem_object *obj, int id)
4387 {
4388         drm_i915_private_t *dev_priv = dev->dev_private;
4389         struct drm_i915_gem_object *obj_priv;
4390         int ret = 0;
4391         int page_count;
4392         int i;
4393
4394         if (id > I915_MAX_PHYS_OBJECT)
4395                 return -EINVAL;
4396
4397         obj_priv = obj->driver_private;
4398
4399         if (obj_priv->phys_obj) {
4400                 if (obj_priv->phys_obj->id == id)
4401                         return 0;
4402                 i915_gem_detach_phys_object(dev, obj);
4403         }
4404
4405
4406         /* create a new object */
4407         if (!dev_priv->mm.phys_objs[id - 1]) {
4408                 ret = i915_gem_init_phys_object(dev, id,
4409                                                 obj->size);
4410                 if (ret) {
4411                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4412                         goto out;
4413                 }
4414         }
4415
4416         /* bind to the object */
4417         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4418         obj_priv->phys_obj->cur_obj = obj;
4419
4420         ret = i915_gem_object_get_pages(obj);
4421         if (ret) {
4422                 DRM_ERROR("failed to get page list\n");
4423                 goto out;
4424         }
4425
4426         page_count = obj->size / PAGE_SIZE;
4427
4428         for (i = 0; i < page_count; i++) {
4429                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4430                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4431
4432                 memcpy(dst, src, PAGE_SIZE);
4433                 kunmap_atomic(src, KM_USER0);
4434         }
4435
4436         i915_gem_object_put_pages(obj);
4437
4438         return 0;
4439 out:
4440         return ret;
4441 }
4442
4443 static int
4444 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4445                      struct drm_i915_gem_pwrite *args,
4446                      struct drm_file *file_priv)
4447 {
4448         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4449         void *obj_addr;
4450         int ret;
4451         char __user *user_data;
4452
4453         user_data = (char __user *) (uintptr_t) args->data_ptr;
4454         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4455
4456         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4457         ret = copy_from_user(obj_addr, user_data, args->size);
4458         if (ret)
4459                 return -EFAULT;
4460
4461         drm_agp_chipset_flush(dev);
4462         return 0;
4463 }
4464
4465 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4466 {
4467         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4468
4469         /* Clean up our request list when the client is going away, so that
4470          * later retire_requests won't dereference our soon-to-be-gone
4471          * file_priv.
4472          */
4473         mutex_lock(&dev->struct_mutex);
4474         while (!list_empty(&i915_file_priv->mm.request_list))
4475                 list_del_init(i915_file_priv->mm.request_list.next);
4476         mutex_unlock(&dev->struct_mutex);
4477 }