drm/i915: Add buffer to inactive list immediately during fault
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int ret;
116         u32 handle;
117
118         args->size = roundup(args->size, PAGE_SIZE);
119
120         /* Allocate the new object */
121         obj = drm_gem_object_alloc(dev, args->size);
122         if (obj == NULL)
123                 return -ENOMEM;
124
125         ret = drm_gem_handle_create(file_priv, obj, &handle);
126         mutex_lock(&dev->struct_mutex);
127         drm_gem_object_handle_unreference(obj);
128         mutex_unlock(&dev->struct_mutex);
129
130         if (ret)
131                 return ret;
132
133         args->handle = handle;
134
135         return 0;
136 }
137
138 static inline int
139 fast_shmem_read(struct page **pages,
140                 loff_t page_base, int page_offset,
141                 char __user *data,
142                 int length)
143 {
144         char __iomem *vaddr;
145         int unwritten;
146
147         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148         if (vaddr == NULL)
149                 return -ENOMEM;
150         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
151         kunmap_atomic(vaddr, KM_USER0);
152
153         if (unwritten)
154                 return -EFAULT;
155
156         return 0;
157 }
158
159 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160 {
161         drm_i915_private_t *dev_priv = obj->dev->dev_private;
162         struct drm_i915_gem_object *obj_priv = obj->driver_private;
163
164         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
165                 obj_priv->tiling_mode != I915_TILING_NONE;
166 }
167
168 static inline int
169 slow_shmem_copy(struct page *dst_page,
170                 int dst_offset,
171                 struct page *src_page,
172                 int src_offset,
173                 int length)
174 {
175         char *dst_vaddr, *src_vaddr;
176
177         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
178         if (dst_vaddr == NULL)
179                 return -ENOMEM;
180
181         src_vaddr = kmap_atomic(src_page, KM_USER1);
182         if (src_vaddr == NULL) {
183                 kunmap_atomic(dst_vaddr, KM_USER0);
184                 return -ENOMEM;
185         }
186
187         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188
189         kunmap_atomic(src_vaddr, KM_USER1);
190         kunmap_atomic(dst_vaddr, KM_USER0);
191
192         return 0;
193 }
194
195 static inline int
196 slow_shmem_bit17_copy(struct page *gpu_page,
197                       int gpu_offset,
198                       struct page *cpu_page,
199                       int cpu_offset,
200                       int length,
201                       int is_read)
202 {
203         char *gpu_vaddr, *cpu_vaddr;
204
205         /* Use the unswizzled path if this page isn't affected. */
206         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207                 if (is_read)
208                         return slow_shmem_copy(cpu_page, cpu_offset,
209                                                gpu_page, gpu_offset, length);
210                 else
211                         return slow_shmem_copy(gpu_page, gpu_offset,
212                                                cpu_page, cpu_offset, length);
213         }
214
215         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
216         if (gpu_vaddr == NULL)
217                 return -ENOMEM;
218
219         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
220         if (cpu_vaddr == NULL) {
221                 kunmap_atomic(gpu_vaddr, KM_USER0);
222                 return -ENOMEM;
223         }
224
225         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226          * XORing with the other bits (A9 for Y, A9 and A10 for X)
227          */
228         while (length > 0) {
229                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230                 int this_length = min(cacheline_end - gpu_offset, length);
231                 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233                 if (is_read) {
234                         memcpy(cpu_vaddr + cpu_offset,
235                                gpu_vaddr + swizzled_gpu_offset,
236                                this_length);
237                 } else {
238                         memcpy(gpu_vaddr + swizzled_gpu_offset,
239                                cpu_vaddr + cpu_offset,
240                                this_length);
241                 }
242                 cpu_offset += this_length;
243                 gpu_offset += this_length;
244                 length -= this_length;
245         }
246
247         kunmap_atomic(cpu_vaddr, KM_USER1);
248         kunmap_atomic(gpu_vaddr, KM_USER0);
249
250         return 0;
251 }
252
253 /**
254  * This is the fast shmem pread path, which attempts to copy_from_user directly
255  * from the backing pages of the object to the user's address space.  On a
256  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
257  */
258 static int
259 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
260                           struct drm_i915_gem_pread *args,
261                           struct drm_file *file_priv)
262 {
263         struct drm_i915_gem_object *obj_priv = obj->driver_private;
264         ssize_t remain;
265         loff_t offset, page_base;
266         char __user *user_data;
267         int page_offset, page_length;
268         int ret;
269
270         user_data = (char __user *) (uintptr_t) args->data_ptr;
271         remain = args->size;
272
273         mutex_lock(&dev->struct_mutex);
274
275         ret = i915_gem_object_get_pages(obj);
276         if (ret != 0)
277                 goto fail_unlock;
278
279         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
280                                                         args->size);
281         if (ret != 0)
282                 goto fail_put_pages;
283
284         obj_priv = obj->driver_private;
285         offset = args->offset;
286
287         while (remain > 0) {
288                 /* Operation in this page
289                  *
290                  * page_base = page offset within aperture
291                  * page_offset = offset within page
292                  * page_length = bytes to copy for this page
293                  */
294                 page_base = (offset & ~(PAGE_SIZE-1));
295                 page_offset = offset & (PAGE_SIZE-1);
296                 page_length = remain;
297                 if ((page_offset + remain) > PAGE_SIZE)
298                         page_length = PAGE_SIZE - page_offset;
299
300                 ret = fast_shmem_read(obj_priv->pages,
301                                       page_base, page_offset,
302                                       user_data, page_length);
303                 if (ret)
304                         goto fail_put_pages;
305
306                 remain -= page_length;
307                 user_data += page_length;
308                 offset += page_length;
309         }
310
311 fail_put_pages:
312         i915_gem_object_put_pages(obj);
313 fail_unlock:
314         mutex_unlock(&dev->struct_mutex);
315
316         return ret;
317 }
318
319 /**
320  * This is the fallback shmem pread path, which allocates temporary storage
321  * in kernel space to copy_to_user into outside of the struct_mutex, so we
322  * can copy out of the object's backing pages while holding the struct mutex
323  * and not take page faults.
324  */
325 static int
326 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
327                           struct drm_i915_gem_pread *args,
328                           struct drm_file *file_priv)
329 {
330         struct drm_i915_gem_object *obj_priv = obj->driver_private;
331         struct mm_struct *mm = current->mm;
332         struct page **user_pages;
333         ssize_t remain;
334         loff_t offset, pinned_pages, i;
335         loff_t first_data_page, last_data_page, num_pages;
336         int shmem_page_index, shmem_page_offset;
337         int data_page_index,  data_page_offset;
338         int page_length;
339         int ret;
340         uint64_t data_ptr = args->data_ptr;
341         int do_bit17_swizzling;
342
343         remain = args->size;
344
345         /* Pin the user pages containing the data.  We can't fault while
346          * holding the struct mutex, yet we want to hold it while
347          * dereferencing the user data.
348          */
349         first_data_page = data_ptr / PAGE_SIZE;
350         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
351         num_pages = last_data_page - first_data_page + 1;
352
353         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
354         if (user_pages == NULL)
355                 return -ENOMEM;
356
357         down_read(&mm->mmap_sem);
358         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
359                                       num_pages, 1, 0, user_pages, NULL);
360         up_read(&mm->mmap_sem);
361         if (pinned_pages < num_pages) {
362                 ret = -EFAULT;
363                 goto fail_put_user_pages;
364         }
365
366         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367
368         mutex_lock(&dev->struct_mutex);
369
370         ret = i915_gem_object_get_pages(obj);
371         if (ret != 0)
372                 goto fail_unlock;
373
374         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
375                                                         args->size);
376         if (ret != 0)
377                 goto fail_put_pages;
378
379         obj_priv = obj->driver_private;
380         offset = args->offset;
381
382         while (remain > 0) {
383                 /* Operation in this page
384                  *
385                  * shmem_page_index = page number within shmem file
386                  * shmem_page_offset = offset within page in shmem file
387                  * data_page_index = page number in get_user_pages return
388                  * data_page_offset = offset with data_page_index page.
389                  * page_length = bytes to copy for this page
390                  */
391                 shmem_page_index = offset / PAGE_SIZE;
392                 shmem_page_offset = offset & ~PAGE_MASK;
393                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
394                 data_page_offset = data_ptr & ~PAGE_MASK;
395
396                 page_length = remain;
397                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - shmem_page_offset;
399                 if ((data_page_offset + page_length) > PAGE_SIZE)
400                         page_length = PAGE_SIZE - data_page_offset;
401
402                 if (do_bit17_swizzling) {
403                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404                                                     shmem_page_offset,
405                                                     user_pages[data_page_index],
406                                                     data_page_offset,
407                                                     page_length,
408                                                     1);
409                 } else {
410                         ret = slow_shmem_copy(user_pages[data_page_index],
411                                               data_page_offset,
412                                               obj_priv->pages[shmem_page_index],
413                                               shmem_page_offset,
414                                               page_length);
415                 }
416                 if (ret)
417                         goto fail_put_pages;
418
419                 remain -= page_length;
420                 data_ptr += page_length;
421                 offset += page_length;
422         }
423
424 fail_put_pages:
425         i915_gem_object_put_pages(obj);
426 fail_unlock:
427         mutex_unlock(&dev->struct_mutex);
428 fail_put_user_pages:
429         for (i = 0; i < pinned_pages; i++) {
430                 SetPageDirty(user_pages[i]);
431                 page_cache_release(user_pages[i]);
432         }
433         drm_free_large(user_pages);
434
435         return ret;
436 }
437
438 /**
439  * Reads data from the object referenced by handle.
440  *
441  * On error, the contents of *data are undefined.
442  */
443 int
444 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445                      struct drm_file *file_priv)
446 {
447         struct drm_i915_gem_pread *args = data;
448         struct drm_gem_object *obj;
449         struct drm_i915_gem_object *obj_priv;
450         int ret;
451
452         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453         if (obj == NULL)
454                 return -EBADF;
455         obj_priv = obj->driver_private;
456
457         /* Bounds check source.
458          *
459          * XXX: This could use review for overflow issues...
460          */
461         if (args->offset > obj->size || args->size > obj->size ||
462             args->offset + args->size > obj->size) {
463                 drm_gem_object_unreference(obj);
464                 return -EINVAL;
465         }
466
467         if (i915_gem_object_needs_bit17_swizzle(obj)) {
468                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469         } else {
470                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471                 if (ret != 0)
472                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
473                                                         file_priv);
474         }
475
476         drm_gem_object_unreference(obj);
477
478         return ret;
479 }
480
481 /* This is the fast write path which cannot handle
482  * page faults in the source data
483  */
484
485 static inline int
486 fast_user_write(struct io_mapping *mapping,
487                 loff_t page_base, int page_offset,
488                 char __user *user_data,
489                 int length)
490 {
491         char *vaddr_atomic;
492         unsigned long unwritten;
493
494         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
495         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496                                                       user_data, length);
497         io_mapping_unmap_atomic(vaddr_atomic);
498         if (unwritten)
499                 return -EFAULT;
500         return 0;
501 }
502
503 /* Here's the write path which can sleep for
504  * page faults
505  */
506
507 static inline int
508 slow_kernel_write(struct io_mapping *mapping,
509                   loff_t gtt_base, int gtt_offset,
510                   struct page *user_page, int user_offset,
511                   int length)
512 {
513         char *src_vaddr, *dst_vaddr;
514         unsigned long unwritten;
515
516         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
517         src_vaddr = kmap_atomic(user_page, KM_USER1);
518         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
519                                                       src_vaddr + user_offset,
520                                                       length);
521         kunmap_atomic(src_vaddr, KM_USER1);
522         io_mapping_unmap_atomic(dst_vaddr);
523         if (unwritten)
524                 return -EFAULT;
525         return 0;
526 }
527
528 static inline int
529 fast_shmem_write(struct page **pages,
530                  loff_t page_base, int page_offset,
531                  char __user *data,
532                  int length)
533 {
534         char __iomem *vaddr;
535         unsigned long unwritten;
536
537         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538         if (vaddr == NULL)
539                 return -ENOMEM;
540         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
541         kunmap_atomic(vaddr, KM_USER0);
542
543         if (unwritten)
544                 return -EFAULT;
545         return 0;
546 }
547
548 /**
549  * This is the fast pwrite path, where we copy the data directly from the
550  * user into the GTT, uncached.
551  */
552 static int
553 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
554                          struct drm_i915_gem_pwrite *args,
555                          struct drm_file *file_priv)
556 {
557         struct drm_i915_gem_object *obj_priv = obj->driver_private;
558         drm_i915_private_t *dev_priv = dev->dev_private;
559         ssize_t remain;
560         loff_t offset, page_base;
561         char __user *user_data;
562         int page_offset, page_length;
563         int ret;
564
565         user_data = (char __user *) (uintptr_t) args->data_ptr;
566         remain = args->size;
567         if (!access_ok(VERIFY_READ, user_data, remain))
568                 return -EFAULT;
569
570
571         mutex_lock(&dev->struct_mutex);
572         ret = i915_gem_object_pin(obj, 0);
573         if (ret) {
574                 mutex_unlock(&dev->struct_mutex);
575                 return ret;
576         }
577         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
578         if (ret)
579                 goto fail;
580
581         obj_priv = obj->driver_private;
582         offset = obj_priv->gtt_offset + args->offset;
583
584         while (remain > 0) {
585                 /* Operation in this page
586                  *
587                  * page_base = page offset within aperture
588                  * page_offset = offset within page
589                  * page_length = bytes to copy for this page
590                  */
591                 page_base = (offset & ~(PAGE_SIZE-1));
592                 page_offset = offset & (PAGE_SIZE-1);
593                 page_length = remain;
594                 if ((page_offset + remain) > PAGE_SIZE)
595                         page_length = PAGE_SIZE - page_offset;
596
597                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
598                                        page_offset, user_data, page_length);
599
600                 /* If we get a fault while copying data, then (presumably) our
601                  * source page isn't available.  Return the error and we'll
602                  * retry in the slow path.
603                  */
604                 if (ret)
605                         goto fail;
606
607                 remain -= page_length;
608                 user_data += page_length;
609                 offset += page_length;
610         }
611
612 fail:
613         i915_gem_object_unpin(obj);
614         mutex_unlock(&dev->struct_mutex);
615
616         return ret;
617 }
618
619 /**
620  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
621  * the memory and maps it using kmap_atomic for copying.
622  *
623  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
624  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
625  */
626 static int
627 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
628                          struct drm_i915_gem_pwrite *args,
629                          struct drm_file *file_priv)
630 {
631         struct drm_i915_gem_object *obj_priv = obj->driver_private;
632         drm_i915_private_t *dev_priv = dev->dev_private;
633         ssize_t remain;
634         loff_t gtt_page_base, offset;
635         loff_t first_data_page, last_data_page, num_pages;
636         loff_t pinned_pages, i;
637         struct page **user_pages;
638         struct mm_struct *mm = current->mm;
639         int gtt_page_offset, data_page_offset, data_page_index, page_length;
640         int ret;
641         uint64_t data_ptr = args->data_ptr;
642
643         remain = args->size;
644
645         /* Pin the user pages containing the data.  We can't fault while
646          * holding the struct mutex, and all of the pwrite implementations
647          * want to hold it while dereferencing the user data.
648          */
649         first_data_page = data_ptr / PAGE_SIZE;
650         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
651         num_pages = last_data_page - first_data_page + 1;
652
653         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
654         if (user_pages == NULL)
655                 return -ENOMEM;
656
657         down_read(&mm->mmap_sem);
658         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
659                                       num_pages, 0, 0, user_pages, NULL);
660         up_read(&mm->mmap_sem);
661         if (pinned_pages < num_pages) {
662                 ret = -EFAULT;
663                 goto out_unpin_pages;
664         }
665
666         mutex_lock(&dev->struct_mutex);
667         ret = i915_gem_object_pin(obj, 0);
668         if (ret)
669                 goto out_unlock;
670
671         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672         if (ret)
673                 goto out_unpin_object;
674
675         obj_priv = obj->driver_private;
676         offset = obj_priv->gtt_offset + args->offset;
677
678         while (remain > 0) {
679                 /* Operation in this page
680                  *
681                  * gtt_page_base = page offset within aperture
682                  * gtt_page_offset = offset within page in aperture
683                  * data_page_index = page number in get_user_pages return
684                  * data_page_offset = offset with data_page_index page.
685                  * page_length = bytes to copy for this page
686                  */
687                 gtt_page_base = offset & PAGE_MASK;
688                 gtt_page_offset = offset & ~PAGE_MASK;
689                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
690                 data_page_offset = data_ptr & ~PAGE_MASK;
691
692                 page_length = remain;
693                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - gtt_page_offset;
695                 if ((data_page_offset + page_length) > PAGE_SIZE)
696                         page_length = PAGE_SIZE - data_page_offset;
697
698                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
699                                         gtt_page_base, gtt_page_offset,
700                                         user_pages[data_page_index],
701                                         data_page_offset,
702                                         page_length);
703
704                 /* If we get a fault while copying data, then (presumably) our
705                  * source page isn't available.  Return the error and we'll
706                  * retry in the slow path.
707                  */
708                 if (ret)
709                         goto out_unpin_object;
710
711                 remain -= page_length;
712                 offset += page_length;
713                 data_ptr += page_length;
714         }
715
716 out_unpin_object:
717         i915_gem_object_unpin(obj);
718 out_unlock:
719         mutex_unlock(&dev->struct_mutex);
720 out_unpin_pages:
721         for (i = 0; i < pinned_pages; i++)
722                 page_cache_release(user_pages[i]);
723         drm_free_large(user_pages);
724
725         return ret;
726 }
727
728 /**
729  * This is the fast shmem pwrite path, which attempts to directly
730  * copy_from_user into the kmapped pages backing the object.
731  */
732 static int
733 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
734                            struct drm_i915_gem_pwrite *args,
735                            struct drm_file *file_priv)
736 {
737         struct drm_i915_gem_object *obj_priv = obj->driver_private;
738         ssize_t remain;
739         loff_t offset, page_base;
740         char __user *user_data;
741         int page_offset, page_length;
742         int ret;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         mutex_lock(&dev->struct_mutex);
748
749         ret = i915_gem_object_get_pages(obj);
750         if (ret != 0)
751                 goto fail_unlock;
752
753         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
754         if (ret != 0)
755                 goto fail_put_pages;
756
757         obj_priv = obj->driver_private;
758         offset = args->offset;
759         obj_priv->dirty = 1;
760
761         while (remain > 0) {
762                 /* Operation in this page
763                  *
764                  * page_base = page offset within aperture
765                  * page_offset = offset within page
766                  * page_length = bytes to copy for this page
767                  */
768                 page_base = (offset & ~(PAGE_SIZE-1));
769                 page_offset = offset & (PAGE_SIZE-1);
770                 page_length = remain;
771                 if ((page_offset + remain) > PAGE_SIZE)
772                         page_length = PAGE_SIZE - page_offset;
773
774                 ret = fast_shmem_write(obj_priv->pages,
775                                        page_base, page_offset,
776                                        user_data, page_length);
777                 if (ret)
778                         goto fail_put_pages;
779
780                 remain -= page_length;
781                 user_data += page_length;
782                 offset += page_length;
783         }
784
785 fail_put_pages:
786         i915_gem_object_put_pages(obj);
787 fail_unlock:
788         mutex_unlock(&dev->struct_mutex);
789
790         return ret;
791 }
792
793 /**
794  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
795  * the memory and maps it using kmap_atomic for copying.
796  *
797  * This avoids taking mmap_sem for faulting on the user's address while the
798  * struct_mutex is held.
799  */
800 static int
801 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
802                            struct drm_i915_gem_pwrite *args,
803                            struct drm_file *file_priv)
804 {
805         struct drm_i915_gem_object *obj_priv = obj->driver_private;
806         struct mm_struct *mm = current->mm;
807         struct page **user_pages;
808         ssize_t remain;
809         loff_t offset, pinned_pages, i;
810         loff_t first_data_page, last_data_page, num_pages;
811         int shmem_page_index, shmem_page_offset;
812         int data_page_index,  data_page_offset;
813         int page_length;
814         int ret;
815         uint64_t data_ptr = args->data_ptr;
816         int do_bit17_swizzling;
817
818         remain = args->size;
819
820         /* Pin the user pages containing the data.  We can't fault while
821          * holding the struct mutex, and all of the pwrite implementations
822          * want to hold it while dereferencing the user data.
823          */
824         first_data_page = data_ptr / PAGE_SIZE;
825         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
826         num_pages = last_data_page - first_data_page + 1;
827
828         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
829         if (user_pages == NULL)
830                 return -ENOMEM;
831
832         down_read(&mm->mmap_sem);
833         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
834                                       num_pages, 0, 0, user_pages, NULL);
835         up_read(&mm->mmap_sem);
836         if (pinned_pages < num_pages) {
837                 ret = -EFAULT;
838                 goto fail_put_user_pages;
839         }
840
841         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842
843         mutex_lock(&dev->struct_mutex);
844
845         ret = i915_gem_object_get_pages(obj);
846         if (ret != 0)
847                 goto fail_unlock;
848
849         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
850         if (ret != 0)
851                 goto fail_put_pages;
852
853         obj_priv = obj->driver_private;
854         offset = args->offset;
855         obj_priv->dirty = 1;
856
857         while (remain > 0) {
858                 /* Operation in this page
859                  *
860                  * shmem_page_index = page number within shmem file
861                  * shmem_page_offset = offset within page in shmem file
862                  * data_page_index = page number in get_user_pages return
863                  * data_page_offset = offset with data_page_index page.
864                  * page_length = bytes to copy for this page
865                  */
866                 shmem_page_index = offset / PAGE_SIZE;
867                 shmem_page_offset = offset & ~PAGE_MASK;
868                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
869                 data_page_offset = data_ptr & ~PAGE_MASK;
870
871                 page_length = remain;
872                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - shmem_page_offset;
874                 if ((data_page_offset + page_length) > PAGE_SIZE)
875                         page_length = PAGE_SIZE - data_page_offset;
876
877                 if (do_bit17_swizzling) {
878                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879                                                     shmem_page_offset,
880                                                     user_pages[data_page_index],
881                                                     data_page_offset,
882                                                     page_length,
883                                                     0);
884                 } else {
885                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886                                               shmem_page_offset,
887                                               user_pages[data_page_index],
888                                               data_page_offset,
889                                               page_length);
890                 }
891                 if (ret)
892                         goto fail_put_pages;
893
894                 remain -= page_length;
895                 data_ptr += page_length;
896                 offset += page_length;
897         }
898
899 fail_put_pages:
900         i915_gem_object_put_pages(obj);
901 fail_unlock:
902         mutex_unlock(&dev->struct_mutex);
903 fail_put_user_pages:
904         for (i = 0; i < pinned_pages; i++)
905                 page_cache_release(user_pages[i]);
906         drm_free_large(user_pages);
907
908         return ret;
909 }
910
911 /**
912  * Writes data to the object referenced by handle.
913  *
914  * On error, the contents of the buffer that were to be modified are undefined.
915  */
916 int
917 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
918                       struct drm_file *file_priv)
919 {
920         struct drm_i915_gem_pwrite *args = data;
921         struct drm_gem_object *obj;
922         struct drm_i915_gem_object *obj_priv;
923         int ret = 0;
924
925         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926         if (obj == NULL)
927                 return -EBADF;
928         obj_priv = obj->driver_private;
929
930         /* Bounds check destination.
931          *
932          * XXX: This could use review for overflow issues...
933          */
934         if (args->offset > obj->size || args->size > obj->size ||
935             args->offset + args->size > obj->size) {
936                 drm_gem_object_unreference(obj);
937                 return -EINVAL;
938         }
939
940         /* We can only do the GTT pwrite on untiled buffers, as otherwise
941          * it would end up going through the fenced access, and we'll get
942          * different detiling behavior between reading and writing.
943          * pread/pwrite currently are reading and writing from the CPU
944          * perspective, requiring manual detiling by the client.
945          */
946         if (obj_priv->phys_obj)
947                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
948         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
949                  dev->gtt_total != 0) {
950                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
951                 if (ret == -EFAULT) {
952                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953                                                        file_priv);
954                 }
955         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
956                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957         } else {
958                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
959                 if (ret == -EFAULT) {
960                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
961                                                          file_priv);
962                 }
963         }
964
965 #if WATCH_PWRITE
966         if (ret)
967                 DRM_INFO("pwrite failed %d\n", ret);
968 #endif
969
970         drm_gem_object_unreference(obj);
971
972         return ret;
973 }
974
975 /**
976  * Called when user space prepares to use an object with the CPU, either
977  * through the mmap ioctl's mapping or a GTT mapping.
978  */
979 int
980 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981                           struct drm_file *file_priv)
982 {
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct drm_i915_gem_set_domain *args = data;
985         struct drm_gem_object *obj;
986         struct drm_i915_gem_object *obj_priv;
987         uint32_t read_domains = args->read_domains;
988         uint32_t write_domain = args->write_domain;
989         int ret;
990
991         if (!(dev->driver->driver_features & DRIVER_GEM))
992                 return -ENODEV;
993
994         /* Only handle setting domains to types used by the CPU. */
995         if (write_domain & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         if (read_domains & I915_GEM_GPU_DOMAINS)
999                 return -EINVAL;
1000
1001         /* Having something in the write domain implies it's in the read
1002          * domain, and only that read domain.  Enforce that in the request.
1003          */
1004         if (write_domain != 0 && read_domains != write_domain)
1005                 return -EINVAL;
1006
1007         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008         if (obj == NULL)
1009                 return -EBADF;
1010         obj_priv = obj->driver_private;
1011
1012         mutex_lock(&dev->struct_mutex);
1013
1014         intel_mark_busy(dev, obj);
1015
1016 #if WATCH_BUF
1017         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1018                  obj, obj->size, read_domains, write_domain);
1019 #endif
1020         if (read_domains & I915_GEM_DOMAIN_GTT) {
1021                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1022
1023                 /* Update the LRU on the fence for the CPU access that's
1024                  * about to occur.
1025                  */
1026                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1027                         list_move_tail(&obj_priv->fence_list,
1028                                        &dev_priv->mm.fence_list);
1029                 }
1030
1031                 /* Silently promote "you're not bound, there was nothing to do"
1032                  * to success, since the client was just asking us to
1033                  * make sure everything was done.
1034                  */
1035                 if (ret == -EINVAL)
1036                         ret = 0;
1037         } else {
1038                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039         }
1040
1041         drm_gem_object_unreference(obj);
1042         mutex_unlock(&dev->struct_mutex);
1043         return ret;
1044 }
1045
1046 /**
1047  * Called when user space has done writes to this buffer
1048  */
1049 int
1050 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file_priv)
1052 {
1053         struct drm_i915_gem_sw_finish *args = data;
1054         struct drm_gem_object *obj;
1055         struct drm_i915_gem_object *obj_priv;
1056         int ret = 0;
1057
1058         if (!(dev->driver->driver_features & DRIVER_GEM))
1059                 return -ENODEV;
1060
1061         mutex_lock(&dev->struct_mutex);
1062         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1063         if (obj == NULL) {
1064                 mutex_unlock(&dev->struct_mutex);
1065                 return -EBADF;
1066         }
1067
1068 #if WATCH_BUF
1069         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1070                  __func__, args->handle, obj, obj->size);
1071 #endif
1072         obj_priv = obj->driver_private;
1073
1074         /* Pinned buffers may be scanout, so flush the cache */
1075         if (obj_priv->pin_count)
1076                 i915_gem_object_flush_cpu_write_domain(obj);
1077
1078         drm_gem_object_unreference(obj);
1079         mutex_unlock(&dev->struct_mutex);
1080         return ret;
1081 }
1082
1083 /**
1084  * Maps the contents of an object, returning the address it is mapped
1085  * into.
1086  *
1087  * While the mapping holds a reference on the contents of the object, it doesn't
1088  * imply a ref on the object itself.
1089  */
1090 int
1091 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1092                    struct drm_file *file_priv)
1093 {
1094         struct drm_i915_gem_mmap *args = data;
1095         struct drm_gem_object *obj;
1096         loff_t offset;
1097         unsigned long addr;
1098
1099         if (!(dev->driver->driver_features & DRIVER_GEM))
1100                 return -ENODEV;
1101
1102         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103         if (obj == NULL)
1104                 return -EBADF;
1105
1106         offset = args->offset;
1107
1108         down_write(&current->mm->mmap_sem);
1109         addr = do_mmap(obj->filp, 0, args->size,
1110                        PROT_READ | PROT_WRITE, MAP_SHARED,
1111                        args->offset);
1112         up_write(&current->mm->mmap_sem);
1113         mutex_lock(&dev->struct_mutex);
1114         drm_gem_object_unreference(obj);
1115         mutex_unlock(&dev->struct_mutex);
1116         if (IS_ERR((void *)addr))
1117                 return addr;
1118
1119         args->addr_ptr = (uint64_t) addr;
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * i915_gem_fault - fault a page into the GTT
1126  * vma: VMA in question
1127  * vmf: fault info
1128  *
1129  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1130  * from userspace.  The fault handler takes care of binding the object to
1131  * the GTT (if needed), allocating and programming a fence register (again,
1132  * only if needed based on whether the old reg is still valid or the object
1133  * is tiled) and inserting a new PTE into the faulting process.
1134  *
1135  * Note that the faulting process may involve evicting existing objects
1136  * from the GTT and/or fence registers to make room.  So performance may
1137  * suffer if the GTT working set is large or there are few fence registers
1138  * left.
1139  */
1140 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1141 {
1142         struct drm_gem_object *obj = vma->vm_private_data;
1143         struct drm_device *dev = obj->dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1146         pgoff_t page_offset;
1147         unsigned long pfn;
1148         int ret = 0;
1149         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1150
1151         /* We don't use vmf->pgoff since that has the fake offset */
1152         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1153                 PAGE_SHIFT;
1154
1155         /* Now bind it into the GTT if needed */
1156         mutex_lock(&dev->struct_mutex);
1157         if (!obj_priv->gtt_space) {
1158                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1159                 if (ret) {
1160                         mutex_unlock(&dev->struct_mutex);
1161                         return VM_FAULT_SIGBUS;
1162                 }
1163                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1164
1165                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1166                 if (ret) {
1167                         mutex_unlock(&dev->struct_mutex);
1168                         return VM_FAULT_SIGBUS;
1169                 }
1170         }
1171
1172         /* Need a new fence register? */
1173         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1174                 ret = i915_gem_object_get_fence_reg(obj);
1175                 if (ret) {
1176                         mutex_unlock(&dev->struct_mutex);
1177                         return VM_FAULT_SIGBUS;
1178                 }
1179         }
1180
1181         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1182                 page_offset;
1183
1184         /* Finally, remap it using the new GTT offset */
1185         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1186
1187         mutex_unlock(&dev->struct_mutex);
1188
1189         switch (ret) {
1190         case -ENOMEM:
1191         case -EAGAIN:
1192                 return VM_FAULT_OOM;
1193         case -EFAULT:
1194         case -EINVAL:
1195                 return VM_FAULT_SIGBUS;
1196         default:
1197                 return VM_FAULT_NOPAGE;
1198         }
1199 }
1200
1201 /**
1202  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1203  * @obj: obj in question
1204  *
1205  * GEM memory mapping works by handing back to userspace a fake mmap offset
1206  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1207  * up the object based on the offset and sets up the various memory mapping
1208  * structures.
1209  *
1210  * This routine allocates and attaches a fake offset for @obj.
1211  */
1212 static int
1213 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1214 {
1215         struct drm_device *dev = obj->dev;
1216         struct drm_gem_mm *mm = dev->mm_private;
1217         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218         struct drm_map_list *list;
1219         struct drm_local_map *map;
1220         int ret = 0;
1221
1222         /* Set the object up for mmap'ing */
1223         list = &obj->map_list;
1224         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1225         if (!list->map)
1226                 return -ENOMEM;
1227
1228         map = list->map;
1229         map->type = _DRM_GEM;
1230         map->size = obj->size;
1231         map->handle = obj;
1232
1233         /* Get a DRM GEM mmap offset allocated... */
1234         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1235                                                     obj->size / PAGE_SIZE, 0, 0);
1236         if (!list->file_offset_node) {
1237                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1238                 ret = -ENOMEM;
1239                 goto out_free_list;
1240         }
1241
1242         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1243                                                   obj->size / PAGE_SIZE, 0);
1244         if (!list->file_offset_node) {
1245                 ret = -ENOMEM;
1246                 goto out_free_list;
1247         }
1248
1249         list->hash.key = list->file_offset_node->start;
1250         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1251                 DRM_ERROR("failed to add to map hash\n");
1252                 goto out_free_mm;
1253         }
1254
1255         /* By now we should be all set, any drm_mmap request on the offset
1256          * below will get to our mmap & fault handler */
1257         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1258
1259         return 0;
1260
1261 out_free_mm:
1262         drm_mm_put_block(list->file_offset_node);
1263 out_free_list:
1264         kfree(list->map);
1265
1266         return ret;
1267 }
1268
1269 /**
1270  * i915_gem_release_mmap - remove physical page mappings
1271  * @obj: obj in question
1272  *
1273  * Preserve the reservation of the mmaping with the DRM core code, but
1274  * relinquish ownership of the pages back to the system.
1275  *
1276  * It is vital that we remove the page mapping if we have mapped a tiled
1277  * object through the GTT and then lose the fence register due to
1278  * resource pressure. Similarly if the object has been moved out of the
1279  * aperture, than pages mapped into userspace must be revoked. Removing the
1280  * mapping will then trigger a page fault on the next user access, allowing
1281  * fixup by i915_gem_fault().
1282  */
1283 void
1284 i915_gem_release_mmap(struct drm_gem_object *obj)
1285 {
1286         struct drm_device *dev = obj->dev;
1287         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288
1289         if (dev->dev_mapping)
1290                 unmap_mapping_range(dev->dev_mapping,
1291                                     obj_priv->mmap_offset, obj->size, 1);
1292 }
1293
1294 static void
1295 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1296 {
1297         struct drm_device *dev = obj->dev;
1298         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1299         struct drm_gem_mm *mm = dev->mm_private;
1300         struct drm_map_list *list;
1301
1302         list = &obj->map_list;
1303         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1304
1305         if (list->file_offset_node) {
1306                 drm_mm_put_block(list->file_offset_node);
1307                 list->file_offset_node = NULL;
1308         }
1309
1310         if (list->map) {
1311                 kfree(list->map);
1312                 list->map = NULL;
1313         }
1314
1315         obj_priv->mmap_offset = 0;
1316 }
1317
1318 /**
1319  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320  * @obj: object to check
1321  *
1322  * Return the required GTT alignment for an object, taking into account
1323  * potential fence register mapping if needed.
1324  */
1325 static uint32_t
1326 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1327 {
1328         struct drm_device *dev = obj->dev;
1329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1330         int start, i;
1331
1332         /*
1333          * Minimum alignment is 4k (GTT page size), but might be greater
1334          * if a fence register is needed for the object.
1335          */
1336         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1337                 return 4096;
1338
1339         /*
1340          * Previous chips need to be aligned to the size of the smallest
1341          * fence register that can contain the object.
1342          */
1343         if (IS_I9XX(dev))
1344                 start = 1024*1024;
1345         else
1346                 start = 512*1024;
1347
1348         for (i = start; i < obj->size; i <<= 1)
1349                 ;
1350
1351         return i;
1352 }
1353
1354 /**
1355  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1356  * @dev: DRM device
1357  * @data: GTT mapping ioctl data
1358  * @file_priv: GEM object info
1359  *
1360  * Simply returns the fake offset to userspace so it can mmap it.
1361  * The mmap call will end up in drm_gem_mmap(), which will set things
1362  * up so we can get faults in the handler above.
1363  *
1364  * The fault handler will take care of binding the object into the GTT
1365  * (since it may have been evicted to make room for something), allocating
1366  * a fence register, and mapping the appropriate aperture address into
1367  * userspace.
1368  */
1369 int
1370 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1371                         struct drm_file *file_priv)
1372 {
1373         struct drm_i915_gem_mmap_gtt *args = data;
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         struct drm_gem_object *obj;
1376         struct drm_i915_gem_object *obj_priv;
1377         int ret;
1378
1379         if (!(dev->driver->driver_features & DRIVER_GEM))
1380                 return -ENODEV;
1381
1382         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1383         if (obj == NULL)
1384                 return -EBADF;
1385
1386         mutex_lock(&dev->struct_mutex);
1387
1388         obj_priv = obj->driver_private;
1389
1390         if (!obj_priv->mmap_offset) {
1391                 ret = i915_gem_create_mmap_offset(obj);
1392                 if (ret) {
1393                         drm_gem_object_unreference(obj);
1394                         mutex_unlock(&dev->struct_mutex);
1395                         return ret;
1396                 }
1397         }
1398
1399         args->offset = obj_priv->mmap_offset;
1400
1401         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1402
1403         /* Make sure the alignment is correct for fence regs etc */
1404         if (obj_priv->agp_mem &&
1405             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1406                 drm_gem_object_unreference(obj);
1407                 mutex_unlock(&dev->struct_mutex);
1408                 return -EINVAL;
1409         }
1410
1411         /*
1412          * Pull it into the GTT so that we have a page list (makes the
1413          * initial fault faster and any subsequent flushing possible).
1414          */
1415         if (!obj_priv->agp_mem) {
1416                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1417                 if (ret) {
1418                         drm_gem_object_unreference(obj);
1419                         mutex_unlock(&dev->struct_mutex);
1420                         return ret;
1421                 }
1422                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1423         }
1424
1425         drm_gem_object_unreference(obj);
1426         mutex_unlock(&dev->struct_mutex);
1427
1428         return 0;
1429 }
1430
1431 void
1432 i915_gem_object_put_pages(struct drm_gem_object *obj)
1433 {
1434         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1435         int page_count = obj->size / PAGE_SIZE;
1436         int i;
1437
1438         BUG_ON(obj_priv->pages_refcount == 0);
1439
1440         if (--obj_priv->pages_refcount != 0)
1441                 return;
1442
1443         if (obj_priv->tiling_mode != I915_TILING_NONE)
1444                 i915_gem_object_save_bit_17_swizzle(obj);
1445
1446         for (i = 0; i < page_count; i++)
1447                 if (obj_priv->pages[i] != NULL) {
1448                         if (obj_priv->dirty)
1449                                 set_page_dirty(obj_priv->pages[i]);
1450                         mark_page_accessed(obj_priv->pages[i]);
1451                         page_cache_release(obj_priv->pages[i]);
1452                 }
1453         obj_priv->dirty = 0;
1454
1455         drm_free_large(obj_priv->pages);
1456         obj_priv->pages = NULL;
1457 }
1458
1459 static void
1460 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1461 {
1462         struct drm_device *dev = obj->dev;
1463         drm_i915_private_t *dev_priv = dev->dev_private;
1464         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1465
1466         /* Add a reference if we're newly entering the active list. */
1467         if (!obj_priv->active) {
1468                 drm_gem_object_reference(obj);
1469                 obj_priv->active = 1;
1470         }
1471         /* Move from whatever list we were on to the tail of execution. */
1472         spin_lock(&dev_priv->mm.active_list_lock);
1473         list_move_tail(&obj_priv->list,
1474                        &dev_priv->mm.active_list);
1475         spin_unlock(&dev_priv->mm.active_list_lock);
1476         obj_priv->last_rendering_seqno = seqno;
1477 }
1478
1479 static void
1480 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1481 {
1482         struct drm_device *dev = obj->dev;
1483         drm_i915_private_t *dev_priv = dev->dev_private;
1484         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1485
1486         BUG_ON(!obj_priv->active);
1487         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1488         obj_priv->last_rendering_seqno = 0;
1489 }
1490
1491 static void
1492 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1493 {
1494         struct drm_device *dev = obj->dev;
1495         drm_i915_private_t *dev_priv = dev->dev_private;
1496         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1497
1498         i915_verify_inactive(dev, __FILE__, __LINE__);
1499         if (obj_priv->pin_count != 0)
1500                 list_del_init(&obj_priv->list);
1501         else
1502                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1503
1504         obj_priv->last_rendering_seqno = 0;
1505         if (obj_priv->active) {
1506                 obj_priv->active = 0;
1507                 drm_gem_object_unreference(obj);
1508         }
1509         i915_verify_inactive(dev, __FILE__, __LINE__);
1510 }
1511
1512 /**
1513  * Creates a new sequence number, emitting a write of it to the status page
1514  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1515  *
1516  * Must be called with struct_lock held.
1517  *
1518  * Returned sequence numbers are nonzero on success.
1519  */
1520 static uint32_t
1521 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1522                  uint32_t flush_domains)
1523 {
1524         drm_i915_private_t *dev_priv = dev->dev_private;
1525         struct drm_i915_file_private *i915_file_priv = NULL;
1526         struct drm_i915_gem_request *request;
1527         uint32_t seqno;
1528         int was_empty;
1529         RING_LOCALS;
1530
1531         if (file_priv != NULL)
1532                 i915_file_priv = file_priv->driver_priv;
1533
1534         request = kzalloc(sizeof(*request), GFP_KERNEL);
1535         if (request == NULL)
1536                 return 0;
1537
1538         /* Grab the seqno we're going to make this request be, and bump the
1539          * next (skipping 0 so it can be the reserved no-seqno value).
1540          */
1541         seqno = dev_priv->mm.next_gem_seqno;
1542         dev_priv->mm.next_gem_seqno++;
1543         if (dev_priv->mm.next_gem_seqno == 0)
1544                 dev_priv->mm.next_gem_seqno++;
1545
1546         BEGIN_LP_RING(4);
1547         OUT_RING(MI_STORE_DWORD_INDEX);
1548         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1549         OUT_RING(seqno);
1550
1551         OUT_RING(MI_USER_INTERRUPT);
1552         ADVANCE_LP_RING();
1553
1554         DRM_DEBUG("%d\n", seqno);
1555
1556         request->seqno = seqno;
1557         request->emitted_jiffies = jiffies;
1558         was_empty = list_empty(&dev_priv->mm.request_list);
1559         list_add_tail(&request->list, &dev_priv->mm.request_list);
1560         if (i915_file_priv) {
1561                 list_add_tail(&request->client_list,
1562                               &i915_file_priv->mm.request_list);
1563         } else {
1564                 INIT_LIST_HEAD(&request->client_list);
1565         }
1566
1567         /* Associate any objects on the flushing list matching the write
1568          * domain we're flushing with our flush.
1569          */
1570         if (flush_domains != 0) {
1571                 struct drm_i915_gem_object *obj_priv, *next;
1572
1573                 list_for_each_entry_safe(obj_priv, next,
1574                                          &dev_priv->mm.flushing_list, list) {
1575                         struct drm_gem_object *obj = obj_priv->obj;
1576
1577                         if ((obj->write_domain & flush_domains) ==
1578                             obj->write_domain) {
1579                                 obj->write_domain = 0;
1580                                 i915_gem_object_move_to_active(obj, seqno);
1581                         }
1582                 }
1583
1584         }
1585
1586         if (!dev_priv->mm.suspended) {
1587                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1588                 if (was_empty)
1589                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1590         }
1591         return seqno;
1592 }
1593
1594 /**
1595  * Command execution barrier
1596  *
1597  * Ensures that all commands in the ring are finished
1598  * before signalling the CPU
1599  */
1600 static uint32_t
1601 i915_retire_commands(struct drm_device *dev)
1602 {
1603         drm_i915_private_t *dev_priv = dev->dev_private;
1604         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1605         uint32_t flush_domains = 0;
1606         RING_LOCALS;
1607
1608         /* The sampler always gets flushed on i965 (sigh) */
1609         if (IS_I965G(dev))
1610                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1611         BEGIN_LP_RING(2);
1612         OUT_RING(cmd);
1613         OUT_RING(0); /* noop */
1614         ADVANCE_LP_RING();
1615         return flush_domains;
1616 }
1617
1618 /**
1619  * Moves buffers associated only with the given active seqno from the active
1620  * to inactive list, potentially freeing them.
1621  */
1622 static void
1623 i915_gem_retire_request(struct drm_device *dev,
1624                         struct drm_i915_gem_request *request)
1625 {
1626         drm_i915_private_t *dev_priv = dev->dev_private;
1627
1628         /* Move any buffers on the active list that are no longer referenced
1629          * by the ringbuffer to the flushing/inactive lists as appropriate.
1630          */
1631         spin_lock(&dev_priv->mm.active_list_lock);
1632         while (!list_empty(&dev_priv->mm.active_list)) {
1633                 struct drm_gem_object *obj;
1634                 struct drm_i915_gem_object *obj_priv;
1635
1636                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1637                                             struct drm_i915_gem_object,
1638                                             list);
1639                 obj = obj_priv->obj;
1640
1641                 /* If the seqno being retired doesn't match the oldest in the
1642                  * list, then the oldest in the list must still be newer than
1643                  * this seqno.
1644                  */
1645                 if (obj_priv->last_rendering_seqno != request->seqno)
1646                         goto out;
1647
1648 #if WATCH_LRU
1649                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1650                          __func__, request->seqno, obj);
1651 #endif
1652
1653                 if (obj->write_domain != 0)
1654                         i915_gem_object_move_to_flushing(obj);
1655                 else {
1656                         /* Take a reference on the object so it won't be
1657                          * freed while the spinlock is held.  The list
1658                          * protection for this spinlock is safe when breaking
1659                          * the lock like this since the next thing we do
1660                          * is just get the head of the list again.
1661                          */
1662                         drm_gem_object_reference(obj);
1663                         i915_gem_object_move_to_inactive(obj);
1664                         spin_unlock(&dev_priv->mm.active_list_lock);
1665                         drm_gem_object_unreference(obj);
1666                         spin_lock(&dev_priv->mm.active_list_lock);
1667                 }
1668         }
1669 out:
1670         spin_unlock(&dev_priv->mm.active_list_lock);
1671 }
1672
1673 /**
1674  * Returns true if seq1 is later than seq2.
1675  */
1676 bool
1677 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1678 {
1679         return (int32_t)(seq1 - seq2) >= 0;
1680 }
1681
1682 uint32_t
1683 i915_get_gem_seqno(struct drm_device *dev)
1684 {
1685         drm_i915_private_t *dev_priv = dev->dev_private;
1686
1687         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1688 }
1689
1690 /**
1691  * This function clears the request list as sequence numbers are passed.
1692  */
1693 void
1694 i915_gem_retire_requests(struct drm_device *dev)
1695 {
1696         drm_i915_private_t *dev_priv = dev->dev_private;
1697         uint32_t seqno;
1698
1699         if (!dev_priv->hw_status_page)
1700                 return;
1701
1702         seqno = i915_get_gem_seqno(dev);
1703
1704         while (!list_empty(&dev_priv->mm.request_list)) {
1705                 struct drm_i915_gem_request *request;
1706                 uint32_t retiring_seqno;
1707
1708                 request = list_first_entry(&dev_priv->mm.request_list,
1709                                            struct drm_i915_gem_request,
1710                                            list);
1711                 retiring_seqno = request->seqno;
1712
1713                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1714                     atomic_read(&dev_priv->mm.wedged)) {
1715                         i915_gem_retire_request(dev, request);
1716
1717                         list_del(&request->list);
1718                         list_del(&request->client_list);
1719                         kfree(request);
1720                 } else
1721                         break;
1722         }
1723 }
1724
1725 void
1726 i915_gem_retire_work_handler(struct work_struct *work)
1727 {
1728         drm_i915_private_t *dev_priv;
1729         struct drm_device *dev;
1730
1731         dev_priv = container_of(work, drm_i915_private_t,
1732                                 mm.retire_work.work);
1733         dev = dev_priv->dev;
1734
1735         mutex_lock(&dev->struct_mutex);
1736         i915_gem_retire_requests(dev);
1737         if (!dev_priv->mm.suspended &&
1738             !list_empty(&dev_priv->mm.request_list))
1739                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1740         mutex_unlock(&dev->struct_mutex);
1741 }
1742
1743 /**
1744  * Waits for a sequence number to be signaled, and cleans up the
1745  * request and object lists appropriately for that event.
1746  */
1747 static int
1748 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1749 {
1750         drm_i915_private_t *dev_priv = dev->dev_private;
1751         u32 ier;
1752         int ret = 0;
1753
1754         BUG_ON(seqno == 0);
1755
1756         if (atomic_read(&dev_priv->mm.wedged))
1757                 return -EIO;
1758
1759         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1760                 if (IS_IGDNG(dev))
1761                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1762                 else
1763                         ier = I915_READ(IER);
1764                 if (!ier) {
1765                         DRM_ERROR("something (likely vbetool) disabled "
1766                                   "interrupts, re-enabling\n");
1767                         i915_driver_irq_preinstall(dev);
1768                         i915_driver_irq_postinstall(dev);
1769                 }
1770
1771                 dev_priv->mm.waiting_gem_seqno = seqno;
1772                 i915_user_irq_get(dev);
1773                 ret = wait_event_interruptible(dev_priv->irq_queue,
1774                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1775                                                                  seqno) ||
1776                                                atomic_read(&dev_priv->mm.wedged));
1777                 i915_user_irq_put(dev);
1778                 dev_priv->mm.waiting_gem_seqno = 0;
1779         }
1780         if (atomic_read(&dev_priv->mm.wedged))
1781                 ret = -EIO;
1782
1783         if (ret && ret != -ERESTARTSYS)
1784                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1785                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1786
1787         /* Directly dispatch request retiring.  While we have the work queue
1788          * to handle this, the waiter on a request often wants an associated
1789          * buffer to have made it to the inactive list, and we would need
1790          * a separate wait queue to handle that.
1791          */
1792         if (ret == 0)
1793                 i915_gem_retire_requests(dev);
1794
1795         return ret;
1796 }
1797
1798 static void
1799 i915_gem_flush(struct drm_device *dev,
1800                uint32_t invalidate_domains,
1801                uint32_t flush_domains)
1802 {
1803         drm_i915_private_t *dev_priv = dev->dev_private;
1804         uint32_t cmd;
1805         RING_LOCALS;
1806
1807 #if WATCH_EXEC
1808         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1809                   invalidate_domains, flush_domains);
1810 #endif
1811
1812         if (flush_domains & I915_GEM_DOMAIN_CPU)
1813                 drm_agp_chipset_flush(dev);
1814
1815         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1816                 /*
1817                  * read/write caches:
1818                  *
1819                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1820                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1821                  * also flushed at 2d versus 3d pipeline switches.
1822                  *
1823                  * read-only caches:
1824                  *
1825                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1826                  * MI_READ_FLUSH is set, and is always flushed on 965.
1827                  *
1828                  * I915_GEM_DOMAIN_COMMAND may not exist?
1829                  *
1830                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1831                  * invalidated when MI_EXE_FLUSH is set.
1832                  *
1833                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1834                  * invalidated with every MI_FLUSH.
1835                  *
1836                  * TLBs:
1837                  *
1838                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1839                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1840                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1841                  * are flushed at any MI_FLUSH.
1842                  */
1843
1844                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1845                 if ((invalidate_domains|flush_domains) &
1846                     I915_GEM_DOMAIN_RENDER)
1847                         cmd &= ~MI_NO_WRITE_FLUSH;
1848                 if (!IS_I965G(dev)) {
1849                         /*
1850                          * On the 965, the sampler cache always gets flushed
1851                          * and this bit is reserved.
1852                          */
1853                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1854                                 cmd |= MI_READ_FLUSH;
1855                 }
1856                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1857                         cmd |= MI_EXE_FLUSH;
1858
1859 #if WATCH_EXEC
1860                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1861 #endif
1862                 BEGIN_LP_RING(2);
1863                 OUT_RING(cmd);
1864                 OUT_RING(0); /* noop */
1865                 ADVANCE_LP_RING();
1866         }
1867 }
1868
1869 /**
1870  * Ensures that all rendering to the object has completed and the object is
1871  * safe to unbind from the GTT or access from the CPU.
1872  */
1873 static int
1874 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1875 {
1876         struct drm_device *dev = obj->dev;
1877         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1878         int ret;
1879
1880         /* This function only exists to support waiting for existing rendering,
1881          * not for emitting required flushes.
1882          */
1883         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1884
1885         /* If there is rendering queued on the buffer being evicted, wait for
1886          * it.
1887          */
1888         if (obj_priv->active) {
1889 #if WATCH_BUF
1890                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1891                           __func__, obj, obj_priv->last_rendering_seqno);
1892 #endif
1893                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1894                 if (ret != 0)
1895                         return ret;
1896         }
1897
1898         return 0;
1899 }
1900
1901 /**
1902  * Unbinds an object from the GTT aperture.
1903  */
1904 int
1905 i915_gem_object_unbind(struct drm_gem_object *obj)
1906 {
1907         struct drm_device *dev = obj->dev;
1908         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1909         int ret = 0;
1910
1911 #if WATCH_BUF
1912         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1913         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1914 #endif
1915         if (obj_priv->gtt_space == NULL)
1916                 return 0;
1917
1918         if (obj_priv->pin_count != 0) {
1919                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1920                 return -EINVAL;
1921         }
1922
1923         /* blow away mappings if mapped through GTT */
1924         i915_gem_release_mmap(obj);
1925
1926         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1927                 i915_gem_clear_fence_reg(obj);
1928
1929         /* Move the object to the CPU domain to ensure that
1930          * any possible CPU writes while it's not in the GTT
1931          * are flushed when we go to remap it. This will
1932          * also ensure that all pending GPU writes are finished
1933          * before we unbind.
1934          */
1935         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1936         if (ret) {
1937                 if (ret != -ERESTARTSYS)
1938                         DRM_ERROR("set_domain failed: %d\n", ret);
1939                 return ret;
1940         }
1941
1942         BUG_ON(obj_priv->active);
1943
1944         if (obj_priv->agp_mem != NULL) {
1945                 drm_unbind_agp(obj_priv->agp_mem);
1946                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1947                 obj_priv->agp_mem = NULL;
1948         }
1949
1950         i915_gem_object_put_pages(obj);
1951
1952         if (obj_priv->gtt_space) {
1953                 atomic_dec(&dev->gtt_count);
1954                 atomic_sub(obj->size, &dev->gtt_memory);
1955
1956                 drm_mm_put_block(obj_priv->gtt_space);
1957                 obj_priv->gtt_space = NULL;
1958         }
1959
1960         /* Remove ourselves from the LRU list if present. */
1961         if (!list_empty(&obj_priv->list))
1962                 list_del_init(&obj_priv->list);
1963
1964         return 0;
1965 }
1966
1967 static int
1968 i915_gem_evict_something(struct drm_device *dev)
1969 {
1970         drm_i915_private_t *dev_priv = dev->dev_private;
1971         struct drm_gem_object *obj;
1972         struct drm_i915_gem_object *obj_priv;
1973         int ret = 0;
1974
1975         for (;;) {
1976                 /* If there's an inactive buffer available now, grab it
1977                  * and be done.
1978                  */
1979                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1980                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1981                                                     struct drm_i915_gem_object,
1982                                                     list);
1983                         obj = obj_priv->obj;
1984                         BUG_ON(obj_priv->pin_count != 0);
1985 #if WATCH_LRU
1986                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1987 #endif
1988                         BUG_ON(obj_priv->active);
1989
1990                         /* Wait on the rendering and unbind the buffer. */
1991                         ret = i915_gem_object_unbind(obj);
1992                         break;
1993                 }
1994
1995                 /* If we didn't get anything, but the ring is still processing
1996                  * things, wait for one of those things to finish and hopefully
1997                  * leave us a buffer to evict.
1998                  */
1999                 if (!list_empty(&dev_priv->mm.request_list)) {
2000                         struct drm_i915_gem_request *request;
2001
2002                         request = list_first_entry(&dev_priv->mm.request_list,
2003                                                    struct drm_i915_gem_request,
2004                                                    list);
2005
2006                         ret = i915_wait_request(dev, request->seqno);
2007                         if (ret)
2008                                 break;
2009
2010                         /* if waiting caused an object to become inactive,
2011                          * then loop around and wait for it. Otherwise, we
2012                          * assume that waiting freed and unbound something,
2013                          * so there should now be some space in the GTT
2014                          */
2015                         if (!list_empty(&dev_priv->mm.inactive_list))
2016                                 continue;
2017                         break;
2018                 }
2019
2020                 /* If we didn't have anything on the request list but there
2021                  * are buffers awaiting a flush, emit one and try again.
2022                  * When we wait on it, those buffers waiting for that flush
2023                  * will get moved to inactive.
2024                  */
2025                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2026                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2027                                                     struct drm_i915_gem_object,
2028                                                     list);
2029                         obj = obj_priv->obj;
2030
2031                         i915_gem_flush(dev,
2032                                        obj->write_domain,
2033                                        obj->write_domain);
2034                         i915_add_request(dev, NULL, obj->write_domain);
2035
2036                         obj = NULL;
2037                         continue;
2038                 }
2039
2040                 DRM_ERROR("inactive empty %d request empty %d "
2041                           "flushing empty %d\n",
2042                           list_empty(&dev_priv->mm.inactive_list),
2043                           list_empty(&dev_priv->mm.request_list),
2044                           list_empty(&dev_priv->mm.flushing_list));
2045                 /* If we didn't do any of the above, there's nothing to be done
2046                  * and we just can't fit it in.
2047                  */
2048                 return -ENOSPC;
2049         }
2050         return ret;
2051 }
2052
2053 static int
2054 i915_gem_evict_everything(struct drm_device *dev)
2055 {
2056         int ret;
2057
2058         for (;;) {
2059                 ret = i915_gem_evict_something(dev);
2060                 if (ret != 0)
2061                         break;
2062         }
2063         if (ret == -ENOSPC)
2064                 return 0;
2065         return ret;
2066 }
2067
2068 int
2069 i915_gem_object_get_pages(struct drm_gem_object *obj)
2070 {
2071         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2072         int page_count, i;
2073         struct address_space *mapping;
2074         struct inode *inode;
2075         struct page *page;
2076         int ret;
2077
2078         if (obj_priv->pages_refcount++ != 0)
2079                 return 0;
2080
2081         /* Get the list of pages out of our struct file.  They'll be pinned
2082          * at this point until we release them.
2083          */
2084         page_count = obj->size / PAGE_SIZE;
2085         BUG_ON(obj_priv->pages != NULL);
2086         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2087         if (obj_priv->pages == NULL) {
2088                 DRM_ERROR("Faled to allocate page list\n");
2089                 obj_priv->pages_refcount--;
2090                 return -ENOMEM;
2091         }
2092
2093         inode = obj->filp->f_path.dentry->d_inode;
2094         mapping = inode->i_mapping;
2095         for (i = 0; i < page_count; i++) {
2096                 page = read_mapping_page(mapping, i, NULL);
2097                 if (IS_ERR(page)) {
2098                         ret = PTR_ERR(page);
2099                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2100                         i915_gem_object_put_pages(obj);
2101                         return ret;
2102                 }
2103                 obj_priv->pages[i] = page;
2104         }
2105
2106         if (obj_priv->tiling_mode != I915_TILING_NONE)
2107                 i915_gem_object_do_bit_17_swizzle(obj);
2108
2109         return 0;
2110 }
2111
2112 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2113 {
2114         struct drm_gem_object *obj = reg->obj;
2115         struct drm_device *dev = obj->dev;
2116         drm_i915_private_t *dev_priv = dev->dev_private;
2117         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2118         int regnum = obj_priv->fence_reg;
2119         uint64_t val;
2120
2121         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2122                     0xfffff000) << 32;
2123         val |= obj_priv->gtt_offset & 0xfffff000;
2124         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2125         if (obj_priv->tiling_mode == I915_TILING_Y)
2126                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2127         val |= I965_FENCE_REG_VALID;
2128
2129         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2130 }
2131
2132 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2133 {
2134         struct drm_gem_object *obj = reg->obj;
2135         struct drm_device *dev = obj->dev;
2136         drm_i915_private_t *dev_priv = dev->dev_private;
2137         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2138         int regnum = obj_priv->fence_reg;
2139         int tile_width;
2140         uint32_t fence_reg, val;
2141         uint32_t pitch_val;
2142
2143         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2144             (obj_priv->gtt_offset & (obj->size - 1))) {
2145                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2146                      __func__, obj_priv->gtt_offset, obj->size);
2147                 return;
2148         }
2149
2150         if (obj_priv->tiling_mode == I915_TILING_Y &&
2151             HAS_128_BYTE_Y_TILING(dev))
2152                 tile_width = 128;
2153         else
2154                 tile_width = 512;
2155
2156         /* Note: pitch better be a power of two tile widths */
2157         pitch_val = obj_priv->stride / tile_width;
2158         pitch_val = ffs(pitch_val) - 1;
2159
2160         val = obj_priv->gtt_offset;
2161         if (obj_priv->tiling_mode == I915_TILING_Y)
2162                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2163         val |= I915_FENCE_SIZE_BITS(obj->size);
2164         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2165         val |= I830_FENCE_REG_VALID;
2166
2167         if (regnum < 8)
2168                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2169         else
2170                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2171         I915_WRITE(fence_reg, val);
2172 }
2173
2174 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2175 {
2176         struct drm_gem_object *obj = reg->obj;
2177         struct drm_device *dev = obj->dev;
2178         drm_i915_private_t *dev_priv = dev->dev_private;
2179         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2180         int regnum = obj_priv->fence_reg;
2181         uint32_t val;
2182         uint32_t pitch_val;
2183         uint32_t fence_size_bits;
2184
2185         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2186             (obj_priv->gtt_offset & (obj->size - 1))) {
2187                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2188                      __func__, obj_priv->gtt_offset);
2189                 return;
2190         }
2191
2192         pitch_val = obj_priv->stride / 128;
2193         pitch_val = ffs(pitch_val) - 1;
2194         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2195
2196         val = obj_priv->gtt_offset;
2197         if (obj_priv->tiling_mode == I915_TILING_Y)
2198                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2199         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2200         WARN_ON(fence_size_bits & ~0x00000f00);
2201         val |= fence_size_bits;
2202         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2203         val |= I830_FENCE_REG_VALID;
2204
2205         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2206 }
2207
2208 /**
2209  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2210  * @obj: object to map through a fence reg
2211  *
2212  * When mapping objects through the GTT, userspace wants to be able to write
2213  * to them without having to worry about swizzling if the object is tiled.
2214  *
2215  * This function walks the fence regs looking for a free one for @obj,
2216  * stealing one if it can't find any.
2217  *
2218  * It then sets up the reg based on the object's properties: address, pitch
2219  * and tiling format.
2220  */
2221 int
2222 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2223 {
2224         struct drm_device *dev = obj->dev;
2225         struct drm_i915_private *dev_priv = dev->dev_private;
2226         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2227         struct drm_i915_fence_reg *reg = NULL;
2228         struct drm_i915_gem_object *old_obj_priv = NULL;
2229         int i, ret, avail;
2230
2231         /* Just update our place in the LRU if our fence is getting used. */
2232         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2233                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2234                 return 0;
2235         }
2236
2237         switch (obj_priv->tiling_mode) {
2238         case I915_TILING_NONE:
2239                 WARN(1, "allocating a fence for non-tiled object?\n");
2240                 break;
2241         case I915_TILING_X:
2242                 if (!obj_priv->stride)
2243                         return -EINVAL;
2244                 WARN((obj_priv->stride & (512 - 1)),
2245                      "object 0x%08x is X tiled but has non-512B pitch\n",
2246                      obj_priv->gtt_offset);
2247                 break;
2248         case I915_TILING_Y:
2249                 if (!obj_priv->stride)
2250                         return -EINVAL;
2251                 WARN((obj_priv->stride & (128 - 1)),
2252                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2253                      obj_priv->gtt_offset);
2254                 break;
2255         }
2256
2257         /* First try to find a free reg */
2258         avail = 0;
2259         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2260                 reg = &dev_priv->fence_regs[i];
2261                 if (!reg->obj)
2262                         break;
2263
2264                 old_obj_priv = reg->obj->driver_private;
2265                 if (!old_obj_priv->pin_count)
2266                     avail++;
2267         }
2268
2269         /* None available, try to steal one or wait for a user to finish */
2270         if (i == dev_priv->num_fence_regs) {
2271                 struct drm_gem_object *old_obj = NULL;
2272
2273                 if (avail == 0)
2274                         return -ENOSPC;
2275
2276                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2277                                     fence_list) {
2278                         old_obj = old_obj_priv->obj;
2279
2280                         if (old_obj_priv->pin_count)
2281                                 continue;
2282
2283                         /* Take a reference, as otherwise the wait_rendering
2284                          * below may cause the object to get freed out from
2285                          * under us.
2286                          */
2287                         drm_gem_object_reference(old_obj);
2288
2289                         /* i915 uses fences for GPU access to tiled buffers */
2290                         if (IS_I965G(dev) || !old_obj_priv->active)
2291                                 break;
2292
2293                         /* This brings the object to the head of the LRU if it
2294                          * had been written to.  The only way this should
2295                          * result in us waiting longer than the expected
2296                          * optimal amount of time is if there was a
2297                          * fence-using buffer later that was read-only.
2298                          */
2299                         i915_gem_object_flush_gpu_write_domain(old_obj);
2300                         ret = i915_gem_object_wait_rendering(old_obj);
2301                         if (ret != 0) {
2302                                 drm_gem_object_unreference(old_obj);
2303                                 return ret;
2304                         }
2305
2306                         break;
2307                 }
2308
2309                 /*
2310                  * Zap this virtual mapping so we can set up a fence again
2311                  * for this object next time we need it.
2312                  */
2313                 i915_gem_release_mmap(old_obj);
2314
2315                 i = old_obj_priv->fence_reg;
2316                 reg = &dev_priv->fence_regs[i];
2317
2318                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2319                 list_del_init(&old_obj_priv->fence_list);
2320
2321                 drm_gem_object_unreference(old_obj);
2322         }
2323
2324         obj_priv->fence_reg = i;
2325         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2326
2327         reg->obj = obj;
2328
2329         if (IS_I965G(dev))
2330                 i965_write_fence_reg(reg);
2331         else if (IS_I9XX(dev))
2332                 i915_write_fence_reg(reg);
2333         else
2334                 i830_write_fence_reg(reg);
2335
2336         return 0;
2337 }
2338
2339 /**
2340  * i915_gem_clear_fence_reg - clear out fence register info
2341  * @obj: object to clear
2342  *
2343  * Zeroes out the fence register itself and clears out the associated
2344  * data structures in dev_priv and obj_priv.
2345  */
2346 static void
2347 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2348 {
2349         struct drm_device *dev = obj->dev;
2350         drm_i915_private_t *dev_priv = dev->dev_private;
2351         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2352
2353         if (IS_I965G(dev))
2354                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2355         else {
2356                 uint32_t fence_reg;
2357
2358                 if (obj_priv->fence_reg < 8)
2359                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2360                 else
2361                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2362                                                        8) * 4;
2363
2364                 I915_WRITE(fence_reg, 0);
2365         }
2366
2367         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2368         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2369         list_del_init(&obj_priv->fence_list);
2370 }
2371
2372 /**
2373  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2374  * to the buffer to finish, and then resets the fence register.
2375  * @obj: tiled object holding a fence register.
2376  *
2377  * Zeroes out the fence register itself and clears out the associated
2378  * data structures in dev_priv and obj_priv.
2379  */
2380 int
2381 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2382 {
2383         struct drm_device *dev = obj->dev;
2384         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2385
2386         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2387                 return 0;
2388
2389         /* On the i915, GPU access to tiled buffers is via a fence,
2390          * therefore we must wait for any outstanding access to complete
2391          * before clearing the fence.
2392          */
2393         if (!IS_I965G(dev)) {
2394                 int ret;
2395
2396                 i915_gem_object_flush_gpu_write_domain(obj);
2397                 i915_gem_object_flush_gtt_write_domain(obj);
2398                 ret = i915_gem_object_wait_rendering(obj);
2399                 if (ret != 0)
2400                         return ret;
2401         }
2402
2403         i915_gem_clear_fence_reg (obj);
2404
2405         return 0;
2406 }
2407
2408 /**
2409  * Finds free space in the GTT aperture and binds the object there.
2410  */
2411 static int
2412 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2413 {
2414         struct drm_device *dev = obj->dev;
2415         drm_i915_private_t *dev_priv = dev->dev_private;
2416         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2417         struct drm_mm_node *free_space;
2418         int page_count, ret;
2419
2420         if (dev_priv->mm.suspended)
2421                 return -EBUSY;
2422         if (alignment == 0)
2423                 alignment = i915_gem_get_gtt_alignment(obj);
2424         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2425                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2426                 return -EINVAL;
2427         }
2428
2429  search_free:
2430         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2431                                         obj->size, alignment, 0);
2432         if (free_space != NULL) {
2433                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2434                                                        alignment);
2435                 if (obj_priv->gtt_space != NULL) {
2436                         obj_priv->gtt_space->private = obj;
2437                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2438                 }
2439         }
2440         if (obj_priv->gtt_space == NULL) {
2441                 bool lists_empty;
2442
2443                 /* If the gtt is empty and we're still having trouble
2444                  * fitting our object in, we're out of memory.
2445                  */
2446 #if WATCH_LRU
2447                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2448 #endif
2449                 spin_lock(&dev_priv->mm.active_list_lock);
2450                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2451                                list_empty(&dev_priv->mm.flushing_list) &&
2452                                list_empty(&dev_priv->mm.active_list));
2453                 spin_unlock(&dev_priv->mm.active_list_lock);
2454                 if (lists_empty) {
2455                         DRM_ERROR("GTT full, but LRU list empty\n");
2456                         return -ENOSPC;
2457                 }
2458
2459                 ret = i915_gem_evict_something(dev);
2460                 if (ret != 0) {
2461                         if (ret != -ERESTARTSYS)
2462                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2463                         return ret;
2464                 }
2465                 goto search_free;
2466         }
2467
2468 #if WATCH_BUF
2469         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2470                  obj->size, obj_priv->gtt_offset);
2471 #endif
2472         ret = i915_gem_object_get_pages(obj);
2473         if (ret) {
2474                 drm_mm_put_block(obj_priv->gtt_space);
2475                 obj_priv->gtt_space = NULL;
2476                 return ret;
2477         }
2478
2479         page_count = obj->size / PAGE_SIZE;
2480         /* Create an AGP memory structure pointing at our pages, and bind it
2481          * into the GTT.
2482          */
2483         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2484                                                obj_priv->pages,
2485                                                page_count,
2486                                                obj_priv->gtt_offset,
2487                                                obj_priv->agp_type);
2488         if (obj_priv->agp_mem == NULL) {
2489                 i915_gem_object_put_pages(obj);
2490                 drm_mm_put_block(obj_priv->gtt_space);
2491                 obj_priv->gtt_space = NULL;
2492                 return -ENOMEM;
2493         }
2494         atomic_inc(&dev->gtt_count);
2495         atomic_add(obj->size, &dev->gtt_memory);
2496
2497         /* Assert that the object is not currently in any GPU domain. As it
2498          * wasn't in the GTT, there shouldn't be any way it could have been in
2499          * a GPU cache
2500          */
2501         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2502         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2503
2504         return 0;
2505 }
2506
2507 void
2508 i915_gem_clflush_object(struct drm_gem_object *obj)
2509 {
2510         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2511
2512         /* If we don't have a page list set up, then we're not pinned
2513          * to GPU, and we can ignore the cache flush because it'll happen
2514          * again at bind time.
2515          */
2516         if (obj_priv->pages == NULL)
2517                 return;
2518
2519         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2520 }
2521
2522 /** Flushes any GPU write domain for the object if it's dirty. */
2523 static void
2524 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2525 {
2526         struct drm_device *dev = obj->dev;
2527         uint32_t seqno;
2528
2529         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2530                 return;
2531
2532         /* Queue the GPU write cache flushing we need. */
2533         i915_gem_flush(dev, 0, obj->write_domain);
2534         seqno = i915_add_request(dev, NULL, obj->write_domain);
2535         obj->write_domain = 0;
2536         i915_gem_object_move_to_active(obj, seqno);
2537 }
2538
2539 /** Flushes the GTT write domain for the object if it's dirty. */
2540 static void
2541 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2542 {
2543         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2544                 return;
2545
2546         /* No actual flushing is required for the GTT write domain.   Writes
2547          * to it immediately go to main memory as far as we know, so there's
2548          * no chipset flush.  It also doesn't land in render cache.
2549          */
2550         obj->write_domain = 0;
2551 }
2552
2553 /** Flushes the CPU write domain for the object if it's dirty. */
2554 static void
2555 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2556 {
2557         struct drm_device *dev = obj->dev;
2558
2559         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2560                 return;
2561
2562         i915_gem_clflush_object(obj);
2563         drm_agp_chipset_flush(dev);
2564         obj->write_domain = 0;
2565 }
2566
2567 /**
2568  * Moves a single object to the GTT read, and possibly write domain.
2569  *
2570  * This function returns when the move is complete, including waiting on
2571  * flushes to occur.
2572  */
2573 int
2574 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2575 {
2576         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2577         int ret;
2578
2579         /* Not valid to be called on unbound objects. */
2580         if (obj_priv->gtt_space == NULL)
2581                 return -EINVAL;
2582
2583         i915_gem_object_flush_gpu_write_domain(obj);
2584         /* Wait on any GPU rendering and flushing to occur. */
2585         ret = i915_gem_object_wait_rendering(obj);
2586         if (ret != 0)
2587                 return ret;
2588
2589         /* If we're writing through the GTT domain, then CPU and GPU caches
2590          * will need to be invalidated at next use.
2591          */
2592         if (write)
2593                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2594
2595         i915_gem_object_flush_cpu_write_domain(obj);
2596
2597         /* It should now be out of any other write domains, and we can update
2598          * the domain values for our changes.
2599          */
2600         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2601         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2602         if (write) {
2603                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2604                 obj_priv->dirty = 1;
2605         }
2606
2607         return 0;
2608 }
2609
2610 /**
2611  * Moves a single object to the CPU read, and possibly write domain.
2612  *
2613  * This function returns when the move is complete, including waiting on
2614  * flushes to occur.
2615  */
2616 static int
2617 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2618 {
2619         int ret;
2620
2621         i915_gem_object_flush_gpu_write_domain(obj);
2622         /* Wait on any GPU rendering and flushing to occur. */
2623         ret = i915_gem_object_wait_rendering(obj);
2624         if (ret != 0)
2625                 return ret;
2626
2627         i915_gem_object_flush_gtt_write_domain(obj);
2628
2629         /* If we have a partially-valid cache of the object in the CPU,
2630          * finish invalidating it and free the per-page flags.
2631          */
2632         i915_gem_object_set_to_full_cpu_read_domain(obj);
2633
2634         /* Flush the CPU cache if it's still invalid. */
2635         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2636                 i915_gem_clflush_object(obj);
2637
2638                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2639         }
2640
2641         /* It should now be out of any other write domains, and we can update
2642          * the domain values for our changes.
2643          */
2644         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2645
2646         /* If we're writing through the CPU, then the GPU read domains will
2647          * need to be invalidated at next use.
2648          */
2649         if (write) {
2650                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2651                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2652         }
2653
2654         return 0;
2655 }
2656
2657 /*
2658  * Set the next domain for the specified object. This
2659  * may not actually perform the necessary flushing/invaliding though,
2660  * as that may want to be batched with other set_domain operations
2661  *
2662  * This is (we hope) the only really tricky part of gem. The goal
2663  * is fairly simple -- track which caches hold bits of the object
2664  * and make sure they remain coherent. A few concrete examples may
2665  * help to explain how it works. For shorthand, we use the notation
2666  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2667  * a pair of read and write domain masks.
2668  *
2669  * Case 1: the batch buffer
2670  *
2671  *      1. Allocated
2672  *      2. Written by CPU
2673  *      3. Mapped to GTT
2674  *      4. Read by GPU
2675  *      5. Unmapped from GTT
2676  *      6. Freed
2677  *
2678  *      Let's take these a step at a time
2679  *
2680  *      1. Allocated
2681  *              Pages allocated from the kernel may still have
2682  *              cache contents, so we set them to (CPU, CPU) always.
2683  *      2. Written by CPU (using pwrite)
2684  *              The pwrite function calls set_domain (CPU, CPU) and
2685  *              this function does nothing (as nothing changes)
2686  *      3. Mapped by GTT
2687  *              This function asserts that the object is not
2688  *              currently in any GPU-based read or write domains
2689  *      4. Read by GPU
2690  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2691  *              As write_domain is zero, this function adds in the
2692  *              current read domains (CPU+COMMAND, 0).
2693  *              flush_domains is set to CPU.
2694  *              invalidate_domains is set to COMMAND
2695  *              clflush is run to get data out of the CPU caches
2696  *              then i915_dev_set_domain calls i915_gem_flush to
2697  *              emit an MI_FLUSH and drm_agp_chipset_flush
2698  *      5. Unmapped from GTT
2699  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2700  *              flush_domains and invalidate_domains end up both zero
2701  *              so no flushing/invalidating happens
2702  *      6. Freed
2703  *              yay, done
2704  *
2705  * Case 2: The shared render buffer
2706  *
2707  *      1. Allocated
2708  *      2. Mapped to GTT
2709  *      3. Read/written by GPU
2710  *      4. set_domain to (CPU,CPU)
2711  *      5. Read/written by CPU
2712  *      6. Read/written by GPU
2713  *
2714  *      1. Allocated
2715  *              Same as last example, (CPU, CPU)
2716  *      2. Mapped to GTT
2717  *              Nothing changes (assertions find that it is not in the GPU)
2718  *      3. Read/written by GPU
2719  *              execbuffer calls set_domain (RENDER, RENDER)
2720  *              flush_domains gets CPU
2721  *              invalidate_domains gets GPU
2722  *              clflush (obj)
2723  *              MI_FLUSH and drm_agp_chipset_flush
2724  *      4. set_domain (CPU, CPU)
2725  *              flush_domains gets GPU
2726  *              invalidate_domains gets CPU
2727  *              wait_rendering (obj) to make sure all drawing is complete.
2728  *              This will include an MI_FLUSH to get the data from GPU
2729  *              to memory
2730  *              clflush (obj) to invalidate the CPU cache
2731  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2732  *      5. Read/written by CPU
2733  *              cache lines are loaded and dirtied
2734  *      6. Read written by GPU
2735  *              Same as last GPU access
2736  *
2737  * Case 3: The constant buffer
2738  *
2739  *      1. Allocated
2740  *      2. Written by CPU
2741  *      3. Read by GPU
2742  *      4. Updated (written) by CPU again
2743  *      5. Read by GPU
2744  *
2745  *      1. Allocated
2746  *              (CPU, CPU)
2747  *      2. Written by CPU
2748  *              (CPU, CPU)
2749  *      3. Read by GPU
2750  *              (CPU+RENDER, 0)
2751  *              flush_domains = CPU
2752  *              invalidate_domains = RENDER
2753  *              clflush (obj)
2754  *              MI_FLUSH
2755  *              drm_agp_chipset_flush
2756  *      4. Updated (written) by CPU again
2757  *              (CPU, CPU)
2758  *              flush_domains = 0 (no previous write domain)
2759  *              invalidate_domains = 0 (no new read domains)
2760  *      5. Read by GPU
2761  *              (CPU+RENDER, 0)
2762  *              flush_domains = CPU
2763  *              invalidate_domains = RENDER
2764  *              clflush (obj)
2765  *              MI_FLUSH
2766  *              drm_agp_chipset_flush
2767  */
2768 static void
2769 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2770 {
2771         struct drm_device               *dev = obj->dev;
2772         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2773         uint32_t                        invalidate_domains = 0;
2774         uint32_t                        flush_domains = 0;
2775
2776         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2777         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2778
2779         intel_mark_busy(dev, obj);
2780
2781 #if WATCH_BUF
2782         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2783                  __func__, obj,
2784                  obj->read_domains, obj->pending_read_domains,
2785                  obj->write_domain, obj->pending_write_domain);
2786 #endif
2787         /*
2788          * If the object isn't moving to a new write domain,
2789          * let the object stay in multiple read domains
2790          */
2791         if (obj->pending_write_domain == 0)
2792                 obj->pending_read_domains |= obj->read_domains;
2793         else
2794                 obj_priv->dirty = 1;
2795
2796         /*
2797          * Flush the current write domain if
2798          * the new read domains don't match. Invalidate
2799          * any read domains which differ from the old
2800          * write domain
2801          */
2802         if (obj->write_domain &&
2803             obj->write_domain != obj->pending_read_domains) {
2804                 flush_domains |= obj->write_domain;
2805                 invalidate_domains |=
2806                         obj->pending_read_domains & ~obj->write_domain;
2807         }
2808         /*
2809          * Invalidate any read caches which may have
2810          * stale data. That is, any new read domains.
2811          */
2812         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2813         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2814 #if WATCH_BUF
2815                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2816                          __func__, flush_domains, invalidate_domains);
2817 #endif
2818                 i915_gem_clflush_object(obj);
2819         }
2820
2821         /* The actual obj->write_domain will be updated with
2822          * pending_write_domain after we emit the accumulated flush for all
2823          * of our domain changes in execbuffers (which clears objects'
2824          * write_domains).  So if we have a current write domain that we
2825          * aren't changing, set pending_write_domain to that.
2826          */
2827         if (flush_domains == 0 && obj->pending_write_domain == 0)
2828                 obj->pending_write_domain = obj->write_domain;
2829         obj->read_domains = obj->pending_read_domains;
2830
2831         dev->invalidate_domains |= invalidate_domains;
2832         dev->flush_domains |= flush_domains;
2833 #if WATCH_BUF
2834         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2835                  __func__,
2836                  obj->read_domains, obj->write_domain,
2837                  dev->invalidate_domains, dev->flush_domains);
2838 #endif
2839 }
2840
2841 /**
2842  * Moves the object from a partially CPU read to a full one.
2843  *
2844  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2845  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2846  */
2847 static void
2848 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2849 {
2850         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2851
2852         if (!obj_priv->page_cpu_valid)
2853                 return;
2854
2855         /* If we're partially in the CPU read domain, finish moving it in.
2856          */
2857         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2858                 int i;
2859
2860                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2861                         if (obj_priv->page_cpu_valid[i])
2862                                 continue;
2863                         drm_clflush_pages(obj_priv->pages + i, 1);
2864                 }
2865         }
2866
2867         /* Free the page_cpu_valid mappings which are now stale, whether
2868          * or not we've got I915_GEM_DOMAIN_CPU.
2869          */
2870         kfree(obj_priv->page_cpu_valid);
2871         obj_priv->page_cpu_valid = NULL;
2872 }
2873
2874 /**
2875  * Set the CPU read domain on a range of the object.
2876  *
2877  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2878  * not entirely valid.  The page_cpu_valid member of the object flags which
2879  * pages have been flushed, and will be respected by
2880  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2881  * of the whole object.
2882  *
2883  * This function returns when the move is complete, including waiting on
2884  * flushes to occur.
2885  */
2886 static int
2887 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2888                                           uint64_t offset, uint64_t size)
2889 {
2890         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2891         int i, ret;
2892
2893         if (offset == 0 && size == obj->size)
2894                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2895
2896         i915_gem_object_flush_gpu_write_domain(obj);
2897         /* Wait on any GPU rendering and flushing to occur. */
2898         ret = i915_gem_object_wait_rendering(obj);
2899         if (ret != 0)
2900                 return ret;
2901         i915_gem_object_flush_gtt_write_domain(obj);
2902
2903         /* If we're already fully in the CPU read domain, we're done. */
2904         if (obj_priv->page_cpu_valid == NULL &&
2905             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2906                 return 0;
2907
2908         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2909          * newly adding I915_GEM_DOMAIN_CPU
2910          */
2911         if (obj_priv->page_cpu_valid == NULL) {
2912                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2913                                                    GFP_KERNEL);
2914                 if (obj_priv->page_cpu_valid == NULL)
2915                         return -ENOMEM;
2916         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2917                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2918
2919         /* Flush the cache on any pages that are still invalid from the CPU's
2920          * perspective.
2921          */
2922         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2923              i++) {
2924                 if (obj_priv->page_cpu_valid[i])
2925                         continue;
2926
2927                 drm_clflush_pages(obj_priv->pages + i, 1);
2928
2929                 obj_priv->page_cpu_valid[i] = 1;
2930         }
2931
2932         /* It should now be out of any other write domains, and we can update
2933          * the domain values for our changes.
2934          */
2935         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2936
2937         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2938
2939         return 0;
2940 }
2941
2942 /**
2943  * Pin an object to the GTT and evaluate the relocations landing in it.
2944  */
2945 static int
2946 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2947                                  struct drm_file *file_priv,
2948                                  struct drm_i915_gem_exec_object *entry,
2949                                  struct drm_i915_gem_relocation_entry *relocs)
2950 {
2951         struct drm_device *dev = obj->dev;
2952         drm_i915_private_t *dev_priv = dev->dev_private;
2953         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2954         int i, ret;
2955         void __iomem *reloc_page;
2956
2957         /* Choose the GTT offset for our buffer and put it there. */
2958         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2959         if (ret)
2960                 return ret;
2961
2962         entry->offset = obj_priv->gtt_offset;
2963
2964         /* Apply the relocations, using the GTT aperture to avoid cache
2965          * flushing requirements.
2966          */
2967         for (i = 0; i < entry->relocation_count; i++) {
2968                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2969                 struct drm_gem_object *target_obj;
2970                 struct drm_i915_gem_object *target_obj_priv;
2971                 uint32_t reloc_val, reloc_offset;
2972                 uint32_t __iomem *reloc_entry;
2973
2974                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2975                                                    reloc->target_handle);
2976                 if (target_obj == NULL) {
2977                         i915_gem_object_unpin(obj);
2978                         return -EBADF;
2979                 }
2980                 target_obj_priv = target_obj->driver_private;
2981
2982                 /* The target buffer should have appeared before us in the
2983                  * exec_object list, so it should have a GTT space bound by now.
2984                  */
2985                 if (target_obj_priv->gtt_space == NULL) {
2986                         DRM_ERROR("No GTT space found for object %d\n",
2987                                   reloc->target_handle);
2988                         drm_gem_object_unreference(target_obj);
2989                         i915_gem_object_unpin(obj);
2990                         return -EINVAL;
2991                 }
2992
2993                 if (reloc->offset > obj->size - 4) {
2994                         DRM_ERROR("Relocation beyond object bounds: "
2995                                   "obj %p target %d offset %d size %d.\n",
2996                                   obj, reloc->target_handle,
2997                                   (int) reloc->offset, (int) obj->size);
2998                         drm_gem_object_unreference(target_obj);
2999                         i915_gem_object_unpin(obj);
3000                         return -EINVAL;
3001                 }
3002                 if (reloc->offset & 3) {
3003                         DRM_ERROR("Relocation not 4-byte aligned: "
3004                                   "obj %p target %d offset %d.\n",
3005                                   obj, reloc->target_handle,
3006                                   (int) reloc->offset);
3007                         drm_gem_object_unreference(target_obj);
3008                         i915_gem_object_unpin(obj);
3009                         return -EINVAL;
3010                 }
3011
3012                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3013                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3014                         DRM_ERROR("reloc with read/write CPU domains: "
3015                                   "obj %p target %d offset %d "
3016                                   "read %08x write %08x",
3017                                   obj, reloc->target_handle,
3018                                   (int) reloc->offset,
3019                                   reloc->read_domains,
3020                                   reloc->write_domain);
3021                         drm_gem_object_unreference(target_obj);
3022                         i915_gem_object_unpin(obj);
3023                         return -EINVAL;
3024                 }
3025
3026                 if (reloc->write_domain && target_obj->pending_write_domain &&
3027                     reloc->write_domain != target_obj->pending_write_domain) {
3028                         DRM_ERROR("Write domain conflict: "
3029                                   "obj %p target %d offset %d "
3030                                   "new %08x old %08x\n",
3031                                   obj, reloc->target_handle,
3032                                   (int) reloc->offset,
3033                                   reloc->write_domain,
3034                                   target_obj->pending_write_domain);
3035                         drm_gem_object_unreference(target_obj);
3036                         i915_gem_object_unpin(obj);
3037                         return -EINVAL;
3038                 }
3039
3040 #if WATCH_RELOC
3041                 DRM_INFO("%s: obj %p offset %08x target %d "
3042                          "read %08x write %08x gtt %08x "
3043                          "presumed %08x delta %08x\n",
3044                          __func__,
3045                          obj,
3046                          (int) reloc->offset,
3047                          (int) reloc->target_handle,
3048                          (int) reloc->read_domains,
3049                          (int) reloc->write_domain,
3050                          (int) target_obj_priv->gtt_offset,
3051                          (int) reloc->presumed_offset,
3052                          reloc->delta);
3053 #endif
3054
3055                 target_obj->pending_read_domains |= reloc->read_domains;
3056                 target_obj->pending_write_domain |= reloc->write_domain;
3057
3058                 /* If the relocation already has the right value in it, no
3059                  * more work needs to be done.
3060                  */
3061                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3062                         drm_gem_object_unreference(target_obj);
3063                         continue;
3064                 }
3065
3066                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3067                 if (ret != 0) {
3068                         drm_gem_object_unreference(target_obj);
3069                         i915_gem_object_unpin(obj);
3070                         return -EINVAL;
3071                 }
3072
3073                 /* Map the page containing the relocation we're going to
3074                  * perform.
3075                  */
3076                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3077                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3078                                                       (reloc_offset &
3079                                                        ~(PAGE_SIZE - 1)));
3080                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3081                                                    (reloc_offset & (PAGE_SIZE - 1)));
3082                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3083
3084 #if WATCH_BUF
3085                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3086                           obj, (unsigned int) reloc->offset,
3087                           readl(reloc_entry), reloc_val);
3088 #endif
3089                 writel(reloc_val, reloc_entry);
3090                 io_mapping_unmap_atomic(reloc_page);
3091
3092                 /* The updated presumed offset for this entry will be
3093                  * copied back out to the user.
3094                  */
3095                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3096
3097                 drm_gem_object_unreference(target_obj);
3098         }
3099
3100 #if WATCH_BUF
3101         if (0)
3102                 i915_gem_dump_object(obj, 128, __func__, ~0);
3103 #endif
3104         return 0;
3105 }
3106
3107 /** Dispatch a batchbuffer to the ring
3108  */
3109 static int
3110 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3111                               struct drm_i915_gem_execbuffer *exec,
3112                               struct drm_clip_rect *cliprects,
3113                               uint64_t exec_offset)
3114 {
3115         drm_i915_private_t *dev_priv = dev->dev_private;
3116         int nbox = exec->num_cliprects;
3117         int i = 0, count;
3118         uint32_t exec_start, exec_len;
3119         RING_LOCALS;
3120
3121         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3122         exec_len = (uint32_t) exec->batch_len;
3123
3124         count = nbox ? nbox : 1;
3125
3126         for (i = 0; i < count; i++) {
3127                 if (i < nbox) {
3128                         int ret = i915_emit_box(dev, cliprects, i,
3129                                                 exec->DR1, exec->DR4);
3130                         if (ret)
3131                                 return ret;
3132                 }
3133
3134                 if (IS_I830(dev) || IS_845G(dev)) {
3135                         BEGIN_LP_RING(4);
3136                         OUT_RING(MI_BATCH_BUFFER);
3137                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3138                         OUT_RING(exec_start + exec_len - 4);
3139                         OUT_RING(0);
3140                         ADVANCE_LP_RING();
3141                 } else {
3142                         BEGIN_LP_RING(2);
3143                         if (IS_I965G(dev)) {
3144                                 OUT_RING(MI_BATCH_BUFFER_START |
3145                                          (2 << 6) |
3146                                          MI_BATCH_NON_SECURE_I965);
3147                                 OUT_RING(exec_start);
3148                         } else {
3149                                 OUT_RING(MI_BATCH_BUFFER_START |
3150                                          (2 << 6));
3151                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3152                         }
3153                         ADVANCE_LP_RING();
3154                 }
3155         }
3156
3157         /* XXX breadcrumb */
3158         return 0;
3159 }
3160
3161 /* Throttle our rendering by waiting until the ring has completed our requests
3162  * emitted over 20 msec ago.
3163  *
3164  * Note that if we were to use the current jiffies each time around the loop,
3165  * we wouldn't escape the function with any frames outstanding if the time to
3166  * render a frame was over 20ms.
3167  *
3168  * This should get us reasonable parallelism between CPU and GPU but also
3169  * relatively low latency when blocking on a particular request to finish.
3170  */
3171 static int
3172 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3173 {
3174         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3175         int ret = 0;
3176         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3177
3178         mutex_lock(&dev->struct_mutex);
3179         while (!list_empty(&i915_file_priv->mm.request_list)) {
3180                 struct drm_i915_gem_request *request;
3181
3182                 request = list_first_entry(&i915_file_priv->mm.request_list,
3183                                            struct drm_i915_gem_request,
3184                                            client_list);
3185
3186                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3187                         break;
3188
3189                 ret = i915_wait_request(dev, request->seqno);
3190                 if (ret != 0)
3191                         break;
3192         }
3193         mutex_unlock(&dev->struct_mutex);
3194
3195         return ret;
3196 }
3197
3198 static int
3199 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3200                               uint32_t buffer_count,
3201                               struct drm_i915_gem_relocation_entry **relocs)
3202 {
3203         uint32_t reloc_count = 0, reloc_index = 0, i;
3204         int ret;
3205
3206         *relocs = NULL;
3207         for (i = 0; i < buffer_count; i++) {
3208                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3209                         return -EINVAL;
3210                 reloc_count += exec_list[i].relocation_count;
3211         }
3212
3213         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3214         if (*relocs == NULL)
3215                 return -ENOMEM;
3216
3217         for (i = 0; i < buffer_count; i++) {
3218                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3219
3220                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3221
3222                 ret = copy_from_user(&(*relocs)[reloc_index],
3223                                      user_relocs,
3224                                      exec_list[i].relocation_count *
3225                                      sizeof(**relocs));
3226                 if (ret != 0) {
3227                         drm_free_large(*relocs);
3228                         *relocs = NULL;
3229                         return -EFAULT;
3230                 }
3231
3232                 reloc_index += exec_list[i].relocation_count;
3233         }
3234
3235         return 0;
3236 }
3237
3238 static int
3239 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3240                             uint32_t buffer_count,
3241                             struct drm_i915_gem_relocation_entry *relocs)
3242 {
3243         uint32_t reloc_count = 0, i;
3244         int ret = 0;
3245
3246         for (i = 0; i < buffer_count; i++) {
3247                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3248                 int unwritten;
3249
3250                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3251
3252                 unwritten = copy_to_user(user_relocs,
3253                                          &relocs[reloc_count],
3254                                          exec_list[i].relocation_count *
3255                                          sizeof(*relocs));
3256
3257                 if (unwritten) {
3258                         ret = -EFAULT;
3259                         goto err;
3260                 }
3261
3262                 reloc_count += exec_list[i].relocation_count;
3263         }
3264
3265 err:
3266         drm_free_large(relocs);
3267
3268         return ret;
3269 }
3270
3271 static int
3272 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3273                            uint64_t exec_offset)
3274 {
3275         uint32_t exec_start, exec_len;
3276
3277         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3278         exec_len = (uint32_t) exec->batch_len;
3279
3280         if ((exec_start | exec_len) & 0x7)
3281                 return -EINVAL;
3282
3283         if (!exec_start)
3284                 return -EINVAL;
3285
3286         return 0;
3287 }
3288
3289 int
3290 i915_gem_execbuffer(struct drm_device *dev, void *data,
3291                     struct drm_file *file_priv)
3292 {
3293         drm_i915_private_t *dev_priv = dev->dev_private;
3294         struct drm_i915_gem_execbuffer *args = data;
3295         struct drm_i915_gem_exec_object *exec_list = NULL;
3296         struct drm_gem_object **object_list = NULL;
3297         struct drm_gem_object *batch_obj;
3298         struct drm_i915_gem_object *obj_priv;
3299         struct drm_clip_rect *cliprects = NULL;
3300         struct drm_i915_gem_relocation_entry *relocs;
3301         int ret, ret2, i, pinned = 0;
3302         uint64_t exec_offset;
3303         uint32_t seqno, flush_domains, reloc_index;
3304         int pin_tries;
3305
3306 #if WATCH_EXEC
3307         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3308                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3309 #endif
3310
3311         if (args->buffer_count < 1) {
3312                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3313                 return -EINVAL;
3314         }
3315         /* Copy in the exec list from userland */
3316         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3317         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3318         if (exec_list == NULL || object_list == NULL) {
3319                 DRM_ERROR("Failed to allocate exec or object list "
3320                           "for %d buffers\n",
3321                           args->buffer_count);
3322                 ret = -ENOMEM;
3323                 goto pre_mutex_err;
3324         }
3325         ret = copy_from_user(exec_list,
3326                              (struct drm_i915_relocation_entry __user *)
3327                              (uintptr_t) args->buffers_ptr,
3328                              sizeof(*exec_list) * args->buffer_count);
3329         if (ret != 0) {
3330                 DRM_ERROR("copy %d exec entries failed %d\n",
3331                           args->buffer_count, ret);
3332                 goto pre_mutex_err;
3333         }
3334
3335         if (args->num_cliprects != 0) {
3336                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3337                                     GFP_KERNEL);
3338                 if (cliprects == NULL)
3339                         goto pre_mutex_err;
3340
3341                 ret = copy_from_user(cliprects,
3342                                      (struct drm_clip_rect __user *)
3343                                      (uintptr_t) args->cliprects_ptr,
3344                                      sizeof(*cliprects) * args->num_cliprects);
3345                 if (ret != 0) {
3346                         DRM_ERROR("copy %d cliprects failed: %d\n",
3347                                   args->num_cliprects, ret);
3348                         goto pre_mutex_err;
3349                 }
3350         }
3351
3352         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3353                                             &relocs);
3354         if (ret != 0)
3355                 goto pre_mutex_err;
3356
3357         mutex_lock(&dev->struct_mutex);
3358
3359         i915_verify_inactive(dev, __FILE__, __LINE__);
3360
3361         if (atomic_read(&dev_priv->mm.wedged)) {
3362                 DRM_ERROR("Execbuf while wedged\n");
3363                 mutex_unlock(&dev->struct_mutex);
3364                 ret = -EIO;
3365                 goto pre_mutex_err;
3366         }
3367
3368         if (dev_priv->mm.suspended) {
3369                 DRM_ERROR("Execbuf while VT-switched.\n");
3370                 mutex_unlock(&dev->struct_mutex);
3371                 ret = -EBUSY;
3372                 goto pre_mutex_err;
3373         }
3374
3375         /* Look up object handles */
3376         for (i = 0; i < args->buffer_count; i++) {
3377                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3378                                                        exec_list[i].handle);
3379                 if (object_list[i] == NULL) {
3380                         DRM_ERROR("Invalid object handle %d at index %d\n",
3381                                    exec_list[i].handle, i);
3382                         ret = -EBADF;
3383                         goto err;
3384                 }
3385
3386                 obj_priv = object_list[i]->driver_private;
3387                 if (obj_priv->in_execbuffer) {
3388                         DRM_ERROR("Object %p appears more than once in object list\n",
3389                                    object_list[i]);
3390                         ret = -EBADF;
3391                         goto err;
3392                 }
3393                 obj_priv->in_execbuffer = true;
3394         }
3395
3396         /* Pin and relocate */
3397         for (pin_tries = 0; ; pin_tries++) {
3398                 ret = 0;
3399                 reloc_index = 0;
3400
3401                 for (i = 0; i < args->buffer_count; i++) {
3402                         object_list[i]->pending_read_domains = 0;
3403                         object_list[i]->pending_write_domain = 0;
3404                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3405                                                                file_priv,
3406                                                                &exec_list[i],
3407                                                                &relocs[reloc_index]);
3408                         if (ret)
3409                                 break;
3410                         pinned = i + 1;
3411                         reloc_index += exec_list[i].relocation_count;
3412                 }
3413                 /* success */
3414                 if (ret == 0)
3415                         break;
3416
3417                 /* error other than GTT full, or we've already tried again */
3418                 if (ret != -ENOSPC || pin_tries >= 1) {
3419                         if (ret != -ERESTARTSYS)
3420                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3421                         goto err;
3422                 }
3423
3424                 /* unpin all of our buffers */
3425                 for (i = 0; i < pinned; i++)
3426                         i915_gem_object_unpin(object_list[i]);
3427                 pinned = 0;
3428
3429                 /* evict everyone we can from the aperture */
3430                 ret = i915_gem_evict_everything(dev);
3431                 if (ret)
3432                         goto err;
3433         }
3434
3435         /* Set the pending read domains for the batch buffer to COMMAND */
3436         batch_obj = object_list[args->buffer_count-1];
3437         if (batch_obj->pending_write_domain) {
3438                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3439                 ret = -EINVAL;
3440                 goto err;
3441         }
3442         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3443
3444         /* Sanity check the batch buffer, prior to moving objects */
3445         exec_offset = exec_list[args->buffer_count - 1].offset;
3446         ret = i915_gem_check_execbuffer (args, exec_offset);
3447         if (ret != 0) {
3448                 DRM_ERROR("execbuf with invalid offset/length\n");
3449                 goto err;
3450         }
3451
3452         i915_verify_inactive(dev, __FILE__, __LINE__);
3453
3454         /* Zero the global flush/invalidate flags. These
3455          * will be modified as new domains are computed
3456          * for each object
3457          */
3458         dev->invalidate_domains = 0;
3459         dev->flush_domains = 0;
3460
3461         for (i = 0; i < args->buffer_count; i++) {
3462                 struct drm_gem_object *obj = object_list[i];
3463
3464                 /* Compute new gpu domains and update invalidate/flush */
3465                 i915_gem_object_set_to_gpu_domain(obj);
3466         }
3467
3468         i915_verify_inactive(dev, __FILE__, __LINE__);
3469
3470         if (dev->invalidate_domains | dev->flush_domains) {
3471 #if WATCH_EXEC
3472                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3473                           __func__,
3474                          dev->invalidate_domains,
3475                          dev->flush_domains);
3476 #endif
3477                 i915_gem_flush(dev,
3478                                dev->invalidate_domains,
3479                                dev->flush_domains);
3480                 if (dev->flush_domains)
3481                         (void)i915_add_request(dev, file_priv,
3482                                                dev->flush_domains);
3483         }
3484
3485         for (i = 0; i < args->buffer_count; i++) {
3486                 struct drm_gem_object *obj = object_list[i];
3487
3488                 obj->write_domain = obj->pending_write_domain;
3489         }
3490
3491         i915_verify_inactive(dev, __FILE__, __LINE__);
3492
3493 #if WATCH_COHERENCY
3494         for (i = 0; i < args->buffer_count; i++) {
3495                 i915_gem_object_check_coherency(object_list[i],
3496                                                 exec_list[i].handle);
3497         }
3498 #endif
3499
3500 #if WATCH_EXEC
3501         i915_gem_dump_object(batch_obj,
3502                               args->batch_len,
3503                               __func__,
3504                               ~0);
3505 #endif
3506
3507         /* Exec the batchbuffer */
3508         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3509         if (ret) {
3510                 DRM_ERROR("dispatch failed %d\n", ret);
3511                 goto err;
3512         }
3513
3514         /*
3515          * Ensure that the commands in the batch buffer are
3516          * finished before the interrupt fires
3517          */
3518         flush_domains = i915_retire_commands(dev);
3519
3520         i915_verify_inactive(dev, __FILE__, __LINE__);
3521
3522         /*
3523          * Get a seqno representing the execution of the current buffer,
3524          * which we can wait on.  We would like to mitigate these interrupts,
3525          * likely by only creating seqnos occasionally (so that we have
3526          * *some* interrupts representing completion of buffers that we can
3527          * wait on when trying to clear up gtt space).
3528          */
3529         seqno = i915_add_request(dev, file_priv, flush_domains);
3530         BUG_ON(seqno == 0);
3531         for (i = 0; i < args->buffer_count; i++) {
3532                 struct drm_gem_object *obj = object_list[i];
3533
3534                 i915_gem_object_move_to_active(obj, seqno);
3535 #if WATCH_LRU
3536                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3537 #endif
3538         }
3539 #if WATCH_LRU
3540         i915_dump_lru(dev, __func__);
3541 #endif
3542
3543         i915_verify_inactive(dev, __FILE__, __LINE__);
3544
3545 err:
3546         for (i = 0; i < pinned; i++)
3547                 i915_gem_object_unpin(object_list[i]);
3548
3549         for (i = 0; i < args->buffer_count; i++) {
3550                 if (object_list[i]) {
3551                         obj_priv = object_list[i]->driver_private;
3552                         obj_priv->in_execbuffer = false;
3553                 }
3554                 drm_gem_object_unreference(object_list[i]);
3555         }
3556
3557         mutex_unlock(&dev->struct_mutex);
3558
3559         if (!ret) {
3560                 /* Copy the new buffer offsets back to the user's exec list. */
3561                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3562                                    (uintptr_t) args->buffers_ptr,
3563                                    exec_list,
3564                                    sizeof(*exec_list) * args->buffer_count);
3565                 if (ret) {
3566                         ret = -EFAULT;
3567                         DRM_ERROR("failed to copy %d exec entries "
3568                                   "back to user (%d)\n",
3569                                   args->buffer_count, ret);
3570                 }
3571         }
3572
3573         /* Copy the updated relocations out regardless of current error
3574          * state.  Failure to update the relocs would mean that the next
3575          * time userland calls execbuf, it would do so with presumed offset
3576          * state that didn't match the actual object state.
3577          */
3578         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3579                                            relocs);
3580         if (ret2 != 0) {
3581                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3582
3583                 if (ret == 0)
3584                         ret = ret2;
3585         }
3586
3587 pre_mutex_err:
3588         drm_free_large(object_list);
3589         drm_free_large(exec_list);
3590         kfree(cliprects);
3591
3592         return ret;
3593 }
3594
3595 int
3596 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3597 {
3598         struct drm_device *dev = obj->dev;
3599         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3600         int ret;
3601
3602         i915_verify_inactive(dev, __FILE__, __LINE__);
3603         if (obj_priv->gtt_space == NULL) {
3604                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3605                 if (ret != 0) {
3606                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3607                                 DRM_ERROR("Failure to bind: %d\n", ret);
3608                         return ret;
3609                 }
3610         }
3611         /*
3612          * Pre-965 chips need a fence register set up in order to
3613          * properly handle tiled surfaces.
3614          */
3615         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3616                 ret = i915_gem_object_get_fence_reg(obj);
3617                 if (ret != 0) {
3618                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3619                                 DRM_ERROR("Failure to install fence: %d\n",
3620                                           ret);
3621                         return ret;
3622                 }
3623         }
3624         obj_priv->pin_count++;
3625
3626         /* If the object is not active and not pending a flush,
3627          * remove it from the inactive list
3628          */
3629         if (obj_priv->pin_count == 1) {
3630                 atomic_inc(&dev->pin_count);
3631                 atomic_add(obj->size, &dev->pin_memory);
3632                 if (!obj_priv->active &&
3633                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3634                     !list_empty(&obj_priv->list))
3635                         list_del_init(&obj_priv->list);
3636         }
3637         i915_verify_inactive(dev, __FILE__, __LINE__);
3638
3639         return 0;
3640 }
3641
3642 void
3643 i915_gem_object_unpin(struct drm_gem_object *obj)
3644 {
3645         struct drm_device *dev = obj->dev;
3646         drm_i915_private_t *dev_priv = dev->dev_private;
3647         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3648
3649         i915_verify_inactive(dev, __FILE__, __LINE__);
3650         obj_priv->pin_count--;
3651         BUG_ON(obj_priv->pin_count < 0);
3652         BUG_ON(obj_priv->gtt_space == NULL);
3653
3654         /* If the object is no longer pinned, and is
3655          * neither active nor being flushed, then stick it on
3656          * the inactive list
3657          */
3658         if (obj_priv->pin_count == 0) {
3659                 if (!obj_priv->active &&
3660                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3661                         list_move_tail(&obj_priv->list,
3662                                        &dev_priv->mm.inactive_list);
3663                 atomic_dec(&dev->pin_count);
3664                 atomic_sub(obj->size, &dev->pin_memory);
3665         }
3666         i915_verify_inactive(dev, __FILE__, __LINE__);
3667 }
3668
3669 int
3670 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3671                    struct drm_file *file_priv)
3672 {
3673         struct drm_i915_gem_pin *args = data;
3674         struct drm_gem_object *obj;
3675         struct drm_i915_gem_object *obj_priv;
3676         int ret;
3677
3678         mutex_lock(&dev->struct_mutex);
3679
3680         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3681         if (obj == NULL) {
3682                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3683                           args->handle);
3684                 mutex_unlock(&dev->struct_mutex);
3685                 return -EBADF;
3686         }
3687         obj_priv = obj->driver_private;
3688
3689         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3690                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3691                           args->handle);
3692                 drm_gem_object_unreference(obj);
3693                 mutex_unlock(&dev->struct_mutex);
3694                 return -EINVAL;
3695         }
3696
3697         obj_priv->user_pin_count++;
3698         obj_priv->pin_filp = file_priv;
3699         if (obj_priv->user_pin_count == 1) {
3700                 ret = i915_gem_object_pin(obj, args->alignment);
3701                 if (ret != 0) {
3702                         drm_gem_object_unreference(obj);
3703                         mutex_unlock(&dev->struct_mutex);
3704                         return ret;
3705                 }
3706         }
3707
3708         /* XXX - flush the CPU caches for pinned objects
3709          * as the X server doesn't manage domains yet
3710          */
3711         i915_gem_object_flush_cpu_write_domain(obj);
3712         args->offset = obj_priv->gtt_offset;
3713         drm_gem_object_unreference(obj);
3714         mutex_unlock(&dev->struct_mutex);
3715
3716         return 0;
3717 }
3718
3719 int
3720 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3721                      struct drm_file *file_priv)
3722 {
3723         struct drm_i915_gem_pin *args = data;
3724         struct drm_gem_object *obj;
3725         struct drm_i915_gem_object *obj_priv;
3726
3727         mutex_lock(&dev->struct_mutex);
3728
3729         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3730         if (obj == NULL) {
3731                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3732                           args->handle);
3733                 mutex_unlock(&dev->struct_mutex);
3734                 return -EBADF;
3735         }
3736
3737         obj_priv = obj->driver_private;
3738         if (obj_priv->pin_filp != file_priv) {
3739                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3740                           args->handle);
3741                 drm_gem_object_unreference(obj);
3742                 mutex_unlock(&dev->struct_mutex);
3743                 return -EINVAL;
3744         }
3745         obj_priv->user_pin_count--;
3746         if (obj_priv->user_pin_count == 0) {
3747                 obj_priv->pin_filp = NULL;
3748                 i915_gem_object_unpin(obj);
3749         }
3750
3751         drm_gem_object_unreference(obj);
3752         mutex_unlock(&dev->struct_mutex);
3753         return 0;
3754 }
3755
3756 int
3757 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3758                     struct drm_file *file_priv)
3759 {
3760         struct drm_i915_gem_busy *args = data;
3761         struct drm_gem_object *obj;
3762         struct drm_i915_gem_object *obj_priv;
3763
3764         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3765         if (obj == NULL) {
3766                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3767                           args->handle);
3768                 return -EBADF;
3769         }
3770
3771         mutex_lock(&dev->struct_mutex);
3772         /* Update the active list for the hardware's current position.
3773          * Otherwise this only updates on a delayed timer or when irqs are
3774          * actually unmasked, and our working set ends up being larger than
3775          * required.
3776          */
3777         i915_gem_retire_requests(dev);
3778
3779         obj_priv = obj->driver_private;
3780         /* Don't count being on the flushing list against the object being
3781          * done.  Otherwise, a buffer left on the flushing list but not getting
3782          * flushed (because nobody's flushing that domain) won't ever return
3783          * unbusy and get reused by libdrm's bo cache.  The other expected
3784          * consumer of this interface, OpenGL's occlusion queries, also specs
3785          * that the objects get unbusy "eventually" without any interference.
3786          */
3787         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3788
3789         drm_gem_object_unreference(obj);
3790         mutex_unlock(&dev->struct_mutex);
3791         return 0;
3792 }
3793
3794 int
3795 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3796                         struct drm_file *file_priv)
3797 {
3798     return i915_gem_ring_throttle(dev, file_priv);
3799 }
3800
3801 int i915_gem_init_object(struct drm_gem_object *obj)
3802 {
3803         struct drm_i915_gem_object *obj_priv;
3804
3805         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3806         if (obj_priv == NULL)
3807                 return -ENOMEM;
3808
3809         /*
3810          * We've just allocated pages from the kernel,
3811          * so they've just been written by the CPU with
3812          * zeros. They'll need to be clflushed before we
3813          * use them with the GPU.
3814          */
3815         obj->write_domain = I915_GEM_DOMAIN_CPU;
3816         obj->read_domains = I915_GEM_DOMAIN_CPU;
3817
3818         obj_priv->agp_type = AGP_USER_MEMORY;
3819
3820         obj->driver_private = obj_priv;
3821         obj_priv->obj = obj;
3822         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3823         INIT_LIST_HEAD(&obj_priv->list);
3824         INIT_LIST_HEAD(&obj_priv->fence_list);
3825
3826         return 0;
3827 }
3828
3829 void i915_gem_free_object(struct drm_gem_object *obj)
3830 {
3831         struct drm_device *dev = obj->dev;
3832         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3833
3834         while (obj_priv->pin_count > 0)
3835                 i915_gem_object_unpin(obj);
3836
3837         if (obj_priv->phys_obj)
3838                 i915_gem_detach_phys_object(dev, obj);
3839
3840         i915_gem_object_unbind(obj);
3841
3842         if (obj_priv->mmap_offset)
3843                 i915_gem_free_mmap_offset(obj);
3844
3845         kfree(obj_priv->page_cpu_valid);
3846         kfree(obj_priv->bit_17);
3847         kfree(obj->driver_private);
3848 }
3849
3850 /** Unbinds all objects that are on the given buffer list. */
3851 static int
3852 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3853 {
3854         struct drm_gem_object *obj;
3855         struct drm_i915_gem_object *obj_priv;
3856         int ret;
3857
3858         while (!list_empty(head)) {
3859                 obj_priv = list_first_entry(head,
3860                                             struct drm_i915_gem_object,
3861                                             list);
3862                 obj = obj_priv->obj;
3863
3864                 if (obj_priv->pin_count != 0) {
3865                         DRM_ERROR("Pinned object in unbind list\n");
3866                         mutex_unlock(&dev->struct_mutex);
3867                         return -EINVAL;
3868                 }
3869
3870                 ret = i915_gem_object_unbind(obj);
3871                 if (ret != 0) {
3872                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3873                                   ret);
3874                         mutex_unlock(&dev->struct_mutex);
3875                         return ret;
3876                 }
3877         }
3878
3879
3880         return 0;
3881 }
3882
3883 int
3884 i915_gem_idle(struct drm_device *dev)
3885 {
3886         drm_i915_private_t *dev_priv = dev->dev_private;
3887         uint32_t seqno, cur_seqno, last_seqno;
3888         int stuck, ret;
3889
3890         mutex_lock(&dev->struct_mutex);
3891
3892         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3893                 mutex_unlock(&dev->struct_mutex);
3894                 return 0;
3895         }
3896
3897         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3898          * We need to replace this with a semaphore, or something.
3899          */
3900         dev_priv->mm.suspended = 1;
3901         del_timer(&dev_priv->hangcheck_timer);
3902
3903         /* Cancel the retire work handler, wait for it to finish if running
3904          */
3905         mutex_unlock(&dev->struct_mutex);
3906         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3907         mutex_lock(&dev->struct_mutex);
3908
3909         i915_kernel_lost_context(dev);
3910
3911         /* Flush the GPU along with all non-CPU write domains
3912          */
3913         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3914         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3915
3916         if (seqno == 0) {
3917                 mutex_unlock(&dev->struct_mutex);
3918                 return -ENOMEM;
3919         }
3920
3921         dev_priv->mm.waiting_gem_seqno = seqno;
3922         last_seqno = 0;
3923         stuck = 0;
3924         for (;;) {
3925                 cur_seqno = i915_get_gem_seqno(dev);
3926                 if (i915_seqno_passed(cur_seqno, seqno))
3927                         break;
3928                 if (last_seqno == cur_seqno) {
3929                         if (stuck++ > 100) {
3930                                 DRM_ERROR("hardware wedged\n");
3931                                 atomic_set(&dev_priv->mm.wedged, 1);
3932                                 DRM_WAKEUP(&dev_priv->irq_queue);
3933                                 break;
3934                         }
3935                 }
3936                 msleep(10);
3937                 last_seqno = cur_seqno;
3938         }
3939         dev_priv->mm.waiting_gem_seqno = 0;
3940
3941         i915_gem_retire_requests(dev);
3942
3943         spin_lock(&dev_priv->mm.active_list_lock);
3944         if (!atomic_read(&dev_priv->mm.wedged)) {
3945                 /* Active and flushing should now be empty as we've
3946                  * waited for a sequence higher than any pending execbuffer
3947                  */
3948                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3949                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3950                 /* Request should now be empty as we've also waited
3951                  * for the last request in the list
3952                  */
3953                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3954         }
3955
3956         /* Empty the active and flushing lists to inactive.  If there's
3957          * anything left at this point, it means that we're wedged and
3958          * nothing good's going to happen by leaving them there.  So strip
3959          * the GPU domains and just stuff them onto inactive.
3960          */
3961         while (!list_empty(&dev_priv->mm.active_list)) {
3962                 struct drm_i915_gem_object *obj_priv;
3963
3964                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3965                                             struct drm_i915_gem_object,
3966                                             list);
3967                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3968                 i915_gem_object_move_to_inactive(obj_priv->obj);
3969         }
3970         spin_unlock(&dev_priv->mm.active_list_lock);
3971
3972         while (!list_empty(&dev_priv->mm.flushing_list)) {
3973                 struct drm_i915_gem_object *obj_priv;
3974
3975                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3976                                             struct drm_i915_gem_object,
3977                                             list);
3978                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3979                 i915_gem_object_move_to_inactive(obj_priv->obj);
3980         }
3981
3982
3983         /* Move all inactive buffers out of the GTT. */
3984         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3985         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3986         if (ret) {
3987                 mutex_unlock(&dev->struct_mutex);
3988                 return ret;
3989         }
3990
3991         i915_gem_cleanup_ringbuffer(dev);
3992         mutex_unlock(&dev->struct_mutex);
3993
3994         return 0;
3995 }
3996
3997 static int
3998 i915_gem_init_hws(struct drm_device *dev)
3999 {
4000         drm_i915_private_t *dev_priv = dev->dev_private;
4001         struct drm_gem_object *obj;
4002         struct drm_i915_gem_object *obj_priv;
4003         int ret;
4004
4005         /* If we need a physical address for the status page, it's already
4006          * initialized at driver load time.
4007          */
4008         if (!I915_NEED_GFX_HWS(dev))
4009                 return 0;
4010
4011         obj = drm_gem_object_alloc(dev, 4096);
4012         if (obj == NULL) {
4013                 DRM_ERROR("Failed to allocate status page\n");
4014                 return -ENOMEM;
4015         }
4016         obj_priv = obj->driver_private;
4017         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4018
4019         ret = i915_gem_object_pin(obj, 4096);
4020         if (ret != 0) {
4021                 drm_gem_object_unreference(obj);
4022                 return ret;
4023         }
4024
4025         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4026
4027         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4028         if (dev_priv->hw_status_page == NULL) {
4029                 DRM_ERROR("Failed to map status page.\n");
4030                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4031                 i915_gem_object_unpin(obj);
4032                 drm_gem_object_unreference(obj);
4033                 return -EINVAL;
4034         }
4035         dev_priv->hws_obj = obj;
4036         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4037         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4038         I915_READ(HWS_PGA); /* posting read */
4039         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4040
4041         return 0;
4042 }
4043
4044 static void
4045 i915_gem_cleanup_hws(struct drm_device *dev)
4046 {
4047         drm_i915_private_t *dev_priv = dev->dev_private;
4048         struct drm_gem_object *obj;
4049         struct drm_i915_gem_object *obj_priv;
4050
4051         if (dev_priv->hws_obj == NULL)
4052                 return;
4053
4054         obj = dev_priv->hws_obj;
4055         obj_priv = obj->driver_private;
4056
4057         kunmap(obj_priv->pages[0]);
4058         i915_gem_object_unpin(obj);
4059         drm_gem_object_unreference(obj);
4060         dev_priv->hws_obj = NULL;
4061
4062         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4063         dev_priv->hw_status_page = NULL;
4064
4065         /* Write high address into HWS_PGA when disabling. */
4066         I915_WRITE(HWS_PGA, 0x1ffff000);
4067 }
4068
4069 int
4070 i915_gem_init_ringbuffer(struct drm_device *dev)
4071 {
4072         drm_i915_private_t *dev_priv = dev->dev_private;
4073         struct drm_gem_object *obj;
4074         struct drm_i915_gem_object *obj_priv;
4075         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4076         int ret;
4077         u32 head;
4078
4079         ret = i915_gem_init_hws(dev);
4080         if (ret != 0)
4081                 return ret;
4082
4083         obj = drm_gem_object_alloc(dev, 128 * 1024);
4084         if (obj == NULL) {
4085                 DRM_ERROR("Failed to allocate ringbuffer\n");
4086                 i915_gem_cleanup_hws(dev);
4087                 return -ENOMEM;
4088         }
4089         obj_priv = obj->driver_private;
4090
4091         ret = i915_gem_object_pin(obj, 4096);
4092         if (ret != 0) {
4093                 drm_gem_object_unreference(obj);
4094                 i915_gem_cleanup_hws(dev);
4095                 return ret;
4096         }
4097
4098         /* Set up the kernel mapping for the ring. */
4099         ring->Size = obj->size;
4100
4101         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4102         ring->map.size = obj->size;
4103         ring->map.type = 0;
4104         ring->map.flags = 0;
4105         ring->map.mtrr = 0;
4106
4107         drm_core_ioremap_wc(&ring->map, dev);
4108         if (ring->map.handle == NULL) {
4109                 DRM_ERROR("Failed to map ringbuffer.\n");
4110                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4111                 i915_gem_object_unpin(obj);
4112                 drm_gem_object_unreference(obj);
4113                 i915_gem_cleanup_hws(dev);
4114                 return -EINVAL;
4115         }
4116         ring->ring_obj = obj;
4117         ring->virtual_start = ring->map.handle;
4118
4119         /* Stop the ring if it's running. */
4120         I915_WRITE(PRB0_CTL, 0);
4121         I915_WRITE(PRB0_TAIL, 0);
4122         I915_WRITE(PRB0_HEAD, 0);
4123
4124         /* Initialize the ring. */
4125         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4126         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4127
4128         /* G45 ring initialization fails to reset head to zero */
4129         if (head != 0) {
4130                 DRM_ERROR("Ring head not reset to zero "
4131                           "ctl %08x head %08x tail %08x start %08x\n",
4132                           I915_READ(PRB0_CTL),
4133                           I915_READ(PRB0_HEAD),
4134                           I915_READ(PRB0_TAIL),
4135                           I915_READ(PRB0_START));
4136                 I915_WRITE(PRB0_HEAD, 0);
4137
4138                 DRM_ERROR("Ring head forced to zero "
4139                           "ctl %08x head %08x tail %08x start %08x\n",
4140                           I915_READ(PRB0_CTL),
4141                           I915_READ(PRB0_HEAD),
4142                           I915_READ(PRB0_TAIL),
4143                           I915_READ(PRB0_START));
4144         }
4145
4146         I915_WRITE(PRB0_CTL,
4147                    ((obj->size - 4096) & RING_NR_PAGES) |
4148                    RING_NO_REPORT |
4149                    RING_VALID);
4150
4151         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4152
4153         /* If the head is still not zero, the ring is dead */
4154         if (head != 0) {
4155                 DRM_ERROR("Ring initialization failed "
4156                           "ctl %08x head %08x tail %08x start %08x\n",
4157                           I915_READ(PRB0_CTL),
4158                           I915_READ(PRB0_HEAD),
4159                           I915_READ(PRB0_TAIL),
4160                           I915_READ(PRB0_START));
4161                 return -EIO;
4162         }
4163
4164         /* Update our cache of the ring state */
4165         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4166                 i915_kernel_lost_context(dev);
4167         else {
4168                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4169                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4170                 ring->space = ring->head - (ring->tail + 8);
4171                 if (ring->space < 0)
4172                         ring->space += ring->Size;
4173         }
4174
4175         return 0;
4176 }
4177
4178 void
4179 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4180 {
4181         drm_i915_private_t *dev_priv = dev->dev_private;
4182
4183         if (dev_priv->ring.ring_obj == NULL)
4184                 return;
4185
4186         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4187
4188         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4189         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4190         dev_priv->ring.ring_obj = NULL;
4191         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4192
4193         i915_gem_cleanup_hws(dev);
4194 }
4195
4196 int
4197 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4198                        struct drm_file *file_priv)
4199 {
4200         drm_i915_private_t *dev_priv = dev->dev_private;
4201         int ret;
4202
4203         if (drm_core_check_feature(dev, DRIVER_MODESET))
4204                 return 0;
4205
4206         if (atomic_read(&dev_priv->mm.wedged)) {
4207                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4208                 atomic_set(&dev_priv->mm.wedged, 0);
4209         }
4210
4211         mutex_lock(&dev->struct_mutex);
4212         dev_priv->mm.suspended = 0;
4213
4214         ret = i915_gem_init_ringbuffer(dev);
4215         if (ret != 0) {
4216                 mutex_unlock(&dev->struct_mutex);
4217                 return ret;
4218         }
4219
4220         spin_lock(&dev_priv->mm.active_list_lock);
4221         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4222         spin_unlock(&dev_priv->mm.active_list_lock);
4223
4224         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4225         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4226         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4227         mutex_unlock(&dev->struct_mutex);
4228
4229         drm_irq_install(dev);
4230
4231         return 0;
4232 }
4233
4234 int
4235 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4236                        struct drm_file *file_priv)
4237 {
4238         int ret;
4239
4240         if (drm_core_check_feature(dev, DRIVER_MODESET))
4241                 return 0;
4242
4243         ret = i915_gem_idle(dev);
4244         drm_irq_uninstall(dev);
4245
4246         return ret;
4247 }
4248
4249 void
4250 i915_gem_lastclose(struct drm_device *dev)
4251 {
4252         int ret;
4253
4254         if (drm_core_check_feature(dev, DRIVER_MODESET))
4255                 return;
4256
4257         ret = i915_gem_idle(dev);
4258         if (ret)
4259                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4260 }
4261
4262 void
4263 i915_gem_load(struct drm_device *dev)
4264 {
4265         int i;
4266         drm_i915_private_t *dev_priv = dev->dev_private;
4267
4268         spin_lock_init(&dev_priv->mm.active_list_lock);
4269         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4270         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4271         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4272         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4273         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4274         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4275                           i915_gem_retire_work_handler);
4276         dev_priv->mm.next_gem_seqno = 1;
4277
4278         /* Old X drivers will take 0-2 for front, back, depth buffers */
4279         dev_priv->fence_reg_start = 3;
4280
4281         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4282                 dev_priv->num_fence_regs = 16;
4283         else
4284                 dev_priv->num_fence_regs = 8;
4285
4286         /* Initialize fence registers to zero */
4287         if (IS_I965G(dev)) {
4288                 for (i = 0; i < 16; i++)
4289                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4290         } else {
4291                 for (i = 0; i < 8; i++)
4292                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4293                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4294                         for (i = 0; i < 8; i++)
4295                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4296         }
4297
4298         i915_gem_detect_bit_6_swizzle(dev);
4299 }
4300
4301 /*
4302  * Create a physically contiguous memory object for this object
4303  * e.g. for cursor + overlay regs
4304  */
4305 int i915_gem_init_phys_object(struct drm_device *dev,
4306                               int id, int size)
4307 {
4308         drm_i915_private_t *dev_priv = dev->dev_private;
4309         struct drm_i915_gem_phys_object *phys_obj;
4310         int ret;
4311
4312         if (dev_priv->mm.phys_objs[id - 1] || !size)
4313                 return 0;
4314
4315         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4316         if (!phys_obj)
4317                 return -ENOMEM;
4318
4319         phys_obj->id = id;
4320
4321         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4322         if (!phys_obj->handle) {
4323                 ret = -ENOMEM;
4324                 goto kfree_obj;
4325         }
4326 #ifdef CONFIG_X86
4327         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4328 #endif
4329
4330         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4331
4332         return 0;
4333 kfree_obj:
4334         kfree(phys_obj);
4335         return ret;
4336 }
4337
4338 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4339 {
4340         drm_i915_private_t *dev_priv = dev->dev_private;
4341         struct drm_i915_gem_phys_object *phys_obj;
4342
4343         if (!dev_priv->mm.phys_objs[id - 1])
4344                 return;
4345
4346         phys_obj = dev_priv->mm.phys_objs[id - 1];
4347         if (phys_obj->cur_obj) {
4348                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4349         }
4350
4351 #ifdef CONFIG_X86
4352         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4353 #endif
4354         drm_pci_free(dev, phys_obj->handle);
4355         kfree(phys_obj);
4356         dev_priv->mm.phys_objs[id - 1] = NULL;
4357 }
4358
4359 void i915_gem_free_all_phys_object(struct drm_device *dev)
4360 {
4361         int i;
4362
4363         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4364                 i915_gem_free_phys_object(dev, i);
4365 }
4366
4367 void i915_gem_detach_phys_object(struct drm_device *dev,
4368                                  struct drm_gem_object *obj)
4369 {
4370         struct drm_i915_gem_object *obj_priv;
4371         int i;
4372         int ret;
4373         int page_count;
4374
4375         obj_priv = obj->driver_private;
4376         if (!obj_priv->phys_obj)
4377                 return;
4378
4379         ret = i915_gem_object_get_pages(obj);
4380         if (ret)
4381                 goto out;
4382
4383         page_count = obj->size / PAGE_SIZE;
4384
4385         for (i = 0; i < page_count; i++) {
4386                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4387                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4388
4389                 memcpy(dst, src, PAGE_SIZE);
4390                 kunmap_atomic(dst, KM_USER0);
4391         }
4392         drm_clflush_pages(obj_priv->pages, page_count);
4393         drm_agp_chipset_flush(dev);
4394
4395         i915_gem_object_put_pages(obj);
4396 out:
4397         obj_priv->phys_obj->cur_obj = NULL;
4398         obj_priv->phys_obj = NULL;
4399 }
4400
4401 int
4402 i915_gem_attach_phys_object(struct drm_device *dev,
4403                             struct drm_gem_object *obj, int id)
4404 {
4405         drm_i915_private_t *dev_priv = dev->dev_private;
4406         struct drm_i915_gem_object *obj_priv;
4407         int ret = 0;
4408         int page_count;
4409         int i;
4410
4411         if (id > I915_MAX_PHYS_OBJECT)
4412                 return -EINVAL;
4413
4414         obj_priv = obj->driver_private;
4415
4416         if (obj_priv->phys_obj) {
4417                 if (obj_priv->phys_obj->id == id)
4418                         return 0;
4419                 i915_gem_detach_phys_object(dev, obj);
4420         }
4421
4422
4423         /* create a new object */
4424         if (!dev_priv->mm.phys_objs[id - 1]) {
4425                 ret = i915_gem_init_phys_object(dev, id,
4426                                                 obj->size);
4427                 if (ret) {
4428                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4429                         goto out;
4430                 }
4431         }
4432
4433         /* bind to the object */
4434         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4435         obj_priv->phys_obj->cur_obj = obj;
4436
4437         ret = i915_gem_object_get_pages(obj);
4438         if (ret) {
4439                 DRM_ERROR("failed to get page list\n");
4440                 goto out;
4441         }
4442
4443         page_count = obj->size / PAGE_SIZE;
4444
4445         for (i = 0; i < page_count; i++) {
4446                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4447                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4448
4449                 memcpy(dst, src, PAGE_SIZE);
4450                 kunmap_atomic(src, KM_USER0);
4451         }
4452
4453         i915_gem_object_put_pages(obj);
4454
4455         return 0;
4456 out:
4457         return ret;
4458 }
4459
4460 static int
4461 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4462                      struct drm_i915_gem_pwrite *args,
4463                      struct drm_file *file_priv)
4464 {
4465         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4466         void *obj_addr;
4467         int ret;
4468         char __user *user_data;
4469
4470         user_data = (char __user *) (uintptr_t) args->data_ptr;
4471         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4472
4473         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4474         ret = copy_from_user(obj_addr, user_data, args->size);
4475         if (ret)
4476                 return -EFAULT;
4477
4478         drm_agp_chipset_flush(dev);
4479         return 0;
4480 }
4481
4482 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4483 {
4484         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4485
4486         /* Clean up our request list when the client is going away, so that
4487          * later retire_requests won't dereference our soon-to-be-gone
4488          * file_priv.
4489          */
4490         mutex_lock(&dev->struct_mutex);
4491         while (!list_empty(&i915_file_priv->mm.request_list))
4492                 list_del_init(i915_file_priv->mm.request_list.next);
4493         mutex_unlock(&dev->struct_mutex);
4494 }