drm/i915: Allow tiling of objects with bit 17 swizzling by the CPU.
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41                                              int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43                                                      uint64_t offset,
44                                                      uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48                                            unsigned alignment);
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int handle, ret;
116
117         args->size = roundup(args->size, PAGE_SIZE);
118
119         /* Allocate the new object */
120         obj = drm_gem_object_alloc(dev, args->size);
121         if (obj == NULL)
122                 return -ENOMEM;
123
124         ret = drm_gem_handle_create(file_priv, obj, &handle);
125         mutex_lock(&dev->struct_mutex);
126         drm_gem_object_handle_unreference(obj);
127         mutex_unlock(&dev->struct_mutex);
128
129         if (ret)
130                 return ret;
131
132         args->handle = handle;
133
134         return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139                 loff_t page_base, int page_offset,
140                 char __user *data,
141                 int length)
142 {
143         char __iomem *vaddr;
144         int unwritten;
145
146         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147         if (vaddr == NULL)
148                 return -ENOMEM;
149         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150         kunmap_atomic(vaddr, KM_USER0);
151
152         if (unwritten)
153                 return -EFAULT;
154
155         return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160         drm_i915_private_t *dev_priv = obj->dev->dev_private;
161         struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164                 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169                 int dst_offset,
170                 struct page *src_page,
171                 int src_offset,
172                 int length)
173 {
174         char *dst_vaddr, *src_vaddr;
175
176         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177         if (dst_vaddr == NULL)
178                 return -ENOMEM;
179
180         src_vaddr = kmap_atomic(src_page, KM_USER1);
181         if (src_vaddr == NULL) {
182                 kunmap_atomic(dst_vaddr, KM_USER0);
183                 return -ENOMEM;
184         }
185
186         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188         kunmap_atomic(src_vaddr, KM_USER1);
189         kunmap_atomic(dst_vaddr, KM_USER0);
190
191         return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196                       int gpu_offset,
197                       struct page *cpu_page,
198                       int cpu_offset,
199                       int length,
200                       int is_read)
201 {
202         char *gpu_vaddr, *cpu_vaddr;
203
204         /* Use the unswizzled path if this page isn't affected. */
205         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206                 if (is_read)
207                         return slow_shmem_copy(cpu_page, cpu_offset,
208                                                gpu_page, gpu_offset, length);
209                 else
210                         return slow_shmem_copy(gpu_page, gpu_offset,
211                                                cpu_page, cpu_offset, length);
212         }
213
214         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215         if (gpu_vaddr == NULL)
216                 return -ENOMEM;
217
218         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219         if (cpu_vaddr == NULL) {
220                 kunmap_atomic(gpu_vaddr, KM_USER0);
221                 return -ENOMEM;
222         }
223
224         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225          * XORing with the other bits (A9 for Y, A9 and A10 for X)
226          */
227         while (length > 0) {
228                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229                 int this_length = min(cacheline_end - gpu_offset, length);
230                 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232                 if (is_read) {
233                         memcpy(cpu_vaddr + cpu_offset,
234                                gpu_vaddr + swizzled_gpu_offset,
235                                this_length);
236                 } else {
237                         memcpy(gpu_vaddr + swizzled_gpu_offset,
238                                cpu_vaddr + cpu_offset,
239                                this_length);
240                 }
241                 cpu_offset += this_length;
242                 gpu_offset += this_length;
243                 length -= this_length;
244         }
245
246         kunmap_atomic(cpu_vaddr, KM_USER1);
247         kunmap_atomic(gpu_vaddr, KM_USER0);
248
249         return 0;
250 }
251
252 /**
253  * This is the fast shmem pread path, which attempts to copy_from_user directly
254  * from the backing pages of the object to the user's address space.  On a
255  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256  */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259                           struct drm_i915_gem_pread *args,
260                           struct drm_file *file_priv)
261 {
262         struct drm_i915_gem_object *obj_priv = obj->driver_private;
263         ssize_t remain;
264         loff_t offset, page_base;
265         char __user *user_data;
266         int page_offset, page_length;
267         int ret;
268
269         user_data = (char __user *) (uintptr_t) args->data_ptr;
270         remain = args->size;
271
272         mutex_lock(&dev->struct_mutex);
273
274         ret = i915_gem_object_get_pages(obj);
275         if (ret != 0)
276                 goto fail_unlock;
277
278         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279                                                         args->size);
280         if (ret != 0)
281                 goto fail_put_pages;
282
283         obj_priv = obj->driver_private;
284         offset = args->offset;
285
286         while (remain > 0) {
287                 /* Operation in this page
288                  *
289                  * page_base = page offset within aperture
290                  * page_offset = offset within page
291                  * page_length = bytes to copy for this page
292                  */
293                 page_base = (offset & ~(PAGE_SIZE-1));
294                 page_offset = offset & (PAGE_SIZE-1);
295                 page_length = remain;
296                 if ((page_offset + remain) > PAGE_SIZE)
297                         page_length = PAGE_SIZE - page_offset;
298
299                 ret = fast_shmem_read(obj_priv->pages,
300                                       page_base, page_offset,
301                                       user_data, page_length);
302                 if (ret)
303                         goto fail_put_pages;
304
305                 remain -= page_length;
306                 user_data += page_length;
307                 offset += page_length;
308         }
309
310 fail_put_pages:
311         i915_gem_object_put_pages(obj);
312 fail_unlock:
313         mutex_unlock(&dev->struct_mutex);
314
315         return ret;
316 }
317
318 /**
319  * This is the fallback shmem pread path, which allocates temporary storage
320  * in kernel space to copy_to_user into outside of the struct_mutex, so we
321  * can copy out of the object's backing pages while holding the struct mutex
322  * and not take page faults.
323  */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326                           struct drm_i915_gem_pread *args,
327                           struct drm_file *file_priv)
328 {
329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
330         struct mm_struct *mm = current->mm;
331         struct page **user_pages;
332         ssize_t remain;
333         loff_t offset, pinned_pages, i;
334         loff_t first_data_page, last_data_page, num_pages;
335         int shmem_page_index, shmem_page_offset;
336         int data_page_index,  data_page_offset;
337         int page_length;
338         int ret;
339         uint64_t data_ptr = args->data_ptr;
340         int do_bit17_swizzling;
341
342         remain = args->size;
343
344         /* Pin the user pages containing the data.  We can't fault while
345          * holding the struct mutex, yet we want to hold it while
346          * dereferencing the user data.
347          */
348         first_data_page = data_ptr / PAGE_SIZE;
349         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350         num_pages = last_data_page - first_data_page + 1;
351
352         user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
353         if (user_pages == NULL)
354                 return -ENOMEM;
355
356         down_read(&mm->mmap_sem);
357         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358                                       num_pages, 1, 0, user_pages, NULL);
359         up_read(&mm->mmap_sem);
360         if (pinned_pages < num_pages) {
361                 ret = -EFAULT;
362                 goto fail_put_user_pages;
363         }
364
365         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367         mutex_lock(&dev->struct_mutex);
368
369         ret = i915_gem_object_get_pages(obj);
370         if (ret != 0)
371                 goto fail_unlock;
372
373         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374                                                         args->size);
375         if (ret != 0)
376                 goto fail_put_pages;
377
378         obj_priv = obj->driver_private;
379         offset = args->offset;
380
381         while (remain > 0) {
382                 /* Operation in this page
383                  *
384                  * shmem_page_index = page number within shmem file
385                  * shmem_page_offset = offset within page in shmem file
386                  * data_page_index = page number in get_user_pages return
387                  * data_page_offset = offset with data_page_index page.
388                  * page_length = bytes to copy for this page
389                  */
390                 shmem_page_index = offset / PAGE_SIZE;
391                 shmem_page_offset = offset & ~PAGE_MASK;
392                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393                 data_page_offset = data_ptr & ~PAGE_MASK;
394
395                 page_length = remain;
396                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397                         page_length = PAGE_SIZE - shmem_page_offset;
398                 if ((data_page_offset + page_length) > PAGE_SIZE)
399                         page_length = PAGE_SIZE - data_page_offset;
400
401                 if (do_bit17_swizzling) {
402                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403                                                     shmem_page_offset,
404                                                     user_pages[data_page_index],
405                                                     data_page_offset,
406                                                     page_length,
407                                                     1);
408                 } else {
409                         ret = slow_shmem_copy(user_pages[data_page_index],
410                                               data_page_offset,
411                                               obj_priv->pages[shmem_page_index],
412                                               shmem_page_offset,
413                                               page_length);
414                 }
415                 if (ret)
416                         goto fail_put_pages;
417
418                 remain -= page_length;
419                 data_ptr += page_length;
420                 offset += page_length;
421         }
422
423 fail_put_pages:
424         i915_gem_object_put_pages(obj);
425 fail_unlock:
426         mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428         for (i = 0; i < pinned_pages; i++) {
429                 SetPageDirty(user_pages[i]);
430                 page_cache_release(user_pages[i]);
431         }
432         kfree(user_pages);
433
434         return ret;
435 }
436
437 /**
438  * Reads data from the object referenced by handle.
439  *
440  * On error, the contents of *data are undefined.
441  */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444                      struct drm_file *file_priv)
445 {
446         struct drm_i915_gem_pread *args = data;
447         struct drm_gem_object *obj;
448         struct drm_i915_gem_object *obj_priv;
449         int ret;
450
451         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452         if (obj == NULL)
453                 return -EBADF;
454         obj_priv = obj->driver_private;
455
456         /* Bounds check source.
457          *
458          * XXX: This could use review for overflow issues...
459          */
460         if (args->offset > obj->size || args->size > obj->size ||
461             args->offset + args->size > obj->size) {
462                 drm_gem_object_unreference(obj);
463                 return -EINVAL;
464         }
465
466         if (i915_gem_object_needs_bit17_swizzle(obj)) {
467                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468         } else {
469                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470                 if (ret != 0)
471                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
472                                                         file_priv);
473         }
474
475         drm_gem_object_unreference(obj);
476
477         return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481  * page faults in the source data
482  */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486                 loff_t page_base, int page_offset,
487                 char __user *user_data,
488                 int length)
489 {
490         char *vaddr_atomic;
491         unsigned long unwritten;
492
493         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495                                                       user_data, length);
496         io_mapping_unmap_atomic(vaddr_atomic);
497         if (unwritten)
498                 return -EFAULT;
499         return 0;
500 }
501
502 /* Here's the write path which can sleep for
503  * page faults
504  */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508                   loff_t gtt_base, int gtt_offset,
509                   struct page *user_page, int user_offset,
510                   int length)
511 {
512         char *src_vaddr, *dst_vaddr;
513         unsigned long unwritten;
514
515         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516         src_vaddr = kmap_atomic(user_page, KM_USER1);
517         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518                                                       src_vaddr + user_offset,
519                                                       length);
520         kunmap_atomic(src_vaddr, KM_USER1);
521         io_mapping_unmap_atomic(dst_vaddr);
522         if (unwritten)
523                 return -EFAULT;
524         return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529                  loff_t page_base, int page_offset,
530                  char __user *data,
531                  int length)
532 {
533         char __iomem *vaddr;
534         unsigned long unwritten;
535
536         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537         if (vaddr == NULL)
538                 return -ENOMEM;
539         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540         kunmap_atomic(vaddr, KM_USER0);
541
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /**
548  * This is the fast pwrite path, where we copy the data directly from the
549  * user into the GTT, uncached.
550  */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553                          struct drm_i915_gem_pwrite *args,
554                          struct drm_file *file_priv)
555 {
556         struct drm_i915_gem_object *obj_priv = obj->driver_private;
557         drm_i915_private_t *dev_priv = dev->dev_private;
558         ssize_t remain;
559         loff_t offset, page_base;
560         char __user *user_data;
561         int page_offset, page_length;
562         int ret;
563
564         user_data = (char __user *) (uintptr_t) args->data_ptr;
565         remain = args->size;
566         if (!access_ok(VERIFY_READ, user_data, remain))
567                 return -EFAULT;
568
569
570         mutex_lock(&dev->struct_mutex);
571         ret = i915_gem_object_pin(obj, 0);
572         if (ret) {
573                 mutex_unlock(&dev->struct_mutex);
574                 return ret;
575         }
576         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577         if (ret)
578                 goto fail;
579
580         obj_priv = obj->driver_private;
581         offset = obj_priv->gtt_offset + args->offset;
582
583         while (remain > 0) {
584                 /* Operation in this page
585                  *
586                  * page_base = page offset within aperture
587                  * page_offset = offset within page
588                  * page_length = bytes to copy for this page
589                  */
590                 page_base = (offset & ~(PAGE_SIZE-1));
591                 page_offset = offset & (PAGE_SIZE-1);
592                 page_length = remain;
593                 if ((page_offset + remain) > PAGE_SIZE)
594                         page_length = PAGE_SIZE - page_offset;
595
596                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597                                        page_offset, user_data, page_length);
598
599                 /* If we get a fault while copying data, then (presumably) our
600                  * source page isn't available.  Return the error and we'll
601                  * retry in the slow path.
602                  */
603                 if (ret)
604                         goto fail;
605
606                 remain -= page_length;
607                 user_data += page_length;
608                 offset += page_length;
609         }
610
611 fail:
612         i915_gem_object_unpin(obj);
613         mutex_unlock(&dev->struct_mutex);
614
615         return ret;
616 }
617
618 /**
619  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620  * the memory and maps it using kmap_atomic for copying.
621  *
622  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624  */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627                          struct drm_i915_gem_pwrite *args,
628                          struct drm_file *file_priv)
629 {
630         struct drm_i915_gem_object *obj_priv = obj->driver_private;
631         drm_i915_private_t *dev_priv = dev->dev_private;
632         ssize_t remain;
633         loff_t gtt_page_base, offset;
634         loff_t first_data_page, last_data_page, num_pages;
635         loff_t pinned_pages, i;
636         struct page **user_pages;
637         struct mm_struct *mm = current->mm;
638         int gtt_page_offset, data_page_offset, data_page_index, page_length;
639         int ret;
640         uint64_t data_ptr = args->data_ptr;
641
642         remain = args->size;
643
644         /* Pin the user pages containing the data.  We can't fault while
645          * holding the struct mutex, and all of the pwrite implementations
646          * want to hold it while dereferencing the user data.
647          */
648         first_data_page = data_ptr / PAGE_SIZE;
649         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650         num_pages = last_data_page - first_data_page + 1;
651
652         user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
653         if (user_pages == NULL)
654                 return -ENOMEM;
655
656         down_read(&mm->mmap_sem);
657         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658                                       num_pages, 0, 0, user_pages, NULL);
659         up_read(&mm->mmap_sem);
660         if (pinned_pages < num_pages) {
661                 ret = -EFAULT;
662                 goto out_unpin_pages;
663         }
664
665         mutex_lock(&dev->struct_mutex);
666         ret = i915_gem_object_pin(obj, 0);
667         if (ret)
668                 goto out_unlock;
669
670         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671         if (ret)
672                 goto out_unpin_object;
673
674         obj_priv = obj->driver_private;
675         offset = obj_priv->gtt_offset + args->offset;
676
677         while (remain > 0) {
678                 /* Operation in this page
679                  *
680                  * gtt_page_base = page offset within aperture
681                  * gtt_page_offset = offset within page in aperture
682                  * data_page_index = page number in get_user_pages return
683                  * data_page_offset = offset with data_page_index page.
684                  * page_length = bytes to copy for this page
685                  */
686                 gtt_page_base = offset & PAGE_MASK;
687                 gtt_page_offset = offset & ~PAGE_MASK;
688                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689                 data_page_offset = data_ptr & ~PAGE_MASK;
690
691                 page_length = remain;
692                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693                         page_length = PAGE_SIZE - gtt_page_offset;
694                 if ((data_page_offset + page_length) > PAGE_SIZE)
695                         page_length = PAGE_SIZE - data_page_offset;
696
697                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698                                         gtt_page_base, gtt_page_offset,
699                                         user_pages[data_page_index],
700                                         data_page_offset,
701                                         page_length);
702
703                 /* If we get a fault while copying data, then (presumably) our
704                  * source page isn't available.  Return the error and we'll
705                  * retry in the slow path.
706                  */
707                 if (ret)
708                         goto out_unpin_object;
709
710                 remain -= page_length;
711                 offset += page_length;
712                 data_ptr += page_length;
713         }
714
715 out_unpin_object:
716         i915_gem_object_unpin(obj);
717 out_unlock:
718         mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720         for (i = 0; i < pinned_pages; i++)
721                 page_cache_release(user_pages[i]);
722         kfree(user_pages);
723
724         return ret;
725 }
726
727 /**
728  * This is the fast shmem pwrite path, which attempts to directly
729  * copy_from_user into the kmapped pages backing the object.
730  */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733                            struct drm_i915_gem_pwrite *args,
734                            struct drm_file *file_priv)
735 {
736         struct drm_i915_gem_object *obj_priv = obj->driver_private;
737         ssize_t remain;
738         loff_t offset, page_base;
739         char __user *user_data;
740         int page_offset, page_length;
741         int ret;
742
743         user_data = (char __user *) (uintptr_t) args->data_ptr;
744         remain = args->size;
745
746         mutex_lock(&dev->struct_mutex);
747
748         ret = i915_gem_object_get_pages(obj);
749         if (ret != 0)
750                 goto fail_unlock;
751
752         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753         if (ret != 0)
754                 goto fail_put_pages;
755
756         obj_priv = obj->driver_private;
757         offset = args->offset;
758         obj_priv->dirty = 1;
759
760         while (remain > 0) {
761                 /* Operation in this page
762                  *
763                  * page_base = page offset within aperture
764                  * page_offset = offset within page
765                  * page_length = bytes to copy for this page
766                  */
767                 page_base = (offset & ~(PAGE_SIZE-1));
768                 page_offset = offset & (PAGE_SIZE-1);
769                 page_length = remain;
770                 if ((page_offset + remain) > PAGE_SIZE)
771                         page_length = PAGE_SIZE - page_offset;
772
773                 ret = fast_shmem_write(obj_priv->pages,
774                                        page_base, page_offset,
775                                        user_data, page_length);
776                 if (ret)
777                         goto fail_put_pages;
778
779                 remain -= page_length;
780                 user_data += page_length;
781                 offset += page_length;
782         }
783
784 fail_put_pages:
785         i915_gem_object_put_pages(obj);
786 fail_unlock:
787         mutex_unlock(&dev->struct_mutex);
788
789         return ret;
790 }
791
792 /**
793  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794  * the memory and maps it using kmap_atomic for copying.
795  *
796  * This avoids taking mmap_sem for faulting on the user's address while the
797  * struct_mutex is held.
798  */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801                            struct drm_i915_gem_pwrite *args,
802                            struct drm_file *file_priv)
803 {
804         struct drm_i915_gem_object *obj_priv = obj->driver_private;
805         struct mm_struct *mm = current->mm;
806         struct page **user_pages;
807         ssize_t remain;
808         loff_t offset, pinned_pages, i;
809         loff_t first_data_page, last_data_page, num_pages;
810         int shmem_page_index, shmem_page_offset;
811         int data_page_index,  data_page_offset;
812         int page_length;
813         int ret;
814         uint64_t data_ptr = args->data_ptr;
815         int do_bit17_swizzling;
816
817         remain = args->size;
818
819         /* Pin the user pages containing the data.  We can't fault while
820          * holding the struct mutex, and all of the pwrite implementations
821          * want to hold it while dereferencing the user data.
822          */
823         first_data_page = data_ptr / PAGE_SIZE;
824         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825         num_pages = last_data_page - first_data_page + 1;
826
827         user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
828         if (user_pages == NULL)
829                 return -ENOMEM;
830
831         down_read(&mm->mmap_sem);
832         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833                                       num_pages, 0, 0, user_pages, NULL);
834         up_read(&mm->mmap_sem);
835         if (pinned_pages < num_pages) {
836                 ret = -EFAULT;
837                 goto fail_put_user_pages;
838         }
839
840         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842         mutex_lock(&dev->struct_mutex);
843
844         ret = i915_gem_object_get_pages(obj);
845         if (ret != 0)
846                 goto fail_unlock;
847
848         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849         if (ret != 0)
850                 goto fail_put_pages;
851
852         obj_priv = obj->driver_private;
853         offset = args->offset;
854         obj_priv->dirty = 1;
855
856         while (remain > 0) {
857                 /* Operation in this page
858                  *
859                  * shmem_page_index = page number within shmem file
860                  * shmem_page_offset = offset within page in shmem file
861                  * data_page_index = page number in get_user_pages return
862                  * data_page_offset = offset with data_page_index page.
863                  * page_length = bytes to copy for this page
864                  */
865                 shmem_page_index = offset / PAGE_SIZE;
866                 shmem_page_offset = offset & ~PAGE_MASK;
867                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868                 data_page_offset = data_ptr & ~PAGE_MASK;
869
870                 page_length = remain;
871                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872                         page_length = PAGE_SIZE - shmem_page_offset;
873                 if ((data_page_offset + page_length) > PAGE_SIZE)
874                         page_length = PAGE_SIZE - data_page_offset;
875
876                 if (do_bit17_swizzling) {
877                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878                                                     shmem_page_offset,
879                                                     user_pages[data_page_index],
880                                                     data_page_offset,
881                                                     page_length,
882                                                     0);
883                 } else {
884                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885                                               shmem_page_offset,
886                                               user_pages[data_page_index],
887                                               data_page_offset,
888                                               page_length);
889                 }
890                 if (ret)
891                         goto fail_put_pages;
892
893                 remain -= page_length;
894                 data_ptr += page_length;
895                 offset += page_length;
896         }
897
898 fail_put_pages:
899         i915_gem_object_put_pages(obj);
900 fail_unlock:
901         mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903         for (i = 0; i < pinned_pages; i++)
904                 page_cache_release(user_pages[i]);
905         kfree(user_pages);
906
907         return ret;
908 }
909
910 /**
911  * Writes data to the object referenced by handle.
912  *
913  * On error, the contents of the buffer that were to be modified are undefined.
914  */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917                       struct drm_file *file_priv)
918 {
919         struct drm_i915_gem_pwrite *args = data;
920         struct drm_gem_object *obj;
921         struct drm_i915_gem_object *obj_priv;
922         int ret = 0;
923
924         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925         if (obj == NULL)
926                 return -EBADF;
927         obj_priv = obj->driver_private;
928
929         /* Bounds check destination.
930          *
931          * XXX: This could use review for overflow issues...
932          */
933         if (args->offset > obj->size || args->size > obj->size ||
934             args->offset + args->size > obj->size) {
935                 drm_gem_object_unreference(obj);
936                 return -EINVAL;
937         }
938
939         /* We can only do the GTT pwrite on untiled buffers, as otherwise
940          * it would end up going through the fenced access, and we'll get
941          * different detiling behavior between reading and writing.
942          * pread/pwrite currently are reading and writing from the CPU
943          * perspective, requiring manual detiling by the client.
944          */
945         if (obj_priv->phys_obj)
946                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948                  dev->gtt_total != 0) {
949                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950                 if (ret == -EFAULT) {
951                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952                                                        file_priv);
953                 }
954         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956         } else {
957                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958                 if (ret == -EFAULT) {
959                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960                                                          file_priv);
961                 }
962         }
963
964 #if WATCH_PWRITE
965         if (ret)
966                 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969         drm_gem_object_unreference(obj);
970
971         return ret;
972 }
973
974 /**
975  * Called when user space prepares to use an object with the CPU, either
976  * through the mmap ioctl's mapping or a GTT mapping.
977  */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980                           struct drm_file *file_priv)
981 {
982         struct drm_i915_gem_set_domain *args = data;
983         struct drm_gem_object *obj;
984         uint32_t read_domains = args->read_domains;
985         uint32_t write_domain = args->write_domain;
986         int ret;
987
988         if (!(dev->driver->driver_features & DRIVER_GEM))
989                 return -ENODEV;
990
991         /* Only handle setting domains to types used by the CPU. */
992         if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
993                 return -EINVAL;
994
995         if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
996                 return -EINVAL;
997
998         /* Having something in the write domain implies it's in the read
999          * domain, and only that read domain.  Enforce that in the request.
1000          */
1001         if (write_domain != 0 && read_domains != write_domain)
1002                 return -EINVAL;
1003
1004         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005         if (obj == NULL)
1006                 return -EBADF;
1007
1008         mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011                  obj, obj->size, read_domains, write_domain);
1012 #endif
1013         if (read_domains & I915_GEM_DOMAIN_GTT) {
1014                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015
1016                 /* Silently promote "you're not bound, there was nothing to do"
1017                  * to success, since the client was just asking us to
1018                  * make sure everything was done.
1019                  */
1020                 if (ret == -EINVAL)
1021                         ret = 0;
1022         } else {
1023                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1024         }
1025
1026         drm_gem_object_unreference(obj);
1027         mutex_unlock(&dev->struct_mutex);
1028         return ret;
1029 }
1030
1031 /**
1032  * Called when user space has done writes to this buffer
1033  */
1034 int
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036                       struct drm_file *file_priv)
1037 {
1038         struct drm_i915_gem_sw_finish *args = data;
1039         struct drm_gem_object *obj;
1040         struct drm_i915_gem_object *obj_priv;
1041         int ret = 0;
1042
1043         if (!(dev->driver->driver_features & DRIVER_GEM))
1044                 return -ENODEV;
1045
1046         mutex_lock(&dev->struct_mutex);
1047         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048         if (obj == NULL) {
1049                 mutex_unlock(&dev->struct_mutex);
1050                 return -EBADF;
1051         }
1052
1053 #if WATCH_BUF
1054         DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055                  __func__, args->handle, obj, obj->size);
1056 #endif
1057         obj_priv = obj->driver_private;
1058
1059         /* Pinned buffers may be scanout, so flush the cache */
1060         if (obj_priv->pin_count)
1061                 i915_gem_object_flush_cpu_write_domain(obj);
1062
1063         drm_gem_object_unreference(obj);
1064         mutex_unlock(&dev->struct_mutex);
1065         return ret;
1066 }
1067
1068 /**
1069  * Maps the contents of an object, returning the address it is mapped
1070  * into.
1071  *
1072  * While the mapping holds a reference on the contents of the object, it doesn't
1073  * imply a ref on the object itself.
1074  */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077                    struct drm_file *file_priv)
1078 {
1079         struct drm_i915_gem_mmap *args = data;
1080         struct drm_gem_object *obj;
1081         loff_t offset;
1082         unsigned long addr;
1083
1084         if (!(dev->driver->driver_features & DRIVER_GEM))
1085                 return -ENODEV;
1086
1087         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088         if (obj == NULL)
1089                 return -EBADF;
1090
1091         offset = args->offset;
1092
1093         down_write(&current->mm->mmap_sem);
1094         addr = do_mmap(obj->filp, 0, args->size,
1095                        PROT_READ | PROT_WRITE, MAP_SHARED,
1096                        args->offset);
1097         up_write(&current->mm->mmap_sem);
1098         mutex_lock(&dev->struct_mutex);
1099         drm_gem_object_unreference(obj);
1100         mutex_unlock(&dev->struct_mutex);
1101         if (IS_ERR((void *)addr))
1102                 return addr;
1103
1104         args->addr_ptr = (uint64_t) addr;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * i915_gem_fault - fault a page into the GTT
1111  * vma: VMA in question
1112  * vmf: fault info
1113  *
1114  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115  * from userspace.  The fault handler takes care of binding the object to
1116  * the GTT (if needed), allocating and programming a fence register (again,
1117  * only if needed based on whether the old reg is still valid or the object
1118  * is tiled) and inserting a new PTE into the faulting process.
1119  *
1120  * Note that the faulting process may involve evicting existing objects
1121  * from the GTT and/or fence registers to make room.  So performance may
1122  * suffer if the GTT working set is large or there are few fence registers
1123  * left.
1124  */
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 {
1127         struct drm_gem_object *obj = vma->vm_private_data;
1128         struct drm_device *dev = obj->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131         pgoff_t page_offset;
1132         unsigned long pfn;
1133         int ret = 0;
1134         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135
1136         /* We don't use vmf->pgoff since that has the fake offset */
1137         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138                 PAGE_SHIFT;
1139
1140         /* Now bind it into the GTT if needed */
1141         mutex_lock(&dev->struct_mutex);
1142         if (!obj_priv->gtt_space) {
1143                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144                 if (ret) {
1145                         mutex_unlock(&dev->struct_mutex);
1146                         return VM_FAULT_SIGBUS;
1147                 }
1148                 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1149         }
1150
1151         /* Need a new fence register? */
1152         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1153             obj_priv->tiling_mode != I915_TILING_NONE) {
1154                 ret = i915_gem_object_get_fence_reg(obj, write);
1155                 if (ret) {
1156                         mutex_unlock(&dev->struct_mutex);
1157                         return VM_FAULT_SIGBUS;
1158                 }
1159         }
1160
1161         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1162                 page_offset;
1163
1164         /* Finally, remap it using the new GTT offset */
1165         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1166
1167         mutex_unlock(&dev->struct_mutex);
1168
1169         switch (ret) {
1170         case -ENOMEM:
1171         case -EAGAIN:
1172                 return VM_FAULT_OOM;
1173         case -EFAULT:
1174         case -EINVAL:
1175                 return VM_FAULT_SIGBUS;
1176         default:
1177                 return VM_FAULT_NOPAGE;
1178         }
1179 }
1180
1181 /**
1182  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1183  * @obj: obj in question
1184  *
1185  * GEM memory mapping works by handing back to userspace a fake mmap offset
1186  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1187  * up the object based on the offset and sets up the various memory mapping
1188  * structures.
1189  *
1190  * This routine allocates and attaches a fake offset for @obj.
1191  */
1192 static int
1193 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1194 {
1195         struct drm_device *dev = obj->dev;
1196         struct drm_gem_mm *mm = dev->mm_private;
1197         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1198         struct drm_map_list *list;
1199         struct drm_local_map *map;
1200         int ret = 0;
1201
1202         /* Set the object up for mmap'ing */
1203         list = &obj->map_list;
1204         list->map = drm_calloc(1, sizeof(struct drm_map_list),
1205                                DRM_MEM_DRIVER);
1206         if (!list->map)
1207                 return -ENOMEM;
1208
1209         map = list->map;
1210         map->type = _DRM_GEM;
1211         map->size = obj->size;
1212         map->handle = obj;
1213
1214         /* Get a DRM GEM mmap offset allocated... */
1215         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1216                                                     obj->size / PAGE_SIZE, 0, 0);
1217         if (!list->file_offset_node) {
1218                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1219                 ret = -ENOMEM;
1220                 goto out_free_list;
1221         }
1222
1223         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1224                                                   obj->size / PAGE_SIZE, 0);
1225         if (!list->file_offset_node) {
1226                 ret = -ENOMEM;
1227                 goto out_free_list;
1228         }
1229
1230         list->hash.key = list->file_offset_node->start;
1231         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1232                 DRM_ERROR("failed to add to map hash\n");
1233                 goto out_free_mm;
1234         }
1235
1236         /* By now we should be all set, any drm_mmap request on the offset
1237          * below will get to our mmap & fault handler */
1238         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1239
1240         return 0;
1241
1242 out_free_mm:
1243         drm_mm_put_block(list->file_offset_node);
1244 out_free_list:
1245         drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1246
1247         return ret;
1248 }
1249
1250 static void
1251 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1252 {
1253         struct drm_device *dev = obj->dev;
1254         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1255         struct drm_gem_mm *mm = dev->mm_private;
1256         struct drm_map_list *list;
1257
1258         list = &obj->map_list;
1259         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1260
1261         if (list->file_offset_node) {
1262                 drm_mm_put_block(list->file_offset_node);
1263                 list->file_offset_node = NULL;
1264         }
1265
1266         if (list->map) {
1267                 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1268                 list->map = NULL;
1269         }
1270
1271         obj_priv->mmap_offset = 0;
1272 }
1273
1274 /**
1275  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1276  * @obj: object to check
1277  *
1278  * Return the required GTT alignment for an object, taking into account
1279  * potential fence register mapping if needed.
1280  */
1281 static uint32_t
1282 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1283 {
1284         struct drm_device *dev = obj->dev;
1285         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1286         int start, i;
1287
1288         /*
1289          * Minimum alignment is 4k (GTT page size), but might be greater
1290          * if a fence register is needed for the object.
1291          */
1292         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1293                 return 4096;
1294
1295         /*
1296          * Previous chips need to be aligned to the size of the smallest
1297          * fence register that can contain the object.
1298          */
1299         if (IS_I9XX(dev))
1300                 start = 1024*1024;
1301         else
1302                 start = 512*1024;
1303
1304         for (i = start; i < obj->size; i <<= 1)
1305                 ;
1306
1307         return i;
1308 }
1309
1310 /**
1311  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1312  * @dev: DRM device
1313  * @data: GTT mapping ioctl data
1314  * @file_priv: GEM object info
1315  *
1316  * Simply returns the fake offset to userspace so it can mmap it.
1317  * The mmap call will end up in drm_gem_mmap(), which will set things
1318  * up so we can get faults in the handler above.
1319  *
1320  * The fault handler will take care of binding the object into the GTT
1321  * (since it may have been evicted to make room for something), allocating
1322  * a fence register, and mapping the appropriate aperture address into
1323  * userspace.
1324  */
1325 int
1326 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1327                         struct drm_file *file_priv)
1328 {
1329         struct drm_i915_gem_mmap_gtt *args = data;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         struct drm_gem_object *obj;
1332         struct drm_i915_gem_object *obj_priv;
1333         int ret;
1334
1335         if (!(dev->driver->driver_features & DRIVER_GEM))
1336                 return -ENODEV;
1337
1338         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1339         if (obj == NULL)
1340                 return -EBADF;
1341
1342         mutex_lock(&dev->struct_mutex);
1343
1344         obj_priv = obj->driver_private;
1345
1346         if (!obj_priv->mmap_offset) {
1347                 ret = i915_gem_create_mmap_offset(obj);
1348                 if (ret) {
1349                         drm_gem_object_unreference(obj);
1350                         mutex_unlock(&dev->struct_mutex);
1351                         return ret;
1352                 }
1353         }
1354
1355         args->offset = obj_priv->mmap_offset;
1356
1357         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1358
1359         /* Make sure the alignment is correct for fence regs etc */
1360         if (obj_priv->agp_mem &&
1361             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1362                 drm_gem_object_unreference(obj);
1363                 mutex_unlock(&dev->struct_mutex);
1364                 return -EINVAL;
1365         }
1366
1367         /*
1368          * Pull it into the GTT so that we have a page list (makes the
1369          * initial fault faster and any subsequent flushing possible).
1370          */
1371         if (!obj_priv->agp_mem) {
1372                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1373                 if (ret) {
1374                         drm_gem_object_unreference(obj);
1375                         mutex_unlock(&dev->struct_mutex);
1376                         return ret;
1377                 }
1378                 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1379         }
1380
1381         drm_gem_object_unreference(obj);
1382         mutex_unlock(&dev->struct_mutex);
1383
1384         return 0;
1385 }
1386
1387 void
1388 i915_gem_object_put_pages(struct drm_gem_object *obj)
1389 {
1390         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1391         int page_count = obj->size / PAGE_SIZE;
1392         int i;
1393
1394         BUG_ON(obj_priv->pages_refcount == 0);
1395
1396         if (--obj_priv->pages_refcount != 0)
1397                 return;
1398
1399         if (obj_priv->tiling_mode != I915_TILING_NONE)
1400                 i915_gem_object_save_bit_17_swizzle(obj);
1401
1402         for (i = 0; i < page_count; i++)
1403                 if (obj_priv->pages[i] != NULL) {
1404                         if (obj_priv->dirty)
1405                                 set_page_dirty(obj_priv->pages[i]);
1406                         mark_page_accessed(obj_priv->pages[i]);
1407                         page_cache_release(obj_priv->pages[i]);
1408                 }
1409         obj_priv->dirty = 0;
1410
1411         drm_free(obj_priv->pages,
1412                  page_count * sizeof(struct page *),
1413                  DRM_MEM_DRIVER);
1414         obj_priv->pages = NULL;
1415 }
1416
1417 static void
1418 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1419 {
1420         struct drm_device *dev = obj->dev;
1421         drm_i915_private_t *dev_priv = dev->dev_private;
1422         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1423
1424         /* Add a reference if we're newly entering the active list. */
1425         if (!obj_priv->active) {
1426                 drm_gem_object_reference(obj);
1427                 obj_priv->active = 1;
1428         }
1429         /* Move from whatever list we were on to the tail of execution. */
1430         spin_lock(&dev_priv->mm.active_list_lock);
1431         list_move_tail(&obj_priv->list,
1432                        &dev_priv->mm.active_list);
1433         spin_unlock(&dev_priv->mm.active_list_lock);
1434         obj_priv->last_rendering_seqno = seqno;
1435 }
1436
1437 static void
1438 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1439 {
1440         struct drm_device *dev = obj->dev;
1441         drm_i915_private_t *dev_priv = dev->dev_private;
1442         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1443
1444         BUG_ON(!obj_priv->active);
1445         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1446         obj_priv->last_rendering_seqno = 0;
1447 }
1448
1449 static void
1450 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1451 {
1452         struct drm_device *dev = obj->dev;
1453         drm_i915_private_t *dev_priv = dev->dev_private;
1454         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1455
1456         i915_verify_inactive(dev, __FILE__, __LINE__);
1457         if (obj_priv->pin_count != 0)
1458                 list_del_init(&obj_priv->list);
1459         else
1460                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1461
1462         obj_priv->last_rendering_seqno = 0;
1463         if (obj_priv->active) {
1464                 obj_priv->active = 0;
1465                 drm_gem_object_unreference(obj);
1466         }
1467         i915_verify_inactive(dev, __FILE__, __LINE__);
1468 }
1469
1470 /**
1471  * Creates a new sequence number, emitting a write of it to the status page
1472  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1473  *
1474  * Must be called with struct_lock held.
1475  *
1476  * Returned sequence numbers are nonzero on success.
1477  */
1478 static uint32_t
1479 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1480 {
1481         drm_i915_private_t *dev_priv = dev->dev_private;
1482         struct drm_i915_gem_request *request;
1483         uint32_t seqno;
1484         int was_empty;
1485         RING_LOCALS;
1486
1487         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1488         if (request == NULL)
1489                 return 0;
1490
1491         /* Grab the seqno we're going to make this request be, and bump the
1492          * next (skipping 0 so it can be the reserved no-seqno value).
1493          */
1494         seqno = dev_priv->mm.next_gem_seqno;
1495         dev_priv->mm.next_gem_seqno++;
1496         if (dev_priv->mm.next_gem_seqno == 0)
1497                 dev_priv->mm.next_gem_seqno++;
1498
1499         BEGIN_LP_RING(4);
1500         OUT_RING(MI_STORE_DWORD_INDEX);
1501         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1502         OUT_RING(seqno);
1503
1504         OUT_RING(MI_USER_INTERRUPT);
1505         ADVANCE_LP_RING();
1506
1507         DRM_DEBUG("%d\n", seqno);
1508
1509         request->seqno = seqno;
1510         request->emitted_jiffies = jiffies;
1511         was_empty = list_empty(&dev_priv->mm.request_list);
1512         list_add_tail(&request->list, &dev_priv->mm.request_list);
1513
1514         /* Associate any objects on the flushing list matching the write
1515          * domain we're flushing with our flush.
1516          */
1517         if (flush_domains != 0) {
1518                 struct drm_i915_gem_object *obj_priv, *next;
1519
1520                 list_for_each_entry_safe(obj_priv, next,
1521                                          &dev_priv->mm.flushing_list, list) {
1522                         struct drm_gem_object *obj = obj_priv->obj;
1523
1524                         if ((obj->write_domain & flush_domains) ==
1525                             obj->write_domain) {
1526                                 obj->write_domain = 0;
1527                                 i915_gem_object_move_to_active(obj, seqno);
1528                         }
1529                 }
1530
1531         }
1532
1533         if (was_empty && !dev_priv->mm.suspended)
1534                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1535         return seqno;
1536 }
1537
1538 /**
1539  * Command execution barrier
1540  *
1541  * Ensures that all commands in the ring are finished
1542  * before signalling the CPU
1543  */
1544 static uint32_t
1545 i915_retire_commands(struct drm_device *dev)
1546 {
1547         drm_i915_private_t *dev_priv = dev->dev_private;
1548         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1549         uint32_t flush_domains = 0;
1550         RING_LOCALS;
1551
1552         /* The sampler always gets flushed on i965 (sigh) */
1553         if (IS_I965G(dev))
1554                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1555         BEGIN_LP_RING(2);
1556         OUT_RING(cmd);
1557         OUT_RING(0); /* noop */
1558         ADVANCE_LP_RING();
1559         return flush_domains;
1560 }
1561
1562 /**
1563  * Moves buffers associated only with the given active seqno from the active
1564  * to inactive list, potentially freeing them.
1565  */
1566 static void
1567 i915_gem_retire_request(struct drm_device *dev,
1568                         struct drm_i915_gem_request *request)
1569 {
1570         drm_i915_private_t *dev_priv = dev->dev_private;
1571
1572         /* Move any buffers on the active list that are no longer referenced
1573          * by the ringbuffer to the flushing/inactive lists as appropriate.
1574          */
1575         spin_lock(&dev_priv->mm.active_list_lock);
1576         while (!list_empty(&dev_priv->mm.active_list)) {
1577                 struct drm_gem_object *obj;
1578                 struct drm_i915_gem_object *obj_priv;
1579
1580                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1581                                             struct drm_i915_gem_object,
1582                                             list);
1583                 obj = obj_priv->obj;
1584
1585                 /* If the seqno being retired doesn't match the oldest in the
1586                  * list, then the oldest in the list must still be newer than
1587                  * this seqno.
1588                  */
1589                 if (obj_priv->last_rendering_seqno != request->seqno)
1590                         goto out;
1591
1592 #if WATCH_LRU
1593                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1594                          __func__, request->seqno, obj);
1595 #endif
1596
1597                 if (obj->write_domain != 0)
1598                         i915_gem_object_move_to_flushing(obj);
1599                 else
1600                         i915_gem_object_move_to_inactive(obj);
1601         }
1602 out:
1603         spin_unlock(&dev_priv->mm.active_list_lock);
1604 }
1605
1606 /**
1607  * Returns true if seq1 is later than seq2.
1608  */
1609 static int
1610 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1611 {
1612         return (int32_t)(seq1 - seq2) >= 0;
1613 }
1614
1615 uint32_t
1616 i915_get_gem_seqno(struct drm_device *dev)
1617 {
1618         drm_i915_private_t *dev_priv = dev->dev_private;
1619
1620         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1621 }
1622
1623 /**
1624  * This function clears the request list as sequence numbers are passed.
1625  */
1626 void
1627 i915_gem_retire_requests(struct drm_device *dev)
1628 {
1629         drm_i915_private_t *dev_priv = dev->dev_private;
1630         uint32_t seqno;
1631
1632         if (!dev_priv->hw_status_page)
1633                 return;
1634
1635         seqno = i915_get_gem_seqno(dev);
1636
1637         while (!list_empty(&dev_priv->mm.request_list)) {
1638                 struct drm_i915_gem_request *request;
1639                 uint32_t retiring_seqno;
1640
1641                 request = list_first_entry(&dev_priv->mm.request_list,
1642                                            struct drm_i915_gem_request,
1643                                            list);
1644                 retiring_seqno = request->seqno;
1645
1646                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1647                     dev_priv->mm.wedged) {
1648                         i915_gem_retire_request(dev, request);
1649
1650                         list_del(&request->list);
1651                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1652                 } else
1653                         break;
1654         }
1655 }
1656
1657 void
1658 i915_gem_retire_work_handler(struct work_struct *work)
1659 {
1660         drm_i915_private_t *dev_priv;
1661         struct drm_device *dev;
1662
1663         dev_priv = container_of(work, drm_i915_private_t,
1664                                 mm.retire_work.work);
1665         dev = dev_priv->dev;
1666
1667         mutex_lock(&dev->struct_mutex);
1668         i915_gem_retire_requests(dev);
1669         if (!dev_priv->mm.suspended &&
1670             !list_empty(&dev_priv->mm.request_list))
1671                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1672         mutex_unlock(&dev->struct_mutex);
1673 }
1674
1675 /**
1676  * Waits for a sequence number to be signaled, and cleans up the
1677  * request and object lists appropriately for that event.
1678  */
1679 static int
1680 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1681 {
1682         drm_i915_private_t *dev_priv = dev->dev_private;
1683         int ret = 0;
1684
1685         BUG_ON(seqno == 0);
1686
1687         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1688                 dev_priv->mm.waiting_gem_seqno = seqno;
1689                 i915_user_irq_get(dev);
1690                 ret = wait_event_interruptible(dev_priv->irq_queue,
1691                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1692                                                                  seqno) ||
1693                                                dev_priv->mm.wedged);
1694                 i915_user_irq_put(dev);
1695                 dev_priv->mm.waiting_gem_seqno = 0;
1696         }
1697         if (dev_priv->mm.wedged)
1698                 ret = -EIO;
1699
1700         if (ret && ret != -ERESTARTSYS)
1701                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1702                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1703
1704         /* Directly dispatch request retiring.  While we have the work queue
1705          * to handle this, the waiter on a request often wants an associated
1706          * buffer to have made it to the inactive list, and we would need
1707          * a separate wait queue to handle that.
1708          */
1709         if (ret == 0)
1710                 i915_gem_retire_requests(dev);
1711
1712         return ret;
1713 }
1714
1715 static void
1716 i915_gem_flush(struct drm_device *dev,
1717                uint32_t invalidate_domains,
1718                uint32_t flush_domains)
1719 {
1720         drm_i915_private_t *dev_priv = dev->dev_private;
1721         uint32_t cmd;
1722         RING_LOCALS;
1723
1724 #if WATCH_EXEC
1725         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1726                   invalidate_domains, flush_domains);
1727 #endif
1728
1729         if (flush_domains & I915_GEM_DOMAIN_CPU)
1730                 drm_agp_chipset_flush(dev);
1731
1732         if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1733                                                      I915_GEM_DOMAIN_GTT)) {
1734                 /*
1735                  * read/write caches:
1736                  *
1737                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1738                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1739                  * also flushed at 2d versus 3d pipeline switches.
1740                  *
1741                  * read-only caches:
1742                  *
1743                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1744                  * MI_READ_FLUSH is set, and is always flushed on 965.
1745                  *
1746                  * I915_GEM_DOMAIN_COMMAND may not exist?
1747                  *
1748                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1749                  * invalidated when MI_EXE_FLUSH is set.
1750                  *
1751                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1752                  * invalidated with every MI_FLUSH.
1753                  *
1754                  * TLBs:
1755                  *
1756                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1757                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1758                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1759                  * are flushed at any MI_FLUSH.
1760                  */
1761
1762                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1763                 if ((invalidate_domains|flush_domains) &
1764                     I915_GEM_DOMAIN_RENDER)
1765                         cmd &= ~MI_NO_WRITE_FLUSH;
1766                 if (!IS_I965G(dev)) {
1767                         /*
1768                          * On the 965, the sampler cache always gets flushed
1769                          * and this bit is reserved.
1770                          */
1771                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1772                                 cmd |= MI_READ_FLUSH;
1773                 }
1774                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1775                         cmd |= MI_EXE_FLUSH;
1776
1777 #if WATCH_EXEC
1778                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1779 #endif
1780                 BEGIN_LP_RING(2);
1781                 OUT_RING(cmd);
1782                 OUT_RING(0); /* noop */
1783                 ADVANCE_LP_RING();
1784         }
1785 }
1786
1787 /**
1788  * Ensures that all rendering to the object has completed and the object is
1789  * safe to unbind from the GTT or access from the CPU.
1790  */
1791 static int
1792 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1793 {
1794         struct drm_device *dev = obj->dev;
1795         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1796         int ret;
1797
1798         /* This function only exists to support waiting for existing rendering,
1799          * not for emitting required flushes.
1800          */
1801         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1802
1803         /* If there is rendering queued on the buffer being evicted, wait for
1804          * it.
1805          */
1806         if (obj_priv->active) {
1807 #if WATCH_BUF
1808                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1809                           __func__, obj, obj_priv->last_rendering_seqno);
1810 #endif
1811                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1812                 if (ret != 0)
1813                         return ret;
1814         }
1815
1816         return 0;
1817 }
1818
1819 /**
1820  * Unbinds an object from the GTT aperture.
1821  */
1822 int
1823 i915_gem_object_unbind(struct drm_gem_object *obj)
1824 {
1825         struct drm_device *dev = obj->dev;
1826         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1827         loff_t offset;
1828         int ret = 0;
1829
1830 #if WATCH_BUF
1831         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1832         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1833 #endif
1834         if (obj_priv->gtt_space == NULL)
1835                 return 0;
1836
1837         if (obj_priv->pin_count != 0) {
1838                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1839                 return -EINVAL;
1840         }
1841
1842         /* Move the object to the CPU domain to ensure that
1843          * any possible CPU writes while it's not in the GTT
1844          * are flushed when we go to remap it. This will
1845          * also ensure that all pending GPU writes are finished
1846          * before we unbind.
1847          */
1848         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1849         if (ret) {
1850                 if (ret != -ERESTARTSYS)
1851                         DRM_ERROR("set_domain failed: %d\n", ret);
1852                 return ret;
1853         }
1854
1855         if (obj_priv->agp_mem != NULL) {
1856                 drm_unbind_agp(obj_priv->agp_mem);
1857                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1858                 obj_priv->agp_mem = NULL;
1859         }
1860
1861         BUG_ON(obj_priv->active);
1862
1863         /* blow away mappings if mapped through GTT */
1864         offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1865         if (dev->dev_mapping)
1866                 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1867
1868         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1869                 i915_gem_clear_fence_reg(obj);
1870
1871         i915_gem_object_put_pages(obj);
1872
1873         if (obj_priv->gtt_space) {
1874                 atomic_dec(&dev->gtt_count);
1875                 atomic_sub(obj->size, &dev->gtt_memory);
1876
1877                 drm_mm_put_block(obj_priv->gtt_space);
1878                 obj_priv->gtt_space = NULL;
1879         }
1880
1881         /* Remove ourselves from the LRU list if present. */
1882         if (!list_empty(&obj_priv->list))
1883                 list_del_init(&obj_priv->list);
1884
1885         return 0;
1886 }
1887
1888 static int
1889 i915_gem_evict_something(struct drm_device *dev)
1890 {
1891         drm_i915_private_t *dev_priv = dev->dev_private;
1892         struct drm_gem_object *obj;
1893         struct drm_i915_gem_object *obj_priv;
1894         int ret = 0;
1895
1896         for (;;) {
1897                 /* If there's an inactive buffer available now, grab it
1898                  * and be done.
1899                  */
1900                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1901                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1902                                                     struct drm_i915_gem_object,
1903                                                     list);
1904                         obj = obj_priv->obj;
1905                         BUG_ON(obj_priv->pin_count != 0);
1906 #if WATCH_LRU
1907                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1908 #endif
1909                         BUG_ON(obj_priv->active);
1910
1911                         /* Wait on the rendering and unbind the buffer. */
1912                         ret = i915_gem_object_unbind(obj);
1913                         break;
1914                 }
1915
1916                 /* If we didn't get anything, but the ring is still processing
1917                  * things, wait for one of those things to finish and hopefully
1918                  * leave us a buffer to evict.
1919                  */
1920                 if (!list_empty(&dev_priv->mm.request_list)) {
1921                         struct drm_i915_gem_request *request;
1922
1923                         request = list_first_entry(&dev_priv->mm.request_list,
1924                                                    struct drm_i915_gem_request,
1925                                                    list);
1926
1927                         ret = i915_wait_request(dev, request->seqno);
1928                         if (ret)
1929                                 break;
1930
1931                         /* if waiting caused an object to become inactive,
1932                          * then loop around and wait for it. Otherwise, we
1933                          * assume that waiting freed and unbound something,
1934                          * so there should now be some space in the GTT
1935                          */
1936                         if (!list_empty(&dev_priv->mm.inactive_list))
1937                                 continue;
1938                         break;
1939                 }
1940
1941                 /* If we didn't have anything on the request list but there
1942                  * are buffers awaiting a flush, emit one and try again.
1943                  * When we wait on it, those buffers waiting for that flush
1944                  * will get moved to inactive.
1945                  */
1946                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1947                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1948                                                     struct drm_i915_gem_object,
1949                                                     list);
1950                         obj = obj_priv->obj;
1951
1952                         i915_gem_flush(dev,
1953                                        obj->write_domain,
1954                                        obj->write_domain);
1955                         i915_add_request(dev, obj->write_domain);
1956
1957                         obj = NULL;
1958                         continue;
1959                 }
1960
1961                 DRM_ERROR("inactive empty %d request empty %d "
1962                           "flushing empty %d\n",
1963                           list_empty(&dev_priv->mm.inactive_list),
1964                           list_empty(&dev_priv->mm.request_list),
1965                           list_empty(&dev_priv->mm.flushing_list));
1966                 /* If we didn't do any of the above, there's nothing to be done
1967                  * and we just can't fit it in.
1968                  */
1969                 return -ENOMEM;
1970         }
1971         return ret;
1972 }
1973
1974 static int
1975 i915_gem_evict_everything(struct drm_device *dev)
1976 {
1977         int ret;
1978
1979         for (;;) {
1980                 ret = i915_gem_evict_something(dev);
1981                 if (ret != 0)
1982                         break;
1983         }
1984         if (ret == -ENOMEM)
1985                 return 0;
1986         return ret;
1987 }
1988
1989 int
1990 i915_gem_object_get_pages(struct drm_gem_object *obj)
1991 {
1992         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1993         int page_count, i;
1994         struct address_space *mapping;
1995         struct inode *inode;
1996         struct page *page;
1997         int ret;
1998
1999         if (obj_priv->pages_refcount++ != 0)
2000                 return 0;
2001
2002         /* Get the list of pages out of our struct file.  They'll be pinned
2003          * at this point until we release them.
2004          */
2005         page_count = obj->size / PAGE_SIZE;
2006         BUG_ON(obj_priv->pages != NULL);
2007         obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
2008                                      DRM_MEM_DRIVER);
2009         if (obj_priv->pages == NULL) {
2010                 DRM_ERROR("Faled to allocate page list\n");
2011                 obj_priv->pages_refcount--;
2012                 return -ENOMEM;
2013         }
2014
2015         inode = obj->filp->f_path.dentry->d_inode;
2016         mapping = inode->i_mapping;
2017         for (i = 0; i < page_count; i++) {
2018                 page = read_mapping_page(mapping, i, NULL);
2019                 if (IS_ERR(page)) {
2020                         ret = PTR_ERR(page);
2021                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2022                         i915_gem_object_put_pages(obj);
2023                         return ret;
2024                 }
2025                 obj_priv->pages[i] = page;
2026         }
2027
2028         if (obj_priv->tiling_mode != I915_TILING_NONE)
2029                 i915_gem_object_do_bit_17_swizzle(obj);
2030
2031         return 0;
2032 }
2033
2034 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2035 {
2036         struct drm_gem_object *obj = reg->obj;
2037         struct drm_device *dev = obj->dev;
2038         drm_i915_private_t *dev_priv = dev->dev_private;
2039         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2040         int regnum = obj_priv->fence_reg;
2041         uint64_t val;
2042
2043         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2044                     0xfffff000) << 32;
2045         val |= obj_priv->gtt_offset & 0xfffff000;
2046         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2047         if (obj_priv->tiling_mode == I915_TILING_Y)
2048                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2049         val |= I965_FENCE_REG_VALID;
2050
2051         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2052 }
2053
2054 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2055 {
2056         struct drm_gem_object *obj = reg->obj;
2057         struct drm_device *dev = obj->dev;
2058         drm_i915_private_t *dev_priv = dev->dev_private;
2059         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2060         int regnum = obj_priv->fence_reg;
2061         int tile_width;
2062         uint32_t fence_reg, val;
2063         uint32_t pitch_val;
2064
2065         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2066             (obj_priv->gtt_offset & (obj->size - 1))) {
2067                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2068                      __func__, obj_priv->gtt_offset, obj->size);
2069                 return;
2070         }
2071
2072         if (obj_priv->tiling_mode == I915_TILING_Y &&
2073             HAS_128_BYTE_Y_TILING(dev))
2074                 tile_width = 128;
2075         else
2076                 tile_width = 512;
2077
2078         /* Note: pitch better be a power of two tile widths */
2079         pitch_val = obj_priv->stride / tile_width;
2080         pitch_val = ffs(pitch_val) - 1;
2081
2082         val = obj_priv->gtt_offset;
2083         if (obj_priv->tiling_mode == I915_TILING_Y)
2084                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2085         val |= I915_FENCE_SIZE_BITS(obj->size);
2086         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2087         val |= I830_FENCE_REG_VALID;
2088
2089         if (regnum < 8)
2090                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2091         else
2092                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2093         I915_WRITE(fence_reg, val);
2094 }
2095
2096 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2097 {
2098         struct drm_gem_object *obj = reg->obj;
2099         struct drm_device *dev = obj->dev;
2100         drm_i915_private_t *dev_priv = dev->dev_private;
2101         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2102         int regnum = obj_priv->fence_reg;
2103         uint32_t val;
2104         uint32_t pitch_val;
2105         uint32_t fence_size_bits;
2106
2107         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2108             (obj_priv->gtt_offset & (obj->size - 1))) {
2109                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2110                      __func__, obj_priv->gtt_offset);
2111                 return;
2112         }
2113
2114         pitch_val = (obj_priv->stride / 128) - 1;
2115         WARN_ON(pitch_val & ~0x0000000f);
2116         val = obj_priv->gtt_offset;
2117         if (obj_priv->tiling_mode == I915_TILING_Y)
2118                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2119         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2120         WARN_ON(fence_size_bits & ~0x00000f00);
2121         val |= fence_size_bits;
2122         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2123         val |= I830_FENCE_REG_VALID;
2124
2125         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2126
2127 }
2128
2129 /**
2130  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2131  * @obj: object to map through a fence reg
2132  * @write: object is about to be written
2133  *
2134  * When mapping objects through the GTT, userspace wants to be able to write
2135  * to them without having to worry about swizzling if the object is tiled.
2136  *
2137  * This function walks the fence regs looking for a free one for @obj,
2138  * stealing one if it can't find any.
2139  *
2140  * It then sets up the reg based on the object's properties: address, pitch
2141  * and tiling format.
2142  */
2143 static int
2144 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2145 {
2146         struct drm_device *dev = obj->dev;
2147         struct drm_i915_private *dev_priv = dev->dev_private;
2148         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2149         struct drm_i915_fence_reg *reg = NULL;
2150         struct drm_i915_gem_object *old_obj_priv = NULL;
2151         int i, ret, avail;
2152
2153         switch (obj_priv->tiling_mode) {
2154         case I915_TILING_NONE:
2155                 WARN(1, "allocating a fence for non-tiled object?\n");
2156                 break;
2157         case I915_TILING_X:
2158                 if (!obj_priv->stride)
2159                         return -EINVAL;
2160                 WARN((obj_priv->stride & (512 - 1)),
2161                      "object 0x%08x is X tiled but has non-512B pitch\n",
2162                      obj_priv->gtt_offset);
2163                 break;
2164         case I915_TILING_Y:
2165                 if (!obj_priv->stride)
2166                         return -EINVAL;
2167                 WARN((obj_priv->stride & (128 - 1)),
2168                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2169                      obj_priv->gtt_offset);
2170                 break;
2171         }
2172
2173         /* First try to find a free reg */
2174 try_again:
2175         avail = 0;
2176         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2177                 reg = &dev_priv->fence_regs[i];
2178                 if (!reg->obj)
2179                         break;
2180
2181                 old_obj_priv = reg->obj->driver_private;
2182                 if (!old_obj_priv->pin_count)
2183                     avail++;
2184         }
2185
2186         /* None available, try to steal one or wait for a user to finish */
2187         if (i == dev_priv->num_fence_regs) {
2188                 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2189                 loff_t offset;
2190
2191                 if (avail == 0)
2192                         return -ENOMEM;
2193
2194                 for (i = dev_priv->fence_reg_start;
2195                      i < dev_priv->num_fence_regs; i++) {
2196                         uint32_t this_seqno;
2197
2198                         reg = &dev_priv->fence_regs[i];
2199                         old_obj_priv = reg->obj->driver_private;
2200
2201                         if (old_obj_priv->pin_count)
2202                                 continue;
2203
2204                         /* i915 uses fences for GPU access to tiled buffers */
2205                         if (IS_I965G(dev) || !old_obj_priv->active)
2206                                 break;
2207
2208                         /* find the seqno of the first available fence */
2209                         this_seqno = old_obj_priv->last_rendering_seqno;
2210                         if (this_seqno != 0 &&
2211                             reg->obj->write_domain == 0 &&
2212                             i915_seqno_passed(seqno, this_seqno))
2213                                 seqno = this_seqno;
2214                 }
2215
2216                 /*
2217                  * Now things get ugly... we have to wait for one of the
2218                  * objects to finish before trying again.
2219                  */
2220                 if (i == dev_priv->num_fence_regs) {
2221                         if (seqno == dev_priv->mm.next_gem_seqno) {
2222                                 i915_gem_flush(dev,
2223                                                I915_GEM_GPU_DOMAINS,
2224                                                I915_GEM_GPU_DOMAINS);
2225                                 seqno = i915_add_request(dev,
2226                                                          I915_GEM_GPU_DOMAINS);
2227                                 if (seqno == 0)
2228                                         return -ENOMEM;
2229                         }
2230
2231                         ret = i915_wait_request(dev, seqno);
2232                         if (ret)
2233                                 return ret;
2234                         goto try_again;
2235                 }
2236
2237                 BUG_ON(old_obj_priv->active ||
2238                        (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2239
2240                 /*
2241                  * Zap this virtual mapping so we can set up a fence again
2242                  * for this object next time we need it.
2243                  */
2244                 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2245                 if (dev->dev_mapping)
2246                         unmap_mapping_range(dev->dev_mapping, offset,
2247                                             reg->obj->size, 1);
2248                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2249         }
2250
2251         obj_priv->fence_reg = i;
2252         reg->obj = obj;
2253
2254         if (IS_I965G(dev))
2255                 i965_write_fence_reg(reg);
2256         else if (IS_I9XX(dev))
2257                 i915_write_fence_reg(reg);
2258         else
2259                 i830_write_fence_reg(reg);
2260
2261         return 0;
2262 }
2263
2264 /**
2265  * i915_gem_clear_fence_reg - clear out fence register info
2266  * @obj: object to clear
2267  *
2268  * Zeroes out the fence register itself and clears out the associated
2269  * data structures in dev_priv and obj_priv.
2270  */
2271 static void
2272 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2273 {
2274         struct drm_device *dev = obj->dev;
2275         drm_i915_private_t *dev_priv = dev->dev_private;
2276         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2277
2278         if (IS_I965G(dev))
2279                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2280         else {
2281                 uint32_t fence_reg;
2282
2283                 if (obj_priv->fence_reg < 8)
2284                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2285                 else
2286                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2287                                                        8) * 4;
2288
2289                 I915_WRITE(fence_reg, 0);
2290         }
2291
2292         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2293         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2294 }
2295
2296 /**
2297  * Finds free space in the GTT aperture and binds the object there.
2298  */
2299 static int
2300 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2301 {
2302         struct drm_device *dev = obj->dev;
2303         drm_i915_private_t *dev_priv = dev->dev_private;
2304         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2305         struct drm_mm_node *free_space;
2306         int page_count, ret;
2307
2308         if (dev_priv->mm.suspended)
2309                 return -EBUSY;
2310         if (alignment == 0)
2311                 alignment = i915_gem_get_gtt_alignment(obj);
2312         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2313                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2314                 return -EINVAL;
2315         }
2316
2317  search_free:
2318         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2319                                         obj->size, alignment, 0);
2320         if (free_space != NULL) {
2321                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2322                                                        alignment);
2323                 if (obj_priv->gtt_space != NULL) {
2324                         obj_priv->gtt_space->private = obj;
2325                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2326                 }
2327         }
2328         if (obj_priv->gtt_space == NULL) {
2329                 bool lists_empty;
2330
2331                 /* If the gtt is empty and we're still having trouble
2332                  * fitting our object in, we're out of memory.
2333                  */
2334 #if WATCH_LRU
2335                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2336 #endif
2337                 spin_lock(&dev_priv->mm.active_list_lock);
2338                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2339                                list_empty(&dev_priv->mm.flushing_list) &&
2340                                list_empty(&dev_priv->mm.active_list));
2341                 spin_unlock(&dev_priv->mm.active_list_lock);
2342                 if (lists_empty) {
2343                         DRM_ERROR("GTT full, but LRU list empty\n");
2344                         return -ENOMEM;
2345                 }
2346
2347                 ret = i915_gem_evict_something(dev);
2348                 if (ret != 0) {
2349                         if (ret != -ERESTARTSYS)
2350                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2351                         return ret;
2352                 }
2353                 goto search_free;
2354         }
2355
2356 #if WATCH_BUF
2357         DRM_INFO("Binding object of size %d at 0x%08x\n",
2358                  obj->size, obj_priv->gtt_offset);
2359 #endif
2360         ret = i915_gem_object_get_pages(obj);
2361         if (ret) {
2362                 drm_mm_put_block(obj_priv->gtt_space);
2363                 obj_priv->gtt_space = NULL;
2364                 return ret;
2365         }
2366
2367         page_count = obj->size / PAGE_SIZE;
2368         /* Create an AGP memory structure pointing at our pages, and bind it
2369          * into the GTT.
2370          */
2371         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2372                                                obj_priv->pages,
2373                                                page_count,
2374                                                obj_priv->gtt_offset,
2375                                                obj_priv->agp_type);
2376         if (obj_priv->agp_mem == NULL) {
2377                 i915_gem_object_put_pages(obj);
2378                 drm_mm_put_block(obj_priv->gtt_space);
2379                 obj_priv->gtt_space = NULL;
2380                 return -ENOMEM;
2381         }
2382         atomic_inc(&dev->gtt_count);
2383         atomic_add(obj->size, &dev->gtt_memory);
2384
2385         /* Assert that the object is not currently in any GPU domain. As it
2386          * wasn't in the GTT, there shouldn't be any way it could have been in
2387          * a GPU cache
2388          */
2389         BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2390         BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2391
2392         return 0;
2393 }
2394
2395 void
2396 i915_gem_clflush_object(struct drm_gem_object *obj)
2397 {
2398         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2399
2400         /* If we don't have a page list set up, then we're not pinned
2401          * to GPU, and we can ignore the cache flush because it'll happen
2402          * again at bind time.
2403          */
2404         if (obj_priv->pages == NULL)
2405                 return;
2406
2407         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2408 }
2409
2410 /** Flushes any GPU write domain for the object if it's dirty. */
2411 static void
2412 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2413 {
2414         struct drm_device *dev = obj->dev;
2415         uint32_t seqno;
2416
2417         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2418                 return;
2419
2420         /* Queue the GPU write cache flushing we need. */
2421         i915_gem_flush(dev, 0, obj->write_domain);
2422         seqno = i915_add_request(dev, obj->write_domain);
2423         obj->write_domain = 0;
2424         i915_gem_object_move_to_active(obj, seqno);
2425 }
2426
2427 /** Flushes the GTT write domain for the object if it's dirty. */
2428 static void
2429 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2430 {
2431         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2432                 return;
2433
2434         /* No actual flushing is required for the GTT write domain.   Writes
2435          * to it immediately go to main memory as far as we know, so there's
2436          * no chipset flush.  It also doesn't land in render cache.
2437          */
2438         obj->write_domain = 0;
2439 }
2440
2441 /** Flushes the CPU write domain for the object if it's dirty. */
2442 static void
2443 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2444 {
2445         struct drm_device *dev = obj->dev;
2446
2447         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2448                 return;
2449
2450         i915_gem_clflush_object(obj);
2451         drm_agp_chipset_flush(dev);
2452         obj->write_domain = 0;
2453 }
2454
2455 /**
2456  * Moves a single object to the GTT read, and possibly write domain.
2457  *
2458  * This function returns when the move is complete, including waiting on
2459  * flushes to occur.
2460  */
2461 int
2462 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2463 {
2464         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2465         int ret;
2466
2467         /* Not valid to be called on unbound objects. */
2468         if (obj_priv->gtt_space == NULL)
2469                 return -EINVAL;
2470
2471         i915_gem_object_flush_gpu_write_domain(obj);
2472         /* Wait on any GPU rendering and flushing to occur. */
2473         ret = i915_gem_object_wait_rendering(obj);
2474         if (ret != 0)
2475                 return ret;
2476
2477         /* If we're writing through the GTT domain, then CPU and GPU caches
2478          * will need to be invalidated at next use.
2479          */
2480         if (write)
2481                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2482
2483         i915_gem_object_flush_cpu_write_domain(obj);
2484
2485         /* It should now be out of any other write domains, and we can update
2486          * the domain values for our changes.
2487          */
2488         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2489         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2490         if (write) {
2491                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2492                 obj_priv->dirty = 1;
2493         }
2494
2495         return 0;
2496 }
2497
2498 /**
2499  * Moves a single object to the CPU read, and possibly write domain.
2500  *
2501  * This function returns when the move is complete, including waiting on
2502  * flushes to occur.
2503  */
2504 static int
2505 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2506 {
2507         int ret;
2508
2509         i915_gem_object_flush_gpu_write_domain(obj);
2510         /* Wait on any GPU rendering and flushing to occur. */
2511         ret = i915_gem_object_wait_rendering(obj);
2512         if (ret != 0)
2513                 return ret;
2514
2515         i915_gem_object_flush_gtt_write_domain(obj);
2516
2517         /* If we have a partially-valid cache of the object in the CPU,
2518          * finish invalidating it and free the per-page flags.
2519          */
2520         i915_gem_object_set_to_full_cpu_read_domain(obj);
2521
2522         /* Flush the CPU cache if it's still invalid. */
2523         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2524                 i915_gem_clflush_object(obj);
2525
2526                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2527         }
2528
2529         /* It should now be out of any other write domains, and we can update
2530          * the domain values for our changes.
2531          */
2532         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2533
2534         /* If we're writing through the CPU, then the GPU read domains will
2535          * need to be invalidated at next use.
2536          */
2537         if (write) {
2538                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2539                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2540         }
2541
2542         return 0;
2543 }
2544
2545 /*
2546  * Set the next domain for the specified object. This
2547  * may not actually perform the necessary flushing/invaliding though,
2548  * as that may want to be batched with other set_domain operations
2549  *
2550  * This is (we hope) the only really tricky part of gem. The goal
2551  * is fairly simple -- track which caches hold bits of the object
2552  * and make sure they remain coherent. A few concrete examples may
2553  * help to explain how it works. For shorthand, we use the notation
2554  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2555  * a pair of read and write domain masks.
2556  *
2557  * Case 1: the batch buffer
2558  *
2559  *      1. Allocated
2560  *      2. Written by CPU
2561  *      3. Mapped to GTT
2562  *      4. Read by GPU
2563  *      5. Unmapped from GTT
2564  *      6. Freed
2565  *
2566  *      Let's take these a step at a time
2567  *
2568  *      1. Allocated
2569  *              Pages allocated from the kernel may still have
2570  *              cache contents, so we set them to (CPU, CPU) always.
2571  *      2. Written by CPU (using pwrite)
2572  *              The pwrite function calls set_domain (CPU, CPU) and
2573  *              this function does nothing (as nothing changes)
2574  *      3. Mapped by GTT
2575  *              This function asserts that the object is not
2576  *              currently in any GPU-based read or write domains
2577  *      4. Read by GPU
2578  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2579  *              As write_domain is zero, this function adds in the
2580  *              current read domains (CPU+COMMAND, 0).
2581  *              flush_domains is set to CPU.
2582  *              invalidate_domains is set to COMMAND
2583  *              clflush is run to get data out of the CPU caches
2584  *              then i915_dev_set_domain calls i915_gem_flush to
2585  *              emit an MI_FLUSH and drm_agp_chipset_flush
2586  *      5. Unmapped from GTT
2587  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2588  *              flush_domains and invalidate_domains end up both zero
2589  *              so no flushing/invalidating happens
2590  *      6. Freed
2591  *              yay, done
2592  *
2593  * Case 2: The shared render buffer
2594  *
2595  *      1. Allocated
2596  *      2. Mapped to GTT
2597  *      3. Read/written by GPU
2598  *      4. set_domain to (CPU,CPU)
2599  *      5. Read/written by CPU
2600  *      6. Read/written by GPU
2601  *
2602  *      1. Allocated
2603  *              Same as last example, (CPU, CPU)
2604  *      2. Mapped to GTT
2605  *              Nothing changes (assertions find that it is not in the GPU)
2606  *      3. Read/written by GPU
2607  *              execbuffer calls set_domain (RENDER, RENDER)
2608  *              flush_domains gets CPU
2609  *              invalidate_domains gets GPU
2610  *              clflush (obj)
2611  *              MI_FLUSH and drm_agp_chipset_flush
2612  *      4. set_domain (CPU, CPU)
2613  *              flush_domains gets GPU
2614  *              invalidate_domains gets CPU
2615  *              wait_rendering (obj) to make sure all drawing is complete.
2616  *              This will include an MI_FLUSH to get the data from GPU
2617  *              to memory
2618  *              clflush (obj) to invalidate the CPU cache
2619  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2620  *      5. Read/written by CPU
2621  *              cache lines are loaded and dirtied
2622  *      6. Read written by GPU
2623  *              Same as last GPU access
2624  *
2625  * Case 3: The constant buffer
2626  *
2627  *      1. Allocated
2628  *      2. Written by CPU
2629  *      3. Read by GPU
2630  *      4. Updated (written) by CPU again
2631  *      5. Read by GPU
2632  *
2633  *      1. Allocated
2634  *              (CPU, CPU)
2635  *      2. Written by CPU
2636  *              (CPU, CPU)
2637  *      3. Read by GPU
2638  *              (CPU+RENDER, 0)
2639  *              flush_domains = CPU
2640  *              invalidate_domains = RENDER
2641  *              clflush (obj)
2642  *              MI_FLUSH
2643  *              drm_agp_chipset_flush
2644  *      4. Updated (written) by CPU again
2645  *              (CPU, CPU)
2646  *              flush_domains = 0 (no previous write domain)
2647  *              invalidate_domains = 0 (no new read domains)
2648  *      5. Read by GPU
2649  *              (CPU+RENDER, 0)
2650  *              flush_domains = CPU
2651  *              invalidate_domains = RENDER
2652  *              clflush (obj)
2653  *              MI_FLUSH
2654  *              drm_agp_chipset_flush
2655  */
2656 static void
2657 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2658 {
2659         struct drm_device               *dev = obj->dev;
2660         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2661         uint32_t                        invalidate_domains = 0;
2662         uint32_t                        flush_domains = 0;
2663
2664         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2665         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2666
2667 #if WATCH_BUF
2668         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2669                  __func__, obj,
2670                  obj->read_domains, obj->pending_read_domains,
2671                  obj->write_domain, obj->pending_write_domain);
2672 #endif
2673         /*
2674          * If the object isn't moving to a new write domain,
2675          * let the object stay in multiple read domains
2676          */
2677         if (obj->pending_write_domain == 0)
2678                 obj->pending_read_domains |= obj->read_domains;
2679         else
2680                 obj_priv->dirty = 1;
2681
2682         /*
2683          * Flush the current write domain if
2684          * the new read domains don't match. Invalidate
2685          * any read domains which differ from the old
2686          * write domain
2687          */
2688         if (obj->write_domain &&
2689             obj->write_domain != obj->pending_read_domains) {
2690                 flush_domains |= obj->write_domain;
2691                 invalidate_domains |=
2692                         obj->pending_read_domains & ~obj->write_domain;
2693         }
2694         /*
2695          * Invalidate any read caches which may have
2696          * stale data. That is, any new read domains.
2697          */
2698         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2699         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2700 #if WATCH_BUF
2701                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2702                          __func__, flush_domains, invalidate_domains);
2703 #endif
2704                 i915_gem_clflush_object(obj);
2705         }
2706
2707         /* The actual obj->write_domain will be updated with
2708          * pending_write_domain after we emit the accumulated flush for all
2709          * of our domain changes in execbuffers (which clears objects'
2710          * write_domains).  So if we have a current write domain that we
2711          * aren't changing, set pending_write_domain to that.
2712          */
2713         if (flush_domains == 0 && obj->pending_write_domain == 0)
2714                 obj->pending_write_domain = obj->write_domain;
2715         obj->read_domains = obj->pending_read_domains;
2716
2717         dev->invalidate_domains |= invalidate_domains;
2718         dev->flush_domains |= flush_domains;
2719 #if WATCH_BUF
2720         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2721                  __func__,
2722                  obj->read_domains, obj->write_domain,
2723                  dev->invalidate_domains, dev->flush_domains);
2724 #endif
2725 }
2726
2727 /**
2728  * Moves the object from a partially CPU read to a full one.
2729  *
2730  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2731  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2732  */
2733 static void
2734 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2735 {
2736         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2737
2738         if (!obj_priv->page_cpu_valid)
2739                 return;
2740
2741         /* If we're partially in the CPU read domain, finish moving it in.
2742          */
2743         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2744                 int i;
2745
2746                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2747                         if (obj_priv->page_cpu_valid[i])
2748                                 continue;
2749                         drm_clflush_pages(obj_priv->pages + i, 1);
2750                 }
2751         }
2752
2753         /* Free the page_cpu_valid mappings which are now stale, whether
2754          * or not we've got I915_GEM_DOMAIN_CPU.
2755          */
2756         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2757                  DRM_MEM_DRIVER);
2758         obj_priv->page_cpu_valid = NULL;
2759 }
2760
2761 /**
2762  * Set the CPU read domain on a range of the object.
2763  *
2764  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2765  * not entirely valid.  The page_cpu_valid member of the object flags which
2766  * pages have been flushed, and will be respected by
2767  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2768  * of the whole object.
2769  *
2770  * This function returns when the move is complete, including waiting on
2771  * flushes to occur.
2772  */
2773 static int
2774 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2775                                           uint64_t offset, uint64_t size)
2776 {
2777         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2778         int i, ret;
2779
2780         if (offset == 0 && size == obj->size)
2781                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2782
2783         i915_gem_object_flush_gpu_write_domain(obj);
2784         /* Wait on any GPU rendering and flushing to occur. */
2785         ret = i915_gem_object_wait_rendering(obj);
2786         if (ret != 0)
2787                 return ret;
2788         i915_gem_object_flush_gtt_write_domain(obj);
2789
2790         /* If we're already fully in the CPU read domain, we're done. */
2791         if (obj_priv->page_cpu_valid == NULL &&
2792             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2793                 return 0;
2794
2795         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2796          * newly adding I915_GEM_DOMAIN_CPU
2797          */
2798         if (obj_priv->page_cpu_valid == NULL) {
2799                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2800                                                       DRM_MEM_DRIVER);
2801                 if (obj_priv->page_cpu_valid == NULL)
2802                         return -ENOMEM;
2803         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2804                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2805
2806         /* Flush the cache on any pages that are still invalid from the CPU's
2807          * perspective.
2808          */
2809         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2810              i++) {
2811                 if (obj_priv->page_cpu_valid[i])
2812                         continue;
2813
2814                 drm_clflush_pages(obj_priv->pages + i, 1);
2815
2816                 obj_priv->page_cpu_valid[i] = 1;
2817         }
2818
2819         /* It should now be out of any other write domains, and we can update
2820          * the domain values for our changes.
2821          */
2822         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2823
2824         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2825
2826         return 0;
2827 }
2828
2829 /**
2830  * Pin an object to the GTT and evaluate the relocations landing in it.
2831  */
2832 static int
2833 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2834                                  struct drm_file *file_priv,
2835                                  struct drm_i915_gem_exec_object *entry,
2836                                  struct drm_i915_gem_relocation_entry *relocs)
2837 {
2838         struct drm_device *dev = obj->dev;
2839         drm_i915_private_t *dev_priv = dev->dev_private;
2840         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2841         int i, ret;
2842         void __iomem *reloc_page;
2843
2844         /* Choose the GTT offset for our buffer and put it there. */
2845         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2846         if (ret)
2847                 return ret;
2848
2849         entry->offset = obj_priv->gtt_offset;
2850
2851         /* Apply the relocations, using the GTT aperture to avoid cache
2852          * flushing requirements.
2853          */
2854         for (i = 0; i < entry->relocation_count; i++) {
2855                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2856                 struct drm_gem_object *target_obj;
2857                 struct drm_i915_gem_object *target_obj_priv;
2858                 uint32_t reloc_val, reloc_offset;
2859                 uint32_t __iomem *reloc_entry;
2860
2861                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2862                                                    reloc->target_handle);
2863                 if (target_obj == NULL) {
2864                         i915_gem_object_unpin(obj);
2865                         return -EBADF;
2866                 }
2867                 target_obj_priv = target_obj->driver_private;
2868
2869                 /* The target buffer should have appeared before us in the
2870                  * exec_object list, so it should have a GTT space bound by now.
2871                  */
2872                 if (target_obj_priv->gtt_space == NULL) {
2873                         DRM_ERROR("No GTT space found for object %d\n",
2874                                   reloc->target_handle);
2875                         drm_gem_object_unreference(target_obj);
2876                         i915_gem_object_unpin(obj);
2877                         return -EINVAL;
2878                 }
2879
2880                 if (reloc->offset > obj->size - 4) {
2881                         DRM_ERROR("Relocation beyond object bounds: "
2882                                   "obj %p target %d offset %d size %d.\n",
2883                                   obj, reloc->target_handle,
2884                                   (int) reloc->offset, (int) obj->size);
2885                         drm_gem_object_unreference(target_obj);
2886                         i915_gem_object_unpin(obj);
2887                         return -EINVAL;
2888                 }
2889                 if (reloc->offset & 3) {
2890                         DRM_ERROR("Relocation not 4-byte aligned: "
2891                                   "obj %p target %d offset %d.\n",
2892                                   obj, reloc->target_handle,
2893                                   (int) reloc->offset);
2894                         drm_gem_object_unreference(target_obj);
2895                         i915_gem_object_unpin(obj);
2896                         return -EINVAL;
2897                 }
2898
2899                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2900                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2901                         DRM_ERROR("reloc with read/write CPU domains: "
2902                                   "obj %p target %d offset %d "
2903                                   "read %08x write %08x",
2904                                   obj, reloc->target_handle,
2905                                   (int) reloc->offset,
2906                                   reloc->read_domains,
2907                                   reloc->write_domain);
2908                         drm_gem_object_unreference(target_obj);
2909                         i915_gem_object_unpin(obj);
2910                         return -EINVAL;
2911                 }
2912
2913                 if (reloc->write_domain && target_obj->pending_write_domain &&
2914                     reloc->write_domain != target_obj->pending_write_domain) {
2915                         DRM_ERROR("Write domain conflict: "
2916                                   "obj %p target %d offset %d "
2917                                   "new %08x old %08x\n",
2918                                   obj, reloc->target_handle,
2919                                   (int) reloc->offset,
2920                                   reloc->write_domain,
2921                                   target_obj->pending_write_domain);
2922                         drm_gem_object_unreference(target_obj);
2923                         i915_gem_object_unpin(obj);
2924                         return -EINVAL;
2925                 }
2926
2927 #if WATCH_RELOC
2928                 DRM_INFO("%s: obj %p offset %08x target %d "
2929                          "read %08x write %08x gtt %08x "
2930                          "presumed %08x delta %08x\n",
2931                          __func__,
2932                          obj,
2933                          (int) reloc->offset,
2934                          (int) reloc->target_handle,
2935                          (int) reloc->read_domains,
2936                          (int) reloc->write_domain,
2937                          (int) target_obj_priv->gtt_offset,
2938                          (int) reloc->presumed_offset,
2939                          reloc->delta);
2940 #endif
2941
2942                 target_obj->pending_read_domains |= reloc->read_domains;
2943                 target_obj->pending_write_domain |= reloc->write_domain;
2944
2945                 /* If the relocation already has the right value in it, no
2946                  * more work needs to be done.
2947                  */
2948                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2949                         drm_gem_object_unreference(target_obj);
2950                         continue;
2951                 }
2952
2953                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2954                 if (ret != 0) {
2955                         drm_gem_object_unreference(target_obj);
2956                         i915_gem_object_unpin(obj);
2957                         return -EINVAL;
2958                 }
2959
2960                 /* Map the page containing the relocation we're going to
2961                  * perform.
2962                  */
2963                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
2964                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2965                                                       (reloc_offset &
2966                                                        ~(PAGE_SIZE - 1)));
2967                 reloc_entry = (uint32_t __iomem *)(reloc_page +
2968                                                    (reloc_offset & (PAGE_SIZE - 1)));
2969                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
2970
2971 #if WATCH_BUF
2972                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2973                           obj, (unsigned int) reloc->offset,
2974                           readl(reloc_entry), reloc_val);
2975 #endif
2976                 writel(reloc_val, reloc_entry);
2977                 io_mapping_unmap_atomic(reloc_page);
2978
2979                 /* The updated presumed offset for this entry will be
2980                  * copied back out to the user.
2981                  */
2982                 reloc->presumed_offset = target_obj_priv->gtt_offset;
2983
2984                 drm_gem_object_unreference(target_obj);
2985         }
2986
2987 #if WATCH_BUF
2988         if (0)
2989                 i915_gem_dump_object(obj, 128, __func__, ~0);
2990 #endif
2991         return 0;
2992 }
2993
2994 /** Dispatch a batchbuffer to the ring
2995  */
2996 static int
2997 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2998                               struct drm_i915_gem_execbuffer *exec,
2999                               struct drm_clip_rect *cliprects,
3000                               uint64_t exec_offset)
3001 {
3002         drm_i915_private_t *dev_priv = dev->dev_private;
3003         int nbox = exec->num_cliprects;
3004         int i = 0, count;
3005         uint32_t        exec_start, exec_len;
3006         RING_LOCALS;
3007
3008         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3009         exec_len = (uint32_t) exec->batch_len;
3010
3011         if ((exec_start | exec_len) & 0x7) {
3012                 DRM_ERROR("alignment\n");
3013                 return -EINVAL;
3014         }
3015
3016         if (!exec_start)
3017                 return -EINVAL;
3018
3019         count = nbox ? nbox : 1;
3020
3021         for (i = 0; i < count; i++) {
3022                 if (i < nbox) {
3023                         int ret = i915_emit_box(dev, cliprects, i,
3024                                                 exec->DR1, exec->DR4);
3025                         if (ret)
3026                                 return ret;
3027                 }
3028
3029                 if (IS_I830(dev) || IS_845G(dev)) {
3030                         BEGIN_LP_RING(4);
3031                         OUT_RING(MI_BATCH_BUFFER);
3032                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3033                         OUT_RING(exec_start + exec_len - 4);
3034                         OUT_RING(0);
3035                         ADVANCE_LP_RING();
3036                 } else {
3037                         BEGIN_LP_RING(2);
3038                         if (IS_I965G(dev)) {
3039                                 OUT_RING(MI_BATCH_BUFFER_START |
3040                                          (2 << 6) |
3041                                          MI_BATCH_NON_SECURE_I965);
3042                                 OUT_RING(exec_start);
3043                         } else {
3044                                 OUT_RING(MI_BATCH_BUFFER_START |
3045                                          (2 << 6));
3046                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3047                         }
3048                         ADVANCE_LP_RING();
3049                 }
3050         }
3051
3052         /* XXX breadcrumb */
3053         return 0;
3054 }
3055
3056 /* Throttle our rendering by waiting until the ring has completed our requests
3057  * emitted over 20 msec ago.
3058  *
3059  * This should get us reasonable parallelism between CPU and GPU but also
3060  * relatively low latency when blocking on a particular request to finish.
3061  */
3062 static int
3063 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3064 {
3065         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3066         int ret = 0;
3067         uint32_t seqno;
3068
3069         mutex_lock(&dev->struct_mutex);
3070         seqno = i915_file_priv->mm.last_gem_throttle_seqno;
3071         i915_file_priv->mm.last_gem_throttle_seqno =
3072                 i915_file_priv->mm.last_gem_seqno;
3073         if (seqno)
3074                 ret = i915_wait_request(dev, seqno);
3075         mutex_unlock(&dev->struct_mutex);
3076         return ret;
3077 }
3078
3079 static int
3080 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3081                               uint32_t buffer_count,
3082                               struct drm_i915_gem_relocation_entry **relocs)
3083 {
3084         uint32_t reloc_count = 0, reloc_index = 0, i;
3085         int ret;
3086
3087         *relocs = NULL;
3088         for (i = 0; i < buffer_count; i++) {
3089                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3090                         return -EINVAL;
3091                 reloc_count += exec_list[i].relocation_count;
3092         }
3093
3094         *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
3095         if (*relocs == NULL)
3096                 return -ENOMEM;
3097
3098         for (i = 0; i < buffer_count; i++) {
3099                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3100
3101                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3102
3103                 ret = copy_from_user(&(*relocs)[reloc_index],
3104                                      user_relocs,
3105                                      exec_list[i].relocation_count *
3106                                      sizeof(**relocs));
3107                 if (ret != 0) {
3108                         drm_free(*relocs, reloc_count * sizeof(**relocs),
3109                                  DRM_MEM_DRIVER);
3110                         *relocs = NULL;
3111                         return -EFAULT;
3112                 }
3113
3114                 reloc_index += exec_list[i].relocation_count;
3115         }
3116
3117         return 0;
3118 }
3119
3120 static int
3121 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3122                             uint32_t buffer_count,
3123                             struct drm_i915_gem_relocation_entry *relocs)
3124 {
3125         uint32_t reloc_count = 0, i;
3126         int ret = 0;
3127
3128         for (i = 0; i < buffer_count; i++) {
3129                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3130                 int unwritten;
3131
3132                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3133
3134                 unwritten = copy_to_user(user_relocs,
3135                                          &relocs[reloc_count],
3136                                          exec_list[i].relocation_count *
3137                                          sizeof(*relocs));
3138
3139                 if (unwritten) {
3140                         ret = -EFAULT;
3141                         goto err;
3142                 }
3143
3144                 reloc_count += exec_list[i].relocation_count;
3145         }
3146
3147 err:
3148         drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3149
3150         return ret;
3151 }
3152
3153 int
3154 i915_gem_execbuffer(struct drm_device *dev, void *data,
3155                     struct drm_file *file_priv)
3156 {
3157         drm_i915_private_t *dev_priv = dev->dev_private;
3158         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3159         struct drm_i915_gem_execbuffer *args = data;
3160         struct drm_i915_gem_exec_object *exec_list = NULL;
3161         struct drm_gem_object **object_list = NULL;
3162         struct drm_gem_object *batch_obj;
3163         struct drm_i915_gem_object *obj_priv;
3164         struct drm_clip_rect *cliprects = NULL;
3165         struct drm_i915_gem_relocation_entry *relocs;
3166         int ret, ret2, i, pinned = 0;
3167         uint64_t exec_offset;
3168         uint32_t seqno, flush_domains, reloc_index;
3169         int pin_tries;
3170
3171 #if WATCH_EXEC
3172         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3173                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3174 #endif
3175
3176         if (args->buffer_count < 1) {
3177                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3178                 return -EINVAL;
3179         }
3180         /* Copy in the exec list from userland */
3181         exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3182                                DRM_MEM_DRIVER);
3183         object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3184                                  DRM_MEM_DRIVER);
3185         if (exec_list == NULL || object_list == NULL) {
3186                 DRM_ERROR("Failed to allocate exec or object list "
3187                           "for %d buffers\n",
3188                           args->buffer_count);
3189                 ret = -ENOMEM;
3190                 goto pre_mutex_err;
3191         }
3192         ret = copy_from_user(exec_list,
3193                              (struct drm_i915_relocation_entry __user *)
3194                              (uintptr_t) args->buffers_ptr,
3195                              sizeof(*exec_list) * args->buffer_count);
3196         if (ret != 0) {
3197                 DRM_ERROR("copy %d exec entries failed %d\n",
3198                           args->buffer_count, ret);
3199                 goto pre_mutex_err;
3200         }
3201
3202         if (args->num_cliprects != 0) {
3203                 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3204                                        DRM_MEM_DRIVER);
3205                 if (cliprects == NULL)
3206                         goto pre_mutex_err;
3207
3208                 ret = copy_from_user(cliprects,
3209                                      (struct drm_clip_rect __user *)
3210                                      (uintptr_t) args->cliprects_ptr,
3211                                      sizeof(*cliprects) * args->num_cliprects);
3212                 if (ret != 0) {
3213                         DRM_ERROR("copy %d cliprects failed: %d\n",
3214                                   args->num_cliprects, ret);
3215                         goto pre_mutex_err;
3216                 }
3217         }
3218
3219         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3220                                             &relocs);
3221         if (ret != 0)
3222                 goto pre_mutex_err;
3223
3224         mutex_lock(&dev->struct_mutex);
3225
3226         i915_verify_inactive(dev, __FILE__, __LINE__);
3227
3228         if (dev_priv->mm.wedged) {
3229                 DRM_ERROR("Execbuf while wedged\n");
3230                 mutex_unlock(&dev->struct_mutex);
3231                 ret = -EIO;
3232                 goto pre_mutex_err;
3233         }
3234
3235         if (dev_priv->mm.suspended) {
3236                 DRM_ERROR("Execbuf while VT-switched.\n");
3237                 mutex_unlock(&dev->struct_mutex);
3238                 ret = -EBUSY;
3239                 goto pre_mutex_err;
3240         }
3241
3242         /* Look up object handles */
3243         for (i = 0; i < args->buffer_count; i++) {
3244                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3245                                                        exec_list[i].handle);
3246                 if (object_list[i] == NULL) {
3247                         DRM_ERROR("Invalid object handle %d at index %d\n",
3248                                    exec_list[i].handle, i);
3249                         ret = -EBADF;
3250                         goto err;
3251                 }
3252
3253                 obj_priv = object_list[i]->driver_private;
3254                 if (obj_priv->in_execbuffer) {
3255                         DRM_ERROR("Object %p appears more than once in object list\n",
3256                                    object_list[i]);
3257                         ret = -EBADF;
3258                         goto err;
3259                 }
3260                 obj_priv->in_execbuffer = true;
3261         }
3262
3263         /* Pin and relocate */
3264         for (pin_tries = 0; ; pin_tries++) {
3265                 ret = 0;
3266                 reloc_index = 0;
3267
3268                 for (i = 0; i < args->buffer_count; i++) {
3269                         object_list[i]->pending_read_domains = 0;
3270                         object_list[i]->pending_write_domain = 0;
3271                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3272                                                                file_priv,
3273                                                                &exec_list[i],
3274                                                                &relocs[reloc_index]);
3275                         if (ret)
3276                                 break;
3277                         pinned = i + 1;
3278                         reloc_index += exec_list[i].relocation_count;
3279                 }
3280                 /* success */
3281                 if (ret == 0)
3282                         break;
3283
3284                 /* error other than GTT full, or we've already tried again */
3285                 if (ret != -ENOMEM || pin_tries >= 1) {
3286                         if (ret != -ERESTARTSYS)
3287                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3288                         goto err;
3289                 }
3290
3291                 /* unpin all of our buffers */
3292                 for (i = 0; i < pinned; i++)
3293                         i915_gem_object_unpin(object_list[i]);
3294                 pinned = 0;
3295
3296                 /* evict everyone we can from the aperture */
3297                 ret = i915_gem_evict_everything(dev);
3298                 if (ret)
3299                         goto err;
3300         }
3301
3302         /* Set the pending read domains for the batch buffer to COMMAND */
3303         batch_obj = object_list[args->buffer_count-1];
3304         batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3305         batch_obj->pending_write_domain = 0;
3306
3307         i915_verify_inactive(dev, __FILE__, __LINE__);
3308
3309         /* Zero the global flush/invalidate flags. These
3310          * will be modified as new domains are computed
3311          * for each object
3312          */
3313         dev->invalidate_domains = 0;
3314         dev->flush_domains = 0;
3315
3316         for (i = 0; i < args->buffer_count; i++) {
3317                 struct drm_gem_object *obj = object_list[i];
3318
3319                 /* Compute new gpu domains and update invalidate/flush */
3320                 i915_gem_object_set_to_gpu_domain(obj);
3321         }
3322
3323         i915_verify_inactive(dev, __FILE__, __LINE__);
3324
3325         if (dev->invalidate_domains | dev->flush_domains) {
3326 #if WATCH_EXEC
3327                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3328                           __func__,
3329                          dev->invalidate_domains,
3330                          dev->flush_domains);
3331 #endif
3332                 i915_gem_flush(dev,
3333                                dev->invalidate_domains,
3334                                dev->flush_domains);
3335                 if (dev->flush_domains)
3336                         (void)i915_add_request(dev, dev->flush_domains);
3337         }
3338
3339         for (i = 0; i < args->buffer_count; i++) {
3340                 struct drm_gem_object *obj = object_list[i];
3341
3342                 obj->write_domain = obj->pending_write_domain;
3343         }
3344
3345         i915_verify_inactive(dev, __FILE__, __LINE__);
3346
3347 #if WATCH_COHERENCY
3348         for (i = 0; i < args->buffer_count; i++) {
3349                 i915_gem_object_check_coherency(object_list[i],
3350                                                 exec_list[i].handle);
3351         }
3352 #endif
3353
3354         exec_offset = exec_list[args->buffer_count - 1].offset;
3355
3356 #if WATCH_EXEC
3357         i915_gem_dump_object(batch_obj,
3358                               args->batch_len,
3359                               __func__,
3360                               ~0);
3361 #endif
3362
3363         /* Exec the batchbuffer */
3364         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3365         if (ret) {
3366                 DRM_ERROR("dispatch failed %d\n", ret);
3367                 goto err;
3368         }
3369
3370         /*
3371          * Ensure that the commands in the batch buffer are
3372          * finished before the interrupt fires
3373          */
3374         flush_domains = i915_retire_commands(dev);
3375
3376         i915_verify_inactive(dev, __FILE__, __LINE__);
3377
3378         /*
3379          * Get a seqno representing the execution of the current buffer,
3380          * which we can wait on.  We would like to mitigate these interrupts,
3381          * likely by only creating seqnos occasionally (so that we have
3382          * *some* interrupts representing completion of buffers that we can
3383          * wait on when trying to clear up gtt space).
3384          */
3385         seqno = i915_add_request(dev, flush_domains);
3386         BUG_ON(seqno == 0);
3387         i915_file_priv->mm.last_gem_seqno = seqno;
3388         for (i = 0; i < args->buffer_count; i++) {
3389                 struct drm_gem_object *obj = object_list[i];
3390
3391                 i915_gem_object_move_to_active(obj, seqno);
3392 #if WATCH_LRU
3393                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3394 #endif
3395         }
3396 #if WATCH_LRU
3397         i915_dump_lru(dev, __func__);
3398 #endif
3399
3400         i915_verify_inactive(dev, __FILE__, __LINE__);
3401
3402 err:
3403         for (i = 0; i < pinned; i++)
3404                 i915_gem_object_unpin(object_list[i]);
3405
3406         for (i = 0; i < args->buffer_count; i++) {
3407                 if (object_list[i]) {
3408                         obj_priv = object_list[i]->driver_private;
3409                         obj_priv->in_execbuffer = false;
3410                 }
3411                 drm_gem_object_unreference(object_list[i]);
3412         }
3413
3414         mutex_unlock(&dev->struct_mutex);
3415
3416         if (!ret) {
3417                 /* Copy the new buffer offsets back to the user's exec list. */
3418                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3419                                    (uintptr_t) args->buffers_ptr,
3420                                    exec_list,
3421                                    sizeof(*exec_list) * args->buffer_count);
3422                 if (ret) {
3423                         ret = -EFAULT;
3424                         DRM_ERROR("failed to copy %d exec entries "
3425                                   "back to user (%d)\n",
3426                                   args->buffer_count, ret);
3427                 }
3428         }
3429
3430         /* Copy the updated relocations out regardless of current error
3431          * state.  Failure to update the relocs would mean that the next
3432          * time userland calls execbuf, it would do so with presumed offset
3433          * state that didn't match the actual object state.
3434          */
3435         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3436                                            relocs);
3437         if (ret2 != 0) {
3438                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3439
3440                 if (ret == 0)
3441                         ret = ret2;
3442         }
3443
3444 pre_mutex_err:
3445         drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3446                  DRM_MEM_DRIVER);
3447         drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3448                  DRM_MEM_DRIVER);
3449         drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3450                  DRM_MEM_DRIVER);
3451
3452         return ret;
3453 }
3454
3455 int
3456 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3457 {
3458         struct drm_device *dev = obj->dev;
3459         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3460         int ret;
3461
3462         i915_verify_inactive(dev, __FILE__, __LINE__);
3463         if (obj_priv->gtt_space == NULL) {
3464                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3465                 if (ret != 0) {
3466                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3467                                 DRM_ERROR("Failure to bind: %d\n", ret);
3468                         return ret;
3469                 }
3470         }
3471         /*
3472          * Pre-965 chips need a fence register set up in order to
3473          * properly handle tiled surfaces.
3474          */
3475         if (!IS_I965G(dev) &&
3476             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3477             obj_priv->tiling_mode != I915_TILING_NONE) {
3478                 ret = i915_gem_object_get_fence_reg(obj, true);
3479                 if (ret != 0) {
3480                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3481                                 DRM_ERROR("Failure to install fence: %d\n",
3482                                           ret);
3483                         return ret;
3484                 }
3485         }
3486         obj_priv->pin_count++;
3487
3488         /* If the object is not active and not pending a flush,
3489          * remove it from the inactive list
3490          */
3491         if (obj_priv->pin_count == 1) {
3492                 atomic_inc(&dev->pin_count);
3493                 atomic_add(obj->size, &dev->pin_memory);
3494                 if (!obj_priv->active &&
3495                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3496                                            I915_GEM_DOMAIN_GTT)) == 0 &&
3497                     !list_empty(&obj_priv->list))
3498                         list_del_init(&obj_priv->list);
3499         }
3500         i915_verify_inactive(dev, __FILE__, __LINE__);
3501
3502         return 0;
3503 }
3504
3505 void
3506 i915_gem_object_unpin(struct drm_gem_object *obj)
3507 {
3508         struct drm_device *dev = obj->dev;
3509         drm_i915_private_t *dev_priv = dev->dev_private;
3510         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3511
3512         i915_verify_inactive(dev, __FILE__, __LINE__);
3513         obj_priv->pin_count--;
3514         BUG_ON(obj_priv->pin_count < 0);
3515         BUG_ON(obj_priv->gtt_space == NULL);
3516
3517         /* If the object is no longer pinned, and is
3518          * neither active nor being flushed, then stick it on
3519          * the inactive list
3520          */
3521         if (obj_priv->pin_count == 0) {
3522                 if (!obj_priv->active &&
3523                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3524                                            I915_GEM_DOMAIN_GTT)) == 0)
3525                         list_move_tail(&obj_priv->list,
3526                                        &dev_priv->mm.inactive_list);
3527                 atomic_dec(&dev->pin_count);
3528                 atomic_sub(obj->size, &dev->pin_memory);
3529         }
3530         i915_verify_inactive(dev, __FILE__, __LINE__);
3531 }
3532
3533 int
3534 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3535                    struct drm_file *file_priv)
3536 {
3537         struct drm_i915_gem_pin *args = data;
3538         struct drm_gem_object *obj;
3539         struct drm_i915_gem_object *obj_priv;
3540         int ret;
3541
3542         mutex_lock(&dev->struct_mutex);
3543
3544         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3545         if (obj == NULL) {
3546                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3547                           args->handle);
3548                 mutex_unlock(&dev->struct_mutex);
3549                 return -EBADF;
3550         }
3551         obj_priv = obj->driver_private;
3552
3553         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3554                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3555                           args->handle);
3556                 drm_gem_object_unreference(obj);
3557                 mutex_unlock(&dev->struct_mutex);
3558                 return -EINVAL;
3559         }
3560
3561         obj_priv->user_pin_count++;
3562         obj_priv->pin_filp = file_priv;
3563         if (obj_priv->user_pin_count == 1) {
3564                 ret = i915_gem_object_pin(obj, args->alignment);
3565                 if (ret != 0) {
3566                         drm_gem_object_unreference(obj);
3567                         mutex_unlock(&dev->struct_mutex);
3568                         return ret;
3569                 }
3570         }
3571
3572         /* XXX - flush the CPU caches for pinned objects
3573          * as the X server doesn't manage domains yet
3574          */
3575         i915_gem_object_flush_cpu_write_domain(obj);
3576         args->offset = obj_priv->gtt_offset;
3577         drm_gem_object_unreference(obj);
3578         mutex_unlock(&dev->struct_mutex);
3579
3580         return 0;
3581 }
3582
3583 int
3584 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3585                      struct drm_file *file_priv)
3586 {
3587         struct drm_i915_gem_pin *args = data;
3588         struct drm_gem_object *obj;
3589         struct drm_i915_gem_object *obj_priv;
3590
3591         mutex_lock(&dev->struct_mutex);
3592
3593         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3594         if (obj == NULL) {
3595                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3596                           args->handle);
3597                 mutex_unlock(&dev->struct_mutex);
3598                 return -EBADF;
3599         }
3600
3601         obj_priv = obj->driver_private;
3602         if (obj_priv->pin_filp != file_priv) {
3603                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3604                           args->handle);
3605                 drm_gem_object_unreference(obj);
3606                 mutex_unlock(&dev->struct_mutex);
3607                 return -EINVAL;
3608         }
3609         obj_priv->user_pin_count--;
3610         if (obj_priv->user_pin_count == 0) {
3611                 obj_priv->pin_filp = NULL;
3612                 i915_gem_object_unpin(obj);
3613         }
3614
3615         drm_gem_object_unreference(obj);
3616         mutex_unlock(&dev->struct_mutex);
3617         return 0;
3618 }
3619
3620 int
3621 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3622                     struct drm_file *file_priv)
3623 {
3624         struct drm_i915_gem_busy *args = data;
3625         struct drm_gem_object *obj;
3626         struct drm_i915_gem_object *obj_priv;
3627
3628         mutex_lock(&dev->struct_mutex);
3629         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3630         if (obj == NULL) {
3631                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3632                           args->handle);
3633                 mutex_unlock(&dev->struct_mutex);
3634                 return -EBADF;
3635         }
3636
3637         /* Update the active list for the hardware's current position.
3638          * Otherwise this only updates on a delayed timer or when irqs are
3639          * actually unmasked, and our working set ends up being larger than
3640          * required.
3641          */
3642         i915_gem_retire_requests(dev);
3643
3644         obj_priv = obj->driver_private;
3645         /* Don't count being on the flushing list against the object being
3646          * done.  Otherwise, a buffer left on the flushing list but not getting
3647          * flushed (because nobody's flushing that domain) won't ever return
3648          * unbusy and get reused by libdrm's bo cache.  The other expected
3649          * consumer of this interface, OpenGL's occlusion queries, also specs
3650          * that the objects get unbusy "eventually" without any interference.
3651          */
3652         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3653
3654         drm_gem_object_unreference(obj);
3655         mutex_unlock(&dev->struct_mutex);
3656         return 0;
3657 }
3658
3659 int
3660 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3661                         struct drm_file *file_priv)
3662 {
3663     return i915_gem_ring_throttle(dev, file_priv);
3664 }
3665
3666 int i915_gem_init_object(struct drm_gem_object *obj)
3667 {
3668         struct drm_i915_gem_object *obj_priv;
3669
3670         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3671         if (obj_priv == NULL)
3672                 return -ENOMEM;
3673
3674         /*
3675          * We've just allocated pages from the kernel,
3676          * so they've just been written by the CPU with
3677          * zeros. They'll need to be clflushed before we
3678          * use them with the GPU.
3679          */
3680         obj->write_domain = I915_GEM_DOMAIN_CPU;
3681         obj->read_domains = I915_GEM_DOMAIN_CPU;
3682
3683         obj_priv->agp_type = AGP_USER_MEMORY;
3684
3685         obj->driver_private = obj_priv;
3686         obj_priv->obj = obj;
3687         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3688         INIT_LIST_HEAD(&obj_priv->list);
3689
3690         return 0;
3691 }
3692
3693 void i915_gem_free_object(struct drm_gem_object *obj)
3694 {
3695         struct drm_device *dev = obj->dev;
3696         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3697
3698         while (obj_priv->pin_count > 0)
3699                 i915_gem_object_unpin(obj);
3700
3701         if (obj_priv->phys_obj)
3702                 i915_gem_detach_phys_object(dev, obj);
3703
3704         i915_gem_object_unbind(obj);
3705
3706         i915_gem_free_mmap_offset(obj);
3707
3708         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3709         kfree(obj_priv->bit_17);
3710         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3711 }
3712
3713 /** Unbinds all objects that are on the given buffer list. */
3714 static int
3715 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3716 {
3717         struct drm_gem_object *obj;
3718         struct drm_i915_gem_object *obj_priv;
3719         int ret;
3720
3721         while (!list_empty(head)) {
3722                 obj_priv = list_first_entry(head,
3723                                             struct drm_i915_gem_object,
3724                                             list);
3725                 obj = obj_priv->obj;
3726
3727                 if (obj_priv->pin_count != 0) {
3728                         DRM_ERROR("Pinned object in unbind list\n");
3729                         mutex_unlock(&dev->struct_mutex);
3730                         return -EINVAL;
3731                 }
3732
3733                 ret = i915_gem_object_unbind(obj);
3734                 if (ret != 0) {
3735                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3736                                   ret);
3737                         mutex_unlock(&dev->struct_mutex);
3738                         return ret;
3739                 }
3740         }
3741
3742
3743         return 0;
3744 }
3745
3746 int
3747 i915_gem_idle(struct drm_device *dev)
3748 {
3749         drm_i915_private_t *dev_priv = dev->dev_private;
3750         uint32_t seqno, cur_seqno, last_seqno;
3751         int stuck, ret;
3752
3753         mutex_lock(&dev->struct_mutex);
3754
3755         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3756                 mutex_unlock(&dev->struct_mutex);
3757                 return 0;
3758         }
3759
3760         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3761          * We need to replace this with a semaphore, or something.
3762          */
3763         dev_priv->mm.suspended = 1;
3764
3765         /* Cancel the retire work handler, wait for it to finish if running
3766          */
3767         mutex_unlock(&dev->struct_mutex);
3768         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3769         mutex_lock(&dev->struct_mutex);
3770
3771         i915_kernel_lost_context(dev);
3772
3773         /* Flush the GPU along with all non-CPU write domains
3774          */
3775         i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3776                        ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3777         seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3778
3779         if (seqno == 0) {
3780                 mutex_unlock(&dev->struct_mutex);
3781                 return -ENOMEM;
3782         }
3783
3784         dev_priv->mm.waiting_gem_seqno = seqno;
3785         last_seqno = 0;
3786         stuck = 0;
3787         for (;;) {
3788                 cur_seqno = i915_get_gem_seqno(dev);
3789                 if (i915_seqno_passed(cur_seqno, seqno))
3790                         break;
3791                 if (last_seqno == cur_seqno) {
3792                         if (stuck++ > 100) {
3793                                 DRM_ERROR("hardware wedged\n");
3794                                 dev_priv->mm.wedged = 1;
3795                                 DRM_WAKEUP(&dev_priv->irq_queue);
3796                                 break;
3797                         }
3798                 }
3799                 msleep(10);
3800                 last_seqno = cur_seqno;
3801         }
3802         dev_priv->mm.waiting_gem_seqno = 0;
3803
3804         i915_gem_retire_requests(dev);
3805
3806         spin_lock(&dev_priv->mm.active_list_lock);
3807         if (!dev_priv->mm.wedged) {
3808                 /* Active and flushing should now be empty as we've
3809                  * waited for a sequence higher than any pending execbuffer
3810                  */
3811                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3812                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3813                 /* Request should now be empty as we've also waited
3814                  * for the last request in the list
3815                  */
3816                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3817         }
3818
3819         /* Empty the active and flushing lists to inactive.  If there's
3820          * anything left at this point, it means that we're wedged and
3821          * nothing good's going to happen by leaving them there.  So strip
3822          * the GPU domains and just stuff them onto inactive.
3823          */
3824         while (!list_empty(&dev_priv->mm.active_list)) {
3825                 struct drm_i915_gem_object *obj_priv;
3826
3827                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3828                                             struct drm_i915_gem_object,
3829                                             list);
3830                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3831                 i915_gem_object_move_to_inactive(obj_priv->obj);
3832         }
3833         spin_unlock(&dev_priv->mm.active_list_lock);
3834
3835         while (!list_empty(&dev_priv->mm.flushing_list)) {
3836                 struct drm_i915_gem_object *obj_priv;
3837
3838                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3839                                             struct drm_i915_gem_object,
3840                                             list);
3841                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3842                 i915_gem_object_move_to_inactive(obj_priv->obj);
3843         }
3844
3845
3846         /* Move all inactive buffers out of the GTT. */
3847         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3848         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3849         if (ret) {
3850                 mutex_unlock(&dev->struct_mutex);
3851                 return ret;
3852         }
3853
3854         i915_gem_cleanup_ringbuffer(dev);
3855         mutex_unlock(&dev->struct_mutex);
3856
3857         return 0;
3858 }
3859
3860 static int
3861 i915_gem_init_hws(struct drm_device *dev)
3862 {
3863         drm_i915_private_t *dev_priv = dev->dev_private;
3864         struct drm_gem_object *obj;
3865         struct drm_i915_gem_object *obj_priv;
3866         int ret;
3867
3868         /* If we need a physical address for the status page, it's already
3869          * initialized at driver load time.
3870          */
3871         if (!I915_NEED_GFX_HWS(dev))
3872                 return 0;
3873
3874         obj = drm_gem_object_alloc(dev, 4096);
3875         if (obj == NULL) {
3876                 DRM_ERROR("Failed to allocate status page\n");
3877                 return -ENOMEM;
3878         }
3879         obj_priv = obj->driver_private;
3880         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3881
3882         ret = i915_gem_object_pin(obj, 4096);
3883         if (ret != 0) {
3884                 drm_gem_object_unreference(obj);
3885                 return ret;
3886         }
3887
3888         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3889
3890         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3891         if (dev_priv->hw_status_page == NULL) {
3892                 DRM_ERROR("Failed to map status page.\n");
3893                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3894                 i915_gem_object_unpin(obj);
3895                 drm_gem_object_unreference(obj);
3896                 return -EINVAL;
3897         }
3898         dev_priv->hws_obj = obj;
3899         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3900         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3901         I915_READ(HWS_PGA); /* posting read */
3902         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3903
3904         return 0;
3905 }
3906
3907 static void
3908 i915_gem_cleanup_hws(struct drm_device *dev)
3909 {
3910         drm_i915_private_t *dev_priv = dev->dev_private;
3911         struct drm_gem_object *obj;
3912         struct drm_i915_gem_object *obj_priv;
3913
3914         if (dev_priv->hws_obj == NULL)
3915                 return;
3916
3917         obj = dev_priv->hws_obj;
3918         obj_priv = obj->driver_private;
3919
3920         kunmap(obj_priv->pages[0]);
3921         i915_gem_object_unpin(obj);
3922         drm_gem_object_unreference(obj);
3923         dev_priv->hws_obj = NULL;
3924
3925         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3926         dev_priv->hw_status_page = NULL;
3927
3928         /* Write high address into HWS_PGA when disabling. */
3929         I915_WRITE(HWS_PGA, 0x1ffff000);
3930 }
3931
3932 int
3933 i915_gem_init_ringbuffer(struct drm_device *dev)
3934 {
3935         drm_i915_private_t *dev_priv = dev->dev_private;
3936         struct drm_gem_object *obj;
3937         struct drm_i915_gem_object *obj_priv;
3938         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3939         int ret;
3940         u32 head;
3941
3942         ret = i915_gem_init_hws(dev);
3943         if (ret != 0)
3944                 return ret;
3945
3946         obj = drm_gem_object_alloc(dev, 128 * 1024);
3947         if (obj == NULL) {
3948                 DRM_ERROR("Failed to allocate ringbuffer\n");
3949                 i915_gem_cleanup_hws(dev);
3950                 return -ENOMEM;
3951         }
3952         obj_priv = obj->driver_private;
3953
3954         ret = i915_gem_object_pin(obj, 4096);
3955         if (ret != 0) {
3956                 drm_gem_object_unreference(obj);
3957                 i915_gem_cleanup_hws(dev);
3958                 return ret;
3959         }
3960
3961         /* Set up the kernel mapping for the ring. */
3962         ring->Size = obj->size;
3963         ring->tail_mask = obj->size - 1;
3964
3965         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3966         ring->map.size = obj->size;
3967         ring->map.type = 0;
3968         ring->map.flags = 0;
3969         ring->map.mtrr = 0;
3970
3971         drm_core_ioremap_wc(&ring->map, dev);
3972         if (ring->map.handle == NULL) {
3973                 DRM_ERROR("Failed to map ringbuffer.\n");
3974                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3975                 i915_gem_object_unpin(obj);
3976                 drm_gem_object_unreference(obj);
3977                 i915_gem_cleanup_hws(dev);
3978                 return -EINVAL;
3979         }
3980         ring->ring_obj = obj;
3981         ring->virtual_start = ring->map.handle;
3982
3983         /* Stop the ring if it's running. */
3984         I915_WRITE(PRB0_CTL, 0);
3985         I915_WRITE(PRB0_TAIL, 0);
3986         I915_WRITE(PRB0_HEAD, 0);
3987
3988         /* Initialize the ring. */
3989         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3990         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3991
3992         /* G45 ring initialization fails to reset head to zero */
3993         if (head != 0) {
3994                 DRM_ERROR("Ring head not reset to zero "
3995                           "ctl %08x head %08x tail %08x start %08x\n",
3996                           I915_READ(PRB0_CTL),
3997                           I915_READ(PRB0_HEAD),
3998                           I915_READ(PRB0_TAIL),
3999                           I915_READ(PRB0_START));
4000                 I915_WRITE(PRB0_HEAD, 0);
4001
4002                 DRM_ERROR("Ring head forced to zero "
4003                           "ctl %08x head %08x tail %08x start %08x\n",
4004                           I915_READ(PRB0_CTL),
4005                           I915_READ(PRB0_HEAD),
4006                           I915_READ(PRB0_TAIL),
4007                           I915_READ(PRB0_START));
4008         }
4009
4010         I915_WRITE(PRB0_CTL,
4011                    ((obj->size - 4096) & RING_NR_PAGES) |
4012                    RING_NO_REPORT |
4013                    RING_VALID);
4014
4015         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4016
4017         /* If the head is still not zero, the ring is dead */
4018         if (head != 0) {
4019                 DRM_ERROR("Ring initialization failed "
4020                           "ctl %08x head %08x tail %08x start %08x\n",
4021                           I915_READ(PRB0_CTL),
4022                           I915_READ(PRB0_HEAD),
4023                           I915_READ(PRB0_TAIL),
4024                           I915_READ(PRB0_START));
4025                 return -EIO;
4026         }
4027
4028         /* Update our cache of the ring state */
4029         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4030                 i915_kernel_lost_context(dev);
4031         else {
4032                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4033                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4034                 ring->space = ring->head - (ring->tail + 8);
4035                 if (ring->space < 0)
4036                         ring->space += ring->Size;
4037         }
4038
4039         return 0;
4040 }
4041
4042 void
4043 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4044 {
4045         drm_i915_private_t *dev_priv = dev->dev_private;
4046
4047         if (dev_priv->ring.ring_obj == NULL)
4048                 return;
4049
4050         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4051
4052         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4053         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4054         dev_priv->ring.ring_obj = NULL;
4055         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4056
4057         i915_gem_cleanup_hws(dev);
4058 }
4059
4060 int
4061 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4062                        struct drm_file *file_priv)
4063 {
4064         drm_i915_private_t *dev_priv = dev->dev_private;
4065         int ret;
4066
4067         if (drm_core_check_feature(dev, DRIVER_MODESET))
4068                 return 0;
4069
4070         if (dev_priv->mm.wedged) {
4071                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4072                 dev_priv->mm.wedged = 0;
4073         }
4074
4075         mutex_lock(&dev->struct_mutex);
4076         dev_priv->mm.suspended = 0;
4077
4078         ret = i915_gem_init_ringbuffer(dev);
4079         if (ret != 0)
4080                 return ret;
4081
4082         spin_lock(&dev_priv->mm.active_list_lock);
4083         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4084         spin_unlock(&dev_priv->mm.active_list_lock);
4085
4086         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4087         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4088         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4089         mutex_unlock(&dev->struct_mutex);
4090
4091         drm_irq_install(dev);
4092
4093         return 0;
4094 }
4095
4096 int
4097 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4098                        struct drm_file *file_priv)
4099 {
4100         int ret;
4101
4102         if (drm_core_check_feature(dev, DRIVER_MODESET))
4103                 return 0;
4104
4105         ret = i915_gem_idle(dev);
4106         drm_irq_uninstall(dev);
4107
4108         return ret;
4109 }
4110
4111 void
4112 i915_gem_lastclose(struct drm_device *dev)
4113 {
4114         int ret;
4115
4116         if (drm_core_check_feature(dev, DRIVER_MODESET))
4117                 return;
4118
4119         ret = i915_gem_idle(dev);
4120         if (ret)
4121                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4122 }
4123
4124 void
4125 i915_gem_load(struct drm_device *dev)
4126 {
4127         drm_i915_private_t *dev_priv = dev->dev_private;
4128
4129         spin_lock_init(&dev_priv->mm.active_list_lock);
4130         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4131         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4132         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4133         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4134         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4135                           i915_gem_retire_work_handler);
4136         dev_priv->mm.next_gem_seqno = 1;
4137
4138         /* Old X drivers will take 0-2 for front, back, depth buffers */
4139         dev_priv->fence_reg_start = 3;
4140
4141         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4142                 dev_priv->num_fence_regs = 16;
4143         else
4144                 dev_priv->num_fence_regs = 8;
4145
4146         i915_gem_detect_bit_6_swizzle(dev);
4147 }
4148
4149 /*
4150  * Create a physically contiguous memory object for this object
4151  * e.g. for cursor + overlay regs
4152  */
4153 int i915_gem_init_phys_object(struct drm_device *dev,
4154                               int id, int size)
4155 {
4156         drm_i915_private_t *dev_priv = dev->dev_private;
4157         struct drm_i915_gem_phys_object *phys_obj;
4158         int ret;
4159
4160         if (dev_priv->mm.phys_objs[id - 1] || !size)
4161                 return 0;
4162
4163         phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4164         if (!phys_obj)
4165                 return -ENOMEM;
4166
4167         phys_obj->id = id;
4168
4169         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4170         if (!phys_obj->handle) {
4171                 ret = -ENOMEM;
4172                 goto kfree_obj;
4173         }
4174 #ifdef CONFIG_X86
4175         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4176 #endif
4177
4178         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4179
4180         return 0;
4181 kfree_obj:
4182         drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4183         return ret;
4184 }
4185
4186 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4187 {
4188         drm_i915_private_t *dev_priv = dev->dev_private;
4189         struct drm_i915_gem_phys_object *phys_obj;
4190
4191         if (!dev_priv->mm.phys_objs[id - 1])
4192                 return;
4193
4194         phys_obj = dev_priv->mm.phys_objs[id - 1];
4195         if (phys_obj->cur_obj) {
4196                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4197         }
4198
4199 #ifdef CONFIG_X86
4200         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4201 #endif
4202         drm_pci_free(dev, phys_obj->handle);
4203         kfree(phys_obj);
4204         dev_priv->mm.phys_objs[id - 1] = NULL;
4205 }
4206
4207 void i915_gem_free_all_phys_object(struct drm_device *dev)
4208 {
4209         int i;
4210
4211         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4212                 i915_gem_free_phys_object(dev, i);
4213 }
4214
4215 void i915_gem_detach_phys_object(struct drm_device *dev,
4216                                  struct drm_gem_object *obj)
4217 {
4218         struct drm_i915_gem_object *obj_priv;
4219         int i;
4220         int ret;
4221         int page_count;
4222
4223         obj_priv = obj->driver_private;
4224         if (!obj_priv->phys_obj)
4225                 return;
4226
4227         ret = i915_gem_object_get_pages(obj);
4228         if (ret)
4229                 goto out;
4230
4231         page_count = obj->size / PAGE_SIZE;
4232
4233         for (i = 0; i < page_count; i++) {
4234                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4235                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4236
4237                 memcpy(dst, src, PAGE_SIZE);
4238                 kunmap_atomic(dst, KM_USER0);
4239         }
4240         drm_clflush_pages(obj_priv->pages, page_count);
4241         drm_agp_chipset_flush(dev);
4242 out:
4243         obj_priv->phys_obj->cur_obj = NULL;
4244         obj_priv->phys_obj = NULL;
4245 }
4246
4247 int
4248 i915_gem_attach_phys_object(struct drm_device *dev,
4249                             struct drm_gem_object *obj, int id)
4250 {
4251         drm_i915_private_t *dev_priv = dev->dev_private;
4252         struct drm_i915_gem_object *obj_priv;
4253         int ret = 0;
4254         int page_count;
4255         int i;
4256
4257         if (id > I915_MAX_PHYS_OBJECT)
4258                 return -EINVAL;
4259
4260         obj_priv = obj->driver_private;
4261
4262         if (obj_priv->phys_obj) {
4263                 if (obj_priv->phys_obj->id == id)
4264                         return 0;
4265                 i915_gem_detach_phys_object(dev, obj);
4266         }
4267
4268
4269         /* create a new object */
4270         if (!dev_priv->mm.phys_objs[id - 1]) {
4271                 ret = i915_gem_init_phys_object(dev, id,
4272                                                 obj->size);
4273                 if (ret) {
4274                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4275                         goto out;
4276                 }
4277         }
4278
4279         /* bind to the object */
4280         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4281         obj_priv->phys_obj->cur_obj = obj;
4282
4283         ret = i915_gem_object_get_pages(obj);
4284         if (ret) {
4285                 DRM_ERROR("failed to get page list\n");
4286                 goto out;
4287         }
4288
4289         page_count = obj->size / PAGE_SIZE;
4290
4291         for (i = 0; i < page_count; i++) {
4292                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4293                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4294
4295                 memcpy(dst, src, PAGE_SIZE);
4296                 kunmap_atomic(src, KM_USER0);
4297         }
4298
4299         return 0;
4300 out:
4301         return ret;
4302 }
4303
4304 static int
4305 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4306                      struct drm_i915_gem_pwrite *args,
4307                      struct drm_file *file_priv)
4308 {
4309         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4310         void *obj_addr;
4311         int ret;
4312         char __user *user_data;
4313
4314         user_data = (char __user *) (uintptr_t) args->data_ptr;
4315         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4316
4317         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4318         ret = copy_from_user(obj_addr, user_data, args->size);
4319         if (ret)
4320                 return -EFAULT;
4321
4322         drm_agp_chipset_flush(dev);
4323         return 0;
4324 }