e0da98602eed4c988d6635f5cf7f11ca2e06f3a6
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int ret;
116         u32 handle;
117
118         args->size = roundup(args->size, PAGE_SIZE);
119
120         /* Allocate the new object */
121         obj = drm_gem_object_alloc(dev, args->size);
122         if (obj == NULL)
123                 return -ENOMEM;
124
125         ret = drm_gem_handle_create(file_priv, obj, &handle);
126         mutex_lock(&dev->struct_mutex);
127         drm_gem_object_handle_unreference(obj);
128         mutex_unlock(&dev->struct_mutex);
129
130         if (ret)
131                 return ret;
132
133         args->handle = handle;
134
135         return 0;
136 }
137
138 static inline int
139 fast_shmem_read(struct page **pages,
140                 loff_t page_base, int page_offset,
141                 char __user *data,
142                 int length)
143 {
144         char __iomem *vaddr;
145         int unwritten;
146
147         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148         if (vaddr == NULL)
149                 return -ENOMEM;
150         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
151         kunmap_atomic(vaddr, KM_USER0);
152
153         if (unwritten)
154                 return -EFAULT;
155
156         return 0;
157 }
158
159 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160 {
161         drm_i915_private_t *dev_priv = obj->dev->dev_private;
162         struct drm_i915_gem_object *obj_priv = obj->driver_private;
163
164         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
165                 obj_priv->tiling_mode != I915_TILING_NONE;
166 }
167
168 static inline int
169 slow_shmem_copy(struct page *dst_page,
170                 int dst_offset,
171                 struct page *src_page,
172                 int src_offset,
173                 int length)
174 {
175         char *dst_vaddr, *src_vaddr;
176
177         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
178         if (dst_vaddr == NULL)
179                 return -ENOMEM;
180
181         src_vaddr = kmap_atomic(src_page, KM_USER1);
182         if (src_vaddr == NULL) {
183                 kunmap_atomic(dst_vaddr, KM_USER0);
184                 return -ENOMEM;
185         }
186
187         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188
189         kunmap_atomic(src_vaddr, KM_USER1);
190         kunmap_atomic(dst_vaddr, KM_USER0);
191
192         return 0;
193 }
194
195 static inline int
196 slow_shmem_bit17_copy(struct page *gpu_page,
197                       int gpu_offset,
198                       struct page *cpu_page,
199                       int cpu_offset,
200                       int length,
201                       int is_read)
202 {
203         char *gpu_vaddr, *cpu_vaddr;
204
205         /* Use the unswizzled path if this page isn't affected. */
206         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207                 if (is_read)
208                         return slow_shmem_copy(cpu_page, cpu_offset,
209                                                gpu_page, gpu_offset, length);
210                 else
211                         return slow_shmem_copy(gpu_page, gpu_offset,
212                                                cpu_page, cpu_offset, length);
213         }
214
215         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
216         if (gpu_vaddr == NULL)
217                 return -ENOMEM;
218
219         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
220         if (cpu_vaddr == NULL) {
221                 kunmap_atomic(gpu_vaddr, KM_USER0);
222                 return -ENOMEM;
223         }
224
225         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226          * XORing with the other bits (A9 for Y, A9 and A10 for X)
227          */
228         while (length > 0) {
229                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230                 int this_length = min(cacheline_end - gpu_offset, length);
231                 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233                 if (is_read) {
234                         memcpy(cpu_vaddr + cpu_offset,
235                                gpu_vaddr + swizzled_gpu_offset,
236                                this_length);
237                 } else {
238                         memcpy(gpu_vaddr + swizzled_gpu_offset,
239                                cpu_vaddr + cpu_offset,
240                                this_length);
241                 }
242                 cpu_offset += this_length;
243                 gpu_offset += this_length;
244                 length -= this_length;
245         }
246
247         kunmap_atomic(cpu_vaddr, KM_USER1);
248         kunmap_atomic(gpu_vaddr, KM_USER0);
249
250         return 0;
251 }
252
253 /**
254  * This is the fast shmem pread path, which attempts to copy_from_user directly
255  * from the backing pages of the object to the user's address space.  On a
256  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
257  */
258 static int
259 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
260                           struct drm_i915_gem_pread *args,
261                           struct drm_file *file_priv)
262 {
263         struct drm_i915_gem_object *obj_priv = obj->driver_private;
264         ssize_t remain;
265         loff_t offset, page_base;
266         char __user *user_data;
267         int page_offset, page_length;
268         int ret;
269
270         user_data = (char __user *) (uintptr_t) args->data_ptr;
271         remain = args->size;
272
273         mutex_lock(&dev->struct_mutex);
274
275         ret = i915_gem_object_get_pages(obj);
276         if (ret != 0)
277                 goto fail_unlock;
278
279         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
280                                                         args->size);
281         if (ret != 0)
282                 goto fail_put_pages;
283
284         obj_priv = obj->driver_private;
285         offset = args->offset;
286
287         while (remain > 0) {
288                 /* Operation in this page
289                  *
290                  * page_base = page offset within aperture
291                  * page_offset = offset within page
292                  * page_length = bytes to copy for this page
293                  */
294                 page_base = (offset & ~(PAGE_SIZE-1));
295                 page_offset = offset & (PAGE_SIZE-1);
296                 page_length = remain;
297                 if ((page_offset + remain) > PAGE_SIZE)
298                         page_length = PAGE_SIZE - page_offset;
299
300                 ret = fast_shmem_read(obj_priv->pages,
301                                       page_base, page_offset,
302                                       user_data, page_length);
303                 if (ret)
304                         goto fail_put_pages;
305
306                 remain -= page_length;
307                 user_data += page_length;
308                 offset += page_length;
309         }
310
311 fail_put_pages:
312         i915_gem_object_put_pages(obj);
313 fail_unlock:
314         mutex_unlock(&dev->struct_mutex);
315
316         return ret;
317 }
318
319 /**
320  * This is the fallback shmem pread path, which allocates temporary storage
321  * in kernel space to copy_to_user into outside of the struct_mutex, so we
322  * can copy out of the object's backing pages while holding the struct mutex
323  * and not take page faults.
324  */
325 static int
326 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
327                           struct drm_i915_gem_pread *args,
328                           struct drm_file *file_priv)
329 {
330         struct drm_i915_gem_object *obj_priv = obj->driver_private;
331         struct mm_struct *mm = current->mm;
332         struct page **user_pages;
333         ssize_t remain;
334         loff_t offset, pinned_pages, i;
335         loff_t first_data_page, last_data_page, num_pages;
336         int shmem_page_index, shmem_page_offset;
337         int data_page_index,  data_page_offset;
338         int page_length;
339         int ret;
340         uint64_t data_ptr = args->data_ptr;
341         int do_bit17_swizzling;
342
343         remain = args->size;
344
345         /* Pin the user pages containing the data.  We can't fault while
346          * holding the struct mutex, yet we want to hold it while
347          * dereferencing the user data.
348          */
349         first_data_page = data_ptr / PAGE_SIZE;
350         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
351         num_pages = last_data_page - first_data_page + 1;
352
353         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
354         if (user_pages == NULL)
355                 return -ENOMEM;
356
357         down_read(&mm->mmap_sem);
358         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
359                                       num_pages, 1, 0, user_pages, NULL);
360         up_read(&mm->mmap_sem);
361         if (pinned_pages < num_pages) {
362                 ret = -EFAULT;
363                 goto fail_put_user_pages;
364         }
365
366         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367
368         mutex_lock(&dev->struct_mutex);
369
370         ret = i915_gem_object_get_pages(obj);
371         if (ret != 0)
372                 goto fail_unlock;
373
374         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
375                                                         args->size);
376         if (ret != 0)
377                 goto fail_put_pages;
378
379         obj_priv = obj->driver_private;
380         offset = args->offset;
381
382         while (remain > 0) {
383                 /* Operation in this page
384                  *
385                  * shmem_page_index = page number within shmem file
386                  * shmem_page_offset = offset within page in shmem file
387                  * data_page_index = page number in get_user_pages return
388                  * data_page_offset = offset with data_page_index page.
389                  * page_length = bytes to copy for this page
390                  */
391                 shmem_page_index = offset / PAGE_SIZE;
392                 shmem_page_offset = offset & ~PAGE_MASK;
393                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
394                 data_page_offset = data_ptr & ~PAGE_MASK;
395
396                 page_length = remain;
397                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - shmem_page_offset;
399                 if ((data_page_offset + page_length) > PAGE_SIZE)
400                         page_length = PAGE_SIZE - data_page_offset;
401
402                 if (do_bit17_swizzling) {
403                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404                                                     shmem_page_offset,
405                                                     user_pages[data_page_index],
406                                                     data_page_offset,
407                                                     page_length,
408                                                     1);
409                 } else {
410                         ret = slow_shmem_copy(user_pages[data_page_index],
411                                               data_page_offset,
412                                               obj_priv->pages[shmem_page_index],
413                                               shmem_page_offset,
414                                               page_length);
415                 }
416                 if (ret)
417                         goto fail_put_pages;
418
419                 remain -= page_length;
420                 data_ptr += page_length;
421                 offset += page_length;
422         }
423
424 fail_put_pages:
425         i915_gem_object_put_pages(obj);
426 fail_unlock:
427         mutex_unlock(&dev->struct_mutex);
428 fail_put_user_pages:
429         for (i = 0; i < pinned_pages; i++) {
430                 SetPageDirty(user_pages[i]);
431                 page_cache_release(user_pages[i]);
432         }
433         drm_free_large(user_pages);
434
435         return ret;
436 }
437
438 /**
439  * Reads data from the object referenced by handle.
440  *
441  * On error, the contents of *data are undefined.
442  */
443 int
444 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445                      struct drm_file *file_priv)
446 {
447         struct drm_i915_gem_pread *args = data;
448         struct drm_gem_object *obj;
449         struct drm_i915_gem_object *obj_priv;
450         int ret;
451
452         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453         if (obj == NULL)
454                 return -EBADF;
455         obj_priv = obj->driver_private;
456
457         /* Bounds check source.
458          *
459          * XXX: This could use review for overflow issues...
460          */
461         if (args->offset > obj->size || args->size > obj->size ||
462             args->offset + args->size > obj->size) {
463                 drm_gem_object_unreference(obj);
464                 return -EINVAL;
465         }
466
467         if (i915_gem_object_needs_bit17_swizzle(obj)) {
468                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469         } else {
470                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471                 if (ret != 0)
472                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
473                                                         file_priv);
474         }
475
476         drm_gem_object_unreference(obj);
477
478         return ret;
479 }
480
481 /* This is the fast write path which cannot handle
482  * page faults in the source data
483  */
484
485 static inline int
486 fast_user_write(struct io_mapping *mapping,
487                 loff_t page_base, int page_offset,
488                 char __user *user_data,
489                 int length)
490 {
491         char *vaddr_atomic;
492         unsigned long unwritten;
493
494         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
495         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496                                                       user_data, length);
497         io_mapping_unmap_atomic(vaddr_atomic);
498         if (unwritten)
499                 return -EFAULT;
500         return 0;
501 }
502
503 /* Here's the write path which can sleep for
504  * page faults
505  */
506
507 static inline int
508 slow_kernel_write(struct io_mapping *mapping,
509                   loff_t gtt_base, int gtt_offset,
510                   struct page *user_page, int user_offset,
511                   int length)
512 {
513         char *src_vaddr, *dst_vaddr;
514         unsigned long unwritten;
515
516         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
517         src_vaddr = kmap_atomic(user_page, KM_USER1);
518         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
519                                                       src_vaddr + user_offset,
520                                                       length);
521         kunmap_atomic(src_vaddr, KM_USER1);
522         io_mapping_unmap_atomic(dst_vaddr);
523         if (unwritten)
524                 return -EFAULT;
525         return 0;
526 }
527
528 static inline int
529 fast_shmem_write(struct page **pages,
530                  loff_t page_base, int page_offset,
531                  char __user *data,
532                  int length)
533 {
534         char __iomem *vaddr;
535         unsigned long unwritten;
536
537         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538         if (vaddr == NULL)
539                 return -ENOMEM;
540         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
541         kunmap_atomic(vaddr, KM_USER0);
542
543         if (unwritten)
544                 return -EFAULT;
545         return 0;
546 }
547
548 /**
549  * This is the fast pwrite path, where we copy the data directly from the
550  * user into the GTT, uncached.
551  */
552 static int
553 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
554                          struct drm_i915_gem_pwrite *args,
555                          struct drm_file *file_priv)
556 {
557         struct drm_i915_gem_object *obj_priv = obj->driver_private;
558         drm_i915_private_t *dev_priv = dev->dev_private;
559         ssize_t remain;
560         loff_t offset, page_base;
561         char __user *user_data;
562         int page_offset, page_length;
563         int ret;
564
565         user_data = (char __user *) (uintptr_t) args->data_ptr;
566         remain = args->size;
567         if (!access_ok(VERIFY_READ, user_data, remain))
568                 return -EFAULT;
569
570
571         mutex_lock(&dev->struct_mutex);
572         ret = i915_gem_object_pin(obj, 0);
573         if (ret) {
574                 mutex_unlock(&dev->struct_mutex);
575                 return ret;
576         }
577         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
578         if (ret)
579                 goto fail;
580
581         obj_priv = obj->driver_private;
582         offset = obj_priv->gtt_offset + args->offset;
583
584         while (remain > 0) {
585                 /* Operation in this page
586                  *
587                  * page_base = page offset within aperture
588                  * page_offset = offset within page
589                  * page_length = bytes to copy for this page
590                  */
591                 page_base = (offset & ~(PAGE_SIZE-1));
592                 page_offset = offset & (PAGE_SIZE-1);
593                 page_length = remain;
594                 if ((page_offset + remain) > PAGE_SIZE)
595                         page_length = PAGE_SIZE - page_offset;
596
597                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
598                                        page_offset, user_data, page_length);
599
600                 /* If we get a fault while copying data, then (presumably) our
601                  * source page isn't available.  Return the error and we'll
602                  * retry in the slow path.
603                  */
604                 if (ret)
605                         goto fail;
606
607                 remain -= page_length;
608                 user_data += page_length;
609                 offset += page_length;
610         }
611
612 fail:
613         i915_gem_object_unpin(obj);
614         mutex_unlock(&dev->struct_mutex);
615
616         return ret;
617 }
618
619 /**
620  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
621  * the memory and maps it using kmap_atomic for copying.
622  *
623  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
624  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
625  */
626 static int
627 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
628                          struct drm_i915_gem_pwrite *args,
629                          struct drm_file *file_priv)
630 {
631         struct drm_i915_gem_object *obj_priv = obj->driver_private;
632         drm_i915_private_t *dev_priv = dev->dev_private;
633         ssize_t remain;
634         loff_t gtt_page_base, offset;
635         loff_t first_data_page, last_data_page, num_pages;
636         loff_t pinned_pages, i;
637         struct page **user_pages;
638         struct mm_struct *mm = current->mm;
639         int gtt_page_offset, data_page_offset, data_page_index, page_length;
640         int ret;
641         uint64_t data_ptr = args->data_ptr;
642
643         remain = args->size;
644
645         /* Pin the user pages containing the data.  We can't fault while
646          * holding the struct mutex, and all of the pwrite implementations
647          * want to hold it while dereferencing the user data.
648          */
649         first_data_page = data_ptr / PAGE_SIZE;
650         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
651         num_pages = last_data_page - first_data_page + 1;
652
653         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
654         if (user_pages == NULL)
655                 return -ENOMEM;
656
657         down_read(&mm->mmap_sem);
658         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
659                                       num_pages, 0, 0, user_pages, NULL);
660         up_read(&mm->mmap_sem);
661         if (pinned_pages < num_pages) {
662                 ret = -EFAULT;
663                 goto out_unpin_pages;
664         }
665
666         mutex_lock(&dev->struct_mutex);
667         ret = i915_gem_object_pin(obj, 0);
668         if (ret)
669                 goto out_unlock;
670
671         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672         if (ret)
673                 goto out_unpin_object;
674
675         obj_priv = obj->driver_private;
676         offset = obj_priv->gtt_offset + args->offset;
677
678         while (remain > 0) {
679                 /* Operation in this page
680                  *
681                  * gtt_page_base = page offset within aperture
682                  * gtt_page_offset = offset within page in aperture
683                  * data_page_index = page number in get_user_pages return
684                  * data_page_offset = offset with data_page_index page.
685                  * page_length = bytes to copy for this page
686                  */
687                 gtt_page_base = offset & PAGE_MASK;
688                 gtt_page_offset = offset & ~PAGE_MASK;
689                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
690                 data_page_offset = data_ptr & ~PAGE_MASK;
691
692                 page_length = remain;
693                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - gtt_page_offset;
695                 if ((data_page_offset + page_length) > PAGE_SIZE)
696                         page_length = PAGE_SIZE - data_page_offset;
697
698                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
699                                         gtt_page_base, gtt_page_offset,
700                                         user_pages[data_page_index],
701                                         data_page_offset,
702                                         page_length);
703
704                 /* If we get a fault while copying data, then (presumably) our
705                  * source page isn't available.  Return the error and we'll
706                  * retry in the slow path.
707                  */
708                 if (ret)
709                         goto out_unpin_object;
710
711                 remain -= page_length;
712                 offset += page_length;
713                 data_ptr += page_length;
714         }
715
716 out_unpin_object:
717         i915_gem_object_unpin(obj);
718 out_unlock:
719         mutex_unlock(&dev->struct_mutex);
720 out_unpin_pages:
721         for (i = 0; i < pinned_pages; i++)
722                 page_cache_release(user_pages[i]);
723         drm_free_large(user_pages);
724
725         return ret;
726 }
727
728 /**
729  * This is the fast shmem pwrite path, which attempts to directly
730  * copy_from_user into the kmapped pages backing the object.
731  */
732 static int
733 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
734                            struct drm_i915_gem_pwrite *args,
735                            struct drm_file *file_priv)
736 {
737         struct drm_i915_gem_object *obj_priv = obj->driver_private;
738         ssize_t remain;
739         loff_t offset, page_base;
740         char __user *user_data;
741         int page_offset, page_length;
742         int ret;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         mutex_lock(&dev->struct_mutex);
748
749         ret = i915_gem_object_get_pages(obj);
750         if (ret != 0)
751                 goto fail_unlock;
752
753         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
754         if (ret != 0)
755                 goto fail_put_pages;
756
757         obj_priv = obj->driver_private;
758         offset = args->offset;
759         obj_priv->dirty = 1;
760
761         while (remain > 0) {
762                 /* Operation in this page
763                  *
764                  * page_base = page offset within aperture
765                  * page_offset = offset within page
766                  * page_length = bytes to copy for this page
767                  */
768                 page_base = (offset & ~(PAGE_SIZE-1));
769                 page_offset = offset & (PAGE_SIZE-1);
770                 page_length = remain;
771                 if ((page_offset + remain) > PAGE_SIZE)
772                         page_length = PAGE_SIZE - page_offset;
773
774                 ret = fast_shmem_write(obj_priv->pages,
775                                        page_base, page_offset,
776                                        user_data, page_length);
777                 if (ret)
778                         goto fail_put_pages;
779
780                 remain -= page_length;
781                 user_data += page_length;
782                 offset += page_length;
783         }
784
785 fail_put_pages:
786         i915_gem_object_put_pages(obj);
787 fail_unlock:
788         mutex_unlock(&dev->struct_mutex);
789
790         return ret;
791 }
792
793 /**
794  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
795  * the memory and maps it using kmap_atomic for copying.
796  *
797  * This avoids taking mmap_sem for faulting on the user's address while the
798  * struct_mutex is held.
799  */
800 static int
801 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
802                            struct drm_i915_gem_pwrite *args,
803                            struct drm_file *file_priv)
804 {
805         struct drm_i915_gem_object *obj_priv = obj->driver_private;
806         struct mm_struct *mm = current->mm;
807         struct page **user_pages;
808         ssize_t remain;
809         loff_t offset, pinned_pages, i;
810         loff_t first_data_page, last_data_page, num_pages;
811         int shmem_page_index, shmem_page_offset;
812         int data_page_index,  data_page_offset;
813         int page_length;
814         int ret;
815         uint64_t data_ptr = args->data_ptr;
816         int do_bit17_swizzling;
817
818         remain = args->size;
819
820         /* Pin the user pages containing the data.  We can't fault while
821          * holding the struct mutex, and all of the pwrite implementations
822          * want to hold it while dereferencing the user data.
823          */
824         first_data_page = data_ptr / PAGE_SIZE;
825         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
826         num_pages = last_data_page - first_data_page + 1;
827
828         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
829         if (user_pages == NULL)
830                 return -ENOMEM;
831
832         down_read(&mm->mmap_sem);
833         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
834                                       num_pages, 0, 0, user_pages, NULL);
835         up_read(&mm->mmap_sem);
836         if (pinned_pages < num_pages) {
837                 ret = -EFAULT;
838                 goto fail_put_user_pages;
839         }
840
841         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842
843         mutex_lock(&dev->struct_mutex);
844
845         ret = i915_gem_object_get_pages(obj);
846         if (ret != 0)
847                 goto fail_unlock;
848
849         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
850         if (ret != 0)
851                 goto fail_put_pages;
852
853         obj_priv = obj->driver_private;
854         offset = args->offset;
855         obj_priv->dirty = 1;
856
857         while (remain > 0) {
858                 /* Operation in this page
859                  *
860                  * shmem_page_index = page number within shmem file
861                  * shmem_page_offset = offset within page in shmem file
862                  * data_page_index = page number in get_user_pages return
863                  * data_page_offset = offset with data_page_index page.
864                  * page_length = bytes to copy for this page
865                  */
866                 shmem_page_index = offset / PAGE_SIZE;
867                 shmem_page_offset = offset & ~PAGE_MASK;
868                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
869                 data_page_offset = data_ptr & ~PAGE_MASK;
870
871                 page_length = remain;
872                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - shmem_page_offset;
874                 if ((data_page_offset + page_length) > PAGE_SIZE)
875                         page_length = PAGE_SIZE - data_page_offset;
876
877                 if (do_bit17_swizzling) {
878                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879                                                     shmem_page_offset,
880                                                     user_pages[data_page_index],
881                                                     data_page_offset,
882                                                     page_length,
883                                                     0);
884                 } else {
885                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886                                               shmem_page_offset,
887                                               user_pages[data_page_index],
888                                               data_page_offset,
889                                               page_length);
890                 }
891                 if (ret)
892                         goto fail_put_pages;
893
894                 remain -= page_length;
895                 data_ptr += page_length;
896                 offset += page_length;
897         }
898
899 fail_put_pages:
900         i915_gem_object_put_pages(obj);
901 fail_unlock:
902         mutex_unlock(&dev->struct_mutex);
903 fail_put_user_pages:
904         for (i = 0; i < pinned_pages; i++)
905                 page_cache_release(user_pages[i]);
906         drm_free_large(user_pages);
907
908         return ret;
909 }
910
911 /**
912  * Writes data to the object referenced by handle.
913  *
914  * On error, the contents of the buffer that were to be modified are undefined.
915  */
916 int
917 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
918                       struct drm_file *file_priv)
919 {
920         struct drm_i915_gem_pwrite *args = data;
921         struct drm_gem_object *obj;
922         struct drm_i915_gem_object *obj_priv;
923         int ret = 0;
924
925         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926         if (obj == NULL)
927                 return -EBADF;
928         obj_priv = obj->driver_private;
929
930         /* Bounds check destination.
931          *
932          * XXX: This could use review for overflow issues...
933          */
934         if (args->offset > obj->size || args->size > obj->size ||
935             args->offset + args->size > obj->size) {
936                 drm_gem_object_unreference(obj);
937                 return -EINVAL;
938         }
939
940         /* We can only do the GTT pwrite on untiled buffers, as otherwise
941          * it would end up going through the fenced access, and we'll get
942          * different detiling behavior between reading and writing.
943          * pread/pwrite currently are reading and writing from the CPU
944          * perspective, requiring manual detiling by the client.
945          */
946         if (obj_priv->phys_obj)
947                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
948         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
949                  dev->gtt_total != 0) {
950                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
951                 if (ret == -EFAULT) {
952                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953                                                        file_priv);
954                 }
955         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
956                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957         } else {
958                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
959                 if (ret == -EFAULT) {
960                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
961                                                          file_priv);
962                 }
963         }
964
965 #if WATCH_PWRITE
966         if (ret)
967                 DRM_INFO("pwrite failed %d\n", ret);
968 #endif
969
970         drm_gem_object_unreference(obj);
971
972         return ret;
973 }
974
975 /**
976  * Called when user space prepares to use an object with the CPU, either
977  * through the mmap ioctl's mapping or a GTT mapping.
978  */
979 int
980 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981                           struct drm_file *file_priv)
982 {
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct drm_i915_gem_set_domain *args = data;
985         struct drm_gem_object *obj;
986         struct drm_i915_gem_object *obj_priv;
987         uint32_t read_domains = args->read_domains;
988         uint32_t write_domain = args->write_domain;
989         int ret;
990
991         if (!(dev->driver->driver_features & DRIVER_GEM))
992                 return -ENODEV;
993
994         /* Only handle setting domains to types used by the CPU. */
995         if (write_domain & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         if (read_domains & I915_GEM_GPU_DOMAINS)
999                 return -EINVAL;
1000
1001         /* Having something in the write domain implies it's in the read
1002          * domain, and only that read domain.  Enforce that in the request.
1003          */
1004         if (write_domain != 0 && read_domains != write_domain)
1005                 return -EINVAL;
1006
1007         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008         if (obj == NULL)
1009                 return -EBADF;
1010         obj_priv = obj->driver_private;
1011
1012         mutex_lock(&dev->struct_mutex);
1013
1014         intel_mark_busy(dev, obj);
1015
1016 #if WATCH_BUF
1017         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1018                  obj, obj->size, read_domains, write_domain);
1019 #endif
1020         if (read_domains & I915_GEM_DOMAIN_GTT) {
1021                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1022
1023                 /* Update the LRU on the fence for the CPU access that's
1024                  * about to occur.
1025                  */
1026                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1027                         list_move_tail(&obj_priv->fence_list,
1028                                        &dev_priv->mm.fence_list);
1029                 }
1030
1031                 /* Silently promote "you're not bound, there was nothing to do"
1032                  * to success, since the client was just asking us to
1033                  * make sure everything was done.
1034                  */
1035                 if (ret == -EINVAL)
1036                         ret = 0;
1037         } else {
1038                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039         }
1040
1041         drm_gem_object_unreference(obj);
1042         mutex_unlock(&dev->struct_mutex);
1043         return ret;
1044 }
1045
1046 /**
1047  * Called when user space has done writes to this buffer
1048  */
1049 int
1050 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file_priv)
1052 {
1053         struct drm_i915_gem_sw_finish *args = data;
1054         struct drm_gem_object *obj;
1055         struct drm_i915_gem_object *obj_priv;
1056         int ret = 0;
1057
1058         if (!(dev->driver->driver_features & DRIVER_GEM))
1059                 return -ENODEV;
1060
1061         mutex_lock(&dev->struct_mutex);
1062         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1063         if (obj == NULL) {
1064                 mutex_unlock(&dev->struct_mutex);
1065                 return -EBADF;
1066         }
1067
1068 #if WATCH_BUF
1069         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1070                  __func__, args->handle, obj, obj->size);
1071 #endif
1072         obj_priv = obj->driver_private;
1073
1074         /* Pinned buffers may be scanout, so flush the cache */
1075         if (obj_priv->pin_count)
1076                 i915_gem_object_flush_cpu_write_domain(obj);
1077
1078         drm_gem_object_unreference(obj);
1079         mutex_unlock(&dev->struct_mutex);
1080         return ret;
1081 }
1082
1083 /**
1084  * Maps the contents of an object, returning the address it is mapped
1085  * into.
1086  *
1087  * While the mapping holds a reference on the contents of the object, it doesn't
1088  * imply a ref on the object itself.
1089  */
1090 int
1091 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1092                    struct drm_file *file_priv)
1093 {
1094         struct drm_i915_gem_mmap *args = data;
1095         struct drm_gem_object *obj;
1096         loff_t offset;
1097         unsigned long addr;
1098
1099         if (!(dev->driver->driver_features & DRIVER_GEM))
1100                 return -ENODEV;
1101
1102         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103         if (obj == NULL)
1104                 return -EBADF;
1105
1106         offset = args->offset;
1107
1108         down_write(&current->mm->mmap_sem);
1109         addr = do_mmap(obj->filp, 0, args->size,
1110                        PROT_READ | PROT_WRITE, MAP_SHARED,
1111                        args->offset);
1112         up_write(&current->mm->mmap_sem);
1113         mutex_lock(&dev->struct_mutex);
1114         drm_gem_object_unreference(obj);
1115         mutex_unlock(&dev->struct_mutex);
1116         if (IS_ERR((void *)addr))
1117                 return addr;
1118
1119         args->addr_ptr = (uint64_t) addr;
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * i915_gem_fault - fault a page into the GTT
1126  * vma: VMA in question
1127  * vmf: fault info
1128  *
1129  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1130  * from userspace.  The fault handler takes care of binding the object to
1131  * the GTT (if needed), allocating and programming a fence register (again,
1132  * only if needed based on whether the old reg is still valid or the object
1133  * is tiled) and inserting a new PTE into the faulting process.
1134  *
1135  * Note that the faulting process may involve evicting existing objects
1136  * from the GTT and/or fence registers to make room.  So performance may
1137  * suffer if the GTT working set is large or there are few fence registers
1138  * left.
1139  */
1140 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1141 {
1142         struct drm_gem_object *obj = vma->vm_private_data;
1143         struct drm_device *dev = obj->dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1146         pgoff_t page_offset;
1147         unsigned long pfn;
1148         int ret = 0;
1149         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1150
1151         /* We don't use vmf->pgoff since that has the fake offset */
1152         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1153                 PAGE_SHIFT;
1154
1155         /* Now bind it into the GTT if needed */
1156         mutex_lock(&dev->struct_mutex);
1157         if (!obj_priv->gtt_space) {
1158                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1159                 if (ret) {
1160                         mutex_unlock(&dev->struct_mutex);
1161                         return VM_FAULT_SIGBUS;
1162                 }
1163
1164                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1165                 if (ret) {
1166                         mutex_unlock(&dev->struct_mutex);
1167                         return VM_FAULT_SIGBUS;
1168                 }
1169
1170                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1171         }
1172
1173         /* Need a new fence register? */
1174         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1175                 ret = i915_gem_object_get_fence_reg(obj);
1176                 if (ret) {
1177                         mutex_unlock(&dev->struct_mutex);
1178                         return VM_FAULT_SIGBUS;
1179                 }
1180         }
1181
1182         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1183                 page_offset;
1184
1185         /* Finally, remap it using the new GTT offset */
1186         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1187
1188         mutex_unlock(&dev->struct_mutex);
1189
1190         switch (ret) {
1191         case -ENOMEM:
1192         case -EAGAIN:
1193                 return VM_FAULT_OOM;
1194         case -EFAULT:
1195         case -EINVAL:
1196                 return VM_FAULT_SIGBUS;
1197         default:
1198                 return VM_FAULT_NOPAGE;
1199         }
1200 }
1201
1202 /**
1203  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1204  * @obj: obj in question
1205  *
1206  * GEM memory mapping works by handing back to userspace a fake mmap offset
1207  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1208  * up the object based on the offset and sets up the various memory mapping
1209  * structures.
1210  *
1211  * This routine allocates and attaches a fake offset for @obj.
1212  */
1213 static int
1214 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1215 {
1216         struct drm_device *dev = obj->dev;
1217         struct drm_gem_mm *mm = dev->mm_private;
1218         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1219         struct drm_map_list *list;
1220         struct drm_local_map *map;
1221         int ret = 0;
1222
1223         /* Set the object up for mmap'ing */
1224         list = &obj->map_list;
1225         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1226         if (!list->map)
1227                 return -ENOMEM;
1228
1229         map = list->map;
1230         map->type = _DRM_GEM;
1231         map->size = obj->size;
1232         map->handle = obj;
1233
1234         /* Get a DRM GEM mmap offset allocated... */
1235         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1236                                                     obj->size / PAGE_SIZE, 0, 0);
1237         if (!list->file_offset_node) {
1238                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1239                 ret = -ENOMEM;
1240                 goto out_free_list;
1241         }
1242
1243         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1244                                                   obj->size / PAGE_SIZE, 0);
1245         if (!list->file_offset_node) {
1246                 ret = -ENOMEM;
1247                 goto out_free_list;
1248         }
1249
1250         list->hash.key = list->file_offset_node->start;
1251         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1252                 DRM_ERROR("failed to add to map hash\n");
1253                 goto out_free_mm;
1254         }
1255
1256         /* By now we should be all set, any drm_mmap request on the offset
1257          * below will get to our mmap & fault handler */
1258         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1259
1260         return 0;
1261
1262 out_free_mm:
1263         drm_mm_put_block(list->file_offset_node);
1264 out_free_list:
1265         kfree(list->map);
1266
1267         return ret;
1268 }
1269
1270 /**
1271  * i915_gem_release_mmap - remove physical page mappings
1272  * @obj: obj in question
1273  *
1274  * Preserve the reservation of the mmaping with the DRM core code, but
1275  * relinquish ownership of the pages back to the system.
1276  *
1277  * It is vital that we remove the page mapping if we have mapped a tiled
1278  * object through the GTT and then lose the fence register due to
1279  * resource pressure. Similarly if the object has been moved out of the
1280  * aperture, than pages mapped into userspace must be revoked. Removing the
1281  * mapping will then trigger a page fault on the next user access, allowing
1282  * fixup by i915_gem_fault().
1283  */
1284 void
1285 i915_gem_release_mmap(struct drm_gem_object *obj)
1286 {
1287         struct drm_device *dev = obj->dev;
1288         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1289
1290         if (dev->dev_mapping)
1291                 unmap_mapping_range(dev->dev_mapping,
1292                                     obj_priv->mmap_offset, obj->size, 1);
1293 }
1294
1295 static void
1296 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1297 {
1298         struct drm_device *dev = obj->dev;
1299         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1300         struct drm_gem_mm *mm = dev->mm_private;
1301         struct drm_map_list *list;
1302
1303         list = &obj->map_list;
1304         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1305
1306         if (list->file_offset_node) {
1307                 drm_mm_put_block(list->file_offset_node);
1308                 list->file_offset_node = NULL;
1309         }
1310
1311         if (list->map) {
1312                 kfree(list->map);
1313                 list->map = NULL;
1314         }
1315
1316         obj_priv->mmap_offset = 0;
1317 }
1318
1319 /**
1320  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1321  * @obj: object to check
1322  *
1323  * Return the required GTT alignment for an object, taking into account
1324  * potential fence register mapping if needed.
1325  */
1326 static uint32_t
1327 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1328 {
1329         struct drm_device *dev = obj->dev;
1330         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1331         int start, i;
1332
1333         /*
1334          * Minimum alignment is 4k (GTT page size), but might be greater
1335          * if a fence register is needed for the object.
1336          */
1337         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1338                 return 4096;
1339
1340         /*
1341          * Previous chips need to be aligned to the size of the smallest
1342          * fence register that can contain the object.
1343          */
1344         if (IS_I9XX(dev))
1345                 start = 1024*1024;
1346         else
1347                 start = 512*1024;
1348
1349         for (i = start; i < obj->size; i <<= 1)
1350                 ;
1351
1352         return i;
1353 }
1354
1355 /**
1356  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1357  * @dev: DRM device
1358  * @data: GTT mapping ioctl data
1359  * @file_priv: GEM object info
1360  *
1361  * Simply returns the fake offset to userspace so it can mmap it.
1362  * The mmap call will end up in drm_gem_mmap(), which will set things
1363  * up so we can get faults in the handler above.
1364  *
1365  * The fault handler will take care of binding the object into the GTT
1366  * (since it may have been evicted to make room for something), allocating
1367  * a fence register, and mapping the appropriate aperture address into
1368  * userspace.
1369  */
1370 int
1371 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1372                         struct drm_file *file_priv)
1373 {
1374         struct drm_i915_gem_mmap_gtt *args = data;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         struct drm_gem_object *obj;
1377         struct drm_i915_gem_object *obj_priv;
1378         int ret;
1379
1380         if (!(dev->driver->driver_features & DRIVER_GEM))
1381                 return -ENODEV;
1382
1383         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1384         if (obj == NULL)
1385                 return -EBADF;
1386
1387         mutex_lock(&dev->struct_mutex);
1388
1389         obj_priv = obj->driver_private;
1390
1391         if (!obj_priv->mmap_offset) {
1392                 ret = i915_gem_create_mmap_offset(obj);
1393                 if (ret) {
1394                         drm_gem_object_unreference(obj);
1395                         mutex_unlock(&dev->struct_mutex);
1396                         return ret;
1397                 }
1398         }
1399
1400         args->offset = obj_priv->mmap_offset;
1401
1402         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1403
1404         /* Make sure the alignment is correct for fence regs etc */
1405         if (obj_priv->agp_mem &&
1406             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1407                 drm_gem_object_unreference(obj);
1408                 mutex_unlock(&dev->struct_mutex);
1409                 return -EINVAL;
1410         }
1411
1412         /*
1413          * Pull it into the GTT so that we have a page list (makes the
1414          * initial fault faster and any subsequent flushing possible).
1415          */
1416         if (!obj_priv->agp_mem) {
1417                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1418                 if (ret) {
1419                         drm_gem_object_unreference(obj);
1420                         mutex_unlock(&dev->struct_mutex);
1421                         return ret;
1422                 }
1423                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1424         }
1425
1426         drm_gem_object_unreference(obj);
1427         mutex_unlock(&dev->struct_mutex);
1428
1429         return 0;
1430 }
1431
1432 void
1433 i915_gem_object_put_pages(struct drm_gem_object *obj)
1434 {
1435         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1436         int page_count = obj->size / PAGE_SIZE;
1437         int i;
1438
1439         BUG_ON(obj_priv->pages_refcount == 0);
1440
1441         if (--obj_priv->pages_refcount != 0)
1442                 return;
1443
1444         if (obj_priv->tiling_mode != I915_TILING_NONE)
1445                 i915_gem_object_save_bit_17_swizzle(obj);
1446
1447         for (i = 0; i < page_count; i++)
1448                 if (obj_priv->pages[i] != NULL) {
1449                         if (obj_priv->dirty)
1450                                 set_page_dirty(obj_priv->pages[i]);
1451                         mark_page_accessed(obj_priv->pages[i]);
1452                         page_cache_release(obj_priv->pages[i]);
1453                 }
1454         obj_priv->dirty = 0;
1455
1456         drm_free_large(obj_priv->pages);
1457         obj_priv->pages = NULL;
1458 }
1459
1460 static void
1461 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1462 {
1463         struct drm_device *dev = obj->dev;
1464         drm_i915_private_t *dev_priv = dev->dev_private;
1465         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1466
1467         /* Add a reference if we're newly entering the active list. */
1468         if (!obj_priv->active) {
1469                 drm_gem_object_reference(obj);
1470                 obj_priv->active = 1;
1471         }
1472         /* Move from whatever list we were on to the tail of execution. */
1473         spin_lock(&dev_priv->mm.active_list_lock);
1474         list_move_tail(&obj_priv->list,
1475                        &dev_priv->mm.active_list);
1476         spin_unlock(&dev_priv->mm.active_list_lock);
1477         obj_priv->last_rendering_seqno = seqno;
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1482 {
1483         struct drm_device *dev = obj->dev;
1484         drm_i915_private_t *dev_priv = dev->dev_private;
1485         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1486
1487         BUG_ON(!obj_priv->active);
1488         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1489         obj_priv->last_rendering_seqno = 0;
1490 }
1491
1492 static void
1493 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1494 {
1495         struct drm_device *dev = obj->dev;
1496         drm_i915_private_t *dev_priv = dev->dev_private;
1497         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1498
1499         i915_verify_inactive(dev, __FILE__, __LINE__);
1500         if (obj_priv->pin_count != 0)
1501                 list_del_init(&obj_priv->list);
1502         else
1503                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1504
1505         obj_priv->last_rendering_seqno = 0;
1506         if (obj_priv->active) {
1507                 obj_priv->active = 0;
1508                 drm_gem_object_unreference(obj);
1509         }
1510         i915_verify_inactive(dev, __FILE__, __LINE__);
1511 }
1512
1513 /**
1514  * Creates a new sequence number, emitting a write of it to the status page
1515  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1516  *
1517  * Must be called with struct_lock held.
1518  *
1519  * Returned sequence numbers are nonzero on success.
1520  */
1521 static uint32_t
1522 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1523                  uint32_t flush_domains)
1524 {
1525         drm_i915_private_t *dev_priv = dev->dev_private;
1526         struct drm_i915_file_private *i915_file_priv = NULL;
1527         struct drm_i915_gem_request *request;
1528         uint32_t seqno;
1529         int was_empty;
1530         RING_LOCALS;
1531
1532         if (file_priv != NULL)
1533                 i915_file_priv = file_priv->driver_priv;
1534
1535         request = kzalloc(sizeof(*request), GFP_KERNEL);
1536         if (request == NULL)
1537                 return 0;
1538
1539         /* Grab the seqno we're going to make this request be, and bump the
1540          * next (skipping 0 so it can be the reserved no-seqno value).
1541          */
1542         seqno = dev_priv->mm.next_gem_seqno;
1543         dev_priv->mm.next_gem_seqno++;
1544         if (dev_priv->mm.next_gem_seqno == 0)
1545                 dev_priv->mm.next_gem_seqno++;
1546
1547         BEGIN_LP_RING(4);
1548         OUT_RING(MI_STORE_DWORD_INDEX);
1549         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1550         OUT_RING(seqno);
1551
1552         OUT_RING(MI_USER_INTERRUPT);
1553         ADVANCE_LP_RING();
1554
1555         DRM_DEBUG("%d\n", seqno);
1556
1557         request->seqno = seqno;
1558         request->emitted_jiffies = jiffies;
1559         was_empty = list_empty(&dev_priv->mm.request_list);
1560         list_add_tail(&request->list, &dev_priv->mm.request_list);
1561         if (i915_file_priv) {
1562                 list_add_tail(&request->client_list,
1563                               &i915_file_priv->mm.request_list);
1564         } else {
1565                 INIT_LIST_HEAD(&request->client_list);
1566         }
1567
1568         /* Associate any objects on the flushing list matching the write
1569          * domain we're flushing with our flush.
1570          */
1571         if (flush_domains != 0) {
1572                 struct drm_i915_gem_object *obj_priv, *next;
1573
1574                 list_for_each_entry_safe(obj_priv, next,
1575                                          &dev_priv->mm.flushing_list, list) {
1576                         struct drm_gem_object *obj = obj_priv->obj;
1577
1578                         if ((obj->write_domain & flush_domains) ==
1579                             obj->write_domain) {
1580                                 obj->write_domain = 0;
1581                                 i915_gem_object_move_to_active(obj, seqno);
1582                         }
1583                 }
1584
1585         }
1586
1587         if (was_empty && !dev_priv->mm.suspended)
1588                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1589         return seqno;
1590 }
1591
1592 /**
1593  * Command execution barrier
1594  *
1595  * Ensures that all commands in the ring are finished
1596  * before signalling the CPU
1597  */
1598 static uint32_t
1599 i915_retire_commands(struct drm_device *dev)
1600 {
1601         drm_i915_private_t *dev_priv = dev->dev_private;
1602         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1603         uint32_t flush_domains = 0;
1604         RING_LOCALS;
1605
1606         /* The sampler always gets flushed on i965 (sigh) */
1607         if (IS_I965G(dev))
1608                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1609         BEGIN_LP_RING(2);
1610         OUT_RING(cmd);
1611         OUT_RING(0); /* noop */
1612         ADVANCE_LP_RING();
1613         return flush_domains;
1614 }
1615
1616 /**
1617  * Moves buffers associated only with the given active seqno from the active
1618  * to inactive list, potentially freeing them.
1619  */
1620 static void
1621 i915_gem_retire_request(struct drm_device *dev,
1622                         struct drm_i915_gem_request *request)
1623 {
1624         drm_i915_private_t *dev_priv = dev->dev_private;
1625
1626         /* Move any buffers on the active list that are no longer referenced
1627          * by the ringbuffer to the flushing/inactive lists as appropriate.
1628          */
1629         spin_lock(&dev_priv->mm.active_list_lock);
1630         while (!list_empty(&dev_priv->mm.active_list)) {
1631                 struct drm_gem_object *obj;
1632                 struct drm_i915_gem_object *obj_priv;
1633
1634                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1635                                             struct drm_i915_gem_object,
1636                                             list);
1637                 obj = obj_priv->obj;
1638
1639                 /* If the seqno being retired doesn't match the oldest in the
1640                  * list, then the oldest in the list must still be newer than
1641                  * this seqno.
1642                  */
1643                 if (obj_priv->last_rendering_seqno != request->seqno)
1644                         goto out;
1645
1646 #if WATCH_LRU
1647                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1648                          __func__, request->seqno, obj);
1649 #endif
1650
1651                 if (obj->write_domain != 0)
1652                         i915_gem_object_move_to_flushing(obj);
1653                 else {
1654                         /* Take a reference on the object so it won't be
1655                          * freed while the spinlock is held.  The list
1656                          * protection for this spinlock is safe when breaking
1657                          * the lock like this since the next thing we do
1658                          * is just get the head of the list again.
1659                          */
1660                         drm_gem_object_reference(obj);
1661                         i915_gem_object_move_to_inactive(obj);
1662                         spin_unlock(&dev_priv->mm.active_list_lock);
1663                         drm_gem_object_unreference(obj);
1664                         spin_lock(&dev_priv->mm.active_list_lock);
1665                 }
1666         }
1667 out:
1668         spin_unlock(&dev_priv->mm.active_list_lock);
1669 }
1670
1671 /**
1672  * Returns true if seq1 is later than seq2.
1673  */
1674 static int
1675 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1676 {
1677         return (int32_t)(seq1 - seq2) >= 0;
1678 }
1679
1680 uint32_t
1681 i915_get_gem_seqno(struct drm_device *dev)
1682 {
1683         drm_i915_private_t *dev_priv = dev->dev_private;
1684
1685         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1686 }
1687
1688 /**
1689  * This function clears the request list as sequence numbers are passed.
1690  */
1691 void
1692 i915_gem_retire_requests(struct drm_device *dev)
1693 {
1694         drm_i915_private_t *dev_priv = dev->dev_private;
1695         uint32_t seqno;
1696
1697         if (!dev_priv->hw_status_page)
1698                 return;
1699
1700         seqno = i915_get_gem_seqno(dev);
1701
1702         while (!list_empty(&dev_priv->mm.request_list)) {
1703                 struct drm_i915_gem_request *request;
1704                 uint32_t retiring_seqno;
1705
1706                 request = list_first_entry(&dev_priv->mm.request_list,
1707                                            struct drm_i915_gem_request,
1708                                            list);
1709                 retiring_seqno = request->seqno;
1710
1711                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1712                     dev_priv->mm.wedged) {
1713                         i915_gem_retire_request(dev, request);
1714
1715                         list_del(&request->list);
1716                         list_del(&request->client_list);
1717                         kfree(request);
1718                 } else
1719                         break;
1720         }
1721 }
1722
1723 void
1724 i915_gem_retire_work_handler(struct work_struct *work)
1725 {
1726         drm_i915_private_t *dev_priv;
1727         struct drm_device *dev;
1728
1729         dev_priv = container_of(work, drm_i915_private_t,
1730                                 mm.retire_work.work);
1731         dev = dev_priv->dev;
1732
1733         mutex_lock(&dev->struct_mutex);
1734         i915_gem_retire_requests(dev);
1735         if (!dev_priv->mm.suspended &&
1736             !list_empty(&dev_priv->mm.request_list))
1737                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1738         mutex_unlock(&dev->struct_mutex);
1739 }
1740
1741 /**
1742  * Waits for a sequence number to be signaled, and cleans up the
1743  * request and object lists appropriately for that event.
1744  */
1745 static int
1746 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1747 {
1748         drm_i915_private_t *dev_priv = dev->dev_private;
1749         u32 ier;
1750         int ret = 0;
1751
1752         BUG_ON(seqno == 0);
1753
1754         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1755                 if (IS_IGDNG(dev))
1756                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1757                 else
1758                         ier = I915_READ(IER);
1759                 if (!ier) {
1760                         DRM_ERROR("something (likely vbetool) disabled "
1761                                   "interrupts, re-enabling\n");
1762                         i915_driver_irq_preinstall(dev);
1763                         i915_driver_irq_postinstall(dev);
1764                 }
1765
1766                 dev_priv->mm.waiting_gem_seqno = seqno;
1767                 i915_user_irq_get(dev);
1768                 ret = wait_event_interruptible(dev_priv->irq_queue,
1769                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1770                                                                  seqno) ||
1771                                                dev_priv->mm.wedged);
1772                 i915_user_irq_put(dev);
1773                 dev_priv->mm.waiting_gem_seqno = 0;
1774         }
1775         if (dev_priv->mm.wedged)
1776                 ret = -EIO;
1777
1778         if (ret && ret != -ERESTARTSYS)
1779                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1780                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1781
1782         /* Directly dispatch request retiring.  While we have the work queue
1783          * to handle this, the waiter on a request often wants an associated
1784          * buffer to have made it to the inactive list, and we would need
1785          * a separate wait queue to handle that.
1786          */
1787         if (ret == 0)
1788                 i915_gem_retire_requests(dev);
1789
1790         return ret;
1791 }
1792
1793 static void
1794 i915_gem_flush(struct drm_device *dev,
1795                uint32_t invalidate_domains,
1796                uint32_t flush_domains)
1797 {
1798         drm_i915_private_t *dev_priv = dev->dev_private;
1799         uint32_t cmd;
1800         RING_LOCALS;
1801
1802 #if WATCH_EXEC
1803         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1804                   invalidate_domains, flush_domains);
1805 #endif
1806
1807         if (flush_domains & I915_GEM_DOMAIN_CPU)
1808                 drm_agp_chipset_flush(dev);
1809
1810         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1811                 /*
1812                  * read/write caches:
1813                  *
1814                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1815                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1816                  * also flushed at 2d versus 3d pipeline switches.
1817                  *
1818                  * read-only caches:
1819                  *
1820                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1821                  * MI_READ_FLUSH is set, and is always flushed on 965.
1822                  *
1823                  * I915_GEM_DOMAIN_COMMAND may not exist?
1824                  *
1825                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1826                  * invalidated when MI_EXE_FLUSH is set.
1827                  *
1828                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1829                  * invalidated with every MI_FLUSH.
1830                  *
1831                  * TLBs:
1832                  *
1833                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1834                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1835                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1836                  * are flushed at any MI_FLUSH.
1837                  */
1838
1839                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1840                 if ((invalidate_domains|flush_domains) &
1841                     I915_GEM_DOMAIN_RENDER)
1842                         cmd &= ~MI_NO_WRITE_FLUSH;
1843                 if (!IS_I965G(dev)) {
1844                         /*
1845                          * On the 965, the sampler cache always gets flushed
1846                          * and this bit is reserved.
1847                          */
1848                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1849                                 cmd |= MI_READ_FLUSH;
1850                 }
1851                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1852                         cmd |= MI_EXE_FLUSH;
1853
1854 #if WATCH_EXEC
1855                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1856 #endif
1857                 BEGIN_LP_RING(2);
1858                 OUT_RING(cmd);
1859                 OUT_RING(0); /* noop */
1860                 ADVANCE_LP_RING();
1861         }
1862 }
1863
1864 /**
1865  * Ensures that all rendering to the object has completed and the object is
1866  * safe to unbind from the GTT or access from the CPU.
1867  */
1868 static int
1869 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1870 {
1871         struct drm_device *dev = obj->dev;
1872         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1873         int ret;
1874
1875         /* This function only exists to support waiting for existing rendering,
1876          * not for emitting required flushes.
1877          */
1878         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1879
1880         /* If there is rendering queued on the buffer being evicted, wait for
1881          * it.
1882          */
1883         if (obj_priv->active) {
1884 #if WATCH_BUF
1885                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1886                           __func__, obj, obj_priv->last_rendering_seqno);
1887 #endif
1888                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1889                 if (ret != 0)
1890                         return ret;
1891         }
1892
1893         return 0;
1894 }
1895
1896 /**
1897  * Unbinds an object from the GTT aperture.
1898  */
1899 int
1900 i915_gem_object_unbind(struct drm_gem_object *obj)
1901 {
1902         struct drm_device *dev = obj->dev;
1903         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1904         int ret = 0;
1905
1906 #if WATCH_BUF
1907         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1908         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1909 #endif
1910         if (obj_priv->gtt_space == NULL)
1911                 return 0;
1912
1913         if (obj_priv->pin_count != 0) {
1914                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1915                 return -EINVAL;
1916         }
1917
1918         /* blow away mappings if mapped through GTT */
1919         i915_gem_release_mmap(obj);
1920
1921         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1922                 i915_gem_clear_fence_reg(obj);
1923
1924         /* Move the object to the CPU domain to ensure that
1925          * any possible CPU writes while it's not in the GTT
1926          * are flushed when we go to remap it. This will
1927          * also ensure that all pending GPU writes are finished
1928          * before we unbind.
1929          */
1930         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1931         if (ret) {
1932                 if (ret != -ERESTARTSYS)
1933                         DRM_ERROR("set_domain failed: %d\n", ret);
1934                 return ret;
1935         }
1936
1937         BUG_ON(obj_priv->active);
1938
1939         if (obj_priv->agp_mem != NULL) {
1940                 drm_unbind_agp(obj_priv->agp_mem);
1941                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1942                 obj_priv->agp_mem = NULL;
1943         }
1944
1945         i915_gem_object_put_pages(obj);
1946
1947         if (obj_priv->gtt_space) {
1948                 atomic_dec(&dev->gtt_count);
1949                 atomic_sub(obj->size, &dev->gtt_memory);
1950
1951                 drm_mm_put_block(obj_priv->gtt_space);
1952                 obj_priv->gtt_space = NULL;
1953         }
1954
1955         /* Remove ourselves from the LRU list if present. */
1956         if (!list_empty(&obj_priv->list))
1957                 list_del_init(&obj_priv->list);
1958
1959         return 0;
1960 }
1961
1962 static int
1963 i915_gem_evict_something(struct drm_device *dev)
1964 {
1965         drm_i915_private_t *dev_priv = dev->dev_private;
1966         struct drm_gem_object *obj;
1967         struct drm_i915_gem_object *obj_priv;
1968         int ret = 0;
1969
1970         for (;;) {
1971                 /* If there's an inactive buffer available now, grab it
1972                  * and be done.
1973                  */
1974                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1975                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1976                                                     struct drm_i915_gem_object,
1977                                                     list);
1978                         obj = obj_priv->obj;
1979                         BUG_ON(obj_priv->pin_count != 0);
1980 #if WATCH_LRU
1981                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1982 #endif
1983                         BUG_ON(obj_priv->active);
1984
1985                         /* Wait on the rendering and unbind the buffer. */
1986                         ret = i915_gem_object_unbind(obj);
1987                         break;
1988                 }
1989
1990                 /* If we didn't get anything, but the ring is still processing
1991                  * things, wait for one of those things to finish and hopefully
1992                  * leave us a buffer to evict.
1993                  */
1994                 if (!list_empty(&dev_priv->mm.request_list)) {
1995                         struct drm_i915_gem_request *request;
1996
1997                         request = list_first_entry(&dev_priv->mm.request_list,
1998                                                    struct drm_i915_gem_request,
1999                                                    list);
2000
2001                         ret = i915_wait_request(dev, request->seqno);
2002                         if (ret)
2003                                 break;
2004
2005                         /* if waiting caused an object to become inactive,
2006                          * then loop around and wait for it. Otherwise, we
2007                          * assume that waiting freed and unbound something,
2008                          * so there should now be some space in the GTT
2009                          */
2010                         if (!list_empty(&dev_priv->mm.inactive_list))
2011                                 continue;
2012                         break;
2013                 }
2014
2015                 /* If we didn't have anything on the request list but there
2016                  * are buffers awaiting a flush, emit one and try again.
2017                  * When we wait on it, those buffers waiting for that flush
2018                  * will get moved to inactive.
2019                  */
2020                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2021                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2022                                                     struct drm_i915_gem_object,
2023                                                     list);
2024                         obj = obj_priv->obj;
2025
2026                         i915_gem_flush(dev,
2027                                        obj->write_domain,
2028                                        obj->write_domain);
2029                         i915_add_request(dev, NULL, obj->write_domain);
2030
2031                         obj = NULL;
2032                         continue;
2033                 }
2034
2035                 DRM_ERROR("inactive empty %d request empty %d "
2036                           "flushing empty %d\n",
2037                           list_empty(&dev_priv->mm.inactive_list),
2038                           list_empty(&dev_priv->mm.request_list),
2039                           list_empty(&dev_priv->mm.flushing_list));
2040                 /* If we didn't do any of the above, there's nothing to be done
2041                  * and we just can't fit it in.
2042                  */
2043                 return -ENOSPC;
2044         }
2045         return ret;
2046 }
2047
2048 static int
2049 i915_gem_evict_everything(struct drm_device *dev)
2050 {
2051         int ret;
2052
2053         for (;;) {
2054                 ret = i915_gem_evict_something(dev);
2055                 if (ret != 0)
2056                         break;
2057         }
2058         if (ret == -ENOSPC)
2059                 return 0;
2060         return ret;
2061 }
2062
2063 int
2064 i915_gem_object_get_pages(struct drm_gem_object *obj)
2065 {
2066         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2067         int page_count, i;
2068         struct address_space *mapping;
2069         struct inode *inode;
2070         struct page *page;
2071         int ret;
2072
2073         if (obj_priv->pages_refcount++ != 0)
2074                 return 0;
2075
2076         /* Get the list of pages out of our struct file.  They'll be pinned
2077          * at this point until we release them.
2078          */
2079         page_count = obj->size / PAGE_SIZE;
2080         BUG_ON(obj_priv->pages != NULL);
2081         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2082         if (obj_priv->pages == NULL) {
2083                 DRM_ERROR("Faled to allocate page list\n");
2084                 obj_priv->pages_refcount--;
2085                 return -ENOMEM;
2086         }
2087
2088         inode = obj->filp->f_path.dentry->d_inode;
2089         mapping = inode->i_mapping;
2090         for (i = 0; i < page_count; i++) {
2091                 page = read_mapping_page(mapping, i, NULL);
2092                 if (IS_ERR(page)) {
2093                         ret = PTR_ERR(page);
2094                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2095                         i915_gem_object_put_pages(obj);
2096                         return ret;
2097                 }
2098                 obj_priv->pages[i] = page;
2099         }
2100
2101         if (obj_priv->tiling_mode != I915_TILING_NONE)
2102                 i915_gem_object_do_bit_17_swizzle(obj);
2103
2104         return 0;
2105 }
2106
2107 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2108 {
2109         struct drm_gem_object *obj = reg->obj;
2110         struct drm_device *dev = obj->dev;
2111         drm_i915_private_t *dev_priv = dev->dev_private;
2112         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2113         int regnum = obj_priv->fence_reg;
2114         uint64_t val;
2115
2116         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2117                     0xfffff000) << 32;
2118         val |= obj_priv->gtt_offset & 0xfffff000;
2119         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2120         if (obj_priv->tiling_mode == I915_TILING_Y)
2121                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2122         val |= I965_FENCE_REG_VALID;
2123
2124         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2125 }
2126
2127 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2128 {
2129         struct drm_gem_object *obj = reg->obj;
2130         struct drm_device *dev = obj->dev;
2131         drm_i915_private_t *dev_priv = dev->dev_private;
2132         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2133         int regnum = obj_priv->fence_reg;
2134         int tile_width;
2135         uint32_t fence_reg, val;
2136         uint32_t pitch_val;
2137
2138         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2139             (obj_priv->gtt_offset & (obj->size - 1))) {
2140                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2141                      __func__, obj_priv->gtt_offset, obj->size);
2142                 return;
2143         }
2144
2145         if (obj_priv->tiling_mode == I915_TILING_Y &&
2146             HAS_128_BYTE_Y_TILING(dev))
2147                 tile_width = 128;
2148         else
2149                 tile_width = 512;
2150
2151         /* Note: pitch better be a power of two tile widths */
2152         pitch_val = obj_priv->stride / tile_width;
2153         pitch_val = ffs(pitch_val) - 1;
2154
2155         val = obj_priv->gtt_offset;
2156         if (obj_priv->tiling_mode == I915_TILING_Y)
2157                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2158         val |= I915_FENCE_SIZE_BITS(obj->size);
2159         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2160         val |= I830_FENCE_REG_VALID;
2161
2162         if (regnum < 8)
2163                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2164         else
2165                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2166         I915_WRITE(fence_reg, val);
2167 }
2168
2169 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2170 {
2171         struct drm_gem_object *obj = reg->obj;
2172         struct drm_device *dev = obj->dev;
2173         drm_i915_private_t *dev_priv = dev->dev_private;
2174         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2175         int regnum = obj_priv->fence_reg;
2176         uint32_t val;
2177         uint32_t pitch_val;
2178         uint32_t fence_size_bits;
2179
2180         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2181             (obj_priv->gtt_offset & (obj->size - 1))) {
2182                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2183                      __func__, obj_priv->gtt_offset);
2184                 return;
2185         }
2186
2187         pitch_val = obj_priv->stride / 128;
2188         pitch_val = ffs(pitch_val) - 1;
2189         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2190
2191         val = obj_priv->gtt_offset;
2192         if (obj_priv->tiling_mode == I915_TILING_Y)
2193                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2194         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2195         WARN_ON(fence_size_bits & ~0x00000f00);
2196         val |= fence_size_bits;
2197         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2198         val |= I830_FENCE_REG_VALID;
2199
2200         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2201 }
2202
2203 /**
2204  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2205  * @obj: object to map through a fence reg
2206  *
2207  * When mapping objects through the GTT, userspace wants to be able to write
2208  * to them without having to worry about swizzling if the object is tiled.
2209  *
2210  * This function walks the fence regs looking for a free one for @obj,
2211  * stealing one if it can't find any.
2212  *
2213  * It then sets up the reg based on the object's properties: address, pitch
2214  * and tiling format.
2215  */
2216 int
2217 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2218 {
2219         struct drm_device *dev = obj->dev;
2220         struct drm_i915_private *dev_priv = dev->dev_private;
2221         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2222         struct drm_i915_fence_reg *reg = NULL;
2223         struct drm_i915_gem_object *old_obj_priv = NULL;
2224         int i, ret, avail;
2225
2226         /* Just update our place in the LRU if our fence is getting used. */
2227         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2228                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2229                 return 0;
2230         }
2231
2232         switch (obj_priv->tiling_mode) {
2233         case I915_TILING_NONE:
2234                 WARN(1, "allocating a fence for non-tiled object?\n");
2235                 break;
2236         case I915_TILING_X:
2237                 if (!obj_priv->stride)
2238                         return -EINVAL;
2239                 WARN((obj_priv->stride & (512 - 1)),
2240                      "object 0x%08x is X tiled but has non-512B pitch\n",
2241                      obj_priv->gtt_offset);
2242                 break;
2243         case I915_TILING_Y:
2244                 if (!obj_priv->stride)
2245                         return -EINVAL;
2246                 WARN((obj_priv->stride & (128 - 1)),
2247                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2248                      obj_priv->gtt_offset);
2249                 break;
2250         }
2251
2252         /* First try to find a free reg */
2253         avail = 0;
2254         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2255                 reg = &dev_priv->fence_regs[i];
2256                 if (!reg->obj)
2257                         break;
2258
2259                 old_obj_priv = reg->obj->driver_private;
2260                 if (!old_obj_priv->pin_count)
2261                     avail++;
2262         }
2263
2264         /* None available, try to steal one or wait for a user to finish */
2265         if (i == dev_priv->num_fence_regs) {
2266                 struct drm_gem_object *old_obj = NULL;
2267
2268                 if (avail == 0)
2269                         return -ENOSPC;
2270
2271                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2272                                     fence_list) {
2273                         old_obj = old_obj_priv->obj;
2274
2275                         if (old_obj_priv->pin_count)
2276                                 continue;
2277
2278                         /* Take a reference, as otherwise the wait_rendering
2279                          * below may cause the object to get freed out from
2280                          * under us.
2281                          */
2282                         drm_gem_object_reference(old_obj);
2283
2284                         /* i915 uses fences for GPU access to tiled buffers */
2285                         if (IS_I965G(dev) || !old_obj_priv->active)
2286                                 break;
2287
2288                         /* This brings the object to the head of the LRU if it
2289                          * had been written to.  The only way this should
2290                          * result in us waiting longer than the expected
2291                          * optimal amount of time is if there was a
2292                          * fence-using buffer later that was read-only.
2293                          */
2294                         i915_gem_object_flush_gpu_write_domain(old_obj);
2295                         ret = i915_gem_object_wait_rendering(old_obj);
2296                         if (ret != 0) {
2297                                 drm_gem_object_unreference(old_obj);
2298                                 return ret;
2299                         }
2300
2301                         break;
2302                 }
2303
2304                 /*
2305                  * Zap this virtual mapping so we can set up a fence again
2306                  * for this object next time we need it.
2307                  */
2308                 i915_gem_release_mmap(old_obj);
2309
2310                 i = old_obj_priv->fence_reg;
2311                 reg = &dev_priv->fence_regs[i];
2312
2313                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2314                 list_del_init(&old_obj_priv->fence_list);
2315
2316                 drm_gem_object_unreference(old_obj);
2317         }
2318
2319         obj_priv->fence_reg = i;
2320         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2321
2322         reg->obj = obj;
2323
2324         if (IS_I965G(dev))
2325                 i965_write_fence_reg(reg);
2326         else if (IS_I9XX(dev))
2327                 i915_write_fence_reg(reg);
2328         else
2329                 i830_write_fence_reg(reg);
2330
2331         return 0;
2332 }
2333
2334 /**
2335  * i915_gem_clear_fence_reg - clear out fence register info
2336  * @obj: object to clear
2337  *
2338  * Zeroes out the fence register itself and clears out the associated
2339  * data structures in dev_priv and obj_priv.
2340  */
2341 static void
2342 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2343 {
2344         struct drm_device *dev = obj->dev;
2345         drm_i915_private_t *dev_priv = dev->dev_private;
2346         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2347
2348         if (IS_I965G(dev))
2349                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2350         else {
2351                 uint32_t fence_reg;
2352
2353                 if (obj_priv->fence_reg < 8)
2354                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2355                 else
2356                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2357                                                        8) * 4;
2358
2359                 I915_WRITE(fence_reg, 0);
2360         }
2361
2362         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2363         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2364         list_del_init(&obj_priv->fence_list);
2365 }
2366
2367 /**
2368  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2369  * to the buffer to finish, and then resets the fence register.
2370  * @obj: tiled object holding a fence register.
2371  *
2372  * Zeroes out the fence register itself and clears out the associated
2373  * data structures in dev_priv and obj_priv.
2374  */
2375 int
2376 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2377 {
2378         struct drm_device *dev = obj->dev;
2379         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2380
2381         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2382                 return 0;
2383
2384         /* On the i915, GPU access to tiled buffers is via a fence,
2385          * therefore we must wait for any outstanding access to complete
2386          * before clearing the fence.
2387          */
2388         if (!IS_I965G(dev)) {
2389                 int ret;
2390
2391                 i915_gem_object_flush_gpu_write_domain(obj);
2392                 i915_gem_object_flush_gtt_write_domain(obj);
2393                 ret = i915_gem_object_wait_rendering(obj);
2394                 if (ret != 0)
2395                         return ret;
2396         }
2397
2398         i915_gem_clear_fence_reg (obj);
2399
2400         return 0;
2401 }
2402
2403 /**
2404  * Finds free space in the GTT aperture and binds the object there.
2405  */
2406 static int
2407 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2408 {
2409         struct drm_device *dev = obj->dev;
2410         drm_i915_private_t *dev_priv = dev->dev_private;
2411         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2412         struct drm_mm_node *free_space;
2413         int page_count, ret;
2414
2415         if (dev_priv->mm.suspended)
2416                 return -EBUSY;
2417         if (alignment == 0)
2418                 alignment = i915_gem_get_gtt_alignment(obj);
2419         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2420                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2421                 return -EINVAL;
2422         }
2423
2424  search_free:
2425         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2426                                         obj->size, alignment, 0);
2427         if (free_space != NULL) {
2428                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2429                                                        alignment);
2430                 if (obj_priv->gtt_space != NULL) {
2431                         obj_priv->gtt_space->private = obj;
2432                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2433                 }
2434         }
2435         if (obj_priv->gtt_space == NULL) {
2436                 bool lists_empty;
2437
2438                 /* If the gtt is empty and we're still having trouble
2439                  * fitting our object in, we're out of memory.
2440                  */
2441 #if WATCH_LRU
2442                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2443 #endif
2444                 spin_lock(&dev_priv->mm.active_list_lock);
2445                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2446                                list_empty(&dev_priv->mm.flushing_list) &&
2447                                list_empty(&dev_priv->mm.active_list));
2448                 spin_unlock(&dev_priv->mm.active_list_lock);
2449                 if (lists_empty) {
2450                         DRM_ERROR("GTT full, but LRU list empty\n");
2451                         return -ENOSPC;
2452                 }
2453
2454                 ret = i915_gem_evict_something(dev);
2455                 if (ret != 0) {
2456                         if (ret != -ERESTARTSYS)
2457                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2458                         return ret;
2459                 }
2460                 goto search_free;
2461         }
2462
2463 #if WATCH_BUF
2464         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2465                  obj->size, obj_priv->gtt_offset);
2466 #endif
2467         ret = i915_gem_object_get_pages(obj);
2468         if (ret) {
2469                 drm_mm_put_block(obj_priv->gtt_space);
2470                 obj_priv->gtt_space = NULL;
2471                 return ret;
2472         }
2473
2474         page_count = obj->size / PAGE_SIZE;
2475         /* Create an AGP memory structure pointing at our pages, and bind it
2476          * into the GTT.
2477          */
2478         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2479                                                obj_priv->pages,
2480                                                page_count,
2481                                                obj_priv->gtt_offset,
2482                                                obj_priv->agp_type);
2483         if (obj_priv->agp_mem == NULL) {
2484                 i915_gem_object_put_pages(obj);
2485                 drm_mm_put_block(obj_priv->gtt_space);
2486                 obj_priv->gtt_space = NULL;
2487                 return -ENOMEM;
2488         }
2489         atomic_inc(&dev->gtt_count);
2490         atomic_add(obj->size, &dev->gtt_memory);
2491
2492         /* Assert that the object is not currently in any GPU domain. As it
2493          * wasn't in the GTT, there shouldn't be any way it could have been in
2494          * a GPU cache
2495          */
2496         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2497         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2498
2499         return 0;
2500 }
2501
2502 void
2503 i915_gem_clflush_object(struct drm_gem_object *obj)
2504 {
2505         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2506
2507         /* If we don't have a page list set up, then we're not pinned
2508          * to GPU, and we can ignore the cache flush because it'll happen
2509          * again at bind time.
2510          */
2511         if (obj_priv->pages == NULL)
2512                 return;
2513
2514         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2515 }
2516
2517 /** Flushes any GPU write domain for the object if it's dirty. */
2518 static void
2519 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2520 {
2521         struct drm_device *dev = obj->dev;
2522         uint32_t seqno;
2523
2524         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2525                 return;
2526
2527         /* Queue the GPU write cache flushing we need. */
2528         i915_gem_flush(dev, 0, obj->write_domain);
2529         seqno = i915_add_request(dev, NULL, obj->write_domain);
2530         obj->write_domain = 0;
2531         i915_gem_object_move_to_active(obj, seqno);
2532 }
2533
2534 /** Flushes the GTT write domain for the object if it's dirty. */
2535 static void
2536 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2537 {
2538         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2539                 return;
2540
2541         /* No actual flushing is required for the GTT write domain.   Writes
2542          * to it immediately go to main memory as far as we know, so there's
2543          * no chipset flush.  It also doesn't land in render cache.
2544          */
2545         obj->write_domain = 0;
2546 }
2547
2548 /** Flushes the CPU write domain for the object if it's dirty. */
2549 static void
2550 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2551 {
2552         struct drm_device *dev = obj->dev;
2553
2554         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2555                 return;
2556
2557         i915_gem_clflush_object(obj);
2558         drm_agp_chipset_flush(dev);
2559         obj->write_domain = 0;
2560 }
2561
2562 /**
2563  * Moves a single object to the GTT read, and possibly write domain.
2564  *
2565  * This function returns when the move is complete, including waiting on
2566  * flushes to occur.
2567  */
2568 int
2569 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2570 {
2571         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2572         int ret;
2573
2574         /* Not valid to be called on unbound objects. */
2575         if (obj_priv->gtt_space == NULL)
2576                 return -EINVAL;
2577
2578         i915_gem_object_flush_gpu_write_domain(obj);
2579         /* Wait on any GPU rendering and flushing to occur. */
2580         ret = i915_gem_object_wait_rendering(obj);
2581         if (ret != 0)
2582                 return ret;
2583
2584         /* If we're writing through the GTT domain, then CPU and GPU caches
2585          * will need to be invalidated at next use.
2586          */
2587         if (write)
2588                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2589
2590         i915_gem_object_flush_cpu_write_domain(obj);
2591
2592         /* It should now be out of any other write domains, and we can update
2593          * the domain values for our changes.
2594          */
2595         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2596         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2597         if (write) {
2598                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2599                 obj_priv->dirty = 1;
2600         }
2601
2602         return 0;
2603 }
2604
2605 /**
2606  * Moves a single object to the CPU read, and possibly write domain.
2607  *
2608  * This function returns when the move is complete, including waiting on
2609  * flushes to occur.
2610  */
2611 static int
2612 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2613 {
2614         int ret;
2615
2616         i915_gem_object_flush_gpu_write_domain(obj);
2617         /* Wait on any GPU rendering and flushing to occur. */
2618         ret = i915_gem_object_wait_rendering(obj);
2619         if (ret != 0)
2620                 return ret;
2621
2622         i915_gem_object_flush_gtt_write_domain(obj);
2623
2624         /* If we have a partially-valid cache of the object in the CPU,
2625          * finish invalidating it and free the per-page flags.
2626          */
2627         i915_gem_object_set_to_full_cpu_read_domain(obj);
2628
2629         /* Flush the CPU cache if it's still invalid. */
2630         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2631                 i915_gem_clflush_object(obj);
2632
2633                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2634         }
2635
2636         /* It should now be out of any other write domains, and we can update
2637          * the domain values for our changes.
2638          */
2639         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2640
2641         /* If we're writing through the CPU, then the GPU read domains will
2642          * need to be invalidated at next use.
2643          */
2644         if (write) {
2645                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2646                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2647         }
2648
2649         return 0;
2650 }
2651
2652 /*
2653  * Set the next domain for the specified object. This
2654  * may not actually perform the necessary flushing/invaliding though,
2655  * as that may want to be batched with other set_domain operations
2656  *
2657  * This is (we hope) the only really tricky part of gem. The goal
2658  * is fairly simple -- track which caches hold bits of the object
2659  * and make sure they remain coherent. A few concrete examples may
2660  * help to explain how it works. For shorthand, we use the notation
2661  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2662  * a pair of read and write domain masks.
2663  *
2664  * Case 1: the batch buffer
2665  *
2666  *      1. Allocated
2667  *      2. Written by CPU
2668  *      3. Mapped to GTT
2669  *      4. Read by GPU
2670  *      5. Unmapped from GTT
2671  *      6. Freed
2672  *
2673  *      Let's take these a step at a time
2674  *
2675  *      1. Allocated
2676  *              Pages allocated from the kernel may still have
2677  *              cache contents, so we set them to (CPU, CPU) always.
2678  *      2. Written by CPU (using pwrite)
2679  *              The pwrite function calls set_domain (CPU, CPU) and
2680  *              this function does nothing (as nothing changes)
2681  *      3. Mapped by GTT
2682  *              This function asserts that the object is not
2683  *              currently in any GPU-based read or write domains
2684  *      4. Read by GPU
2685  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2686  *              As write_domain is zero, this function adds in the
2687  *              current read domains (CPU+COMMAND, 0).
2688  *              flush_domains is set to CPU.
2689  *              invalidate_domains is set to COMMAND
2690  *              clflush is run to get data out of the CPU caches
2691  *              then i915_dev_set_domain calls i915_gem_flush to
2692  *              emit an MI_FLUSH and drm_agp_chipset_flush
2693  *      5. Unmapped from GTT
2694  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2695  *              flush_domains and invalidate_domains end up both zero
2696  *              so no flushing/invalidating happens
2697  *      6. Freed
2698  *              yay, done
2699  *
2700  * Case 2: The shared render buffer
2701  *
2702  *      1. Allocated
2703  *      2. Mapped to GTT
2704  *      3. Read/written by GPU
2705  *      4. set_domain to (CPU,CPU)
2706  *      5. Read/written by CPU
2707  *      6. Read/written by GPU
2708  *
2709  *      1. Allocated
2710  *              Same as last example, (CPU, CPU)
2711  *      2. Mapped to GTT
2712  *              Nothing changes (assertions find that it is not in the GPU)
2713  *      3. Read/written by GPU
2714  *              execbuffer calls set_domain (RENDER, RENDER)
2715  *              flush_domains gets CPU
2716  *              invalidate_domains gets GPU
2717  *              clflush (obj)
2718  *              MI_FLUSH and drm_agp_chipset_flush
2719  *      4. set_domain (CPU, CPU)
2720  *              flush_domains gets GPU
2721  *              invalidate_domains gets CPU
2722  *              wait_rendering (obj) to make sure all drawing is complete.
2723  *              This will include an MI_FLUSH to get the data from GPU
2724  *              to memory
2725  *              clflush (obj) to invalidate the CPU cache
2726  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2727  *      5. Read/written by CPU
2728  *              cache lines are loaded and dirtied
2729  *      6. Read written by GPU
2730  *              Same as last GPU access
2731  *
2732  * Case 3: The constant buffer
2733  *
2734  *      1. Allocated
2735  *      2. Written by CPU
2736  *      3. Read by GPU
2737  *      4. Updated (written) by CPU again
2738  *      5. Read by GPU
2739  *
2740  *      1. Allocated
2741  *              (CPU, CPU)
2742  *      2. Written by CPU
2743  *              (CPU, CPU)
2744  *      3. Read by GPU
2745  *              (CPU+RENDER, 0)
2746  *              flush_domains = CPU
2747  *              invalidate_domains = RENDER
2748  *              clflush (obj)
2749  *              MI_FLUSH
2750  *              drm_agp_chipset_flush
2751  *      4. Updated (written) by CPU again
2752  *              (CPU, CPU)
2753  *              flush_domains = 0 (no previous write domain)
2754  *              invalidate_domains = 0 (no new read domains)
2755  *      5. Read by GPU
2756  *              (CPU+RENDER, 0)
2757  *              flush_domains = CPU
2758  *              invalidate_domains = RENDER
2759  *              clflush (obj)
2760  *              MI_FLUSH
2761  *              drm_agp_chipset_flush
2762  */
2763 static void
2764 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2765 {
2766         struct drm_device               *dev = obj->dev;
2767         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2768         uint32_t                        invalidate_domains = 0;
2769         uint32_t                        flush_domains = 0;
2770
2771         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2772         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2773
2774         intel_mark_busy(dev, obj);
2775
2776 #if WATCH_BUF
2777         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2778                  __func__, obj,
2779                  obj->read_domains, obj->pending_read_domains,
2780                  obj->write_domain, obj->pending_write_domain);
2781 #endif
2782         /*
2783          * If the object isn't moving to a new write domain,
2784          * let the object stay in multiple read domains
2785          */
2786         if (obj->pending_write_domain == 0)
2787                 obj->pending_read_domains |= obj->read_domains;
2788         else
2789                 obj_priv->dirty = 1;
2790
2791         /*
2792          * Flush the current write domain if
2793          * the new read domains don't match. Invalidate
2794          * any read domains which differ from the old
2795          * write domain
2796          */
2797         if (obj->write_domain &&
2798             obj->write_domain != obj->pending_read_domains) {
2799                 flush_domains |= obj->write_domain;
2800                 invalidate_domains |=
2801                         obj->pending_read_domains & ~obj->write_domain;
2802         }
2803         /*
2804          * Invalidate any read caches which may have
2805          * stale data. That is, any new read domains.
2806          */
2807         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2808         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2809 #if WATCH_BUF
2810                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2811                          __func__, flush_domains, invalidate_domains);
2812 #endif
2813                 i915_gem_clflush_object(obj);
2814         }
2815
2816         /* The actual obj->write_domain will be updated with
2817          * pending_write_domain after we emit the accumulated flush for all
2818          * of our domain changes in execbuffers (which clears objects'
2819          * write_domains).  So if we have a current write domain that we
2820          * aren't changing, set pending_write_domain to that.
2821          */
2822         if (flush_domains == 0 && obj->pending_write_domain == 0)
2823                 obj->pending_write_domain = obj->write_domain;
2824         obj->read_domains = obj->pending_read_domains;
2825
2826         dev->invalidate_domains |= invalidate_domains;
2827         dev->flush_domains |= flush_domains;
2828 #if WATCH_BUF
2829         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2830                  __func__,
2831                  obj->read_domains, obj->write_domain,
2832                  dev->invalidate_domains, dev->flush_domains);
2833 #endif
2834 }
2835
2836 /**
2837  * Moves the object from a partially CPU read to a full one.
2838  *
2839  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2840  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2841  */
2842 static void
2843 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2844 {
2845         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2846
2847         if (!obj_priv->page_cpu_valid)
2848                 return;
2849
2850         /* If we're partially in the CPU read domain, finish moving it in.
2851          */
2852         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2853                 int i;
2854
2855                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2856                         if (obj_priv->page_cpu_valid[i])
2857                                 continue;
2858                         drm_clflush_pages(obj_priv->pages + i, 1);
2859                 }
2860         }
2861
2862         /* Free the page_cpu_valid mappings which are now stale, whether
2863          * or not we've got I915_GEM_DOMAIN_CPU.
2864          */
2865         kfree(obj_priv->page_cpu_valid);
2866         obj_priv->page_cpu_valid = NULL;
2867 }
2868
2869 /**
2870  * Set the CPU read domain on a range of the object.
2871  *
2872  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2873  * not entirely valid.  The page_cpu_valid member of the object flags which
2874  * pages have been flushed, and will be respected by
2875  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2876  * of the whole object.
2877  *
2878  * This function returns when the move is complete, including waiting on
2879  * flushes to occur.
2880  */
2881 static int
2882 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2883                                           uint64_t offset, uint64_t size)
2884 {
2885         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2886         int i, ret;
2887
2888         if (offset == 0 && size == obj->size)
2889                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2890
2891         i915_gem_object_flush_gpu_write_domain(obj);
2892         /* Wait on any GPU rendering and flushing to occur. */
2893         ret = i915_gem_object_wait_rendering(obj);
2894         if (ret != 0)
2895                 return ret;
2896         i915_gem_object_flush_gtt_write_domain(obj);
2897
2898         /* If we're already fully in the CPU read domain, we're done. */
2899         if (obj_priv->page_cpu_valid == NULL &&
2900             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2901                 return 0;
2902
2903         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2904          * newly adding I915_GEM_DOMAIN_CPU
2905          */
2906         if (obj_priv->page_cpu_valid == NULL) {
2907                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2908                                                    GFP_KERNEL);
2909                 if (obj_priv->page_cpu_valid == NULL)
2910                         return -ENOMEM;
2911         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2912                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2913
2914         /* Flush the cache on any pages that are still invalid from the CPU's
2915          * perspective.
2916          */
2917         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2918              i++) {
2919                 if (obj_priv->page_cpu_valid[i])
2920                         continue;
2921
2922                 drm_clflush_pages(obj_priv->pages + i, 1);
2923
2924                 obj_priv->page_cpu_valid[i] = 1;
2925         }
2926
2927         /* It should now be out of any other write domains, and we can update
2928          * the domain values for our changes.
2929          */
2930         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2931
2932         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2933
2934         return 0;
2935 }
2936
2937 /**
2938  * Pin an object to the GTT and evaluate the relocations landing in it.
2939  */
2940 static int
2941 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2942                                  struct drm_file *file_priv,
2943                                  struct drm_i915_gem_exec_object *entry,
2944                                  struct drm_i915_gem_relocation_entry *relocs)
2945 {
2946         struct drm_device *dev = obj->dev;
2947         drm_i915_private_t *dev_priv = dev->dev_private;
2948         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2949         int i, ret;
2950         void __iomem *reloc_page;
2951
2952         /* Choose the GTT offset for our buffer and put it there. */
2953         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2954         if (ret)
2955                 return ret;
2956
2957         entry->offset = obj_priv->gtt_offset;
2958
2959         /* Apply the relocations, using the GTT aperture to avoid cache
2960          * flushing requirements.
2961          */
2962         for (i = 0; i < entry->relocation_count; i++) {
2963                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2964                 struct drm_gem_object *target_obj;
2965                 struct drm_i915_gem_object *target_obj_priv;
2966                 uint32_t reloc_val, reloc_offset;
2967                 uint32_t __iomem *reloc_entry;
2968
2969                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2970                                                    reloc->target_handle);
2971                 if (target_obj == NULL) {
2972                         i915_gem_object_unpin(obj);
2973                         return -EBADF;
2974                 }
2975                 target_obj_priv = target_obj->driver_private;
2976
2977                 /* The target buffer should have appeared before us in the
2978                  * exec_object list, so it should have a GTT space bound by now.
2979                  */
2980                 if (target_obj_priv->gtt_space == NULL) {
2981                         DRM_ERROR("No GTT space found for object %d\n",
2982                                   reloc->target_handle);
2983                         drm_gem_object_unreference(target_obj);
2984                         i915_gem_object_unpin(obj);
2985                         return -EINVAL;
2986                 }
2987
2988                 if (reloc->offset > obj->size - 4) {
2989                         DRM_ERROR("Relocation beyond object bounds: "
2990                                   "obj %p target %d offset %d size %d.\n",
2991                                   obj, reloc->target_handle,
2992                                   (int) reloc->offset, (int) obj->size);
2993                         drm_gem_object_unreference(target_obj);
2994                         i915_gem_object_unpin(obj);
2995                         return -EINVAL;
2996                 }
2997                 if (reloc->offset & 3) {
2998                         DRM_ERROR("Relocation not 4-byte aligned: "
2999                                   "obj %p target %d offset %d.\n",
3000                                   obj, reloc->target_handle,
3001                                   (int) reloc->offset);
3002                         drm_gem_object_unreference(target_obj);
3003                         i915_gem_object_unpin(obj);
3004                         return -EINVAL;
3005                 }
3006
3007                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3008                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3009                         DRM_ERROR("reloc with read/write CPU domains: "
3010                                   "obj %p target %d offset %d "
3011                                   "read %08x write %08x",
3012                                   obj, reloc->target_handle,
3013                                   (int) reloc->offset,
3014                                   reloc->read_domains,
3015                                   reloc->write_domain);
3016                         drm_gem_object_unreference(target_obj);
3017                         i915_gem_object_unpin(obj);
3018                         return -EINVAL;
3019                 }
3020
3021                 if (reloc->write_domain && target_obj->pending_write_domain &&
3022                     reloc->write_domain != target_obj->pending_write_domain) {
3023                         DRM_ERROR("Write domain conflict: "
3024                                   "obj %p target %d offset %d "
3025                                   "new %08x old %08x\n",
3026                                   obj, reloc->target_handle,
3027                                   (int) reloc->offset,
3028                                   reloc->write_domain,
3029                                   target_obj->pending_write_domain);
3030                         drm_gem_object_unreference(target_obj);
3031                         i915_gem_object_unpin(obj);
3032                         return -EINVAL;
3033                 }
3034
3035 #if WATCH_RELOC
3036                 DRM_INFO("%s: obj %p offset %08x target %d "
3037                          "read %08x write %08x gtt %08x "
3038                          "presumed %08x delta %08x\n",
3039                          __func__,
3040                          obj,
3041                          (int) reloc->offset,
3042                          (int) reloc->target_handle,
3043                          (int) reloc->read_domains,
3044                          (int) reloc->write_domain,
3045                          (int) target_obj_priv->gtt_offset,
3046                          (int) reloc->presumed_offset,
3047                          reloc->delta);
3048 #endif
3049
3050                 target_obj->pending_read_domains |= reloc->read_domains;
3051                 target_obj->pending_write_domain |= reloc->write_domain;
3052
3053                 /* If the relocation already has the right value in it, no
3054                  * more work needs to be done.
3055                  */
3056                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3057                         drm_gem_object_unreference(target_obj);
3058                         continue;
3059                 }
3060
3061                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3062                 if (ret != 0) {
3063                         drm_gem_object_unreference(target_obj);
3064                         i915_gem_object_unpin(obj);
3065                         return -EINVAL;
3066                 }
3067
3068                 /* Map the page containing the relocation we're going to
3069                  * perform.
3070                  */
3071                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3072                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3073                                                       (reloc_offset &
3074                                                        ~(PAGE_SIZE - 1)));
3075                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3076                                                    (reloc_offset & (PAGE_SIZE - 1)));
3077                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3078
3079 #if WATCH_BUF
3080                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3081                           obj, (unsigned int) reloc->offset,
3082                           readl(reloc_entry), reloc_val);
3083 #endif
3084                 writel(reloc_val, reloc_entry);
3085                 io_mapping_unmap_atomic(reloc_page);
3086
3087                 /* The updated presumed offset for this entry will be
3088                  * copied back out to the user.
3089                  */
3090                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3091
3092                 drm_gem_object_unreference(target_obj);
3093         }
3094
3095 #if WATCH_BUF
3096         if (0)
3097                 i915_gem_dump_object(obj, 128, __func__, ~0);
3098 #endif
3099         return 0;
3100 }
3101
3102 /** Dispatch a batchbuffer to the ring
3103  */
3104 static int
3105 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3106                               struct drm_i915_gem_execbuffer *exec,
3107                               struct drm_clip_rect *cliprects,
3108                               uint64_t exec_offset)
3109 {
3110         drm_i915_private_t *dev_priv = dev->dev_private;
3111         int nbox = exec->num_cliprects;
3112         int i = 0, count;
3113         uint32_t exec_start, exec_len;
3114         RING_LOCALS;
3115
3116         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3117         exec_len = (uint32_t) exec->batch_len;
3118
3119         count = nbox ? nbox : 1;
3120
3121         for (i = 0; i < count; i++) {
3122                 if (i < nbox) {
3123                         int ret = i915_emit_box(dev, cliprects, i,
3124                                                 exec->DR1, exec->DR4);
3125                         if (ret)
3126                                 return ret;
3127                 }
3128
3129                 if (IS_I830(dev) || IS_845G(dev)) {
3130                         BEGIN_LP_RING(4);
3131                         OUT_RING(MI_BATCH_BUFFER);
3132                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3133                         OUT_RING(exec_start + exec_len - 4);
3134                         OUT_RING(0);
3135                         ADVANCE_LP_RING();
3136                 } else {
3137                         BEGIN_LP_RING(2);
3138                         if (IS_I965G(dev)) {
3139                                 OUT_RING(MI_BATCH_BUFFER_START |
3140                                          (2 << 6) |
3141                                          MI_BATCH_NON_SECURE_I965);
3142                                 OUT_RING(exec_start);
3143                         } else {
3144                                 OUT_RING(MI_BATCH_BUFFER_START |
3145                                          (2 << 6));
3146                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3147                         }
3148                         ADVANCE_LP_RING();
3149                 }
3150         }
3151
3152         /* XXX breadcrumb */
3153         return 0;
3154 }
3155
3156 /* Throttle our rendering by waiting until the ring has completed our requests
3157  * emitted over 20 msec ago.
3158  *
3159  * Note that if we were to use the current jiffies each time around the loop,
3160  * we wouldn't escape the function with any frames outstanding if the time to
3161  * render a frame was over 20ms.
3162  *
3163  * This should get us reasonable parallelism between CPU and GPU but also
3164  * relatively low latency when blocking on a particular request to finish.
3165  */
3166 static int
3167 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3168 {
3169         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3170         int ret = 0;
3171         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3172
3173         mutex_lock(&dev->struct_mutex);
3174         while (!list_empty(&i915_file_priv->mm.request_list)) {
3175                 struct drm_i915_gem_request *request;
3176
3177                 request = list_first_entry(&i915_file_priv->mm.request_list,
3178                                            struct drm_i915_gem_request,
3179                                            client_list);
3180
3181                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3182                         break;
3183
3184                 ret = i915_wait_request(dev, request->seqno);
3185                 if (ret != 0)
3186                         break;
3187         }
3188         mutex_unlock(&dev->struct_mutex);
3189
3190         return ret;
3191 }
3192
3193 static int
3194 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3195                               uint32_t buffer_count,
3196                               struct drm_i915_gem_relocation_entry **relocs)
3197 {
3198         uint32_t reloc_count = 0, reloc_index = 0, i;
3199         int ret;
3200
3201         *relocs = NULL;
3202         for (i = 0; i < buffer_count; i++) {
3203                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3204                         return -EINVAL;
3205                 reloc_count += exec_list[i].relocation_count;
3206         }
3207
3208         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3209         if (*relocs == NULL)
3210                 return -ENOMEM;
3211
3212         for (i = 0; i < buffer_count; i++) {
3213                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3214
3215                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3216
3217                 ret = copy_from_user(&(*relocs)[reloc_index],
3218                                      user_relocs,
3219                                      exec_list[i].relocation_count *
3220                                      sizeof(**relocs));
3221                 if (ret != 0) {
3222                         drm_free_large(*relocs);
3223                         *relocs = NULL;
3224                         return -EFAULT;
3225                 }
3226
3227                 reloc_index += exec_list[i].relocation_count;
3228         }
3229
3230         return 0;
3231 }
3232
3233 static int
3234 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3235                             uint32_t buffer_count,
3236                             struct drm_i915_gem_relocation_entry *relocs)
3237 {
3238         uint32_t reloc_count = 0, i;
3239         int ret = 0;
3240
3241         for (i = 0; i < buffer_count; i++) {
3242                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3243                 int unwritten;
3244
3245                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3246
3247                 unwritten = copy_to_user(user_relocs,
3248                                          &relocs[reloc_count],
3249                                          exec_list[i].relocation_count *
3250                                          sizeof(*relocs));
3251
3252                 if (unwritten) {
3253                         ret = -EFAULT;
3254                         goto err;
3255                 }
3256
3257                 reloc_count += exec_list[i].relocation_count;
3258         }
3259
3260 err:
3261         drm_free_large(relocs);
3262
3263         return ret;
3264 }
3265
3266 static int
3267 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3268                            uint64_t exec_offset)
3269 {
3270         uint32_t exec_start, exec_len;
3271
3272         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3273         exec_len = (uint32_t) exec->batch_len;
3274
3275         if ((exec_start | exec_len) & 0x7)
3276                 return -EINVAL;
3277
3278         if (!exec_start)
3279                 return -EINVAL;
3280
3281         return 0;
3282 }
3283
3284 int
3285 i915_gem_execbuffer(struct drm_device *dev, void *data,
3286                     struct drm_file *file_priv)
3287 {
3288         drm_i915_private_t *dev_priv = dev->dev_private;
3289         struct drm_i915_gem_execbuffer *args = data;
3290         struct drm_i915_gem_exec_object *exec_list = NULL;
3291         struct drm_gem_object **object_list = NULL;
3292         struct drm_gem_object *batch_obj;
3293         struct drm_i915_gem_object *obj_priv;
3294         struct drm_clip_rect *cliprects = NULL;
3295         struct drm_i915_gem_relocation_entry *relocs;
3296         int ret, ret2, i, pinned = 0;
3297         uint64_t exec_offset;
3298         uint32_t seqno, flush_domains, reloc_index;
3299         int pin_tries;
3300
3301 #if WATCH_EXEC
3302         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3303                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3304 #endif
3305
3306         if (args->buffer_count < 1) {
3307                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3308                 return -EINVAL;
3309         }
3310         /* Copy in the exec list from userland */
3311         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3312         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3313         if (exec_list == NULL || object_list == NULL) {
3314                 DRM_ERROR("Failed to allocate exec or object list "
3315                           "for %d buffers\n",
3316                           args->buffer_count);
3317                 ret = -ENOMEM;
3318                 goto pre_mutex_err;
3319         }
3320         ret = copy_from_user(exec_list,
3321                              (struct drm_i915_relocation_entry __user *)
3322                              (uintptr_t) args->buffers_ptr,
3323                              sizeof(*exec_list) * args->buffer_count);
3324         if (ret != 0) {
3325                 DRM_ERROR("copy %d exec entries failed %d\n",
3326                           args->buffer_count, ret);
3327                 goto pre_mutex_err;
3328         }
3329
3330         if (args->num_cliprects != 0) {
3331                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3332                                     GFP_KERNEL);
3333                 if (cliprects == NULL)
3334                         goto pre_mutex_err;
3335
3336                 ret = copy_from_user(cliprects,
3337                                      (struct drm_clip_rect __user *)
3338                                      (uintptr_t) args->cliprects_ptr,
3339                                      sizeof(*cliprects) * args->num_cliprects);
3340                 if (ret != 0) {
3341                         DRM_ERROR("copy %d cliprects failed: %d\n",
3342                                   args->num_cliprects, ret);
3343                         goto pre_mutex_err;
3344                 }
3345         }
3346
3347         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3348                                             &relocs);
3349         if (ret != 0)
3350                 goto pre_mutex_err;
3351
3352         mutex_lock(&dev->struct_mutex);
3353
3354         i915_verify_inactive(dev, __FILE__, __LINE__);
3355
3356         if (dev_priv->mm.wedged) {
3357                 DRM_ERROR("Execbuf while wedged\n");
3358                 mutex_unlock(&dev->struct_mutex);
3359                 ret = -EIO;
3360                 goto pre_mutex_err;
3361         }
3362
3363         if (dev_priv->mm.suspended) {
3364                 DRM_ERROR("Execbuf while VT-switched.\n");
3365                 mutex_unlock(&dev->struct_mutex);
3366                 ret = -EBUSY;
3367                 goto pre_mutex_err;
3368         }
3369
3370         /* Look up object handles */
3371         for (i = 0; i < args->buffer_count; i++) {
3372                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3373                                                        exec_list[i].handle);
3374                 if (object_list[i] == NULL) {
3375                         DRM_ERROR("Invalid object handle %d at index %d\n",
3376                                    exec_list[i].handle, i);
3377                         ret = -EBADF;
3378                         goto err;
3379                 }
3380
3381                 obj_priv = object_list[i]->driver_private;
3382                 if (obj_priv->in_execbuffer) {
3383                         DRM_ERROR("Object %p appears more than once in object list\n",
3384                                    object_list[i]);
3385                         ret = -EBADF;
3386                         goto err;
3387                 }
3388                 obj_priv->in_execbuffer = true;
3389         }
3390
3391         /* Pin and relocate */
3392         for (pin_tries = 0; ; pin_tries++) {
3393                 ret = 0;
3394                 reloc_index = 0;
3395
3396                 for (i = 0; i < args->buffer_count; i++) {
3397                         object_list[i]->pending_read_domains = 0;
3398                         object_list[i]->pending_write_domain = 0;
3399                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3400                                                                file_priv,
3401                                                                &exec_list[i],
3402                                                                &relocs[reloc_index]);
3403                         if (ret)
3404                                 break;
3405                         pinned = i + 1;
3406                         reloc_index += exec_list[i].relocation_count;
3407                 }
3408                 /* success */
3409                 if (ret == 0)
3410                         break;
3411
3412                 /* error other than GTT full, or we've already tried again */
3413                 if (ret != -ENOSPC || pin_tries >= 1) {
3414                         if (ret != -ERESTARTSYS)
3415                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3416                         goto err;
3417                 }
3418
3419                 /* unpin all of our buffers */
3420                 for (i = 0; i < pinned; i++)
3421                         i915_gem_object_unpin(object_list[i]);
3422                 pinned = 0;
3423
3424                 /* evict everyone we can from the aperture */
3425                 ret = i915_gem_evict_everything(dev);
3426                 if (ret)
3427                         goto err;
3428         }
3429
3430         /* Set the pending read domains for the batch buffer to COMMAND */
3431         batch_obj = object_list[args->buffer_count-1];
3432         if (batch_obj->pending_write_domain) {
3433                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3434                 ret = -EINVAL;
3435                 goto err;
3436         }
3437         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3438
3439         /* Sanity check the batch buffer, prior to moving objects */
3440         exec_offset = exec_list[args->buffer_count - 1].offset;
3441         ret = i915_gem_check_execbuffer (args, exec_offset);
3442         if (ret != 0) {
3443                 DRM_ERROR("execbuf with invalid offset/length\n");
3444                 goto err;
3445         }
3446
3447         i915_verify_inactive(dev, __FILE__, __LINE__);
3448
3449         /* Zero the global flush/invalidate flags. These
3450          * will be modified as new domains are computed
3451          * for each object
3452          */
3453         dev->invalidate_domains = 0;
3454         dev->flush_domains = 0;
3455
3456         for (i = 0; i < args->buffer_count; i++) {
3457                 struct drm_gem_object *obj = object_list[i];
3458
3459                 /* Compute new gpu domains and update invalidate/flush */
3460                 i915_gem_object_set_to_gpu_domain(obj);
3461         }
3462
3463         i915_verify_inactive(dev, __FILE__, __LINE__);
3464
3465         if (dev->invalidate_domains | dev->flush_domains) {
3466 #if WATCH_EXEC
3467                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3468                           __func__,
3469                          dev->invalidate_domains,
3470                          dev->flush_domains);
3471 #endif
3472                 i915_gem_flush(dev,
3473                                dev->invalidate_domains,
3474                                dev->flush_domains);
3475                 if (dev->flush_domains)
3476                         (void)i915_add_request(dev, file_priv,
3477                                                dev->flush_domains);
3478         }
3479
3480         for (i = 0; i < args->buffer_count; i++) {
3481                 struct drm_gem_object *obj = object_list[i];
3482
3483                 obj->write_domain = obj->pending_write_domain;
3484         }
3485
3486         i915_verify_inactive(dev, __FILE__, __LINE__);
3487
3488 #if WATCH_COHERENCY
3489         for (i = 0; i < args->buffer_count; i++) {
3490                 i915_gem_object_check_coherency(object_list[i],
3491                                                 exec_list[i].handle);
3492         }
3493 #endif
3494
3495 #if WATCH_EXEC
3496         i915_gem_dump_object(batch_obj,
3497                               args->batch_len,
3498                               __func__,
3499                               ~0);
3500 #endif
3501
3502         /* Exec the batchbuffer */
3503         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3504         if (ret) {
3505                 DRM_ERROR("dispatch failed %d\n", ret);
3506                 goto err;
3507         }
3508
3509         /*
3510          * Ensure that the commands in the batch buffer are
3511          * finished before the interrupt fires
3512          */
3513         flush_domains = i915_retire_commands(dev);
3514
3515         i915_verify_inactive(dev, __FILE__, __LINE__);
3516
3517         /*
3518          * Get a seqno representing the execution of the current buffer,
3519          * which we can wait on.  We would like to mitigate these interrupts,
3520          * likely by only creating seqnos occasionally (so that we have
3521          * *some* interrupts representing completion of buffers that we can
3522          * wait on when trying to clear up gtt space).
3523          */
3524         seqno = i915_add_request(dev, file_priv, flush_domains);
3525         BUG_ON(seqno == 0);
3526         for (i = 0; i < args->buffer_count; i++) {
3527                 struct drm_gem_object *obj = object_list[i];
3528
3529                 i915_gem_object_move_to_active(obj, seqno);
3530 #if WATCH_LRU
3531                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3532 #endif
3533         }
3534 #if WATCH_LRU
3535         i915_dump_lru(dev, __func__);
3536 #endif
3537
3538         i915_verify_inactive(dev, __FILE__, __LINE__);
3539
3540 err:
3541         for (i = 0; i < pinned; i++)
3542                 i915_gem_object_unpin(object_list[i]);
3543
3544         for (i = 0; i < args->buffer_count; i++) {
3545                 if (object_list[i]) {
3546                         obj_priv = object_list[i]->driver_private;
3547                         obj_priv->in_execbuffer = false;
3548                 }
3549                 drm_gem_object_unreference(object_list[i]);
3550         }
3551
3552         mutex_unlock(&dev->struct_mutex);
3553
3554         if (!ret) {
3555                 /* Copy the new buffer offsets back to the user's exec list. */
3556                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3557                                    (uintptr_t) args->buffers_ptr,
3558                                    exec_list,
3559                                    sizeof(*exec_list) * args->buffer_count);
3560                 if (ret) {
3561                         ret = -EFAULT;
3562                         DRM_ERROR("failed to copy %d exec entries "
3563                                   "back to user (%d)\n",
3564                                   args->buffer_count, ret);
3565                 }
3566         }
3567
3568         /* Copy the updated relocations out regardless of current error
3569          * state.  Failure to update the relocs would mean that the next
3570          * time userland calls execbuf, it would do so with presumed offset
3571          * state that didn't match the actual object state.
3572          */
3573         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3574                                            relocs);
3575         if (ret2 != 0) {
3576                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3577
3578                 if (ret == 0)
3579                         ret = ret2;
3580         }
3581
3582 pre_mutex_err:
3583         drm_free_large(object_list);
3584         drm_free_large(exec_list);
3585         kfree(cliprects);
3586
3587         return ret;
3588 }
3589
3590 int
3591 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3592 {
3593         struct drm_device *dev = obj->dev;
3594         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3595         int ret;
3596
3597         i915_verify_inactive(dev, __FILE__, __LINE__);
3598         if (obj_priv->gtt_space == NULL) {
3599                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3600                 if (ret != 0) {
3601                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3602                                 DRM_ERROR("Failure to bind: %d\n", ret);
3603                         return ret;
3604                 }
3605         }
3606         /*
3607          * Pre-965 chips need a fence register set up in order to
3608          * properly handle tiled surfaces.
3609          */
3610         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3611                 ret = i915_gem_object_get_fence_reg(obj);
3612                 if (ret != 0) {
3613                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3614                                 DRM_ERROR("Failure to install fence: %d\n",
3615                                           ret);
3616                         return ret;
3617                 }
3618         }
3619         obj_priv->pin_count++;
3620
3621         /* If the object is not active and not pending a flush,
3622          * remove it from the inactive list
3623          */
3624         if (obj_priv->pin_count == 1) {
3625                 atomic_inc(&dev->pin_count);
3626                 atomic_add(obj->size, &dev->pin_memory);
3627                 if (!obj_priv->active &&
3628                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3629                     !list_empty(&obj_priv->list))
3630                         list_del_init(&obj_priv->list);
3631         }
3632         i915_verify_inactive(dev, __FILE__, __LINE__);
3633
3634         return 0;
3635 }
3636
3637 void
3638 i915_gem_object_unpin(struct drm_gem_object *obj)
3639 {
3640         struct drm_device *dev = obj->dev;
3641         drm_i915_private_t *dev_priv = dev->dev_private;
3642         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3643
3644         i915_verify_inactive(dev, __FILE__, __LINE__);
3645         obj_priv->pin_count--;
3646         BUG_ON(obj_priv->pin_count < 0);
3647         BUG_ON(obj_priv->gtt_space == NULL);
3648
3649         /* If the object is no longer pinned, and is
3650          * neither active nor being flushed, then stick it on
3651          * the inactive list
3652          */
3653         if (obj_priv->pin_count == 0) {
3654                 if (!obj_priv->active &&
3655                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3656                         list_move_tail(&obj_priv->list,
3657                                        &dev_priv->mm.inactive_list);
3658                 atomic_dec(&dev->pin_count);
3659                 atomic_sub(obj->size, &dev->pin_memory);
3660         }
3661         i915_verify_inactive(dev, __FILE__, __LINE__);
3662 }
3663
3664 int
3665 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3666                    struct drm_file *file_priv)
3667 {
3668         struct drm_i915_gem_pin *args = data;
3669         struct drm_gem_object *obj;
3670         struct drm_i915_gem_object *obj_priv;
3671         int ret;
3672
3673         mutex_lock(&dev->struct_mutex);
3674
3675         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3676         if (obj == NULL) {
3677                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3678                           args->handle);
3679                 mutex_unlock(&dev->struct_mutex);
3680                 return -EBADF;
3681         }
3682         obj_priv = obj->driver_private;
3683
3684         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3685                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3686                           args->handle);
3687                 drm_gem_object_unreference(obj);
3688                 mutex_unlock(&dev->struct_mutex);
3689                 return -EINVAL;
3690         }
3691
3692         obj_priv->user_pin_count++;
3693         obj_priv->pin_filp = file_priv;
3694         if (obj_priv->user_pin_count == 1) {
3695                 ret = i915_gem_object_pin(obj, args->alignment);
3696                 if (ret != 0) {
3697                         drm_gem_object_unreference(obj);
3698                         mutex_unlock(&dev->struct_mutex);
3699                         return ret;
3700                 }
3701         }
3702
3703         /* XXX - flush the CPU caches for pinned objects
3704          * as the X server doesn't manage domains yet
3705          */
3706         i915_gem_object_flush_cpu_write_domain(obj);
3707         args->offset = obj_priv->gtt_offset;
3708         drm_gem_object_unreference(obj);
3709         mutex_unlock(&dev->struct_mutex);
3710
3711         return 0;
3712 }
3713
3714 int
3715 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3716                      struct drm_file *file_priv)
3717 {
3718         struct drm_i915_gem_pin *args = data;
3719         struct drm_gem_object *obj;
3720         struct drm_i915_gem_object *obj_priv;
3721
3722         mutex_lock(&dev->struct_mutex);
3723
3724         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3725         if (obj == NULL) {
3726                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3727                           args->handle);
3728                 mutex_unlock(&dev->struct_mutex);
3729                 return -EBADF;
3730         }
3731
3732         obj_priv = obj->driver_private;
3733         if (obj_priv->pin_filp != file_priv) {
3734                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3735                           args->handle);
3736                 drm_gem_object_unreference(obj);
3737                 mutex_unlock(&dev->struct_mutex);
3738                 return -EINVAL;
3739         }
3740         obj_priv->user_pin_count--;
3741         if (obj_priv->user_pin_count == 0) {
3742                 obj_priv->pin_filp = NULL;
3743                 i915_gem_object_unpin(obj);
3744         }
3745
3746         drm_gem_object_unreference(obj);
3747         mutex_unlock(&dev->struct_mutex);
3748         return 0;
3749 }
3750
3751 int
3752 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3753                     struct drm_file *file_priv)
3754 {
3755         struct drm_i915_gem_busy *args = data;
3756         struct drm_gem_object *obj;
3757         struct drm_i915_gem_object *obj_priv;
3758
3759         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3760         if (obj == NULL) {
3761                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3762                           args->handle);
3763                 return -EBADF;
3764         }
3765
3766         mutex_lock(&dev->struct_mutex);
3767         /* Update the active list for the hardware's current position.
3768          * Otherwise this only updates on a delayed timer or when irqs are
3769          * actually unmasked, and our working set ends up being larger than
3770          * required.
3771          */
3772         i915_gem_retire_requests(dev);
3773
3774         obj_priv = obj->driver_private;
3775         /* Don't count being on the flushing list against the object being
3776          * done.  Otherwise, a buffer left on the flushing list but not getting
3777          * flushed (because nobody's flushing that domain) won't ever return
3778          * unbusy and get reused by libdrm's bo cache.  The other expected
3779          * consumer of this interface, OpenGL's occlusion queries, also specs
3780          * that the objects get unbusy "eventually" without any interference.
3781          */
3782         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3783
3784         drm_gem_object_unreference(obj);
3785         mutex_unlock(&dev->struct_mutex);
3786         return 0;
3787 }
3788
3789 int
3790 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3791                         struct drm_file *file_priv)
3792 {
3793     return i915_gem_ring_throttle(dev, file_priv);
3794 }
3795
3796 int i915_gem_init_object(struct drm_gem_object *obj)
3797 {
3798         struct drm_i915_gem_object *obj_priv;
3799
3800         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3801         if (obj_priv == NULL)
3802                 return -ENOMEM;
3803
3804         /*
3805          * We've just allocated pages from the kernel,
3806          * so they've just been written by the CPU with
3807          * zeros. They'll need to be clflushed before we
3808          * use them with the GPU.
3809          */
3810         obj->write_domain = I915_GEM_DOMAIN_CPU;
3811         obj->read_domains = I915_GEM_DOMAIN_CPU;
3812
3813         obj_priv->agp_type = AGP_USER_MEMORY;
3814
3815         obj->driver_private = obj_priv;
3816         obj_priv->obj = obj;
3817         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3818         INIT_LIST_HEAD(&obj_priv->list);
3819         INIT_LIST_HEAD(&obj_priv->fence_list);
3820
3821         return 0;
3822 }
3823
3824 void i915_gem_free_object(struct drm_gem_object *obj)
3825 {
3826         struct drm_device *dev = obj->dev;
3827         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3828
3829         while (obj_priv->pin_count > 0)
3830                 i915_gem_object_unpin(obj);
3831
3832         if (obj_priv->phys_obj)
3833                 i915_gem_detach_phys_object(dev, obj);
3834
3835         i915_gem_object_unbind(obj);
3836
3837         if (obj_priv->mmap_offset)
3838                 i915_gem_free_mmap_offset(obj);
3839
3840         kfree(obj_priv->page_cpu_valid);
3841         kfree(obj_priv->bit_17);
3842         kfree(obj->driver_private);
3843 }
3844
3845 /** Unbinds all objects that are on the given buffer list. */
3846 static int
3847 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3848 {
3849         struct drm_gem_object *obj;
3850         struct drm_i915_gem_object *obj_priv;
3851         int ret;
3852
3853         while (!list_empty(head)) {
3854                 obj_priv = list_first_entry(head,
3855                                             struct drm_i915_gem_object,
3856                                             list);
3857                 obj = obj_priv->obj;
3858
3859                 if (obj_priv->pin_count != 0) {
3860                         DRM_ERROR("Pinned object in unbind list\n");
3861                         mutex_unlock(&dev->struct_mutex);
3862                         return -EINVAL;
3863                 }
3864
3865                 ret = i915_gem_object_unbind(obj);
3866                 if (ret != 0) {
3867                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3868                                   ret);
3869                         mutex_unlock(&dev->struct_mutex);
3870                         return ret;
3871                 }
3872         }
3873
3874
3875         return 0;
3876 }
3877
3878 int
3879 i915_gem_idle(struct drm_device *dev)
3880 {
3881         drm_i915_private_t *dev_priv = dev->dev_private;
3882         uint32_t seqno, cur_seqno, last_seqno;
3883         int stuck, ret;
3884
3885         mutex_lock(&dev->struct_mutex);
3886
3887         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3888                 mutex_unlock(&dev->struct_mutex);
3889                 return 0;
3890         }
3891
3892         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3893          * We need to replace this with a semaphore, or something.
3894          */
3895         dev_priv->mm.suspended = 1;
3896
3897         /* Cancel the retire work handler, wait for it to finish if running
3898          */
3899         mutex_unlock(&dev->struct_mutex);
3900         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3901         mutex_lock(&dev->struct_mutex);
3902
3903         i915_kernel_lost_context(dev);
3904
3905         /* Flush the GPU along with all non-CPU write domains
3906          */
3907         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3908         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3909
3910         if (seqno == 0) {
3911                 mutex_unlock(&dev->struct_mutex);
3912                 return -ENOMEM;
3913         }
3914
3915         dev_priv->mm.waiting_gem_seqno = seqno;
3916         last_seqno = 0;
3917         stuck = 0;
3918         for (;;) {
3919                 cur_seqno = i915_get_gem_seqno(dev);
3920                 if (i915_seqno_passed(cur_seqno, seqno))
3921                         break;
3922                 if (last_seqno == cur_seqno) {
3923                         if (stuck++ > 100) {
3924                                 DRM_ERROR("hardware wedged\n");
3925                                 dev_priv->mm.wedged = 1;
3926                                 DRM_WAKEUP(&dev_priv->irq_queue);
3927                                 break;
3928                         }
3929                 }
3930                 msleep(10);
3931                 last_seqno = cur_seqno;
3932         }
3933         dev_priv->mm.waiting_gem_seqno = 0;
3934
3935         i915_gem_retire_requests(dev);
3936
3937         spin_lock(&dev_priv->mm.active_list_lock);
3938         if (!dev_priv->mm.wedged) {
3939                 /* Active and flushing should now be empty as we've
3940                  * waited for a sequence higher than any pending execbuffer
3941                  */
3942                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3943                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3944                 /* Request should now be empty as we've also waited
3945                  * for the last request in the list
3946                  */
3947                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3948         }
3949
3950         /* Empty the active and flushing lists to inactive.  If there's
3951          * anything left at this point, it means that we're wedged and
3952          * nothing good's going to happen by leaving them there.  So strip
3953          * the GPU domains and just stuff them onto inactive.
3954          */
3955         while (!list_empty(&dev_priv->mm.active_list)) {
3956                 struct drm_i915_gem_object *obj_priv;
3957
3958                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3959                                             struct drm_i915_gem_object,
3960                                             list);
3961                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3962                 i915_gem_object_move_to_inactive(obj_priv->obj);
3963         }
3964         spin_unlock(&dev_priv->mm.active_list_lock);
3965
3966         while (!list_empty(&dev_priv->mm.flushing_list)) {
3967                 struct drm_i915_gem_object *obj_priv;
3968
3969                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3970                                             struct drm_i915_gem_object,
3971                                             list);
3972                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3973                 i915_gem_object_move_to_inactive(obj_priv->obj);
3974         }
3975
3976
3977         /* Move all inactive buffers out of the GTT. */
3978         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3979         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3980         if (ret) {
3981                 mutex_unlock(&dev->struct_mutex);
3982                 return ret;
3983         }
3984
3985         i915_gem_cleanup_ringbuffer(dev);
3986         mutex_unlock(&dev->struct_mutex);
3987
3988         return 0;
3989 }
3990
3991 static int
3992 i915_gem_init_hws(struct drm_device *dev)
3993 {
3994         drm_i915_private_t *dev_priv = dev->dev_private;
3995         struct drm_gem_object *obj;
3996         struct drm_i915_gem_object *obj_priv;
3997         int ret;
3998
3999         /* If we need a physical address for the status page, it's already
4000          * initialized at driver load time.
4001          */
4002         if (!I915_NEED_GFX_HWS(dev))
4003                 return 0;
4004
4005         obj = drm_gem_object_alloc(dev, 4096);
4006         if (obj == NULL) {
4007                 DRM_ERROR("Failed to allocate status page\n");
4008                 return -ENOMEM;
4009         }
4010         obj_priv = obj->driver_private;
4011         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4012
4013         ret = i915_gem_object_pin(obj, 4096);
4014         if (ret != 0) {
4015                 drm_gem_object_unreference(obj);
4016                 return ret;
4017         }
4018
4019         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4020
4021         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4022         if (dev_priv->hw_status_page == NULL) {
4023                 DRM_ERROR("Failed to map status page.\n");
4024                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4025                 i915_gem_object_unpin(obj);
4026                 drm_gem_object_unreference(obj);
4027                 return -EINVAL;
4028         }
4029         dev_priv->hws_obj = obj;
4030         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4031         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4032         I915_READ(HWS_PGA); /* posting read */
4033         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4034
4035         return 0;
4036 }
4037
4038 static void
4039 i915_gem_cleanup_hws(struct drm_device *dev)
4040 {
4041         drm_i915_private_t *dev_priv = dev->dev_private;
4042         struct drm_gem_object *obj;
4043         struct drm_i915_gem_object *obj_priv;
4044
4045         if (dev_priv->hws_obj == NULL)
4046                 return;
4047
4048         obj = dev_priv->hws_obj;
4049         obj_priv = obj->driver_private;
4050
4051         kunmap(obj_priv->pages[0]);
4052         i915_gem_object_unpin(obj);
4053         drm_gem_object_unreference(obj);
4054         dev_priv->hws_obj = NULL;
4055
4056         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4057         dev_priv->hw_status_page = NULL;
4058
4059         /* Write high address into HWS_PGA when disabling. */
4060         I915_WRITE(HWS_PGA, 0x1ffff000);
4061 }
4062
4063 int
4064 i915_gem_init_ringbuffer(struct drm_device *dev)
4065 {
4066         drm_i915_private_t *dev_priv = dev->dev_private;
4067         struct drm_gem_object *obj;
4068         struct drm_i915_gem_object *obj_priv;
4069         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4070         int ret;
4071         u32 head;
4072
4073         ret = i915_gem_init_hws(dev);
4074         if (ret != 0)
4075                 return ret;
4076
4077         obj = drm_gem_object_alloc(dev, 128 * 1024);
4078         if (obj == NULL) {
4079                 DRM_ERROR("Failed to allocate ringbuffer\n");
4080                 i915_gem_cleanup_hws(dev);
4081                 return -ENOMEM;
4082         }
4083         obj_priv = obj->driver_private;
4084
4085         ret = i915_gem_object_pin(obj, 4096);
4086         if (ret != 0) {
4087                 drm_gem_object_unreference(obj);
4088                 i915_gem_cleanup_hws(dev);
4089                 return ret;
4090         }
4091
4092         /* Set up the kernel mapping for the ring. */
4093         ring->Size = obj->size;
4094
4095         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4096         ring->map.size = obj->size;
4097         ring->map.type = 0;
4098         ring->map.flags = 0;
4099         ring->map.mtrr = 0;
4100
4101         drm_core_ioremap_wc(&ring->map, dev);
4102         if (ring->map.handle == NULL) {
4103                 DRM_ERROR("Failed to map ringbuffer.\n");
4104                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4105                 i915_gem_object_unpin(obj);
4106                 drm_gem_object_unreference(obj);
4107                 i915_gem_cleanup_hws(dev);
4108                 return -EINVAL;
4109         }
4110         ring->ring_obj = obj;
4111         ring->virtual_start = ring->map.handle;
4112
4113         /* Stop the ring if it's running. */
4114         I915_WRITE(PRB0_CTL, 0);
4115         I915_WRITE(PRB0_TAIL, 0);
4116         I915_WRITE(PRB0_HEAD, 0);
4117
4118         /* Initialize the ring. */
4119         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4120         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4121
4122         /* G45 ring initialization fails to reset head to zero */
4123         if (head != 0) {
4124                 DRM_ERROR("Ring head not reset to zero "
4125                           "ctl %08x head %08x tail %08x start %08x\n",
4126                           I915_READ(PRB0_CTL),
4127                           I915_READ(PRB0_HEAD),
4128                           I915_READ(PRB0_TAIL),
4129                           I915_READ(PRB0_START));
4130                 I915_WRITE(PRB0_HEAD, 0);
4131
4132                 DRM_ERROR("Ring head forced to zero "
4133                           "ctl %08x head %08x tail %08x start %08x\n",
4134                           I915_READ(PRB0_CTL),
4135                           I915_READ(PRB0_HEAD),
4136                           I915_READ(PRB0_TAIL),
4137                           I915_READ(PRB0_START));
4138         }
4139
4140         I915_WRITE(PRB0_CTL,
4141                    ((obj->size - 4096) & RING_NR_PAGES) |
4142                    RING_NO_REPORT |
4143                    RING_VALID);
4144
4145         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4146
4147         /* If the head is still not zero, the ring is dead */
4148         if (head != 0) {
4149                 DRM_ERROR("Ring initialization failed "
4150                           "ctl %08x head %08x tail %08x start %08x\n",
4151                           I915_READ(PRB0_CTL),
4152                           I915_READ(PRB0_HEAD),
4153                           I915_READ(PRB0_TAIL),
4154                           I915_READ(PRB0_START));
4155                 return -EIO;
4156         }
4157
4158         /* Update our cache of the ring state */
4159         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4160                 i915_kernel_lost_context(dev);
4161         else {
4162                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4163                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4164                 ring->space = ring->head - (ring->tail + 8);
4165                 if (ring->space < 0)
4166                         ring->space += ring->Size;
4167         }
4168
4169         return 0;
4170 }
4171
4172 void
4173 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4174 {
4175         drm_i915_private_t *dev_priv = dev->dev_private;
4176
4177         if (dev_priv->ring.ring_obj == NULL)
4178                 return;
4179
4180         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4181
4182         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4183         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4184         dev_priv->ring.ring_obj = NULL;
4185         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4186
4187         i915_gem_cleanup_hws(dev);
4188 }
4189
4190 int
4191 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4192                        struct drm_file *file_priv)
4193 {
4194         drm_i915_private_t *dev_priv = dev->dev_private;
4195         int ret;
4196
4197         if (drm_core_check_feature(dev, DRIVER_MODESET))
4198                 return 0;
4199
4200         if (dev_priv->mm.wedged) {
4201                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4202                 dev_priv->mm.wedged = 0;
4203         }
4204
4205         mutex_lock(&dev->struct_mutex);
4206         dev_priv->mm.suspended = 0;
4207
4208         ret = i915_gem_init_ringbuffer(dev);
4209         if (ret != 0) {
4210                 mutex_unlock(&dev->struct_mutex);
4211                 return ret;
4212         }
4213
4214         spin_lock(&dev_priv->mm.active_list_lock);
4215         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4216         spin_unlock(&dev_priv->mm.active_list_lock);
4217
4218         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4219         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4220         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4221         mutex_unlock(&dev->struct_mutex);
4222
4223         drm_irq_install(dev);
4224
4225         return 0;
4226 }
4227
4228 int
4229 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4230                        struct drm_file *file_priv)
4231 {
4232         int ret;
4233
4234         if (drm_core_check_feature(dev, DRIVER_MODESET))
4235                 return 0;
4236
4237         ret = i915_gem_idle(dev);
4238         drm_irq_uninstall(dev);
4239
4240         return ret;
4241 }
4242
4243 void
4244 i915_gem_lastclose(struct drm_device *dev)
4245 {
4246         int ret;
4247
4248         if (drm_core_check_feature(dev, DRIVER_MODESET))
4249                 return;
4250
4251         ret = i915_gem_idle(dev);
4252         if (ret)
4253                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4254 }
4255
4256 void
4257 i915_gem_load(struct drm_device *dev)
4258 {
4259         int i;
4260         drm_i915_private_t *dev_priv = dev->dev_private;
4261
4262         spin_lock_init(&dev_priv->mm.active_list_lock);
4263         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4264         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4265         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4266         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4267         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4268         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4269                           i915_gem_retire_work_handler);
4270         dev_priv->mm.next_gem_seqno = 1;
4271
4272         /* Old X drivers will take 0-2 for front, back, depth buffers */
4273         dev_priv->fence_reg_start = 3;
4274
4275         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4276                 dev_priv->num_fence_regs = 16;
4277         else
4278                 dev_priv->num_fence_regs = 8;
4279
4280         /* Initialize fence registers to zero */
4281         if (IS_I965G(dev)) {
4282                 for (i = 0; i < 16; i++)
4283                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4284         } else {
4285                 for (i = 0; i < 8; i++)
4286                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4287                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4288                         for (i = 0; i < 8; i++)
4289                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4290         }
4291
4292         i915_gem_detect_bit_6_swizzle(dev);
4293 }
4294
4295 /*
4296  * Create a physically contiguous memory object for this object
4297  * e.g. for cursor + overlay regs
4298  */
4299 int i915_gem_init_phys_object(struct drm_device *dev,
4300                               int id, int size)
4301 {
4302         drm_i915_private_t *dev_priv = dev->dev_private;
4303         struct drm_i915_gem_phys_object *phys_obj;
4304         int ret;
4305
4306         if (dev_priv->mm.phys_objs[id - 1] || !size)
4307                 return 0;
4308
4309         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4310         if (!phys_obj)
4311                 return -ENOMEM;
4312
4313         phys_obj->id = id;
4314
4315         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4316         if (!phys_obj->handle) {
4317                 ret = -ENOMEM;
4318                 goto kfree_obj;
4319         }
4320 #ifdef CONFIG_X86
4321         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4322 #endif
4323
4324         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4325
4326         return 0;
4327 kfree_obj:
4328         kfree(phys_obj);
4329         return ret;
4330 }
4331
4332 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4333 {
4334         drm_i915_private_t *dev_priv = dev->dev_private;
4335         struct drm_i915_gem_phys_object *phys_obj;
4336
4337         if (!dev_priv->mm.phys_objs[id - 1])
4338                 return;
4339
4340         phys_obj = dev_priv->mm.phys_objs[id - 1];
4341         if (phys_obj->cur_obj) {
4342                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4343         }
4344
4345 #ifdef CONFIG_X86
4346         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4347 #endif
4348         drm_pci_free(dev, phys_obj->handle);
4349         kfree(phys_obj);
4350         dev_priv->mm.phys_objs[id - 1] = NULL;
4351 }
4352
4353 void i915_gem_free_all_phys_object(struct drm_device *dev)
4354 {
4355         int i;
4356
4357         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4358                 i915_gem_free_phys_object(dev, i);
4359 }
4360
4361 void i915_gem_detach_phys_object(struct drm_device *dev,
4362                                  struct drm_gem_object *obj)
4363 {
4364         struct drm_i915_gem_object *obj_priv;
4365         int i;
4366         int ret;
4367         int page_count;
4368
4369         obj_priv = obj->driver_private;
4370         if (!obj_priv->phys_obj)
4371                 return;
4372
4373         ret = i915_gem_object_get_pages(obj);
4374         if (ret)
4375                 goto out;
4376
4377         page_count = obj->size / PAGE_SIZE;
4378
4379         for (i = 0; i < page_count; i++) {
4380                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4381                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4382
4383                 memcpy(dst, src, PAGE_SIZE);
4384                 kunmap_atomic(dst, KM_USER0);
4385         }
4386         drm_clflush_pages(obj_priv->pages, page_count);
4387         drm_agp_chipset_flush(dev);
4388
4389         i915_gem_object_put_pages(obj);
4390 out:
4391         obj_priv->phys_obj->cur_obj = NULL;
4392         obj_priv->phys_obj = NULL;
4393 }
4394
4395 int
4396 i915_gem_attach_phys_object(struct drm_device *dev,
4397                             struct drm_gem_object *obj, int id)
4398 {
4399         drm_i915_private_t *dev_priv = dev->dev_private;
4400         struct drm_i915_gem_object *obj_priv;
4401         int ret = 0;
4402         int page_count;
4403         int i;
4404
4405         if (id > I915_MAX_PHYS_OBJECT)
4406                 return -EINVAL;
4407
4408         obj_priv = obj->driver_private;
4409
4410         if (obj_priv->phys_obj) {
4411                 if (obj_priv->phys_obj->id == id)
4412                         return 0;
4413                 i915_gem_detach_phys_object(dev, obj);
4414         }
4415
4416
4417         /* create a new object */
4418         if (!dev_priv->mm.phys_objs[id - 1]) {
4419                 ret = i915_gem_init_phys_object(dev, id,
4420                                                 obj->size);
4421                 if (ret) {
4422                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4423                         goto out;
4424                 }
4425         }
4426
4427         /* bind to the object */
4428         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4429         obj_priv->phys_obj->cur_obj = obj;
4430
4431         ret = i915_gem_object_get_pages(obj);
4432         if (ret) {
4433                 DRM_ERROR("failed to get page list\n");
4434                 goto out;
4435         }
4436
4437         page_count = obj->size / PAGE_SIZE;
4438
4439         for (i = 0; i < page_count; i++) {
4440                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4441                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4442
4443                 memcpy(dst, src, PAGE_SIZE);
4444                 kunmap_atomic(src, KM_USER0);
4445         }
4446
4447         i915_gem_object_put_pages(obj);
4448
4449         return 0;
4450 out:
4451         return ret;
4452 }
4453
4454 static int
4455 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4456                      struct drm_i915_gem_pwrite *args,
4457                      struct drm_file *file_priv)
4458 {
4459         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4460         void *obj_addr;
4461         int ret;
4462         char __user *user_data;
4463
4464         user_data = (char __user *) (uintptr_t) args->data_ptr;
4465         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4466
4467         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4468         ret = copy_from_user(obj_addr, user_data, args->size);
4469         if (ret)
4470                 return -EFAULT;
4471
4472         drm_agp_chipset_flush(dev);
4473         return 0;
4474 }
4475
4476 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4477 {
4478         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4479
4480         /* Clean up our request list when the client is going away, so that
4481          * later retire_requests won't dereference our soon-to-be-gone
4482          * file_priv.
4483          */
4484         mutex_lock(&dev->struct_mutex);
4485         while (!list_empty(&i915_file_priv->mm.request_list))
4486                 list_del_init(i915_file_priv->mm.request_list.next);
4487         mutex_unlock(&dev->struct_mutex);
4488 }