drm/i915: add dynamic clock frequency control
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int handle, ret;
116
117         args->size = roundup(args->size, PAGE_SIZE);
118
119         /* Allocate the new object */
120         obj = drm_gem_object_alloc(dev, args->size);
121         if (obj == NULL)
122                 return -ENOMEM;
123
124         ret = drm_gem_handle_create(file_priv, obj, &handle);
125         mutex_lock(&dev->struct_mutex);
126         drm_gem_object_handle_unreference(obj);
127         mutex_unlock(&dev->struct_mutex);
128
129         if (ret)
130                 return ret;
131
132         args->handle = handle;
133
134         return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139                 loff_t page_base, int page_offset,
140                 char __user *data,
141                 int length)
142 {
143         char __iomem *vaddr;
144         int unwritten;
145
146         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147         if (vaddr == NULL)
148                 return -ENOMEM;
149         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150         kunmap_atomic(vaddr, KM_USER0);
151
152         if (unwritten)
153                 return -EFAULT;
154
155         return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160         drm_i915_private_t *dev_priv = obj->dev->dev_private;
161         struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164                 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169                 int dst_offset,
170                 struct page *src_page,
171                 int src_offset,
172                 int length)
173 {
174         char *dst_vaddr, *src_vaddr;
175
176         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177         if (dst_vaddr == NULL)
178                 return -ENOMEM;
179
180         src_vaddr = kmap_atomic(src_page, KM_USER1);
181         if (src_vaddr == NULL) {
182                 kunmap_atomic(dst_vaddr, KM_USER0);
183                 return -ENOMEM;
184         }
185
186         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188         kunmap_atomic(src_vaddr, KM_USER1);
189         kunmap_atomic(dst_vaddr, KM_USER0);
190
191         return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196                       int gpu_offset,
197                       struct page *cpu_page,
198                       int cpu_offset,
199                       int length,
200                       int is_read)
201 {
202         char *gpu_vaddr, *cpu_vaddr;
203
204         /* Use the unswizzled path if this page isn't affected. */
205         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206                 if (is_read)
207                         return slow_shmem_copy(cpu_page, cpu_offset,
208                                                gpu_page, gpu_offset, length);
209                 else
210                         return slow_shmem_copy(gpu_page, gpu_offset,
211                                                cpu_page, cpu_offset, length);
212         }
213
214         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215         if (gpu_vaddr == NULL)
216                 return -ENOMEM;
217
218         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219         if (cpu_vaddr == NULL) {
220                 kunmap_atomic(gpu_vaddr, KM_USER0);
221                 return -ENOMEM;
222         }
223
224         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225          * XORing with the other bits (A9 for Y, A9 and A10 for X)
226          */
227         while (length > 0) {
228                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229                 int this_length = min(cacheline_end - gpu_offset, length);
230                 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232                 if (is_read) {
233                         memcpy(cpu_vaddr + cpu_offset,
234                                gpu_vaddr + swizzled_gpu_offset,
235                                this_length);
236                 } else {
237                         memcpy(gpu_vaddr + swizzled_gpu_offset,
238                                cpu_vaddr + cpu_offset,
239                                this_length);
240                 }
241                 cpu_offset += this_length;
242                 gpu_offset += this_length;
243                 length -= this_length;
244         }
245
246         kunmap_atomic(cpu_vaddr, KM_USER1);
247         kunmap_atomic(gpu_vaddr, KM_USER0);
248
249         return 0;
250 }
251
252 /**
253  * This is the fast shmem pread path, which attempts to copy_from_user directly
254  * from the backing pages of the object to the user's address space.  On a
255  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256  */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259                           struct drm_i915_gem_pread *args,
260                           struct drm_file *file_priv)
261 {
262         struct drm_i915_gem_object *obj_priv = obj->driver_private;
263         ssize_t remain;
264         loff_t offset, page_base;
265         char __user *user_data;
266         int page_offset, page_length;
267         int ret;
268
269         user_data = (char __user *) (uintptr_t) args->data_ptr;
270         remain = args->size;
271
272         mutex_lock(&dev->struct_mutex);
273
274         ret = i915_gem_object_get_pages(obj);
275         if (ret != 0)
276                 goto fail_unlock;
277
278         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279                                                         args->size);
280         if (ret != 0)
281                 goto fail_put_pages;
282
283         obj_priv = obj->driver_private;
284         offset = args->offset;
285
286         while (remain > 0) {
287                 /* Operation in this page
288                  *
289                  * page_base = page offset within aperture
290                  * page_offset = offset within page
291                  * page_length = bytes to copy for this page
292                  */
293                 page_base = (offset & ~(PAGE_SIZE-1));
294                 page_offset = offset & (PAGE_SIZE-1);
295                 page_length = remain;
296                 if ((page_offset + remain) > PAGE_SIZE)
297                         page_length = PAGE_SIZE - page_offset;
298
299                 ret = fast_shmem_read(obj_priv->pages,
300                                       page_base, page_offset,
301                                       user_data, page_length);
302                 if (ret)
303                         goto fail_put_pages;
304
305                 remain -= page_length;
306                 user_data += page_length;
307                 offset += page_length;
308         }
309
310 fail_put_pages:
311         i915_gem_object_put_pages(obj);
312 fail_unlock:
313         mutex_unlock(&dev->struct_mutex);
314
315         return ret;
316 }
317
318 /**
319  * This is the fallback shmem pread path, which allocates temporary storage
320  * in kernel space to copy_to_user into outside of the struct_mutex, so we
321  * can copy out of the object's backing pages while holding the struct mutex
322  * and not take page faults.
323  */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326                           struct drm_i915_gem_pread *args,
327                           struct drm_file *file_priv)
328 {
329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
330         struct mm_struct *mm = current->mm;
331         struct page **user_pages;
332         ssize_t remain;
333         loff_t offset, pinned_pages, i;
334         loff_t first_data_page, last_data_page, num_pages;
335         int shmem_page_index, shmem_page_offset;
336         int data_page_index,  data_page_offset;
337         int page_length;
338         int ret;
339         uint64_t data_ptr = args->data_ptr;
340         int do_bit17_swizzling;
341
342         remain = args->size;
343
344         /* Pin the user pages containing the data.  We can't fault while
345          * holding the struct mutex, yet we want to hold it while
346          * dereferencing the user data.
347          */
348         first_data_page = data_ptr / PAGE_SIZE;
349         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350         num_pages = last_data_page - first_data_page + 1;
351
352         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353         if (user_pages == NULL)
354                 return -ENOMEM;
355
356         down_read(&mm->mmap_sem);
357         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358                                       num_pages, 1, 0, user_pages, NULL);
359         up_read(&mm->mmap_sem);
360         if (pinned_pages < num_pages) {
361                 ret = -EFAULT;
362                 goto fail_put_user_pages;
363         }
364
365         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367         mutex_lock(&dev->struct_mutex);
368
369         ret = i915_gem_object_get_pages(obj);
370         if (ret != 0)
371                 goto fail_unlock;
372
373         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374                                                         args->size);
375         if (ret != 0)
376                 goto fail_put_pages;
377
378         obj_priv = obj->driver_private;
379         offset = args->offset;
380
381         while (remain > 0) {
382                 /* Operation in this page
383                  *
384                  * shmem_page_index = page number within shmem file
385                  * shmem_page_offset = offset within page in shmem file
386                  * data_page_index = page number in get_user_pages return
387                  * data_page_offset = offset with data_page_index page.
388                  * page_length = bytes to copy for this page
389                  */
390                 shmem_page_index = offset / PAGE_SIZE;
391                 shmem_page_offset = offset & ~PAGE_MASK;
392                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393                 data_page_offset = data_ptr & ~PAGE_MASK;
394
395                 page_length = remain;
396                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397                         page_length = PAGE_SIZE - shmem_page_offset;
398                 if ((data_page_offset + page_length) > PAGE_SIZE)
399                         page_length = PAGE_SIZE - data_page_offset;
400
401                 if (do_bit17_swizzling) {
402                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403                                                     shmem_page_offset,
404                                                     user_pages[data_page_index],
405                                                     data_page_offset,
406                                                     page_length,
407                                                     1);
408                 } else {
409                         ret = slow_shmem_copy(user_pages[data_page_index],
410                                               data_page_offset,
411                                               obj_priv->pages[shmem_page_index],
412                                               shmem_page_offset,
413                                               page_length);
414                 }
415                 if (ret)
416                         goto fail_put_pages;
417
418                 remain -= page_length;
419                 data_ptr += page_length;
420                 offset += page_length;
421         }
422
423 fail_put_pages:
424         i915_gem_object_put_pages(obj);
425 fail_unlock:
426         mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428         for (i = 0; i < pinned_pages; i++) {
429                 SetPageDirty(user_pages[i]);
430                 page_cache_release(user_pages[i]);
431         }
432         drm_free_large(user_pages);
433
434         return ret;
435 }
436
437 /**
438  * Reads data from the object referenced by handle.
439  *
440  * On error, the contents of *data are undefined.
441  */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444                      struct drm_file *file_priv)
445 {
446         struct drm_i915_gem_pread *args = data;
447         struct drm_gem_object *obj;
448         struct drm_i915_gem_object *obj_priv;
449         int ret;
450
451         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452         if (obj == NULL)
453                 return -EBADF;
454         obj_priv = obj->driver_private;
455
456         /* Bounds check source.
457          *
458          * XXX: This could use review for overflow issues...
459          */
460         if (args->offset > obj->size || args->size > obj->size ||
461             args->offset + args->size > obj->size) {
462                 drm_gem_object_unreference(obj);
463                 return -EINVAL;
464         }
465
466         if (i915_gem_object_needs_bit17_swizzle(obj)) {
467                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468         } else {
469                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470                 if (ret != 0)
471                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
472                                                         file_priv);
473         }
474
475         drm_gem_object_unreference(obj);
476
477         return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481  * page faults in the source data
482  */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486                 loff_t page_base, int page_offset,
487                 char __user *user_data,
488                 int length)
489 {
490         char *vaddr_atomic;
491         unsigned long unwritten;
492
493         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495                                                       user_data, length);
496         io_mapping_unmap_atomic(vaddr_atomic);
497         if (unwritten)
498                 return -EFAULT;
499         return 0;
500 }
501
502 /* Here's the write path which can sleep for
503  * page faults
504  */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508                   loff_t gtt_base, int gtt_offset,
509                   struct page *user_page, int user_offset,
510                   int length)
511 {
512         char *src_vaddr, *dst_vaddr;
513         unsigned long unwritten;
514
515         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516         src_vaddr = kmap_atomic(user_page, KM_USER1);
517         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518                                                       src_vaddr + user_offset,
519                                                       length);
520         kunmap_atomic(src_vaddr, KM_USER1);
521         io_mapping_unmap_atomic(dst_vaddr);
522         if (unwritten)
523                 return -EFAULT;
524         return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529                  loff_t page_base, int page_offset,
530                  char __user *data,
531                  int length)
532 {
533         char __iomem *vaddr;
534         unsigned long unwritten;
535
536         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537         if (vaddr == NULL)
538                 return -ENOMEM;
539         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540         kunmap_atomic(vaddr, KM_USER0);
541
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /**
548  * This is the fast pwrite path, where we copy the data directly from the
549  * user into the GTT, uncached.
550  */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553                          struct drm_i915_gem_pwrite *args,
554                          struct drm_file *file_priv)
555 {
556         struct drm_i915_gem_object *obj_priv = obj->driver_private;
557         drm_i915_private_t *dev_priv = dev->dev_private;
558         ssize_t remain;
559         loff_t offset, page_base;
560         char __user *user_data;
561         int page_offset, page_length;
562         int ret;
563
564         user_data = (char __user *) (uintptr_t) args->data_ptr;
565         remain = args->size;
566         if (!access_ok(VERIFY_READ, user_data, remain))
567                 return -EFAULT;
568
569
570         mutex_lock(&dev->struct_mutex);
571         ret = i915_gem_object_pin(obj, 0);
572         if (ret) {
573                 mutex_unlock(&dev->struct_mutex);
574                 return ret;
575         }
576         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577         if (ret)
578                 goto fail;
579
580         obj_priv = obj->driver_private;
581         offset = obj_priv->gtt_offset + args->offset;
582
583         while (remain > 0) {
584                 /* Operation in this page
585                  *
586                  * page_base = page offset within aperture
587                  * page_offset = offset within page
588                  * page_length = bytes to copy for this page
589                  */
590                 page_base = (offset & ~(PAGE_SIZE-1));
591                 page_offset = offset & (PAGE_SIZE-1);
592                 page_length = remain;
593                 if ((page_offset + remain) > PAGE_SIZE)
594                         page_length = PAGE_SIZE - page_offset;
595
596                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597                                        page_offset, user_data, page_length);
598
599                 /* If we get a fault while copying data, then (presumably) our
600                  * source page isn't available.  Return the error and we'll
601                  * retry in the slow path.
602                  */
603                 if (ret)
604                         goto fail;
605
606                 remain -= page_length;
607                 user_data += page_length;
608                 offset += page_length;
609         }
610
611 fail:
612         i915_gem_object_unpin(obj);
613         mutex_unlock(&dev->struct_mutex);
614
615         return ret;
616 }
617
618 /**
619  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620  * the memory and maps it using kmap_atomic for copying.
621  *
622  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624  */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627                          struct drm_i915_gem_pwrite *args,
628                          struct drm_file *file_priv)
629 {
630         struct drm_i915_gem_object *obj_priv = obj->driver_private;
631         drm_i915_private_t *dev_priv = dev->dev_private;
632         ssize_t remain;
633         loff_t gtt_page_base, offset;
634         loff_t first_data_page, last_data_page, num_pages;
635         loff_t pinned_pages, i;
636         struct page **user_pages;
637         struct mm_struct *mm = current->mm;
638         int gtt_page_offset, data_page_offset, data_page_index, page_length;
639         int ret;
640         uint64_t data_ptr = args->data_ptr;
641
642         remain = args->size;
643
644         /* Pin the user pages containing the data.  We can't fault while
645          * holding the struct mutex, and all of the pwrite implementations
646          * want to hold it while dereferencing the user data.
647          */
648         first_data_page = data_ptr / PAGE_SIZE;
649         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650         num_pages = last_data_page - first_data_page + 1;
651
652         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653         if (user_pages == NULL)
654                 return -ENOMEM;
655
656         down_read(&mm->mmap_sem);
657         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658                                       num_pages, 0, 0, user_pages, NULL);
659         up_read(&mm->mmap_sem);
660         if (pinned_pages < num_pages) {
661                 ret = -EFAULT;
662                 goto out_unpin_pages;
663         }
664
665         mutex_lock(&dev->struct_mutex);
666         ret = i915_gem_object_pin(obj, 0);
667         if (ret)
668                 goto out_unlock;
669
670         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671         if (ret)
672                 goto out_unpin_object;
673
674         obj_priv = obj->driver_private;
675         offset = obj_priv->gtt_offset + args->offset;
676
677         while (remain > 0) {
678                 /* Operation in this page
679                  *
680                  * gtt_page_base = page offset within aperture
681                  * gtt_page_offset = offset within page in aperture
682                  * data_page_index = page number in get_user_pages return
683                  * data_page_offset = offset with data_page_index page.
684                  * page_length = bytes to copy for this page
685                  */
686                 gtt_page_base = offset & PAGE_MASK;
687                 gtt_page_offset = offset & ~PAGE_MASK;
688                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689                 data_page_offset = data_ptr & ~PAGE_MASK;
690
691                 page_length = remain;
692                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693                         page_length = PAGE_SIZE - gtt_page_offset;
694                 if ((data_page_offset + page_length) > PAGE_SIZE)
695                         page_length = PAGE_SIZE - data_page_offset;
696
697                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698                                         gtt_page_base, gtt_page_offset,
699                                         user_pages[data_page_index],
700                                         data_page_offset,
701                                         page_length);
702
703                 /* If we get a fault while copying data, then (presumably) our
704                  * source page isn't available.  Return the error and we'll
705                  * retry in the slow path.
706                  */
707                 if (ret)
708                         goto out_unpin_object;
709
710                 remain -= page_length;
711                 offset += page_length;
712                 data_ptr += page_length;
713         }
714
715 out_unpin_object:
716         i915_gem_object_unpin(obj);
717 out_unlock:
718         mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720         for (i = 0; i < pinned_pages; i++)
721                 page_cache_release(user_pages[i]);
722         drm_free_large(user_pages);
723
724         return ret;
725 }
726
727 /**
728  * This is the fast shmem pwrite path, which attempts to directly
729  * copy_from_user into the kmapped pages backing the object.
730  */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733                            struct drm_i915_gem_pwrite *args,
734                            struct drm_file *file_priv)
735 {
736         struct drm_i915_gem_object *obj_priv = obj->driver_private;
737         ssize_t remain;
738         loff_t offset, page_base;
739         char __user *user_data;
740         int page_offset, page_length;
741         int ret;
742
743         user_data = (char __user *) (uintptr_t) args->data_ptr;
744         remain = args->size;
745
746         mutex_lock(&dev->struct_mutex);
747
748         ret = i915_gem_object_get_pages(obj);
749         if (ret != 0)
750                 goto fail_unlock;
751
752         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753         if (ret != 0)
754                 goto fail_put_pages;
755
756         obj_priv = obj->driver_private;
757         offset = args->offset;
758         obj_priv->dirty = 1;
759
760         while (remain > 0) {
761                 /* Operation in this page
762                  *
763                  * page_base = page offset within aperture
764                  * page_offset = offset within page
765                  * page_length = bytes to copy for this page
766                  */
767                 page_base = (offset & ~(PAGE_SIZE-1));
768                 page_offset = offset & (PAGE_SIZE-1);
769                 page_length = remain;
770                 if ((page_offset + remain) > PAGE_SIZE)
771                         page_length = PAGE_SIZE - page_offset;
772
773                 ret = fast_shmem_write(obj_priv->pages,
774                                        page_base, page_offset,
775                                        user_data, page_length);
776                 if (ret)
777                         goto fail_put_pages;
778
779                 remain -= page_length;
780                 user_data += page_length;
781                 offset += page_length;
782         }
783
784 fail_put_pages:
785         i915_gem_object_put_pages(obj);
786 fail_unlock:
787         mutex_unlock(&dev->struct_mutex);
788
789         return ret;
790 }
791
792 /**
793  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794  * the memory and maps it using kmap_atomic for copying.
795  *
796  * This avoids taking mmap_sem for faulting on the user's address while the
797  * struct_mutex is held.
798  */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801                            struct drm_i915_gem_pwrite *args,
802                            struct drm_file *file_priv)
803 {
804         struct drm_i915_gem_object *obj_priv = obj->driver_private;
805         struct mm_struct *mm = current->mm;
806         struct page **user_pages;
807         ssize_t remain;
808         loff_t offset, pinned_pages, i;
809         loff_t first_data_page, last_data_page, num_pages;
810         int shmem_page_index, shmem_page_offset;
811         int data_page_index,  data_page_offset;
812         int page_length;
813         int ret;
814         uint64_t data_ptr = args->data_ptr;
815         int do_bit17_swizzling;
816
817         remain = args->size;
818
819         /* Pin the user pages containing the data.  We can't fault while
820          * holding the struct mutex, and all of the pwrite implementations
821          * want to hold it while dereferencing the user data.
822          */
823         first_data_page = data_ptr / PAGE_SIZE;
824         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825         num_pages = last_data_page - first_data_page + 1;
826
827         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828         if (user_pages == NULL)
829                 return -ENOMEM;
830
831         down_read(&mm->mmap_sem);
832         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833                                       num_pages, 0, 0, user_pages, NULL);
834         up_read(&mm->mmap_sem);
835         if (pinned_pages < num_pages) {
836                 ret = -EFAULT;
837                 goto fail_put_user_pages;
838         }
839
840         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842         mutex_lock(&dev->struct_mutex);
843
844         ret = i915_gem_object_get_pages(obj);
845         if (ret != 0)
846                 goto fail_unlock;
847
848         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849         if (ret != 0)
850                 goto fail_put_pages;
851
852         obj_priv = obj->driver_private;
853         offset = args->offset;
854         obj_priv->dirty = 1;
855
856         while (remain > 0) {
857                 /* Operation in this page
858                  *
859                  * shmem_page_index = page number within shmem file
860                  * shmem_page_offset = offset within page in shmem file
861                  * data_page_index = page number in get_user_pages return
862                  * data_page_offset = offset with data_page_index page.
863                  * page_length = bytes to copy for this page
864                  */
865                 shmem_page_index = offset / PAGE_SIZE;
866                 shmem_page_offset = offset & ~PAGE_MASK;
867                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868                 data_page_offset = data_ptr & ~PAGE_MASK;
869
870                 page_length = remain;
871                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872                         page_length = PAGE_SIZE - shmem_page_offset;
873                 if ((data_page_offset + page_length) > PAGE_SIZE)
874                         page_length = PAGE_SIZE - data_page_offset;
875
876                 if (do_bit17_swizzling) {
877                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878                                                     shmem_page_offset,
879                                                     user_pages[data_page_index],
880                                                     data_page_offset,
881                                                     page_length,
882                                                     0);
883                 } else {
884                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885                                               shmem_page_offset,
886                                               user_pages[data_page_index],
887                                               data_page_offset,
888                                               page_length);
889                 }
890                 if (ret)
891                         goto fail_put_pages;
892
893                 remain -= page_length;
894                 data_ptr += page_length;
895                 offset += page_length;
896         }
897
898 fail_put_pages:
899         i915_gem_object_put_pages(obj);
900 fail_unlock:
901         mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903         for (i = 0; i < pinned_pages; i++)
904                 page_cache_release(user_pages[i]);
905         drm_free_large(user_pages);
906
907         return ret;
908 }
909
910 /**
911  * Writes data to the object referenced by handle.
912  *
913  * On error, the contents of the buffer that were to be modified are undefined.
914  */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917                       struct drm_file *file_priv)
918 {
919         struct drm_i915_gem_pwrite *args = data;
920         struct drm_gem_object *obj;
921         struct drm_i915_gem_object *obj_priv;
922         int ret = 0;
923
924         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925         if (obj == NULL)
926                 return -EBADF;
927         obj_priv = obj->driver_private;
928
929         /* Bounds check destination.
930          *
931          * XXX: This could use review for overflow issues...
932          */
933         if (args->offset > obj->size || args->size > obj->size ||
934             args->offset + args->size > obj->size) {
935                 drm_gem_object_unreference(obj);
936                 return -EINVAL;
937         }
938
939         /* We can only do the GTT pwrite on untiled buffers, as otherwise
940          * it would end up going through the fenced access, and we'll get
941          * different detiling behavior between reading and writing.
942          * pread/pwrite currently are reading and writing from the CPU
943          * perspective, requiring manual detiling by the client.
944          */
945         if (obj_priv->phys_obj)
946                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948                  dev->gtt_total != 0) {
949                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950                 if (ret == -EFAULT) {
951                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952                                                        file_priv);
953                 }
954         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956         } else {
957                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958                 if (ret == -EFAULT) {
959                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960                                                          file_priv);
961                 }
962         }
963
964 #if WATCH_PWRITE
965         if (ret)
966                 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969         drm_gem_object_unreference(obj);
970
971         return ret;
972 }
973
974 /**
975  * Called when user space prepares to use an object with the CPU, either
976  * through the mmap ioctl's mapping or a GTT mapping.
977  */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980                           struct drm_file *file_priv)
981 {
982         struct drm_i915_private *dev_priv = dev->dev_private;
983         struct drm_i915_gem_set_domain *args = data;
984         struct drm_gem_object *obj;
985         struct drm_i915_gem_object *obj_priv;
986         uint32_t read_domains = args->read_domains;
987         uint32_t write_domain = args->write_domain;
988         int ret;
989
990         if (!(dev->driver->driver_features & DRIVER_GEM))
991                 return -ENODEV;
992
993         /* Only handle setting domains to types used by the CPU. */
994         if (write_domain & I915_GEM_GPU_DOMAINS)
995                 return -EINVAL;
996
997         if (read_domains & I915_GEM_GPU_DOMAINS)
998                 return -EINVAL;
999
1000         /* Having something in the write domain implies it's in the read
1001          * domain, and only that read domain.  Enforce that in the request.
1002          */
1003         if (write_domain != 0 && read_domains != write_domain)
1004                 return -EINVAL;
1005
1006         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1007         if (obj == NULL)
1008                 return -EBADF;
1009         obj_priv = obj->driver_private;
1010
1011         mutex_lock(&dev->struct_mutex);
1012
1013         intel_mark_busy(dev, obj);
1014
1015 #if WATCH_BUF
1016         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1017                  obj, obj->size, read_domains, write_domain);
1018 #endif
1019         if (read_domains & I915_GEM_DOMAIN_GTT) {
1020                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1021
1022                 /* Update the LRU on the fence for the CPU access that's
1023                  * about to occur.
1024                  */
1025                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1026                         list_move_tail(&obj_priv->fence_list,
1027                                        &dev_priv->mm.fence_list);
1028                 }
1029
1030                 /* Silently promote "you're not bound, there was nothing to do"
1031                  * to success, since the client was just asking us to
1032                  * make sure everything was done.
1033                  */
1034                 if (ret == -EINVAL)
1035                         ret = 0;
1036         } else {
1037                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1038         }
1039
1040         drm_gem_object_unreference(obj);
1041         mutex_unlock(&dev->struct_mutex);
1042         return ret;
1043 }
1044
1045 /**
1046  * Called when user space has done writes to this buffer
1047  */
1048 int
1049 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1050                       struct drm_file *file_priv)
1051 {
1052         struct drm_i915_gem_sw_finish *args = data;
1053         struct drm_gem_object *obj;
1054         struct drm_i915_gem_object *obj_priv;
1055         int ret = 0;
1056
1057         if (!(dev->driver->driver_features & DRIVER_GEM))
1058                 return -ENODEV;
1059
1060         mutex_lock(&dev->struct_mutex);
1061         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1062         if (obj == NULL) {
1063                 mutex_unlock(&dev->struct_mutex);
1064                 return -EBADF;
1065         }
1066
1067 #if WATCH_BUF
1068         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1069                  __func__, args->handle, obj, obj->size);
1070 #endif
1071         obj_priv = obj->driver_private;
1072
1073         /* Pinned buffers may be scanout, so flush the cache */
1074         if (obj_priv->pin_count)
1075                 i915_gem_object_flush_cpu_write_domain(obj);
1076
1077         drm_gem_object_unreference(obj);
1078         mutex_unlock(&dev->struct_mutex);
1079         return ret;
1080 }
1081
1082 /**
1083  * Maps the contents of an object, returning the address it is mapped
1084  * into.
1085  *
1086  * While the mapping holds a reference on the contents of the object, it doesn't
1087  * imply a ref on the object itself.
1088  */
1089 int
1090 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1091                    struct drm_file *file_priv)
1092 {
1093         struct drm_i915_gem_mmap *args = data;
1094         struct drm_gem_object *obj;
1095         loff_t offset;
1096         unsigned long addr;
1097
1098         if (!(dev->driver->driver_features & DRIVER_GEM))
1099                 return -ENODEV;
1100
1101         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1102         if (obj == NULL)
1103                 return -EBADF;
1104
1105         offset = args->offset;
1106
1107         down_write(&current->mm->mmap_sem);
1108         addr = do_mmap(obj->filp, 0, args->size,
1109                        PROT_READ | PROT_WRITE, MAP_SHARED,
1110                        args->offset);
1111         up_write(&current->mm->mmap_sem);
1112         mutex_lock(&dev->struct_mutex);
1113         drm_gem_object_unreference(obj);
1114         mutex_unlock(&dev->struct_mutex);
1115         if (IS_ERR((void *)addr))
1116                 return addr;
1117
1118         args->addr_ptr = (uint64_t) addr;
1119
1120         return 0;
1121 }
1122
1123 /**
1124  * i915_gem_fault - fault a page into the GTT
1125  * vma: VMA in question
1126  * vmf: fault info
1127  *
1128  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1129  * from userspace.  The fault handler takes care of binding the object to
1130  * the GTT (if needed), allocating and programming a fence register (again,
1131  * only if needed based on whether the old reg is still valid or the object
1132  * is tiled) and inserting a new PTE into the faulting process.
1133  *
1134  * Note that the faulting process may involve evicting existing objects
1135  * from the GTT and/or fence registers to make room.  So performance may
1136  * suffer if the GTT working set is large or there are few fence registers
1137  * left.
1138  */
1139 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1140 {
1141         struct drm_gem_object *obj = vma->vm_private_data;
1142         struct drm_device *dev = obj->dev;
1143         struct drm_i915_private *dev_priv = dev->dev_private;
1144         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1145         pgoff_t page_offset;
1146         unsigned long pfn;
1147         int ret = 0;
1148         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1149
1150         /* We don't use vmf->pgoff since that has the fake offset */
1151         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1152                 PAGE_SHIFT;
1153
1154         /* Now bind it into the GTT if needed */
1155         mutex_lock(&dev->struct_mutex);
1156         if (!obj_priv->gtt_space) {
1157                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1158                 if (ret) {
1159                         mutex_unlock(&dev->struct_mutex);
1160                         return VM_FAULT_SIGBUS;
1161                 }
1162
1163                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1164                 if (ret) {
1165                         mutex_unlock(&dev->struct_mutex);
1166                         return VM_FAULT_SIGBUS;
1167                 }
1168
1169                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1170         }
1171
1172         /* Need a new fence register? */
1173         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1174                 ret = i915_gem_object_get_fence_reg(obj);
1175                 if (ret) {
1176                         mutex_unlock(&dev->struct_mutex);
1177                         return VM_FAULT_SIGBUS;
1178                 }
1179         }
1180
1181         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1182                 page_offset;
1183
1184         /* Finally, remap it using the new GTT offset */
1185         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1186
1187         mutex_unlock(&dev->struct_mutex);
1188
1189         switch (ret) {
1190         case -ENOMEM:
1191         case -EAGAIN:
1192                 return VM_FAULT_OOM;
1193         case -EFAULT:
1194         case -EINVAL:
1195                 return VM_FAULT_SIGBUS;
1196         default:
1197                 return VM_FAULT_NOPAGE;
1198         }
1199 }
1200
1201 /**
1202  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1203  * @obj: obj in question
1204  *
1205  * GEM memory mapping works by handing back to userspace a fake mmap offset
1206  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1207  * up the object based on the offset and sets up the various memory mapping
1208  * structures.
1209  *
1210  * This routine allocates and attaches a fake offset for @obj.
1211  */
1212 static int
1213 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1214 {
1215         struct drm_device *dev = obj->dev;
1216         struct drm_gem_mm *mm = dev->mm_private;
1217         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218         struct drm_map_list *list;
1219         struct drm_local_map *map;
1220         int ret = 0;
1221
1222         /* Set the object up for mmap'ing */
1223         list = &obj->map_list;
1224         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1225         if (!list->map)
1226                 return -ENOMEM;
1227
1228         map = list->map;
1229         map->type = _DRM_GEM;
1230         map->size = obj->size;
1231         map->handle = obj;
1232
1233         /* Get a DRM GEM mmap offset allocated... */
1234         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1235                                                     obj->size / PAGE_SIZE, 0, 0);
1236         if (!list->file_offset_node) {
1237                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1238                 ret = -ENOMEM;
1239                 goto out_free_list;
1240         }
1241
1242         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1243                                                   obj->size / PAGE_SIZE, 0);
1244         if (!list->file_offset_node) {
1245                 ret = -ENOMEM;
1246                 goto out_free_list;
1247         }
1248
1249         list->hash.key = list->file_offset_node->start;
1250         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1251                 DRM_ERROR("failed to add to map hash\n");
1252                 goto out_free_mm;
1253         }
1254
1255         /* By now we should be all set, any drm_mmap request on the offset
1256          * below will get to our mmap & fault handler */
1257         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1258
1259         return 0;
1260
1261 out_free_mm:
1262         drm_mm_put_block(list->file_offset_node);
1263 out_free_list:
1264         kfree(list->map);
1265
1266         return ret;
1267 }
1268
1269 /**
1270  * i915_gem_release_mmap - remove physical page mappings
1271  * @obj: obj in question
1272  *
1273  * Preserve the reservation of the mmaping with the DRM core code, but
1274  * relinquish ownership of the pages back to the system.
1275  *
1276  * It is vital that we remove the page mapping if we have mapped a tiled
1277  * object through the GTT and then lose the fence register due to
1278  * resource pressure. Similarly if the object has been moved out of the
1279  * aperture, than pages mapped into userspace must be revoked. Removing the
1280  * mapping will then trigger a page fault on the next user access, allowing
1281  * fixup by i915_gem_fault().
1282  */
1283 void
1284 i915_gem_release_mmap(struct drm_gem_object *obj)
1285 {
1286         struct drm_device *dev = obj->dev;
1287         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288
1289         if (dev->dev_mapping)
1290                 unmap_mapping_range(dev->dev_mapping,
1291                                     obj_priv->mmap_offset, obj->size, 1);
1292 }
1293
1294 static void
1295 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1296 {
1297         struct drm_device *dev = obj->dev;
1298         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1299         struct drm_gem_mm *mm = dev->mm_private;
1300         struct drm_map_list *list;
1301
1302         list = &obj->map_list;
1303         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1304
1305         if (list->file_offset_node) {
1306                 drm_mm_put_block(list->file_offset_node);
1307                 list->file_offset_node = NULL;
1308         }
1309
1310         if (list->map) {
1311                 kfree(list->map);
1312                 list->map = NULL;
1313         }
1314
1315         obj_priv->mmap_offset = 0;
1316 }
1317
1318 /**
1319  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320  * @obj: object to check
1321  *
1322  * Return the required GTT alignment for an object, taking into account
1323  * potential fence register mapping if needed.
1324  */
1325 static uint32_t
1326 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1327 {
1328         struct drm_device *dev = obj->dev;
1329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1330         int start, i;
1331
1332         /*
1333          * Minimum alignment is 4k (GTT page size), but might be greater
1334          * if a fence register is needed for the object.
1335          */
1336         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1337                 return 4096;
1338
1339         /*
1340          * Previous chips need to be aligned to the size of the smallest
1341          * fence register that can contain the object.
1342          */
1343         if (IS_I9XX(dev))
1344                 start = 1024*1024;
1345         else
1346                 start = 512*1024;
1347
1348         for (i = start; i < obj->size; i <<= 1)
1349                 ;
1350
1351         return i;
1352 }
1353
1354 /**
1355  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1356  * @dev: DRM device
1357  * @data: GTT mapping ioctl data
1358  * @file_priv: GEM object info
1359  *
1360  * Simply returns the fake offset to userspace so it can mmap it.
1361  * The mmap call will end up in drm_gem_mmap(), which will set things
1362  * up so we can get faults in the handler above.
1363  *
1364  * The fault handler will take care of binding the object into the GTT
1365  * (since it may have been evicted to make room for something), allocating
1366  * a fence register, and mapping the appropriate aperture address into
1367  * userspace.
1368  */
1369 int
1370 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1371                         struct drm_file *file_priv)
1372 {
1373         struct drm_i915_gem_mmap_gtt *args = data;
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         struct drm_gem_object *obj;
1376         struct drm_i915_gem_object *obj_priv;
1377         int ret;
1378
1379         if (!(dev->driver->driver_features & DRIVER_GEM))
1380                 return -ENODEV;
1381
1382         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1383         if (obj == NULL)
1384                 return -EBADF;
1385
1386         mutex_lock(&dev->struct_mutex);
1387
1388         obj_priv = obj->driver_private;
1389
1390         if (!obj_priv->mmap_offset) {
1391                 ret = i915_gem_create_mmap_offset(obj);
1392                 if (ret) {
1393                         drm_gem_object_unreference(obj);
1394                         mutex_unlock(&dev->struct_mutex);
1395                         return ret;
1396                 }
1397         }
1398
1399         args->offset = obj_priv->mmap_offset;
1400
1401         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1402
1403         /* Make sure the alignment is correct for fence regs etc */
1404         if (obj_priv->agp_mem &&
1405             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1406                 drm_gem_object_unreference(obj);
1407                 mutex_unlock(&dev->struct_mutex);
1408                 return -EINVAL;
1409         }
1410
1411         /*
1412          * Pull it into the GTT so that we have a page list (makes the
1413          * initial fault faster and any subsequent flushing possible).
1414          */
1415         if (!obj_priv->agp_mem) {
1416                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1417                 if (ret) {
1418                         drm_gem_object_unreference(obj);
1419                         mutex_unlock(&dev->struct_mutex);
1420                         return ret;
1421                 }
1422                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1423         }
1424
1425         drm_gem_object_unreference(obj);
1426         mutex_unlock(&dev->struct_mutex);
1427
1428         return 0;
1429 }
1430
1431 void
1432 i915_gem_object_put_pages(struct drm_gem_object *obj)
1433 {
1434         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1435         int page_count = obj->size / PAGE_SIZE;
1436         int i;
1437
1438         BUG_ON(obj_priv->pages_refcount == 0);
1439
1440         if (--obj_priv->pages_refcount != 0)
1441                 return;
1442
1443         if (obj_priv->tiling_mode != I915_TILING_NONE)
1444                 i915_gem_object_save_bit_17_swizzle(obj);
1445
1446         for (i = 0; i < page_count; i++)
1447                 if (obj_priv->pages[i] != NULL) {
1448                         if (obj_priv->dirty)
1449                                 set_page_dirty(obj_priv->pages[i]);
1450                         mark_page_accessed(obj_priv->pages[i]);
1451                         page_cache_release(obj_priv->pages[i]);
1452                 }
1453         obj_priv->dirty = 0;
1454
1455         drm_free_large(obj_priv->pages);
1456         obj_priv->pages = NULL;
1457 }
1458
1459 static void
1460 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1461 {
1462         struct drm_device *dev = obj->dev;
1463         drm_i915_private_t *dev_priv = dev->dev_private;
1464         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1465
1466         /* Add a reference if we're newly entering the active list. */
1467         if (!obj_priv->active) {
1468                 drm_gem_object_reference(obj);
1469                 obj_priv->active = 1;
1470         }
1471         /* Move from whatever list we were on to the tail of execution. */
1472         spin_lock(&dev_priv->mm.active_list_lock);
1473         list_move_tail(&obj_priv->list,
1474                        &dev_priv->mm.active_list);
1475         spin_unlock(&dev_priv->mm.active_list_lock);
1476         obj_priv->last_rendering_seqno = seqno;
1477 }
1478
1479 static void
1480 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1481 {
1482         struct drm_device *dev = obj->dev;
1483         drm_i915_private_t *dev_priv = dev->dev_private;
1484         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1485
1486         BUG_ON(!obj_priv->active);
1487         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1488         obj_priv->last_rendering_seqno = 0;
1489 }
1490
1491 static void
1492 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1493 {
1494         struct drm_device *dev = obj->dev;
1495         drm_i915_private_t *dev_priv = dev->dev_private;
1496         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1497
1498         i915_verify_inactive(dev, __FILE__, __LINE__);
1499         if (obj_priv->pin_count != 0)
1500                 list_del_init(&obj_priv->list);
1501         else
1502                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1503
1504         obj_priv->last_rendering_seqno = 0;
1505         if (obj_priv->active) {
1506                 obj_priv->active = 0;
1507                 drm_gem_object_unreference(obj);
1508         }
1509         i915_verify_inactive(dev, __FILE__, __LINE__);
1510 }
1511
1512 /**
1513  * Creates a new sequence number, emitting a write of it to the status page
1514  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1515  *
1516  * Must be called with struct_lock held.
1517  *
1518  * Returned sequence numbers are nonzero on success.
1519  */
1520 static uint32_t
1521 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1522                  uint32_t flush_domains)
1523 {
1524         drm_i915_private_t *dev_priv = dev->dev_private;
1525         struct drm_i915_file_private *i915_file_priv = NULL;
1526         struct drm_i915_gem_request *request;
1527         uint32_t seqno;
1528         int was_empty;
1529         RING_LOCALS;
1530
1531         if (file_priv != NULL)
1532                 i915_file_priv = file_priv->driver_priv;
1533
1534         request = kzalloc(sizeof(*request), GFP_KERNEL);
1535         if (request == NULL)
1536                 return 0;
1537
1538         /* Grab the seqno we're going to make this request be, and bump the
1539          * next (skipping 0 so it can be the reserved no-seqno value).
1540          */
1541         seqno = dev_priv->mm.next_gem_seqno;
1542         dev_priv->mm.next_gem_seqno++;
1543         if (dev_priv->mm.next_gem_seqno == 0)
1544                 dev_priv->mm.next_gem_seqno++;
1545
1546         BEGIN_LP_RING(4);
1547         OUT_RING(MI_STORE_DWORD_INDEX);
1548         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1549         OUT_RING(seqno);
1550
1551         OUT_RING(MI_USER_INTERRUPT);
1552         ADVANCE_LP_RING();
1553
1554         DRM_DEBUG("%d\n", seqno);
1555
1556         request->seqno = seqno;
1557         request->emitted_jiffies = jiffies;
1558         was_empty = list_empty(&dev_priv->mm.request_list);
1559         list_add_tail(&request->list, &dev_priv->mm.request_list);
1560         if (i915_file_priv) {
1561                 list_add_tail(&request->client_list,
1562                               &i915_file_priv->mm.request_list);
1563         } else {
1564                 INIT_LIST_HEAD(&request->client_list);
1565         }
1566
1567         /* Associate any objects on the flushing list matching the write
1568          * domain we're flushing with our flush.
1569          */
1570         if (flush_domains != 0) {
1571                 struct drm_i915_gem_object *obj_priv, *next;
1572
1573                 list_for_each_entry_safe(obj_priv, next,
1574                                          &dev_priv->mm.flushing_list, list) {
1575                         struct drm_gem_object *obj = obj_priv->obj;
1576
1577                         if ((obj->write_domain & flush_domains) ==
1578                             obj->write_domain) {
1579                                 obj->write_domain = 0;
1580                                 i915_gem_object_move_to_active(obj, seqno);
1581                         }
1582                 }
1583
1584         }
1585
1586         if (was_empty && !dev_priv->mm.suspended)
1587                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1588         return seqno;
1589 }
1590
1591 /**
1592  * Command execution barrier
1593  *
1594  * Ensures that all commands in the ring are finished
1595  * before signalling the CPU
1596  */
1597 static uint32_t
1598 i915_retire_commands(struct drm_device *dev)
1599 {
1600         drm_i915_private_t *dev_priv = dev->dev_private;
1601         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1602         uint32_t flush_domains = 0;
1603         RING_LOCALS;
1604
1605         /* The sampler always gets flushed on i965 (sigh) */
1606         if (IS_I965G(dev))
1607                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1608         BEGIN_LP_RING(2);
1609         OUT_RING(cmd);
1610         OUT_RING(0); /* noop */
1611         ADVANCE_LP_RING();
1612         return flush_domains;
1613 }
1614
1615 /**
1616  * Moves buffers associated only with the given active seqno from the active
1617  * to inactive list, potentially freeing them.
1618  */
1619 static void
1620 i915_gem_retire_request(struct drm_device *dev,
1621                         struct drm_i915_gem_request *request)
1622 {
1623         drm_i915_private_t *dev_priv = dev->dev_private;
1624
1625         /* Move any buffers on the active list that are no longer referenced
1626          * by the ringbuffer to the flushing/inactive lists as appropriate.
1627          */
1628         spin_lock(&dev_priv->mm.active_list_lock);
1629         while (!list_empty(&dev_priv->mm.active_list)) {
1630                 struct drm_gem_object *obj;
1631                 struct drm_i915_gem_object *obj_priv;
1632
1633                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1634                                             struct drm_i915_gem_object,
1635                                             list);
1636                 obj = obj_priv->obj;
1637
1638                 /* If the seqno being retired doesn't match the oldest in the
1639                  * list, then the oldest in the list must still be newer than
1640                  * this seqno.
1641                  */
1642                 if (obj_priv->last_rendering_seqno != request->seqno)
1643                         goto out;
1644
1645 #if WATCH_LRU
1646                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1647                          __func__, request->seqno, obj);
1648 #endif
1649
1650                 if (obj->write_domain != 0)
1651                         i915_gem_object_move_to_flushing(obj);
1652                 else {
1653                         /* Take a reference on the object so it won't be
1654                          * freed while the spinlock is held.  The list
1655                          * protection for this spinlock is safe when breaking
1656                          * the lock like this since the next thing we do
1657                          * is just get the head of the list again.
1658                          */
1659                         drm_gem_object_reference(obj);
1660                         i915_gem_object_move_to_inactive(obj);
1661                         spin_unlock(&dev_priv->mm.active_list_lock);
1662                         drm_gem_object_unreference(obj);
1663                         spin_lock(&dev_priv->mm.active_list_lock);
1664                 }
1665         }
1666 out:
1667         spin_unlock(&dev_priv->mm.active_list_lock);
1668 }
1669
1670 /**
1671  * Returns true if seq1 is later than seq2.
1672  */
1673 static int
1674 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1675 {
1676         return (int32_t)(seq1 - seq2) >= 0;
1677 }
1678
1679 uint32_t
1680 i915_get_gem_seqno(struct drm_device *dev)
1681 {
1682         drm_i915_private_t *dev_priv = dev->dev_private;
1683
1684         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1685 }
1686
1687 /**
1688  * This function clears the request list as sequence numbers are passed.
1689  */
1690 void
1691 i915_gem_retire_requests(struct drm_device *dev)
1692 {
1693         drm_i915_private_t *dev_priv = dev->dev_private;
1694         uint32_t seqno;
1695
1696         if (!dev_priv->hw_status_page)
1697                 return;
1698
1699         seqno = i915_get_gem_seqno(dev);
1700
1701         while (!list_empty(&dev_priv->mm.request_list)) {
1702                 struct drm_i915_gem_request *request;
1703                 uint32_t retiring_seqno;
1704
1705                 request = list_first_entry(&dev_priv->mm.request_list,
1706                                            struct drm_i915_gem_request,
1707                                            list);
1708                 retiring_seqno = request->seqno;
1709
1710                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1711                     dev_priv->mm.wedged) {
1712                         i915_gem_retire_request(dev, request);
1713
1714                         list_del(&request->list);
1715                         list_del(&request->client_list);
1716                         kfree(request);
1717                 } else
1718                         break;
1719         }
1720 }
1721
1722 void
1723 i915_gem_retire_work_handler(struct work_struct *work)
1724 {
1725         drm_i915_private_t *dev_priv;
1726         struct drm_device *dev;
1727
1728         dev_priv = container_of(work, drm_i915_private_t,
1729                                 mm.retire_work.work);
1730         dev = dev_priv->dev;
1731
1732         mutex_lock(&dev->struct_mutex);
1733         i915_gem_retire_requests(dev);
1734         if (!dev_priv->mm.suspended &&
1735             !list_empty(&dev_priv->mm.request_list))
1736                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1737         mutex_unlock(&dev->struct_mutex);
1738 }
1739
1740 /**
1741  * Waits for a sequence number to be signaled, and cleans up the
1742  * request and object lists appropriately for that event.
1743  */
1744 static int
1745 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1746 {
1747         drm_i915_private_t *dev_priv = dev->dev_private;
1748         u32 ier;
1749         int ret = 0;
1750
1751         BUG_ON(seqno == 0);
1752
1753         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1754                 if (IS_IGDNG(dev))
1755                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1756                 else
1757                         ier = I915_READ(IER);
1758                 if (!ier) {
1759                         DRM_ERROR("something (likely vbetool) disabled "
1760                                   "interrupts, re-enabling\n");
1761                         i915_driver_irq_preinstall(dev);
1762                         i915_driver_irq_postinstall(dev);
1763                 }
1764
1765                 dev_priv->mm.waiting_gem_seqno = seqno;
1766                 i915_user_irq_get(dev);
1767                 ret = wait_event_interruptible(dev_priv->irq_queue,
1768                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1769                                                                  seqno) ||
1770                                                dev_priv->mm.wedged);
1771                 i915_user_irq_put(dev);
1772                 dev_priv->mm.waiting_gem_seqno = 0;
1773         }
1774         if (dev_priv->mm.wedged)
1775                 ret = -EIO;
1776
1777         if (ret && ret != -ERESTARTSYS)
1778                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1779                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1780
1781         /* Directly dispatch request retiring.  While we have the work queue
1782          * to handle this, the waiter on a request often wants an associated
1783          * buffer to have made it to the inactive list, and we would need
1784          * a separate wait queue to handle that.
1785          */
1786         if (ret == 0)
1787                 i915_gem_retire_requests(dev);
1788
1789         return ret;
1790 }
1791
1792 static void
1793 i915_gem_flush(struct drm_device *dev,
1794                uint32_t invalidate_domains,
1795                uint32_t flush_domains)
1796 {
1797         drm_i915_private_t *dev_priv = dev->dev_private;
1798         uint32_t cmd;
1799         RING_LOCALS;
1800
1801 #if WATCH_EXEC
1802         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1803                   invalidate_domains, flush_domains);
1804 #endif
1805
1806         if (flush_domains & I915_GEM_DOMAIN_CPU)
1807                 drm_agp_chipset_flush(dev);
1808
1809         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1810                 /*
1811                  * read/write caches:
1812                  *
1813                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1814                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1815                  * also flushed at 2d versus 3d pipeline switches.
1816                  *
1817                  * read-only caches:
1818                  *
1819                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1820                  * MI_READ_FLUSH is set, and is always flushed on 965.
1821                  *
1822                  * I915_GEM_DOMAIN_COMMAND may not exist?
1823                  *
1824                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1825                  * invalidated when MI_EXE_FLUSH is set.
1826                  *
1827                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1828                  * invalidated with every MI_FLUSH.
1829                  *
1830                  * TLBs:
1831                  *
1832                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1833                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1834                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1835                  * are flushed at any MI_FLUSH.
1836                  */
1837
1838                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1839                 if ((invalidate_domains|flush_domains) &
1840                     I915_GEM_DOMAIN_RENDER)
1841                         cmd &= ~MI_NO_WRITE_FLUSH;
1842                 if (!IS_I965G(dev)) {
1843                         /*
1844                          * On the 965, the sampler cache always gets flushed
1845                          * and this bit is reserved.
1846                          */
1847                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1848                                 cmd |= MI_READ_FLUSH;
1849                 }
1850                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1851                         cmd |= MI_EXE_FLUSH;
1852
1853 #if WATCH_EXEC
1854                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1855 #endif
1856                 BEGIN_LP_RING(2);
1857                 OUT_RING(cmd);
1858                 OUT_RING(0); /* noop */
1859                 ADVANCE_LP_RING();
1860         }
1861 }
1862
1863 /**
1864  * Ensures that all rendering to the object has completed and the object is
1865  * safe to unbind from the GTT or access from the CPU.
1866  */
1867 static int
1868 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1869 {
1870         struct drm_device *dev = obj->dev;
1871         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1872         int ret;
1873
1874         /* This function only exists to support waiting for existing rendering,
1875          * not for emitting required flushes.
1876          */
1877         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1878
1879         /* If there is rendering queued on the buffer being evicted, wait for
1880          * it.
1881          */
1882         if (obj_priv->active) {
1883 #if WATCH_BUF
1884                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1885                           __func__, obj, obj_priv->last_rendering_seqno);
1886 #endif
1887                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1888                 if (ret != 0)
1889                         return ret;
1890         }
1891
1892         return 0;
1893 }
1894
1895 /**
1896  * Unbinds an object from the GTT aperture.
1897  */
1898 int
1899 i915_gem_object_unbind(struct drm_gem_object *obj)
1900 {
1901         struct drm_device *dev = obj->dev;
1902         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1903         int ret = 0;
1904
1905 #if WATCH_BUF
1906         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1907         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1908 #endif
1909         if (obj_priv->gtt_space == NULL)
1910                 return 0;
1911
1912         if (obj_priv->pin_count != 0) {
1913                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1914                 return -EINVAL;
1915         }
1916
1917         /* Move the object to the CPU domain to ensure that
1918          * any possible CPU writes while it's not in the GTT
1919          * are flushed when we go to remap it. This will
1920          * also ensure that all pending GPU writes are finished
1921          * before we unbind.
1922          */
1923         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1924         if (ret) {
1925                 if (ret != -ERESTARTSYS)
1926                         DRM_ERROR("set_domain failed: %d\n", ret);
1927                 return ret;
1928         }
1929
1930         if (obj_priv->agp_mem != NULL) {
1931                 drm_unbind_agp(obj_priv->agp_mem);
1932                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1933                 obj_priv->agp_mem = NULL;
1934         }
1935
1936         BUG_ON(obj_priv->active);
1937
1938         /* blow away mappings if mapped through GTT */
1939         i915_gem_release_mmap(obj);
1940
1941         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1942                 i915_gem_clear_fence_reg(obj);
1943
1944         i915_gem_object_put_pages(obj);
1945
1946         if (obj_priv->gtt_space) {
1947                 atomic_dec(&dev->gtt_count);
1948                 atomic_sub(obj->size, &dev->gtt_memory);
1949
1950                 drm_mm_put_block(obj_priv->gtt_space);
1951                 obj_priv->gtt_space = NULL;
1952         }
1953
1954         /* Remove ourselves from the LRU list if present. */
1955         if (!list_empty(&obj_priv->list))
1956                 list_del_init(&obj_priv->list);
1957
1958         return 0;
1959 }
1960
1961 static int
1962 i915_gem_evict_something(struct drm_device *dev)
1963 {
1964         drm_i915_private_t *dev_priv = dev->dev_private;
1965         struct drm_gem_object *obj;
1966         struct drm_i915_gem_object *obj_priv;
1967         int ret = 0;
1968
1969         for (;;) {
1970                 /* If there's an inactive buffer available now, grab it
1971                  * and be done.
1972                  */
1973                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1974                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1975                                                     struct drm_i915_gem_object,
1976                                                     list);
1977                         obj = obj_priv->obj;
1978                         BUG_ON(obj_priv->pin_count != 0);
1979 #if WATCH_LRU
1980                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1981 #endif
1982                         BUG_ON(obj_priv->active);
1983
1984                         /* Wait on the rendering and unbind the buffer. */
1985                         ret = i915_gem_object_unbind(obj);
1986                         break;
1987                 }
1988
1989                 /* If we didn't get anything, but the ring is still processing
1990                  * things, wait for one of those things to finish and hopefully
1991                  * leave us a buffer to evict.
1992                  */
1993                 if (!list_empty(&dev_priv->mm.request_list)) {
1994                         struct drm_i915_gem_request *request;
1995
1996                         request = list_first_entry(&dev_priv->mm.request_list,
1997                                                    struct drm_i915_gem_request,
1998                                                    list);
1999
2000                         ret = i915_wait_request(dev, request->seqno);
2001                         if (ret)
2002                                 break;
2003
2004                         /* if waiting caused an object to become inactive,
2005                          * then loop around and wait for it. Otherwise, we
2006                          * assume that waiting freed and unbound something,
2007                          * so there should now be some space in the GTT
2008                          */
2009                         if (!list_empty(&dev_priv->mm.inactive_list))
2010                                 continue;
2011                         break;
2012                 }
2013
2014                 /* If we didn't have anything on the request list but there
2015                  * are buffers awaiting a flush, emit one and try again.
2016                  * When we wait on it, those buffers waiting for that flush
2017                  * will get moved to inactive.
2018                  */
2019                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2020                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2021                                                     struct drm_i915_gem_object,
2022                                                     list);
2023                         obj = obj_priv->obj;
2024
2025                         i915_gem_flush(dev,
2026                                        obj->write_domain,
2027                                        obj->write_domain);
2028                         i915_add_request(dev, NULL, obj->write_domain);
2029
2030                         obj = NULL;
2031                         continue;
2032                 }
2033
2034                 DRM_ERROR("inactive empty %d request empty %d "
2035                           "flushing empty %d\n",
2036                           list_empty(&dev_priv->mm.inactive_list),
2037                           list_empty(&dev_priv->mm.request_list),
2038                           list_empty(&dev_priv->mm.flushing_list));
2039                 /* If we didn't do any of the above, there's nothing to be done
2040                  * and we just can't fit it in.
2041                  */
2042                 return -ENOSPC;
2043         }
2044         return ret;
2045 }
2046
2047 static int
2048 i915_gem_evict_everything(struct drm_device *dev)
2049 {
2050         int ret;
2051
2052         for (;;) {
2053                 ret = i915_gem_evict_something(dev);
2054                 if (ret != 0)
2055                         break;
2056         }
2057         if (ret == -ENOSPC)
2058                 return 0;
2059         return ret;
2060 }
2061
2062 int
2063 i915_gem_object_get_pages(struct drm_gem_object *obj)
2064 {
2065         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2066         int page_count, i;
2067         struct address_space *mapping;
2068         struct inode *inode;
2069         struct page *page;
2070         int ret;
2071
2072         if (obj_priv->pages_refcount++ != 0)
2073                 return 0;
2074
2075         /* Get the list of pages out of our struct file.  They'll be pinned
2076          * at this point until we release them.
2077          */
2078         page_count = obj->size / PAGE_SIZE;
2079         BUG_ON(obj_priv->pages != NULL);
2080         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2081         if (obj_priv->pages == NULL) {
2082                 DRM_ERROR("Faled to allocate page list\n");
2083                 obj_priv->pages_refcount--;
2084                 return -ENOMEM;
2085         }
2086
2087         inode = obj->filp->f_path.dentry->d_inode;
2088         mapping = inode->i_mapping;
2089         for (i = 0; i < page_count; i++) {
2090                 page = read_mapping_page(mapping, i, NULL);
2091                 if (IS_ERR(page)) {
2092                         ret = PTR_ERR(page);
2093                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2094                         i915_gem_object_put_pages(obj);
2095                         return ret;
2096                 }
2097                 obj_priv->pages[i] = page;
2098         }
2099
2100         if (obj_priv->tiling_mode != I915_TILING_NONE)
2101                 i915_gem_object_do_bit_17_swizzle(obj);
2102
2103         return 0;
2104 }
2105
2106 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2107 {
2108         struct drm_gem_object *obj = reg->obj;
2109         struct drm_device *dev = obj->dev;
2110         drm_i915_private_t *dev_priv = dev->dev_private;
2111         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2112         int regnum = obj_priv->fence_reg;
2113         uint64_t val;
2114
2115         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2116                     0xfffff000) << 32;
2117         val |= obj_priv->gtt_offset & 0xfffff000;
2118         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2119         if (obj_priv->tiling_mode == I915_TILING_Y)
2120                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2121         val |= I965_FENCE_REG_VALID;
2122
2123         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2124 }
2125
2126 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2127 {
2128         struct drm_gem_object *obj = reg->obj;
2129         struct drm_device *dev = obj->dev;
2130         drm_i915_private_t *dev_priv = dev->dev_private;
2131         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2132         int regnum = obj_priv->fence_reg;
2133         int tile_width;
2134         uint32_t fence_reg, val;
2135         uint32_t pitch_val;
2136
2137         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2138             (obj_priv->gtt_offset & (obj->size - 1))) {
2139                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2140                      __func__, obj_priv->gtt_offset, obj->size);
2141                 return;
2142         }
2143
2144         if (obj_priv->tiling_mode == I915_TILING_Y &&
2145             HAS_128_BYTE_Y_TILING(dev))
2146                 tile_width = 128;
2147         else
2148                 tile_width = 512;
2149
2150         /* Note: pitch better be a power of two tile widths */
2151         pitch_val = obj_priv->stride / tile_width;
2152         pitch_val = ffs(pitch_val) - 1;
2153
2154         val = obj_priv->gtt_offset;
2155         if (obj_priv->tiling_mode == I915_TILING_Y)
2156                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2157         val |= I915_FENCE_SIZE_BITS(obj->size);
2158         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2159         val |= I830_FENCE_REG_VALID;
2160
2161         if (regnum < 8)
2162                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2163         else
2164                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2165         I915_WRITE(fence_reg, val);
2166 }
2167
2168 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2169 {
2170         struct drm_gem_object *obj = reg->obj;
2171         struct drm_device *dev = obj->dev;
2172         drm_i915_private_t *dev_priv = dev->dev_private;
2173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2174         int regnum = obj_priv->fence_reg;
2175         uint32_t val;
2176         uint32_t pitch_val;
2177         uint32_t fence_size_bits;
2178
2179         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2180             (obj_priv->gtt_offset & (obj->size - 1))) {
2181                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2182                      __func__, obj_priv->gtt_offset);
2183                 return;
2184         }
2185
2186         pitch_val = obj_priv->stride / 128;
2187         pitch_val = ffs(pitch_val) - 1;
2188         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2189
2190         val = obj_priv->gtt_offset;
2191         if (obj_priv->tiling_mode == I915_TILING_Y)
2192                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2193         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2194         WARN_ON(fence_size_bits & ~0x00000f00);
2195         val |= fence_size_bits;
2196         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2197         val |= I830_FENCE_REG_VALID;
2198
2199         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2200 }
2201
2202 /**
2203  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2204  * @obj: object to map through a fence reg
2205  *
2206  * When mapping objects through the GTT, userspace wants to be able to write
2207  * to them without having to worry about swizzling if the object is tiled.
2208  *
2209  * This function walks the fence regs looking for a free one for @obj,
2210  * stealing one if it can't find any.
2211  *
2212  * It then sets up the reg based on the object's properties: address, pitch
2213  * and tiling format.
2214  */
2215 int
2216 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2217 {
2218         struct drm_device *dev = obj->dev;
2219         struct drm_i915_private *dev_priv = dev->dev_private;
2220         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2221         struct drm_i915_fence_reg *reg = NULL;
2222         struct drm_i915_gem_object *old_obj_priv = NULL;
2223         int i, ret, avail;
2224
2225         /* Just update our place in the LRU if our fence is getting used. */
2226         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2227                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2228                 return 0;
2229         }
2230
2231         switch (obj_priv->tiling_mode) {
2232         case I915_TILING_NONE:
2233                 WARN(1, "allocating a fence for non-tiled object?\n");
2234                 break;
2235         case I915_TILING_X:
2236                 if (!obj_priv->stride)
2237                         return -EINVAL;
2238                 WARN((obj_priv->stride & (512 - 1)),
2239                      "object 0x%08x is X tiled but has non-512B pitch\n",
2240                      obj_priv->gtt_offset);
2241                 break;
2242         case I915_TILING_Y:
2243                 if (!obj_priv->stride)
2244                         return -EINVAL;
2245                 WARN((obj_priv->stride & (128 - 1)),
2246                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2247                      obj_priv->gtt_offset);
2248                 break;
2249         }
2250
2251         /* First try to find a free reg */
2252         avail = 0;
2253         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2254                 reg = &dev_priv->fence_regs[i];
2255                 if (!reg->obj)
2256                         break;
2257
2258                 old_obj_priv = reg->obj->driver_private;
2259                 if (!old_obj_priv->pin_count)
2260                     avail++;
2261         }
2262
2263         /* None available, try to steal one or wait for a user to finish */
2264         if (i == dev_priv->num_fence_regs) {
2265                 struct drm_gem_object *old_obj = NULL;
2266
2267                 if (avail == 0)
2268                         return -ENOSPC;
2269
2270                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2271                                     fence_list) {
2272                         old_obj = old_obj_priv->obj;
2273
2274                         if (old_obj_priv->pin_count)
2275                                 continue;
2276
2277                         /* Take a reference, as otherwise the wait_rendering
2278                          * below may cause the object to get freed out from
2279                          * under us.
2280                          */
2281                         drm_gem_object_reference(old_obj);
2282
2283                         /* i915 uses fences for GPU access to tiled buffers */
2284                         if (IS_I965G(dev) || !old_obj_priv->active)
2285                                 break;
2286
2287                         /* This brings the object to the head of the LRU if it
2288                          * had been written to.  The only way this should
2289                          * result in us waiting longer than the expected
2290                          * optimal amount of time is if there was a
2291                          * fence-using buffer later that was read-only.
2292                          */
2293                         i915_gem_object_flush_gpu_write_domain(old_obj);
2294                         ret = i915_gem_object_wait_rendering(old_obj);
2295                         if (ret != 0) {
2296                                 drm_gem_object_unreference(old_obj);
2297                                 return ret;
2298                         }
2299
2300                         break;
2301                 }
2302
2303                 /*
2304                  * Zap this virtual mapping so we can set up a fence again
2305                  * for this object next time we need it.
2306                  */
2307                 i915_gem_release_mmap(old_obj);
2308
2309                 i = old_obj_priv->fence_reg;
2310                 reg = &dev_priv->fence_regs[i];
2311
2312                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2313                 list_del_init(&old_obj_priv->fence_list);
2314
2315                 drm_gem_object_unreference(old_obj);
2316         }
2317
2318         obj_priv->fence_reg = i;
2319         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2320
2321         reg->obj = obj;
2322
2323         if (IS_I965G(dev))
2324                 i965_write_fence_reg(reg);
2325         else if (IS_I9XX(dev))
2326                 i915_write_fence_reg(reg);
2327         else
2328                 i830_write_fence_reg(reg);
2329
2330         return 0;
2331 }
2332
2333 /**
2334  * i915_gem_clear_fence_reg - clear out fence register info
2335  * @obj: object to clear
2336  *
2337  * Zeroes out the fence register itself and clears out the associated
2338  * data structures in dev_priv and obj_priv.
2339  */
2340 static void
2341 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2342 {
2343         struct drm_device *dev = obj->dev;
2344         drm_i915_private_t *dev_priv = dev->dev_private;
2345         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2346
2347         if (IS_I965G(dev))
2348                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2349         else {
2350                 uint32_t fence_reg;
2351
2352                 if (obj_priv->fence_reg < 8)
2353                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2354                 else
2355                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2356                                                        8) * 4;
2357
2358                 I915_WRITE(fence_reg, 0);
2359         }
2360
2361         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2362         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2363         list_del_init(&obj_priv->fence_list);
2364 }
2365
2366 /**
2367  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2368  * to the buffer to finish, and then resets the fence register.
2369  * @obj: tiled object holding a fence register.
2370  *
2371  * Zeroes out the fence register itself and clears out the associated
2372  * data structures in dev_priv and obj_priv.
2373  */
2374 int
2375 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2376 {
2377         struct drm_device *dev = obj->dev;
2378         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2379
2380         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2381                 return 0;
2382
2383         /* On the i915, GPU access to tiled buffers is via a fence,
2384          * therefore we must wait for any outstanding access to complete
2385          * before clearing the fence.
2386          */
2387         if (!IS_I965G(dev)) {
2388                 int ret;
2389
2390                 i915_gem_object_flush_gpu_write_domain(obj);
2391                 i915_gem_object_flush_gtt_write_domain(obj);
2392                 ret = i915_gem_object_wait_rendering(obj);
2393                 if (ret != 0)
2394                         return ret;
2395         }
2396
2397         i915_gem_clear_fence_reg (obj);
2398
2399         return 0;
2400 }
2401
2402 /**
2403  * Finds free space in the GTT aperture and binds the object there.
2404  */
2405 static int
2406 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2407 {
2408         struct drm_device *dev = obj->dev;
2409         drm_i915_private_t *dev_priv = dev->dev_private;
2410         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2411         struct drm_mm_node *free_space;
2412         int page_count, ret;
2413
2414         if (dev_priv->mm.suspended)
2415                 return -EBUSY;
2416         if (alignment == 0)
2417                 alignment = i915_gem_get_gtt_alignment(obj);
2418         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2419                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2420                 return -EINVAL;
2421         }
2422
2423  search_free:
2424         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2425                                         obj->size, alignment, 0);
2426         if (free_space != NULL) {
2427                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2428                                                        alignment);
2429                 if (obj_priv->gtt_space != NULL) {
2430                         obj_priv->gtt_space->private = obj;
2431                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2432                 }
2433         }
2434         if (obj_priv->gtt_space == NULL) {
2435                 bool lists_empty;
2436
2437                 /* If the gtt is empty and we're still having trouble
2438                  * fitting our object in, we're out of memory.
2439                  */
2440 #if WATCH_LRU
2441                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2442 #endif
2443                 spin_lock(&dev_priv->mm.active_list_lock);
2444                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2445                                list_empty(&dev_priv->mm.flushing_list) &&
2446                                list_empty(&dev_priv->mm.active_list));
2447                 spin_unlock(&dev_priv->mm.active_list_lock);
2448                 if (lists_empty) {
2449                         DRM_ERROR("GTT full, but LRU list empty\n");
2450                         return -ENOSPC;
2451                 }
2452
2453                 ret = i915_gem_evict_something(dev);
2454                 if (ret != 0) {
2455                         if (ret != -ERESTARTSYS)
2456                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2457                         return ret;
2458                 }
2459                 goto search_free;
2460         }
2461
2462 #if WATCH_BUF
2463         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2464                  obj->size, obj_priv->gtt_offset);
2465 #endif
2466         ret = i915_gem_object_get_pages(obj);
2467         if (ret) {
2468                 drm_mm_put_block(obj_priv->gtt_space);
2469                 obj_priv->gtt_space = NULL;
2470                 return ret;
2471         }
2472
2473         page_count = obj->size / PAGE_SIZE;
2474         /* Create an AGP memory structure pointing at our pages, and bind it
2475          * into the GTT.
2476          */
2477         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2478                                                obj_priv->pages,
2479                                                page_count,
2480                                                obj_priv->gtt_offset,
2481                                                obj_priv->agp_type);
2482         if (obj_priv->agp_mem == NULL) {
2483                 i915_gem_object_put_pages(obj);
2484                 drm_mm_put_block(obj_priv->gtt_space);
2485                 obj_priv->gtt_space = NULL;
2486                 return -ENOMEM;
2487         }
2488         atomic_inc(&dev->gtt_count);
2489         atomic_add(obj->size, &dev->gtt_memory);
2490
2491         /* Assert that the object is not currently in any GPU domain. As it
2492          * wasn't in the GTT, there shouldn't be any way it could have been in
2493          * a GPU cache
2494          */
2495         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2496         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2497
2498         return 0;
2499 }
2500
2501 void
2502 i915_gem_clflush_object(struct drm_gem_object *obj)
2503 {
2504         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2505
2506         /* If we don't have a page list set up, then we're not pinned
2507          * to GPU, and we can ignore the cache flush because it'll happen
2508          * again at bind time.
2509          */
2510         if (obj_priv->pages == NULL)
2511                 return;
2512
2513         /* XXX: The 865 in particular appears to be weird in how it handles
2514          * cache flushing.  We haven't figured it out, but the
2515          * clflush+agp_chipset_flush doesn't appear to successfully get the
2516          * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2517          */
2518         if (IS_I865G(obj->dev)) {
2519                 wbinvd();
2520                 return;
2521         }
2522
2523         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2524 }
2525
2526 /** Flushes any GPU write domain for the object if it's dirty. */
2527 static void
2528 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2529 {
2530         struct drm_device *dev = obj->dev;
2531         uint32_t seqno;
2532
2533         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2534                 return;
2535
2536         /* Queue the GPU write cache flushing we need. */
2537         i915_gem_flush(dev, 0, obj->write_domain);
2538         seqno = i915_add_request(dev, NULL, obj->write_domain);
2539         obj->write_domain = 0;
2540         i915_gem_object_move_to_active(obj, seqno);
2541 }
2542
2543 /** Flushes the GTT write domain for the object if it's dirty. */
2544 static void
2545 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2546 {
2547         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2548                 return;
2549
2550         /* No actual flushing is required for the GTT write domain.   Writes
2551          * to it immediately go to main memory as far as we know, so there's
2552          * no chipset flush.  It also doesn't land in render cache.
2553          */
2554         obj->write_domain = 0;
2555 }
2556
2557 /** Flushes the CPU write domain for the object if it's dirty. */
2558 static void
2559 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2560 {
2561         struct drm_device *dev = obj->dev;
2562
2563         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2564                 return;
2565
2566         i915_gem_clflush_object(obj);
2567         drm_agp_chipset_flush(dev);
2568         obj->write_domain = 0;
2569 }
2570
2571 /**
2572  * Moves a single object to the GTT read, and possibly write domain.
2573  *
2574  * This function returns when the move is complete, including waiting on
2575  * flushes to occur.
2576  */
2577 int
2578 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2579 {
2580         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2581         int ret;
2582
2583         /* Not valid to be called on unbound objects. */
2584         if (obj_priv->gtt_space == NULL)
2585                 return -EINVAL;
2586
2587         i915_gem_object_flush_gpu_write_domain(obj);
2588         /* Wait on any GPU rendering and flushing to occur. */
2589         ret = i915_gem_object_wait_rendering(obj);
2590         if (ret != 0)
2591                 return ret;
2592
2593         /* If we're writing through the GTT domain, then CPU and GPU caches
2594          * will need to be invalidated at next use.
2595          */
2596         if (write)
2597                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2598
2599         i915_gem_object_flush_cpu_write_domain(obj);
2600
2601         /* It should now be out of any other write domains, and we can update
2602          * the domain values for our changes.
2603          */
2604         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2605         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2606         if (write) {
2607                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2608                 obj_priv->dirty = 1;
2609         }
2610
2611         return 0;
2612 }
2613
2614 /**
2615  * Moves a single object to the CPU read, and possibly write domain.
2616  *
2617  * This function returns when the move is complete, including waiting on
2618  * flushes to occur.
2619  */
2620 static int
2621 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2622 {
2623         int ret;
2624
2625         i915_gem_object_flush_gpu_write_domain(obj);
2626         /* Wait on any GPU rendering and flushing to occur. */
2627         ret = i915_gem_object_wait_rendering(obj);
2628         if (ret != 0)
2629                 return ret;
2630
2631         i915_gem_object_flush_gtt_write_domain(obj);
2632
2633         /* If we have a partially-valid cache of the object in the CPU,
2634          * finish invalidating it and free the per-page flags.
2635          */
2636         i915_gem_object_set_to_full_cpu_read_domain(obj);
2637
2638         /* Flush the CPU cache if it's still invalid. */
2639         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2640                 i915_gem_clflush_object(obj);
2641
2642                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2643         }
2644
2645         /* It should now be out of any other write domains, and we can update
2646          * the domain values for our changes.
2647          */
2648         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2649
2650         /* If we're writing through the CPU, then the GPU read domains will
2651          * need to be invalidated at next use.
2652          */
2653         if (write) {
2654                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2655                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2656         }
2657
2658         return 0;
2659 }
2660
2661 /*
2662  * Set the next domain for the specified object. This
2663  * may not actually perform the necessary flushing/invaliding though,
2664  * as that may want to be batched with other set_domain operations
2665  *
2666  * This is (we hope) the only really tricky part of gem. The goal
2667  * is fairly simple -- track which caches hold bits of the object
2668  * and make sure they remain coherent. A few concrete examples may
2669  * help to explain how it works. For shorthand, we use the notation
2670  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2671  * a pair of read and write domain masks.
2672  *
2673  * Case 1: the batch buffer
2674  *
2675  *      1. Allocated
2676  *      2. Written by CPU
2677  *      3. Mapped to GTT
2678  *      4. Read by GPU
2679  *      5. Unmapped from GTT
2680  *      6. Freed
2681  *
2682  *      Let's take these a step at a time
2683  *
2684  *      1. Allocated
2685  *              Pages allocated from the kernel may still have
2686  *              cache contents, so we set them to (CPU, CPU) always.
2687  *      2. Written by CPU (using pwrite)
2688  *              The pwrite function calls set_domain (CPU, CPU) and
2689  *              this function does nothing (as nothing changes)
2690  *      3. Mapped by GTT
2691  *              This function asserts that the object is not
2692  *              currently in any GPU-based read or write domains
2693  *      4. Read by GPU
2694  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2695  *              As write_domain is zero, this function adds in the
2696  *              current read domains (CPU+COMMAND, 0).
2697  *              flush_domains is set to CPU.
2698  *              invalidate_domains is set to COMMAND
2699  *              clflush is run to get data out of the CPU caches
2700  *              then i915_dev_set_domain calls i915_gem_flush to
2701  *              emit an MI_FLUSH and drm_agp_chipset_flush
2702  *      5. Unmapped from GTT
2703  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2704  *              flush_domains and invalidate_domains end up both zero
2705  *              so no flushing/invalidating happens
2706  *      6. Freed
2707  *              yay, done
2708  *
2709  * Case 2: The shared render buffer
2710  *
2711  *      1. Allocated
2712  *      2. Mapped to GTT
2713  *      3. Read/written by GPU
2714  *      4. set_domain to (CPU,CPU)
2715  *      5. Read/written by CPU
2716  *      6. Read/written by GPU
2717  *
2718  *      1. Allocated
2719  *              Same as last example, (CPU, CPU)
2720  *      2. Mapped to GTT
2721  *              Nothing changes (assertions find that it is not in the GPU)
2722  *      3. Read/written by GPU
2723  *              execbuffer calls set_domain (RENDER, RENDER)
2724  *              flush_domains gets CPU
2725  *              invalidate_domains gets GPU
2726  *              clflush (obj)
2727  *              MI_FLUSH and drm_agp_chipset_flush
2728  *      4. set_domain (CPU, CPU)
2729  *              flush_domains gets GPU
2730  *              invalidate_domains gets CPU
2731  *              wait_rendering (obj) to make sure all drawing is complete.
2732  *              This will include an MI_FLUSH to get the data from GPU
2733  *              to memory
2734  *              clflush (obj) to invalidate the CPU cache
2735  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2736  *      5. Read/written by CPU
2737  *              cache lines are loaded and dirtied
2738  *      6. Read written by GPU
2739  *              Same as last GPU access
2740  *
2741  * Case 3: The constant buffer
2742  *
2743  *      1. Allocated
2744  *      2. Written by CPU
2745  *      3. Read by GPU
2746  *      4. Updated (written) by CPU again
2747  *      5. Read by GPU
2748  *
2749  *      1. Allocated
2750  *              (CPU, CPU)
2751  *      2. Written by CPU
2752  *              (CPU, CPU)
2753  *      3. Read by GPU
2754  *              (CPU+RENDER, 0)
2755  *              flush_domains = CPU
2756  *              invalidate_domains = RENDER
2757  *              clflush (obj)
2758  *              MI_FLUSH
2759  *              drm_agp_chipset_flush
2760  *      4. Updated (written) by CPU again
2761  *              (CPU, CPU)
2762  *              flush_domains = 0 (no previous write domain)
2763  *              invalidate_domains = 0 (no new read domains)
2764  *      5. Read by GPU
2765  *              (CPU+RENDER, 0)
2766  *              flush_domains = CPU
2767  *              invalidate_domains = RENDER
2768  *              clflush (obj)
2769  *              MI_FLUSH
2770  *              drm_agp_chipset_flush
2771  */
2772 static void
2773 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2774 {
2775         struct drm_device               *dev = obj->dev;
2776         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2777         uint32_t                        invalidate_domains = 0;
2778         uint32_t                        flush_domains = 0;
2779
2780         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2781         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2782
2783         intel_mark_busy(dev, obj);
2784
2785 #if WATCH_BUF
2786         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2787                  __func__, obj,
2788                  obj->read_domains, obj->pending_read_domains,
2789                  obj->write_domain, obj->pending_write_domain);
2790 #endif
2791         /*
2792          * If the object isn't moving to a new write domain,
2793          * let the object stay in multiple read domains
2794          */
2795         if (obj->pending_write_domain == 0)
2796                 obj->pending_read_domains |= obj->read_domains;
2797         else
2798                 obj_priv->dirty = 1;
2799
2800         /*
2801          * Flush the current write domain if
2802          * the new read domains don't match. Invalidate
2803          * any read domains which differ from the old
2804          * write domain
2805          */
2806         if (obj->write_domain &&
2807             obj->write_domain != obj->pending_read_domains) {
2808                 flush_domains |= obj->write_domain;
2809                 invalidate_domains |=
2810                         obj->pending_read_domains & ~obj->write_domain;
2811         }
2812         /*
2813          * Invalidate any read caches which may have
2814          * stale data. That is, any new read domains.
2815          */
2816         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2817         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2818 #if WATCH_BUF
2819                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2820                          __func__, flush_domains, invalidate_domains);
2821 #endif
2822                 i915_gem_clflush_object(obj);
2823         }
2824
2825         /* The actual obj->write_domain will be updated with
2826          * pending_write_domain after we emit the accumulated flush for all
2827          * of our domain changes in execbuffers (which clears objects'
2828          * write_domains).  So if we have a current write domain that we
2829          * aren't changing, set pending_write_domain to that.
2830          */
2831         if (flush_domains == 0 && obj->pending_write_domain == 0)
2832                 obj->pending_write_domain = obj->write_domain;
2833         obj->read_domains = obj->pending_read_domains;
2834
2835         dev->invalidate_domains |= invalidate_domains;
2836         dev->flush_domains |= flush_domains;
2837 #if WATCH_BUF
2838         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2839                  __func__,
2840                  obj->read_domains, obj->write_domain,
2841                  dev->invalidate_domains, dev->flush_domains);
2842 #endif
2843 }
2844
2845 /**
2846  * Moves the object from a partially CPU read to a full one.
2847  *
2848  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2849  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2850  */
2851 static void
2852 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2853 {
2854         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2855
2856         if (!obj_priv->page_cpu_valid)
2857                 return;
2858
2859         /* If we're partially in the CPU read domain, finish moving it in.
2860          */
2861         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2862                 int i;
2863
2864                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2865                         if (obj_priv->page_cpu_valid[i])
2866                                 continue;
2867                         drm_clflush_pages(obj_priv->pages + i, 1);
2868                 }
2869         }
2870
2871         /* Free the page_cpu_valid mappings which are now stale, whether
2872          * or not we've got I915_GEM_DOMAIN_CPU.
2873          */
2874         kfree(obj_priv->page_cpu_valid);
2875         obj_priv->page_cpu_valid = NULL;
2876 }
2877
2878 /**
2879  * Set the CPU read domain on a range of the object.
2880  *
2881  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2882  * not entirely valid.  The page_cpu_valid member of the object flags which
2883  * pages have been flushed, and will be respected by
2884  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2885  * of the whole object.
2886  *
2887  * This function returns when the move is complete, including waiting on
2888  * flushes to occur.
2889  */
2890 static int
2891 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2892                                           uint64_t offset, uint64_t size)
2893 {
2894         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2895         int i, ret;
2896
2897         if (offset == 0 && size == obj->size)
2898                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2899
2900         i915_gem_object_flush_gpu_write_domain(obj);
2901         /* Wait on any GPU rendering and flushing to occur. */
2902         ret = i915_gem_object_wait_rendering(obj);
2903         if (ret != 0)
2904                 return ret;
2905         i915_gem_object_flush_gtt_write_domain(obj);
2906
2907         /* If we're already fully in the CPU read domain, we're done. */
2908         if (obj_priv->page_cpu_valid == NULL &&
2909             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2910                 return 0;
2911
2912         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2913          * newly adding I915_GEM_DOMAIN_CPU
2914          */
2915         if (obj_priv->page_cpu_valid == NULL) {
2916                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2917                                                    GFP_KERNEL);
2918                 if (obj_priv->page_cpu_valid == NULL)
2919                         return -ENOMEM;
2920         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2921                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2922
2923         /* Flush the cache on any pages that are still invalid from the CPU's
2924          * perspective.
2925          */
2926         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2927              i++) {
2928                 if (obj_priv->page_cpu_valid[i])
2929                         continue;
2930
2931                 drm_clflush_pages(obj_priv->pages + i, 1);
2932
2933                 obj_priv->page_cpu_valid[i] = 1;
2934         }
2935
2936         /* It should now be out of any other write domains, and we can update
2937          * the domain values for our changes.
2938          */
2939         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2940
2941         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2942
2943         return 0;
2944 }
2945
2946 /**
2947  * Pin an object to the GTT and evaluate the relocations landing in it.
2948  */
2949 static int
2950 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2951                                  struct drm_file *file_priv,
2952                                  struct drm_i915_gem_exec_object *entry,
2953                                  struct drm_i915_gem_relocation_entry *relocs)
2954 {
2955         struct drm_device *dev = obj->dev;
2956         drm_i915_private_t *dev_priv = dev->dev_private;
2957         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2958         int i, ret;
2959         void __iomem *reloc_page;
2960
2961         /* Choose the GTT offset for our buffer and put it there. */
2962         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2963         if (ret)
2964                 return ret;
2965
2966         entry->offset = obj_priv->gtt_offset;
2967
2968         /* Apply the relocations, using the GTT aperture to avoid cache
2969          * flushing requirements.
2970          */
2971         for (i = 0; i < entry->relocation_count; i++) {
2972                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2973                 struct drm_gem_object *target_obj;
2974                 struct drm_i915_gem_object *target_obj_priv;
2975                 uint32_t reloc_val, reloc_offset;
2976                 uint32_t __iomem *reloc_entry;
2977
2978                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2979                                                    reloc->target_handle);
2980                 if (target_obj == NULL) {
2981                         i915_gem_object_unpin(obj);
2982                         return -EBADF;
2983                 }
2984                 target_obj_priv = target_obj->driver_private;
2985
2986                 /* The target buffer should have appeared before us in the
2987                  * exec_object list, so it should have a GTT space bound by now.
2988                  */
2989                 if (target_obj_priv->gtt_space == NULL) {
2990                         DRM_ERROR("No GTT space found for object %d\n",
2991                                   reloc->target_handle);
2992                         drm_gem_object_unreference(target_obj);
2993                         i915_gem_object_unpin(obj);
2994                         return -EINVAL;
2995                 }
2996
2997                 if (reloc->offset > obj->size - 4) {
2998                         DRM_ERROR("Relocation beyond object bounds: "
2999                                   "obj %p target %d offset %d size %d.\n",
3000                                   obj, reloc->target_handle,
3001                                   (int) reloc->offset, (int) obj->size);
3002                         drm_gem_object_unreference(target_obj);
3003                         i915_gem_object_unpin(obj);
3004                         return -EINVAL;
3005                 }
3006                 if (reloc->offset & 3) {
3007                         DRM_ERROR("Relocation not 4-byte aligned: "
3008                                   "obj %p target %d offset %d.\n",
3009                                   obj, reloc->target_handle,
3010                                   (int) reloc->offset);
3011                         drm_gem_object_unreference(target_obj);
3012                         i915_gem_object_unpin(obj);
3013                         return -EINVAL;
3014                 }
3015
3016                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3017                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3018                         DRM_ERROR("reloc with read/write CPU domains: "
3019                                   "obj %p target %d offset %d "
3020                                   "read %08x write %08x",
3021                                   obj, reloc->target_handle,
3022                                   (int) reloc->offset,
3023                                   reloc->read_domains,
3024                                   reloc->write_domain);
3025                         drm_gem_object_unreference(target_obj);
3026                         i915_gem_object_unpin(obj);
3027                         return -EINVAL;
3028                 }
3029
3030                 if (reloc->write_domain && target_obj->pending_write_domain &&
3031                     reloc->write_domain != target_obj->pending_write_domain) {
3032                         DRM_ERROR("Write domain conflict: "
3033                                   "obj %p target %d offset %d "
3034                                   "new %08x old %08x\n",
3035                                   obj, reloc->target_handle,
3036                                   (int) reloc->offset,
3037                                   reloc->write_domain,
3038                                   target_obj->pending_write_domain);
3039                         drm_gem_object_unreference(target_obj);
3040                         i915_gem_object_unpin(obj);
3041                         return -EINVAL;
3042                 }
3043
3044 #if WATCH_RELOC
3045                 DRM_INFO("%s: obj %p offset %08x target %d "
3046                          "read %08x write %08x gtt %08x "
3047                          "presumed %08x delta %08x\n",
3048                          __func__,
3049                          obj,
3050                          (int) reloc->offset,
3051                          (int) reloc->target_handle,
3052                          (int) reloc->read_domains,
3053                          (int) reloc->write_domain,
3054                          (int) target_obj_priv->gtt_offset,
3055                          (int) reloc->presumed_offset,
3056                          reloc->delta);
3057 #endif
3058
3059                 target_obj->pending_read_domains |= reloc->read_domains;
3060                 target_obj->pending_write_domain |= reloc->write_domain;
3061
3062                 /* If the relocation already has the right value in it, no
3063                  * more work needs to be done.
3064                  */
3065                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3066                         drm_gem_object_unreference(target_obj);
3067                         continue;
3068                 }
3069
3070                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3071                 if (ret != 0) {
3072                         drm_gem_object_unreference(target_obj);
3073                         i915_gem_object_unpin(obj);
3074                         return -EINVAL;
3075                 }
3076
3077                 /* Map the page containing the relocation we're going to
3078                  * perform.
3079                  */
3080                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3081                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3082                                                       (reloc_offset &
3083                                                        ~(PAGE_SIZE - 1)));
3084                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3085                                                    (reloc_offset & (PAGE_SIZE - 1)));
3086                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3087
3088 #if WATCH_BUF
3089                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3090                           obj, (unsigned int) reloc->offset,
3091                           readl(reloc_entry), reloc_val);
3092 #endif
3093                 writel(reloc_val, reloc_entry);
3094                 io_mapping_unmap_atomic(reloc_page);
3095
3096                 /* The updated presumed offset for this entry will be
3097                  * copied back out to the user.
3098                  */
3099                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3100
3101                 drm_gem_object_unreference(target_obj);
3102         }
3103
3104 #if WATCH_BUF
3105         if (0)
3106                 i915_gem_dump_object(obj, 128, __func__, ~0);
3107 #endif
3108         return 0;
3109 }
3110
3111 /** Dispatch a batchbuffer to the ring
3112  */
3113 static int
3114 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3115                               struct drm_i915_gem_execbuffer *exec,
3116                               struct drm_clip_rect *cliprects,
3117                               uint64_t exec_offset)
3118 {
3119         drm_i915_private_t *dev_priv = dev->dev_private;
3120         int nbox = exec->num_cliprects;
3121         int i = 0, count;
3122         uint32_t exec_start, exec_len;
3123         RING_LOCALS;
3124
3125         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3126         exec_len = (uint32_t) exec->batch_len;
3127
3128         count = nbox ? nbox : 1;
3129
3130         for (i = 0; i < count; i++) {
3131                 if (i < nbox) {
3132                         int ret = i915_emit_box(dev, cliprects, i,
3133                                                 exec->DR1, exec->DR4);
3134                         if (ret)
3135                                 return ret;
3136                 }
3137
3138                 if (IS_I830(dev) || IS_845G(dev)) {
3139                         BEGIN_LP_RING(4);
3140                         OUT_RING(MI_BATCH_BUFFER);
3141                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3142                         OUT_RING(exec_start + exec_len - 4);
3143                         OUT_RING(0);
3144                         ADVANCE_LP_RING();
3145                 } else {
3146                         BEGIN_LP_RING(2);
3147                         if (IS_I965G(dev)) {
3148                                 OUT_RING(MI_BATCH_BUFFER_START |
3149                                          (2 << 6) |
3150                                          MI_BATCH_NON_SECURE_I965);
3151                                 OUT_RING(exec_start);
3152                         } else {
3153                                 OUT_RING(MI_BATCH_BUFFER_START |
3154                                          (2 << 6));
3155                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3156                         }
3157                         ADVANCE_LP_RING();
3158                 }
3159         }
3160
3161         /* XXX breadcrumb */
3162         return 0;
3163 }
3164
3165 /* Throttle our rendering by waiting until the ring has completed our requests
3166  * emitted over 20 msec ago.
3167  *
3168  * Note that if we were to use the current jiffies each time around the loop,
3169  * we wouldn't escape the function with any frames outstanding if the time to
3170  * render a frame was over 20ms.
3171  *
3172  * This should get us reasonable parallelism between CPU and GPU but also
3173  * relatively low latency when blocking on a particular request to finish.
3174  */
3175 static int
3176 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3177 {
3178         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3179         int ret = 0;
3180         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3181
3182         mutex_lock(&dev->struct_mutex);
3183         while (!list_empty(&i915_file_priv->mm.request_list)) {
3184                 struct drm_i915_gem_request *request;
3185
3186                 request = list_first_entry(&i915_file_priv->mm.request_list,
3187                                            struct drm_i915_gem_request,
3188                                            client_list);
3189
3190                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3191                         break;
3192
3193                 ret = i915_wait_request(dev, request->seqno);
3194                 if (ret != 0)
3195                         break;
3196         }
3197         mutex_unlock(&dev->struct_mutex);
3198
3199         return ret;
3200 }
3201
3202 static int
3203 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3204                               uint32_t buffer_count,
3205                               struct drm_i915_gem_relocation_entry **relocs)
3206 {
3207         uint32_t reloc_count = 0, reloc_index = 0, i;
3208         int ret;
3209
3210         *relocs = NULL;
3211         for (i = 0; i < buffer_count; i++) {
3212                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3213                         return -EINVAL;
3214                 reloc_count += exec_list[i].relocation_count;
3215         }
3216
3217         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3218         if (*relocs == NULL)
3219                 return -ENOMEM;
3220
3221         for (i = 0; i < buffer_count; i++) {
3222                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3223
3224                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3225
3226                 ret = copy_from_user(&(*relocs)[reloc_index],
3227                                      user_relocs,
3228                                      exec_list[i].relocation_count *
3229                                      sizeof(**relocs));
3230                 if (ret != 0) {
3231                         drm_free_large(*relocs);
3232                         *relocs = NULL;
3233                         return -EFAULT;
3234                 }
3235
3236                 reloc_index += exec_list[i].relocation_count;
3237         }
3238
3239         return 0;
3240 }
3241
3242 static int
3243 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3244                             uint32_t buffer_count,
3245                             struct drm_i915_gem_relocation_entry *relocs)
3246 {
3247         uint32_t reloc_count = 0, i;
3248         int ret = 0;
3249
3250         for (i = 0; i < buffer_count; i++) {
3251                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3252                 int unwritten;
3253
3254                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3255
3256                 unwritten = copy_to_user(user_relocs,
3257                                          &relocs[reloc_count],
3258                                          exec_list[i].relocation_count *
3259                                          sizeof(*relocs));
3260
3261                 if (unwritten) {
3262                         ret = -EFAULT;
3263                         goto err;
3264                 }
3265
3266                 reloc_count += exec_list[i].relocation_count;
3267         }
3268
3269 err:
3270         drm_free_large(relocs);
3271
3272         return ret;
3273 }
3274
3275 static int
3276 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3277                            uint64_t exec_offset)
3278 {
3279         uint32_t exec_start, exec_len;
3280
3281         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3282         exec_len = (uint32_t) exec->batch_len;
3283
3284         if ((exec_start | exec_len) & 0x7)
3285                 return -EINVAL;
3286
3287         if (!exec_start)
3288                 return -EINVAL;
3289
3290         return 0;
3291 }
3292
3293 int
3294 i915_gem_execbuffer(struct drm_device *dev, void *data,
3295                     struct drm_file *file_priv)
3296 {
3297         drm_i915_private_t *dev_priv = dev->dev_private;
3298         struct drm_i915_gem_execbuffer *args = data;
3299         struct drm_i915_gem_exec_object *exec_list = NULL;
3300         struct drm_gem_object **object_list = NULL;
3301         struct drm_gem_object *batch_obj;
3302         struct drm_i915_gem_object *obj_priv;
3303         struct drm_clip_rect *cliprects = NULL;
3304         struct drm_i915_gem_relocation_entry *relocs;
3305         int ret, ret2, i, pinned = 0;
3306         uint64_t exec_offset;
3307         uint32_t seqno, flush_domains, reloc_index;
3308         int pin_tries;
3309
3310 #if WATCH_EXEC
3311         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3312                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3313 #endif
3314
3315         if (args->buffer_count < 1) {
3316                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3317                 return -EINVAL;
3318         }
3319         /* Copy in the exec list from userland */
3320         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3321         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3322         if (exec_list == NULL || object_list == NULL) {
3323                 DRM_ERROR("Failed to allocate exec or object list "
3324                           "for %d buffers\n",
3325                           args->buffer_count);
3326                 ret = -ENOMEM;
3327                 goto pre_mutex_err;
3328         }
3329         ret = copy_from_user(exec_list,
3330                              (struct drm_i915_relocation_entry __user *)
3331                              (uintptr_t) args->buffers_ptr,
3332                              sizeof(*exec_list) * args->buffer_count);
3333         if (ret != 0) {
3334                 DRM_ERROR("copy %d exec entries failed %d\n",
3335                           args->buffer_count, ret);
3336                 goto pre_mutex_err;
3337         }
3338
3339         if (args->num_cliprects != 0) {
3340                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3341                                     GFP_KERNEL);
3342                 if (cliprects == NULL)
3343                         goto pre_mutex_err;
3344
3345                 ret = copy_from_user(cliprects,
3346                                      (struct drm_clip_rect __user *)
3347                                      (uintptr_t) args->cliprects_ptr,
3348                                      sizeof(*cliprects) * args->num_cliprects);
3349                 if (ret != 0) {
3350                         DRM_ERROR("copy %d cliprects failed: %d\n",
3351                                   args->num_cliprects, ret);
3352                         goto pre_mutex_err;
3353                 }
3354         }
3355
3356         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3357                                             &relocs);
3358         if (ret != 0)
3359                 goto pre_mutex_err;
3360
3361         mutex_lock(&dev->struct_mutex);
3362
3363         i915_verify_inactive(dev, __FILE__, __LINE__);
3364
3365         if (dev_priv->mm.wedged) {
3366                 DRM_ERROR("Execbuf while wedged\n");
3367                 mutex_unlock(&dev->struct_mutex);
3368                 ret = -EIO;
3369                 goto pre_mutex_err;
3370         }
3371
3372         if (dev_priv->mm.suspended) {
3373                 DRM_ERROR("Execbuf while VT-switched.\n");
3374                 mutex_unlock(&dev->struct_mutex);
3375                 ret = -EBUSY;
3376                 goto pre_mutex_err;
3377         }
3378
3379         /* Look up object handles */
3380         for (i = 0; i < args->buffer_count; i++) {
3381                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3382                                                        exec_list[i].handle);
3383                 if (object_list[i] == NULL) {
3384                         DRM_ERROR("Invalid object handle %d at index %d\n",
3385                                    exec_list[i].handle, i);
3386                         ret = -EBADF;
3387                         goto err;
3388                 }
3389
3390                 obj_priv = object_list[i]->driver_private;
3391                 if (obj_priv->in_execbuffer) {
3392                         DRM_ERROR("Object %p appears more than once in object list\n",
3393                                    object_list[i]);
3394                         ret = -EBADF;
3395                         goto err;
3396                 }
3397                 obj_priv->in_execbuffer = true;
3398         }
3399
3400         /* Pin and relocate */
3401         for (pin_tries = 0; ; pin_tries++) {
3402                 ret = 0;
3403                 reloc_index = 0;
3404
3405                 for (i = 0; i < args->buffer_count; i++) {
3406                         object_list[i]->pending_read_domains = 0;
3407                         object_list[i]->pending_write_domain = 0;
3408                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3409                                                                file_priv,
3410                                                                &exec_list[i],
3411                                                                &relocs[reloc_index]);
3412                         if (ret)
3413                                 break;
3414                         pinned = i + 1;
3415                         reloc_index += exec_list[i].relocation_count;
3416                 }
3417                 /* success */
3418                 if (ret == 0)
3419                         break;
3420
3421                 /* error other than GTT full, or we've already tried again */
3422                 if (ret != -ENOSPC || pin_tries >= 1) {
3423                         if (ret != -ERESTARTSYS)
3424                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3425                         goto err;
3426                 }
3427
3428                 /* unpin all of our buffers */
3429                 for (i = 0; i < pinned; i++)
3430                         i915_gem_object_unpin(object_list[i]);
3431                 pinned = 0;
3432
3433                 /* evict everyone we can from the aperture */
3434                 ret = i915_gem_evict_everything(dev);
3435                 if (ret)
3436                         goto err;
3437         }
3438
3439         /* Set the pending read domains for the batch buffer to COMMAND */
3440         batch_obj = object_list[args->buffer_count-1];
3441         if (batch_obj->pending_write_domain) {
3442                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3443                 ret = -EINVAL;
3444                 goto err;
3445         }
3446         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3447
3448         /* Sanity check the batch buffer, prior to moving objects */
3449         exec_offset = exec_list[args->buffer_count - 1].offset;
3450         ret = i915_gem_check_execbuffer (args, exec_offset);
3451         if (ret != 0) {
3452                 DRM_ERROR("execbuf with invalid offset/length\n");
3453                 goto err;
3454         }
3455
3456         i915_verify_inactive(dev, __FILE__, __LINE__);
3457
3458         /* Zero the global flush/invalidate flags. These
3459          * will be modified as new domains are computed
3460          * for each object
3461          */
3462         dev->invalidate_domains = 0;
3463         dev->flush_domains = 0;
3464
3465         for (i = 0; i < args->buffer_count; i++) {
3466                 struct drm_gem_object *obj = object_list[i];
3467
3468                 /* Compute new gpu domains and update invalidate/flush */
3469                 i915_gem_object_set_to_gpu_domain(obj);
3470         }
3471
3472         i915_verify_inactive(dev, __FILE__, __LINE__);
3473
3474         if (dev->invalidate_domains | dev->flush_domains) {
3475 #if WATCH_EXEC
3476                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3477                           __func__,
3478                          dev->invalidate_domains,
3479                          dev->flush_domains);
3480 #endif
3481                 i915_gem_flush(dev,
3482                                dev->invalidate_domains,
3483                                dev->flush_domains);
3484                 if (dev->flush_domains)
3485                         (void)i915_add_request(dev, file_priv,
3486                                                dev->flush_domains);
3487         }
3488
3489         for (i = 0; i < args->buffer_count; i++) {
3490                 struct drm_gem_object *obj = object_list[i];
3491
3492                 obj->write_domain = obj->pending_write_domain;
3493         }
3494
3495         i915_verify_inactive(dev, __FILE__, __LINE__);
3496
3497 #if WATCH_COHERENCY
3498         for (i = 0; i < args->buffer_count; i++) {
3499                 i915_gem_object_check_coherency(object_list[i],
3500                                                 exec_list[i].handle);
3501         }
3502 #endif
3503
3504 #if WATCH_EXEC
3505         i915_gem_dump_object(batch_obj,
3506                               args->batch_len,
3507                               __func__,
3508                               ~0);
3509 #endif
3510
3511         /* Exec the batchbuffer */
3512         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3513         if (ret) {
3514                 DRM_ERROR("dispatch failed %d\n", ret);
3515                 goto err;
3516         }
3517
3518         /*
3519          * Ensure that the commands in the batch buffer are
3520          * finished before the interrupt fires
3521          */
3522         flush_domains = i915_retire_commands(dev);
3523
3524         i915_verify_inactive(dev, __FILE__, __LINE__);
3525
3526         /*
3527          * Get a seqno representing the execution of the current buffer,
3528          * which we can wait on.  We would like to mitigate these interrupts,
3529          * likely by only creating seqnos occasionally (so that we have
3530          * *some* interrupts representing completion of buffers that we can
3531          * wait on when trying to clear up gtt space).
3532          */
3533         seqno = i915_add_request(dev, file_priv, flush_domains);
3534         BUG_ON(seqno == 0);
3535         for (i = 0; i < args->buffer_count; i++) {
3536                 struct drm_gem_object *obj = object_list[i];
3537
3538                 i915_gem_object_move_to_active(obj, seqno);
3539 #if WATCH_LRU
3540                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3541 #endif
3542         }
3543 #if WATCH_LRU
3544         i915_dump_lru(dev, __func__);
3545 #endif
3546
3547         i915_verify_inactive(dev, __FILE__, __LINE__);
3548
3549 err:
3550         for (i = 0; i < pinned; i++)
3551                 i915_gem_object_unpin(object_list[i]);
3552
3553         for (i = 0; i < args->buffer_count; i++) {
3554                 if (object_list[i]) {
3555                         obj_priv = object_list[i]->driver_private;
3556                         obj_priv->in_execbuffer = false;
3557                 }
3558                 drm_gem_object_unreference(object_list[i]);
3559         }
3560
3561         mutex_unlock(&dev->struct_mutex);
3562
3563         if (!ret) {
3564                 /* Copy the new buffer offsets back to the user's exec list. */
3565                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3566                                    (uintptr_t) args->buffers_ptr,
3567                                    exec_list,
3568                                    sizeof(*exec_list) * args->buffer_count);
3569                 if (ret) {
3570                         ret = -EFAULT;
3571                         DRM_ERROR("failed to copy %d exec entries "
3572                                   "back to user (%d)\n",
3573                                   args->buffer_count, ret);
3574                 }
3575         }
3576
3577         /* Copy the updated relocations out regardless of current error
3578          * state.  Failure to update the relocs would mean that the next
3579          * time userland calls execbuf, it would do so with presumed offset
3580          * state that didn't match the actual object state.
3581          */
3582         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3583                                            relocs);
3584         if (ret2 != 0) {
3585                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3586
3587                 if (ret == 0)
3588                         ret = ret2;
3589         }
3590
3591 pre_mutex_err:
3592         drm_free_large(object_list);
3593         drm_free_large(exec_list);
3594         kfree(cliprects);
3595
3596         return ret;
3597 }
3598
3599 int
3600 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3601 {
3602         struct drm_device *dev = obj->dev;
3603         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3604         int ret;
3605
3606         i915_verify_inactive(dev, __FILE__, __LINE__);
3607         if (obj_priv->gtt_space == NULL) {
3608                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3609                 if (ret != 0) {
3610                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3611                                 DRM_ERROR("Failure to bind: %d\n", ret);
3612                         return ret;
3613                 }
3614         }
3615         /*
3616          * Pre-965 chips need a fence register set up in order to
3617          * properly handle tiled surfaces.
3618          */
3619         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3620                 ret = i915_gem_object_get_fence_reg(obj);
3621                 if (ret != 0) {
3622                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3623                                 DRM_ERROR("Failure to install fence: %d\n",
3624                                           ret);
3625                         return ret;
3626                 }
3627         }
3628         obj_priv->pin_count++;
3629
3630         /* If the object is not active and not pending a flush,
3631          * remove it from the inactive list
3632          */
3633         if (obj_priv->pin_count == 1) {
3634                 atomic_inc(&dev->pin_count);
3635                 atomic_add(obj->size, &dev->pin_memory);
3636                 if (!obj_priv->active &&
3637                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3638                     !list_empty(&obj_priv->list))
3639                         list_del_init(&obj_priv->list);
3640         }
3641         i915_verify_inactive(dev, __FILE__, __LINE__);
3642
3643         return 0;
3644 }
3645
3646 void
3647 i915_gem_object_unpin(struct drm_gem_object *obj)
3648 {
3649         struct drm_device *dev = obj->dev;
3650         drm_i915_private_t *dev_priv = dev->dev_private;
3651         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3652
3653         i915_verify_inactive(dev, __FILE__, __LINE__);
3654         obj_priv->pin_count--;
3655         BUG_ON(obj_priv->pin_count < 0);
3656         BUG_ON(obj_priv->gtt_space == NULL);
3657
3658         /* If the object is no longer pinned, and is
3659          * neither active nor being flushed, then stick it on
3660          * the inactive list
3661          */
3662         if (obj_priv->pin_count == 0) {
3663                 if (!obj_priv->active &&
3664                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3665                         list_move_tail(&obj_priv->list,
3666                                        &dev_priv->mm.inactive_list);
3667                 atomic_dec(&dev->pin_count);
3668                 atomic_sub(obj->size, &dev->pin_memory);
3669         }
3670         i915_verify_inactive(dev, __FILE__, __LINE__);
3671 }
3672
3673 int
3674 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3675                    struct drm_file *file_priv)
3676 {
3677         struct drm_i915_gem_pin *args = data;
3678         struct drm_gem_object *obj;
3679         struct drm_i915_gem_object *obj_priv;
3680         int ret;
3681
3682         mutex_lock(&dev->struct_mutex);
3683
3684         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3685         if (obj == NULL) {
3686                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3687                           args->handle);
3688                 mutex_unlock(&dev->struct_mutex);
3689                 return -EBADF;
3690         }
3691         obj_priv = obj->driver_private;
3692
3693         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3694                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3695                           args->handle);
3696                 drm_gem_object_unreference(obj);
3697                 mutex_unlock(&dev->struct_mutex);
3698                 return -EINVAL;
3699         }
3700
3701         obj_priv->user_pin_count++;
3702         obj_priv->pin_filp = file_priv;
3703         if (obj_priv->user_pin_count == 1) {
3704                 ret = i915_gem_object_pin(obj, args->alignment);
3705                 if (ret != 0) {
3706                         drm_gem_object_unreference(obj);
3707                         mutex_unlock(&dev->struct_mutex);
3708                         return ret;
3709                 }
3710         }
3711
3712         /* XXX - flush the CPU caches for pinned objects
3713          * as the X server doesn't manage domains yet
3714          */
3715         i915_gem_object_flush_cpu_write_domain(obj);
3716         args->offset = obj_priv->gtt_offset;
3717         drm_gem_object_unreference(obj);
3718         mutex_unlock(&dev->struct_mutex);
3719
3720         return 0;
3721 }
3722
3723 int
3724 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3725                      struct drm_file *file_priv)
3726 {
3727         struct drm_i915_gem_pin *args = data;
3728         struct drm_gem_object *obj;
3729         struct drm_i915_gem_object *obj_priv;
3730
3731         mutex_lock(&dev->struct_mutex);
3732
3733         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3734         if (obj == NULL) {
3735                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3736                           args->handle);
3737                 mutex_unlock(&dev->struct_mutex);
3738                 return -EBADF;
3739         }
3740
3741         obj_priv = obj->driver_private;
3742         if (obj_priv->pin_filp != file_priv) {
3743                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3744                           args->handle);
3745                 drm_gem_object_unreference(obj);
3746                 mutex_unlock(&dev->struct_mutex);
3747                 return -EINVAL;
3748         }
3749         obj_priv->user_pin_count--;
3750         if (obj_priv->user_pin_count == 0) {
3751                 obj_priv->pin_filp = NULL;
3752                 i915_gem_object_unpin(obj);
3753         }
3754
3755         drm_gem_object_unreference(obj);
3756         mutex_unlock(&dev->struct_mutex);
3757         return 0;
3758 }
3759
3760 int
3761 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3762                     struct drm_file *file_priv)
3763 {
3764         struct drm_i915_gem_busy *args = data;
3765         struct drm_gem_object *obj;
3766         struct drm_i915_gem_object *obj_priv;
3767
3768         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3769         if (obj == NULL) {
3770                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3771                           args->handle);
3772                 return -EBADF;
3773         }
3774
3775         mutex_lock(&dev->struct_mutex);
3776         /* Update the active list for the hardware's current position.
3777          * Otherwise this only updates on a delayed timer or when irqs are
3778          * actually unmasked, and our working set ends up being larger than
3779          * required.
3780          */
3781         i915_gem_retire_requests(dev);
3782
3783         obj_priv = obj->driver_private;
3784         /* Don't count being on the flushing list against the object being
3785          * done.  Otherwise, a buffer left on the flushing list but not getting
3786          * flushed (because nobody's flushing that domain) won't ever return
3787          * unbusy and get reused by libdrm's bo cache.  The other expected
3788          * consumer of this interface, OpenGL's occlusion queries, also specs
3789          * that the objects get unbusy "eventually" without any interference.
3790          */
3791         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3792
3793         drm_gem_object_unreference(obj);
3794         mutex_unlock(&dev->struct_mutex);
3795         return 0;
3796 }
3797
3798 int
3799 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3800                         struct drm_file *file_priv)
3801 {
3802     return i915_gem_ring_throttle(dev, file_priv);
3803 }
3804
3805 int i915_gem_init_object(struct drm_gem_object *obj)
3806 {
3807         struct drm_i915_gem_object *obj_priv;
3808
3809         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3810         if (obj_priv == NULL)
3811                 return -ENOMEM;
3812
3813         /*
3814          * We've just allocated pages from the kernel,
3815          * so they've just been written by the CPU with
3816          * zeros. They'll need to be clflushed before we
3817          * use them with the GPU.
3818          */
3819         obj->write_domain = I915_GEM_DOMAIN_CPU;
3820         obj->read_domains = I915_GEM_DOMAIN_CPU;
3821
3822         obj_priv->agp_type = AGP_USER_MEMORY;
3823
3824         obj->driver_private = obj_priv;
3825         obj_priv->obj = obj;
3826         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3827         INIT_LIST_HEAD(&obj_priv->list);
3828         INIT_LIST_HEAD(&obj_priv->fence_list);
3829
3830         return 0;
3831 }
3832
3833 void i915_gem_free_object(struct drm_gem_object *obj)
3834 {
3835         struct drm_device *dev = obj->dev;
3836         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3837
3838         while (obj_priv->pin_count > 0)
3839                 i915_gem_object_unpin(obj);
3840
3841         if (obj_priv->phys_obj)
3842                 i915_gem_detach_phys_object(dev, obj);
3843
3844         i915_gem_object_unbind(obj);
3845
3846         i915_gem_free_mmap_offset(obj);
3847
3848         kfree(obj_priv->page_cpu_valid);
3849         kfree(obj_priv->bit_17);
3850         kfree(obj->driver_private);
3851 }
3852
3853 /** Unbinds all objects that are on the given buffer list. */
3854 static int
3855 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3856 {
3857         struct drm_gem_object *obj;
3858         struct drm_i915_gem_object *obj_priv;
3859         int ret;
3860
3861         while (!list_empty(head)) {
3862                 obj_priv = list_first_entry(head,
3863                                             struct drm_i915_gem_object,
3864                                             list);
3865                 obj = obj_priv->obj;
3866
3867                 if (obj_priv->pin_count != 0) {
3868                         DRM_ERROR("Pinned object in unbind list\n");
3869                         mutex_unlock(&dev->struct_mutex);
3870                         return -EINVAL;
3871                 }
3872
3873                 ret = i915_gem_object_unbind(obj);
3874                 if (ret != 0) {
3875                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3876                                   ret);
3877                         mutex_unlock(&dev->struct_mutex);
3878                         return ret;
3879                 }
3880         }
3881
3882
3883         return 0;
3884 }
3885
3886 int
3887 i915_gem_idle(struct drm_device *dev)
3888 {
3889         drm_i915_private_t *dev_priv = dev->dev_private;
3890         uint32_t seqno, cur_seqno, last_seqno;
3891         int stuck, ret;
3892
3893         mutex_lock(&dev->struct_mutex);
3894
3895         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3896                 mutex_unlock(&dev->struct_mutex);
3897                 return 0;
3898         }
3899
3900         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3901          * We need to replace this with a semaphore, or something.
3902          */
3903         dev_priv->mm.suspended = 1;
3904
3905         /* Cancel the retire work handler, wait for it to finish if running
3906          */
3907         mutex_unlock(&dev->struct_mutex);
3908         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3909         mutex_lock(&dev->struct_mutex);
3910
3911         i915_kernel_lost_context(dev);
3912
3913         /* Flush the GPU along with all non-CPU write domains
3914          */
3915         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3916         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3917
3918         if (seqno == 0) {
3919                 mutex_unlock(&dev->struct_mutex);
3920                 return -ENOMEM;
3921         }
3922
3923         dev_priv->mm.waiting_gem_seqno = seqno;
3924         last_seqno = 0;
3925         stuck = 0;
3926         for (;;) {
3927                 cur_seqno = i915_get_gem_seqno(dev);
3928                 if (i915_seqno_passed(cur_seqno, seqno))
3929                         break;
3930                 if (last_seqno == cur_seqno) {
3931                         if (stuck++ > 100) {
3932                                 DRM_ERROR("hardware wedged\n");
3933                                 dev_priv->mm.wedged = 1;
3934                                 DRM_WAKEUP(&dev_priv->irq_queue);
3935                                 break;
3936                         }
3937                 }
3938                 msleep(10);
3939                 last_seqno = cur_seqno;
3940         }
3941         dev_priv->mm.waiting_gem_seqno = 0;
3942
3943         i915_gem_retire_requests(dev);
3944
3945         spin_lock(&dev_priv->mm.active_list_lock);
3946         if (!dev_priv->mm.wedged) {
3947                 /* Active and flushing should now be empty as we've
3948                  * waited for a sequence higher than any pending execbuffer
3949                  */
3950                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3951                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3952                 /* Request should now be empty as we've also waited
3953                  * for the last request in the list
3954                  */
3955                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3956         }
3957
3958         /* Empty the active and flushing lists to inactive.  If there's
3959          * anything left at this point, it means that we're wedged and
3960          * nothing good's going to happen by leaving them there.  So strip
3961          * the GPU domains and just stuff them onto inactive.
3962          */
3963         while (!list_empty(&dev_priv->mm.active_list)) {
3964                 struct drm_i915_gem_object *obj_priv;
3965
3966                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3967                                             struct drm_i915_gem_object,
3968                                             list);
3969                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3970                 i915_gem_object_move_to_inactive(obj_priv->obj);
3971         }
3972         spin_unlock(&dev_priv->mm.active_list_lock);
3973
3974         while (!list_empty(&dev_priv->mm.flushing_list)) {
3975                 struct drm_i915_gem_object *obj_priv;
3976
3977                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3978                                             struct drm_i915_gem_object,
3979                                             list);
3980                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3981                 i915_gem_object_move_to_inactive(obj_priv->obj);
3982         }
3983
3984
3985         /* Move all inactive buffers out of the GTT. */
3986         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3987         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3988         if (ret) {
3989                 mutex_unlock(&dev->struct_mutex);
3990                 return ret;
3991         }
3992
3993         i915_gem_cleanup_ringbuffer(dev);
3994         mutex_unlock(&dev->struct_mutex);
3995
3996         return 0;
3997 }
3998
3999 static int
4000 i915_gem_init_hws(struct drm_device *dev)
4001 {
4002         drm_i915_private_t *dev_priv = dev->dev_private;
4003         struct drm_gem_object *obj;
4004         struct drm_i915_gem_object *obj_priv;
4005         int ret;
4006
4007         /* If we need a physical address for the status page, it's already
4008          * initialized at driver load time.
4009          */
4010         if (!I915_NEED_GFX_HWS(dev))
4011                 return 0;
4012
4013         obj = drm_gem_object_alloc(dev, 4096);
4014         if (obj == NULL) {
4015                 DRM_ERROR("Failed to allocate status page\n");
4016                 return -ENOMEM;
4017         }
4018         obj_priv = obj->driver_private;
4019         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4020
4021         ret = i915_gem_object_pin(obj, 4096);
4022         if (ret != 0) {
4023                 drm_gem_object_unreference(obj);
4024                 return ret;
4025         }
4026
4027         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4028
4029         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4030         if (dev_priv->hw_status_page == NULL) {
4031                 DRM_ERROR("Failed to map status page.\n");
4032                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4033                 i915_gem_object_unpin(obj);
4034                 drm_gem_object_unreference(obj);
4035                 return -EINVAL;
4036         }
4037         dev_priv->hws_obj = obj;
4038         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4039         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4040         I915_READ(HWS_PGA); /* posting read */
4041         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4042
4043         return 0;
4044 }
4045
4046 static void
4047 i915_gem_cleanup_hws(struct drm_device *dev)
4048 {
4049         drm_i915_private_t *dev_priv = dev->dev_private;
4050         struct drm_gem_object *obj;
4051         struct drm_i915_gem_object *obj_priv;
4052
4053         if (dev_priv->hws_obj == NULL)
4054                 return;
4055
4056         obj = dev_priv->hws_obj;
4057         obj_priv = obj->driver_private;
4058
4059         kunmap(obj_priv->pages[0]);
4060         i915_gem_object_unpin(obj);
4061         drm_gem_object_unreference(obj);
4062         dev_priv->hws_obj = NULL;
4063
4064         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4065         dev_priv->hw_status_page = NULL;
4066
4067         /* Write high address into HWS_PGA when disabling. */
4068         I915_WRITE(HWS_PGA, 0x1ffff000);
4069 }
4070
4071 int
4072 i915_gem_init_ringbuffer(struct drm_device *dev)
4073 {
4074         drm_i915_private_t *dev_priv = dev->dev_private;
4075         struct drm_gem_object *obj;
4076         struct drm_i915_gem_object *obj_priv;
4077         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4078         int ret;
4079         u32 head;
4080
4081         ret = i915_gem_init_hws(dev);
4082         if (ret != 0)
4083                 return ret;
4084
4085         obj = drm_gem_object_alloc(dev, 128 * 1024);
4086         if (obj == NULL) {
4087                 DRM_ERROR("Failed to allocate ringbuffer\n");
4088                 i915_gem_cleanup_hws(dev);
4089                 return -ENOMEM;
4090         }
4091         obj_priv = obj->driver_private;
4092
4093         ret = i915_gem_object_pin(obj, 4096);
4094         if (ret != 0) {
4095                 drm_gem_object_unreference(obj);
4096                 i915_gem_cleanup_hws(dev);
4097                 return ret;
4098         }
4099
4100         /* Set up the kernel mapping for the ring. */
4101         ring->Size = obj->size;
4102         ring->tail_mask = obj->size - 1;
4103
4104         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4105         ring->map.size = obj->size;
4106         ring->map.type = 0;
4107         ring->map.flags = 0;
4108         ring->map.mtrr = 0;
4109
4110         drm_core_ioremap_wc(&ring->map, dev);
4111         if (ring->map.handle == NULL) {
4112                 DRM_ERROR("Failed to map ringbuffer.\n");
4113                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4114                 i915_gem_object_unpin(obj);
4115                 drm_gem_object_unreference(obj);
4116                 i915_gem_cleanup_hws(dev);
4117                 return -EINVAL;
4118         }
4119         ring->ring_obj = obj;
4120         ring->virtual_start = ring->map.handle;
4121
4122         /* Stop the ring if it's running. */
4123         I915_WRITE(PRB0_CTL, 0);
4124         I915_WRITE(PRB0_TAIL, 0);
4125         I915_WRITE(PRB0_HEAD, 0);
4126
4127         /* Initialize the ring. */
4128         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4129         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4130
4131         /* G45 ring initialization fails to reset head to zero */
4132         if (head != 0) {
4133                 DRM_ERROR("Ring head not reset to zero "
4134                           "ctl %08x head %08x tail %08x start %08x\n",
4135                           I915_READ(PRB0_CTL),
4136                           I915_READ(PRB0_HEAD),
4137                           I915_READ(PRB0_TAIL),
4138                           I915_READ(PRB0_START));
4139                 I915_WRITE(PRB0_HEAD, 0);
4140
4141                 DRM_ERROR("Ring head forced to zero "
4142                           "ctl %08x head %08x tail %08x start %08x\n",
4143                           I915_READ(PRB0_CTL),
4144                           I915_READ(PRB0_HEAD),
4145                           I915_READ(PRB0_TAIL),
4146                           I915_READ(PRB0_START));
4147         }
4148
4149         I915_WRITE(PRB0_CTL,
4150                    ((obj->size - 4096) & RING_NR_PAGES) |
4151                    RING_NO_REPORT |
4152                    RING_VALID);
4153
4154         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4155
4156         /* If the head is still not zero, the ring is dead */
4157         if (head != 0) {
4158                 DRM_ERROR("Ring initialization failed "
4159                           "ctl %08x head %08x tail %08x start %08x\n",
4160                           I915_READ(PRB0_CTL),
4161                           I915_READ(PRB0_HEAD),
4162                           I915_READ(PRB0_TAIL),
4163                           I915_READ(PRB0_START));
4164                 return -EIO;
4165         }
4166
4167         /* Update our cache of the ring state */
4168         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4169                 i915_kernel_lost_context(dev);
4170         else {
4171                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4172                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4173                 ring->space = ring->head - (ring->tail + 8);
4174                 if (ring->space < 0)
4175                         ring->space += ring->Size;
4176         }
4177
4178         return 0;
4179 }
4180
4181 void
4182 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4183 {
4184         drm_i915_private_t *dev_priv = dev->dev_private;
4185
4186         if (dev_priv->ring.ring_obj == NULL)
4187                 return;
4188
4189         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4190
4191         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4192         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4193         dev_priv->ring.ring_obj = NULL;
4194         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4195
4196         i915_gem_cleanup_hws(dev);
4197 }
4198
4199 int
4200 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4201                        struct drm_file *file_priv)
4202 {
4203         drm_i915_private_t *dev_priv = dev->dev_private;
4204         int ret;
4205
4206         if (drm_core_check_feature(dev, DRIVER_MODESET))
4207                 return 0;
4208
4209         if (dev_priv->mm.wedged) {
4210                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4211                 dev_priv->mm.wedged = 0;
4212         }
4213
4214         mutex_lock(&dev->struct_mutex);
4215         dev_priv->mm.suspended = 0;
4216
4217         ret = i915_gem_init_ringbuffer(dev);
4218         if (ret != 0) {
4219                 mutex_unlock(&dev->struct_mutex);
4220                 return ret;
4221         }
4222
4223         spin_lock(&dev_priv->mm.active_list_lock);
4224         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4225         spin_unlock(&dev_priv->mm.active_list_lock);
4226
4227         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4228         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4229         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4230         mutex_unlock(&dev->struct_mutex);
4231
4232         drm_irq_install(dev);
4233
4234         return 0;
4235 }
4236
4237 int
4238 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4239                        struct drm_file *file_priv)
4240 {
4241         int ret;
4242
4243         if (drm_core_check_feature(dev, DRIVER_MODESET))
4244                 return 0;
4245
4246         ret = i915_gem_idle(dev);
4247         drm_irq_uninstall(dev);
4248
4249         return ret;
4250 }
4251
4252 void
4253 i915_gem_lastclose(struct drm_device *dev)
4254 {
4255         int ret;
4256
4257         if (drm_core_check_feature(dev, DRIVER_MODESET))
4258                 return;
4259
4260         ret = i915_gem_idle(dev);
4261         if (ret)
4262                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4263 }
4264
4265 void
4266 i915_gem_load(struct drm_device *dev)
4267 {
4268         int i;
4269         drm_i915_private_t *dev_priv = dev->dev_private;
4270
4271         spin_lock_init(&dev_priv->mm.active_list_lock);
4272         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4273         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4274         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4275         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4276         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4277         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4278                           i915_gem_retire_work_handler);
4279         dev_priv->mm.next_gem_seqno = 1;
4280
4281         /* Old X drivers will take 0-2 for front, back, depth buffers */
4282         dev_priv->fence_reg_start = 3;
4283
4284         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4285                 dev_priv->num_fence_regs = 16;
4286         else
4287                 dev_priv->num_fence_regs = 8;
4288
4289         /* Initialize fence registers to zero */
4290         if (IS_I965G(dev)) {
4291                 for (i = 0; i < 16; i++)
4292                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4293         } else {
4294                 for (i = 0; i < 8; i++)
4295                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4296                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4297                         for (i = 0; i < 8; i++)
4298                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4299         }
4300
4301         i915_gem_detect_bit_6_swizzle(dev);
4302 }
4303
4304 /*
4305  * Create a physically contiguous memory object for this object
4306  * e.g. for cursor + overlay regs
4307  */
4308 int i915_gem_init_phys_object(struct drm_device *dev,
4309                               int id, int size)
4310 {
4311         drm_i915_private_t *dev_priv = dev->dev_private;
4312         struct drm_i915_gem_phys_object *phys_obj;
4313         int ret;
4314
4315         if (dev_priv->mm.phys_objs[id - 1] || !size)
4316                 return 0;
4317
4318         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4319         if (!phys_obj)
4320                 return -ENOMEM;
4321
4322         phys_obj->id = id;
4323
4324         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4325         if (!phys_obj->handle) {
4326                 ret = -ENOMEM;
4327                 goto kfree_obj;
4328         }
4329 #ifdef CONFIG_X86
4330         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4331 #endif
4332
4333         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4334
4335         return 0;
4336 kfree_obj:
4337         kfree(phys_obj);
4338         return ret;
4339 }
4340
4341 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4342 {
4343         drm_i915_private_t *dev_priv = dev->dev_private;
4344         struct drm_i915_gem_phys_object *phys_obj;
4345
4346         if (!dev_priv->mm.phys_objs[id - 1])
4347                 return;
4348
4349         phys_obj = dev_priv->mm.phys_objs[id - 1];
4350         if (phys_obj->cur_obj) {
4351                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4352         }
4353
4354 #ifdef CONFIG_X86
4355         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4356 #endif
4357         drm_pci_free(dev, phys_obj->handle);
4358         kfree(phys_obj);
4359         dev_priv->mm.phys_objs[id - 1] = NULL;
4360 }
4361
4362 void i915_gem_free_all_phys_object(struct drm_device *dev)
4363 {
4364         int i;
4365
4366         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4367                 i915_gem_free_phys_object(dev, i);
4368 }
4369
4370 void i915_gem_detach_phys_object(struct drm_device *dev,
4371                                  struct drm_gem_object *obj)
4372 {
4373         struct drm_i915_gem_object *obj_priv;
4374         int i;
4375         int ret;
4376         int page_count;
4377
4378         obj_priv = obj->driver_private;
4379         if (!obj_priv->phys_obj)
4380                 return;
4381
4382         ret = i915_gem_object_get_pages(obj);
4383         if (ret)
4384                 goto out;
4385
4386         page_count = obj->size / PAGE_SIZE;
4387
4388         for (i = 0; i < page_count; i++) {
4389                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4390                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4391
4392                 memcpy(dst, src, PAGE_SIZE);
4393                 kunmap_atomic(dst, KM_USER0);
4394         }
4395         drm_clflush_pages(obj_priv->pages, page_count);
4396         drm_agp_chipset_flush(dev);
4397
4398         i915_gem_object_put_pages(obj);
4399 out:
4400         obj_priv->phys_obj->cur_obj = NULL;
4401         obj_priv->phys_obj = NULL;
4402 }
4403
4404 int
4405 i915_gem_attach_phys_object(struct drm_device *dev,
4406                             struct drm_gem_object *obj, int id)
4407 {
4408         drm_i915_private_t *dev_priv = dev->dev_private;
4409         struct drm_i915_gem_object *obj_priv;
4410         int ret = 0;
4411         int page_count;
4412         int i;
4413
4414         if (id > I915_MAX_PHYS_OBJECT)
4415                 return -EINVAL;
4416
4417         obj_priv = obj->driver_private;
4418
4419         if (obj_priv->phys_obj) {
4420                 if (obj_priv->phys_obj->id == id)
4421                         return 0;
4422                 i915_gem_detach_phys_object(dev, obj);
4423         }
4424
4425
4426         /* create a new object */
4427         if (!dev_priv->mm.phys_objs[id - 1]) {
4428                 ret = i915_gem_init_phys_object(dev, id,
4429                                                 obj->size);
4430                 if (ret) {
4431                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4432                         goto out;
4433                 }
4434         }
4435
4436         /* bind to the object */
4437         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4438         obj_priv->phys_obj->cur_obj = obj;
4439
4440         ret = i915_gem_object_get_pages(obj);
4441         if (ret) {
4442                 DRM_ERROR("failed to get page list\n");
4443                 goto out;
4444         }
4445
4446         page_count = obj->size / PAGE_SIZE;
4447
4448         for (i = 0; i < page_count; i++) {
4449                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4450                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4451
4452                 memcpy(dst, src, PAGE_SIZE);
4453                 kunmap_atomic(src, KM_USER0);
4454         }
4455
4456         i915_gem_object_put_pages(obj);
4457
4458         return 0;
4459 out:
4460         return ret;
4461 }
4462
4463 static int
4464 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4465                      struct drm_i915_gem_pwrite *args,
4466                      struct drm_file *file_priv)
4467 {
4468         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4469         void *obj_addr;
4470         int ret;
4471         char __user *user_data;
4472
4473         user_data = (char __user *) (uintptr_t) args->data_ptr;
4474         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4475
4476         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4477         ret = copy_from_user(obj_addr, user_data, args->size);
4478         if (ret)
4479                 return -EFAULT;
4480
4481         drm_agp_chipset_flush(dev);
4482         return 0;
4483 }
4484
4485 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4486 {
4487         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4488
4489         /* Clean up our request list when the client is going away, so that
4490          * later retire_requests won't dereference our soon-to-be-gone
4491          * file_priv.
4492          */
4493         mutex_lock(&dev->struct_mutex);
4494         while (!list_empty(&i915_file_priv->mm.request_list))
4495                 list_del_init(i915_file_priv->mm.request_list.next);
4496         mutex_unlock(&dev->struct_mutex);
4497 }