2571d1f543ef46980379c8738ea94c83cd5ea1d9
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         drm_gem_object_handle_unreference_unlocked(obj);
132
133         if (ret)
134                 return ret;
135
136         args->handle = handle;
137
138         return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143                 loff_t page_base, int page_offset,
144                 char __user *data,
145                 int length)
146 {
147         char __iomem *vaddr;
148         int unwritten;
149
150         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151         if (vaddr == NULL)
152                 return -ENOMEM;
153         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154         kunmap_atomic(vaddr, KM_USER0);
155
156         if (unwritten)
157                 return -EFAULT;
158
159         return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164         drm_i915_private_t *dev_priv = obj->dev->dev_private;
165         struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168                 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173                 int dst_offset,
174                 struct page *src_page,
175                 int src_offset,
176                 int length)
177 {
178         char *dst_vaddr, *src_vaddr;
179
180         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181         if (dst_vaddr == NULL)
182                 return -ENOMEM;
183
184         src_vaddr = kmap_atomic(src_page, KM_USER1);
185         if (src_vaddr == NULL) {
186                 kunmap_atomic(dst_vaddr, KM_USER0);
187                 return -ENOMEM;
188         }
189
190         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192         kunmap_atomic(src_vaddr, KM_USER1);
193         kunmap_atomic(dst_vaddr, KM_USER0);
194
195         return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200                       int gpu_offset,
201                       struct page *cpu_page,
202                       int cpu_offset,
203                       int length,
204                       int is_read)
205 {
206         char *gpu_vaddr, *cpu_vaddr;
207
208         /* Use the unswizzled path if this page isn't affected. */
209         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210                 if (is_read)
211                         return slow_shmem_copy(cpu_page, cpu_offset,
212                                                gpu_page, gpu_offset, length);
213                 else
214                         return slow_shmem_copy(gpu_page, gpu_offset,
215                                                cpu_page, cpu_offset, length);
216         }
217
218         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219         if (gpu_vaddr == NULL)
220                 return -ENOMEM;
221
222         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223         if (cpu_vaddr == NULL) {
224                 kunmap_atomic(gpu_vaddr, KM_USER0);
225                 return -ENOMEM;
226         }
227
228         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229          * XORing with the other bits (A9 for Y, A9 and A10 for X)
230          */
231         while (length > 0) {
232                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233                 int this_length = min(cacheline_end - gpu_offset, length);
234                 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236                 if (is_read) {
237                         memcpy(cpu_vaddr + cpu_offset,
238                                gpu_vaddr + swizzled_gpu_offset,
239                                this_length);
240                 } else {
241                         memcpy(gpu_vaddr + swizzled_gpu_offset,
242                                cpu_vaddr + cpu_offset,
243                                this_length);
244                 }
245                 cpu_offset += this_length;
246                 gpu_offset += this_length;
247                 length -= this_length;
248         }
249
250         kunmap_atomic(cpu_vaddr, KM_USER1);
251         kunmap_atomic(gpu_vaddr, KM_USER0);
252
253         return 0;
254 }
255
256 /**
257  * This is the fast shmem pread path, which attempts to copy_from_user directly
258  * from the backing pages of the object to the user's address space.  On a
259  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260  */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263                           struct drm_i915_gem_pread *args,
264                           struct drm_file *file_priv)
265 {
266         struct drm_i915_gem_object *obj_priv = obj->driver_private;
267         ssize_t remain;
268         loff_t offset, page_base;
269         char __user *user_data;
270         int page_offset, page_length;
271         int ret;
272
273         user_data = (char __user *) (uintptr_t) args->data_ptr;
274         remain = args->size;
275
276         mutex_lock(&dev->struct_mutex);
277
278         ret = i915_gem_object_get_pages(obj, 0);
279         if (ret != 0)
280                 goto fail_unlock;
281
282         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283                                                         args->size);
284         if (ret != 0)
285                 goto fail_put_pages;
286
287         obj_priv = obj->driver_private;
288         offset = args->offset;
289
290         while (remain > 0) {
291                 /* Operation in this page
292                  *
293                  * page_base = page offset within aperture
294                  * page_offset = offset within page
295                  * page_length = bytes to copy for this page
296                  */
297                 page_base = (offset & ~(PAGE_SIZE-1));
298                 page_offset = offset & (PAGE_SIZE-1);
299                 page_length = remain;
300                 if ((page_offset + remain) > PAGE_SIZE)
301                         page_length = PAGE_SIZE - page_offset;
302
303                 ret = fast_shmem_read(obj_priv->pages,
304                                       page_base, page_offset,
305                                       user_data, page_length);
306                 if (ret)
307                         goto fail_put_pages;
308
309                 remain -= page_length;
310                 user_data += page_length;
311                 offset += page_length;
312         }
313
314 fail_put_pages:
315         i915_gem_object_put_pages(obj);
316 fail_unlock:
317         mutex_unlock(&dev->struct_mutex);
318
319         return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325         int ret;
326
327         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329         /* If we've insufficient memory to map in the pages, attempt
330          * to make some space by throwing out some old buffers.
331          */
332         if (ret == -ENOMEM) {
333                 struct drm_device *dev = obj->dev;
334
335                 ret = i915_gem_evict_something(dev, obj->size);
336                 if (ret)
337                         return ret;
338
339                 ret = i915_gem_object_get_pages(obj, 0);
340         }
341
342         return ret;
343 }
344
345 /**
346  * This is the fallback shmem pread path, which allocates temporary storage
347  * in kernel space to copy_to_user into outside of the struct_mutex, so we
348  * can copy out of the object's backing pages while holding the struct mutex
349  * and not take page faults.
350  */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353                           struct drm_i915_gem_pread *args,
354                           struct drm_file *file_priv)
355 {
356         struct drm_i915_gem_object *obj_priv = obj->driver_private;
357         struct mm_struct *mm = current->mm;
358         struct page **user_pages;
359         ssize_t remain;
360         loff_t offset, pinned_pages, i;
361         loff_t first_data_page, last_data_page, num_pages;
362         int shmem_page_index, shmem_page_offset;
363         int data_page_index,  data_page_offset;
364         int page_length;
365         int ret;
366         uint64_t data_ptr = args->data_ptr;
367         int do_bit17_swizzling;
368
369         remain = args->size;
370
371         /* Pin the user pages containing the data.  We can't fault while
372          * holding the struct mutex, yet we want to hold it while
373          * dereferencing the user data.
374          */
375         first_data_page = data_ptr / PAGE_SIZE;
376         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377         num_pages = last_data_page - first_data_page + 1;
378
379         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380         if (user_pages == NULL)
381                 return -ENOMEM;
382
383         down_read(&mm->mmap_sem);
384         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385                                       num_pages, 1, 0, user_pages, NULL);
386         up_read(&mm->mmap_sem);
387         if (pinned_pages < num_pages) {
388                 ret = -EFAULT;
389                 goto fail_put_user_pages;
390         }
391
392         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394         mutex_lock(&dev->struct_mutex);
395
396         ret = i915_gem_object_get_pages_or_evict(obj);
397         if (ret)
398                 goto fail_unlock;
399
400         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401                                                         args->size);
402         if (ret != 0)
403                 goto fail_put_pages;
404
405         obj_priv = obj->driver_private;
406         offset = args->offset;
407
408         while (remain > 0) {
409                 /* Operation in this page
410                  *
411                  * shmem_page_index = page number within shmem file
412                  * shmem_page_offset = offset within page in shmem file
413                  * data_page_index = page number in get_user_pages return
414                  * data_page_offset = offset with data_page_index page.
415                  * page_length = bytes to copy for this page
416                  */
417                 shmem_page_index = offset / PAGE_SIZE;
418                 shmem_page_offset = offset & ~PAGE_MASK;
419                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420                 data_page_offset = data_ptr & ~PAGE_MASK;
421
422                 page_length = remain;
423                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424                         page_length = PAGE_SIZE - shmem_page_offset;
425                 if ((data_page_offset + page_length) > PAGE_SIZE)
426                         page_length = PAGE_SIZE - data_page_offset;
427
428                 if (do_bit17_swizzling) {
429                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430                                                     shmem_page_offset,
431                                                     user_pages[data_page_index],
432                                                     data_page_offset,
433                                                     page_length,
434                                                     1);
435                 } else {
436                         ret = slow_shmem_copy(user_pages[data_page_index],
437                                               data_page_offset,
438                                               obj_priv->pages[shmem_page_index],
439                                               shmem_page_offset,
440                                               page_length);
441                 }
442                 if (ret)
443                         goto fail_put_pages;
444
445                 remain -= page_length;
446                 data_ptr += page_length;
447                 offset += page_length;
448         }
449
450 fail_put_pages:
451         i915_gem_object_put_pages(obj);
452 fail_unlock:
453         mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455         for (i = 0; i < pinned_pages; i++) {
456                 SetPageDirty(user_pages[i]);
457                 page_cache_release(user_pages[i]);
458         }
459         drm_free_large(user_pages);
460
461         return ret;
462 }
463
464 /**
465  * Reads data from the object referenced by handle.
466  *
467  * On error, the contents of *data are undefined.
468  */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471                      struct drm_file *file_priv)
472 {
473         struct drm_i915_gem_pread *args = data;
474         struct drm_gem_object *obj;
475         struct drm_i915_gem_object *obj_priv;
476         int ret;
477
478         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479         if (obj == NULL)
480                 return -EBADF;
481         obj_priv = obj->driver_private;
482
483         /* Bounds check source.
484          *
485          * XXX: This could use review for overflow issues...
486          */
487         if (args->offset > obj->size || args->size > obj->size ||
488             args->offset + args->size > obj->size) {
489                 drm_gem_object_unreference_unlocked(obj);
490                 return -EINVAL;
491         }
492
493         if (i915_gem_object_needs_bit17_swizzle(obj)) {
494                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495         } else {
496                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497                 if (ret != 0)
498                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
499                                                         file_priv);
500         }
501
502         drm_gem_object_unreference_unlocked(obj);
503
504         return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508  * page faults in the source data
509  */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513                 loff_t page_base, int page_offset,
514                 char __user *user_data,
515                 int length)
516 {
517         char *vaddr_atomic;
518         unsigned long unwritten;
519
520         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522                                                       user_data, length);
523         io_mapping_unmap_atomic(vaddr_atomic);
524         if (unwritten)
525                 return -EFAULT;
526         return 0;
527 }
528
529 /* Here's the write path which can sleep for
530  * page faults
531  */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535                   loff_t gtt_base, int gtt_offset,
536                   struct page *user_page, int user_offset,
537                   int length)
538 {
539         char *src_vaddr, *dst_vaddr;
540         unsigned long unwritten;
541
542         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543         src_vaddr = kmap_atomic(user_page, KM_USER1);
544         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545                                                       src_vaddr + user_offset,
546                                                       length);
547         kunmap_atomic(src_vaddr, KM_USER1);
548         io_mapping_unmap_atomic(dst_vaddr);
549         if (unwritten)
550                 return -EFAULT;
551         return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556                  loff_t page_base, int page_offset,
557                  char __user *data,
558                  int length)
559 {
560         char __iomem *vaddr;
561         unsigned long unwritten;
562
563         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564         if (vaddr == NULL)
565                 return -ENOMEM;
566         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567         kunmap_atomic(vaddr, KM_USER0);
568
569         if (unwritten)
570                 return -EFAULT;
571         return 0;
572 }
573
574 /**
575  * This is the fast pwrite path, where we copy the data directly from the
576  * user into the GTT, uncached.
577  */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580                          struct drm_i915_gem_pwrite *args,
581                          struct drm_file *file_priv)
582 {
583         struct drm_i915_gem_object *obj_priv = obj->driver_private;
584         drm_i915_private_t *dev_priv = dev->dev_private;
585         ssize_t remain;
586         loff_t offset, page_base;
587         char __user *user_data;
588         int page_offset, page_length;
589         int ret;
590
591         user_data = (char __user *) (uintptr_t) args->data_ptr;
592         remain = args->size;
593         if (!access_ok(VERIFY_READ, user_data, remain))
594                 return -EFAULT;
595
596
597         mutex_lock(&dev->struct_mutex);
598         ret = i915_gem_object_pin(obj, 0);
599         if (ret) {
600                 mutex_unlock(&dev->struct_mutex);
601                 return ret;
602         }
603         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604         if (ret)
605                 goto fail;
606
607         obj_priv = obj->driver_private;
608         offset = obj_priv->gtt_offset + args->offset;
609
610         while (remain > 0) {
611                 /* Operation in this page
612                  *
613                  * page_base = page offset within aperture
614                  * page_offset = offset within page
615                  * page_length = bytes to copy for this page
616                  */
617                 page_base = (offset & ~(PAGE_SIZE-1));
618                 page_offset = offset & (PAGE_SIZE-1);
619                 page_length = remain;
620                 if ((page_offset + remain) > PAGE_SIZE)
621                         page_length = PAGE_SIZE - page_offset;
622
623                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624                                        page_offset, user_data, page_length);
625
626                 /* If we get a fault while copying data, then (presumably) our
627                  * source page isn't available.  Return the error and we'll
628                  * retry in the slow path.
629                  */
630                 if (ret)
631                         goto fail;
632
633                 remain -= page_length;
634                 user_data += page_length;
635                 offset += page_length;
636         }
637
638 fail:
639         i915_gem_object_unpin(obj);
640         mutex_unlock(&dev->struct_mutex);
641
642         return ret;
643 }
644
645 /**
646  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647  * the memory and maps it using kmap_atomic for copying.
648  *
649  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651  */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654                          struct drm_i915_gem_pwrite *args,
655                          struct drm_file *file_priv)
656 {
657         struct drm_i915_gem_object *obj_priv = obj->driver_private;
658         drm_i915_private_t *dev_priv = dev->dev_private;
659         ssize_t remain;
660         loff_t gtt_page_base, offset;
661         loff_t first_data_page, last_data_page, num_pages;
662         loff_t pinned_pages, i;
663         struct page **user_pages;
664         struct mm_struct *mm = current->mm;
665         int gtt_page_offset, data_page_offset, data_page_index, page_length;
666         int ret;
667         uint64_t data_ptr = args->data_ptr;
668
669         remain = args->size;
670
671         /* Pin the user pages containing the data.  We can't fault while
672          * holding the struct mutex, and all of the pwrite implementations
673          * want to hold it while dereferencing the user data.
674          */
675         first_data_page = data_ptr / PAGE_SIZE;
676         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677         num_pages = last_data_page - first_data_page + 1;
678
679         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680         if (user_pages == NULL)
681                 return -ENOMEM;
682
683         down_read(&mm->mmap_sem);
684         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685                                       num_pages, 0, 0, user_pages, NULL);
686         up_read(&mm->mmap_sem);
687         if (pinned_pages < num_pages) {
688                 ret = -EFAULT;
689                 goto out_unpin_pages;
690         }
691
692         mutex_lock(&dev->struct_mutex);
693         ret = i915_gem_object_pin(obj, 0);
694         if (ret)
695                 goto out_unlock;
696
697         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698         if (ret)
699                 goto out_unpin_object;
700
701         obj_priv = obj->driver_private;
702         offset = obj_priv->gtt_offset + args->offset;
703
704         while (remain > 0) {
705                 /* Operation in this page
706                  *
707                  * gtt_page_base = page offset within aperture
708                  * gtt_page_offset = offset within page in aperture
709                  * data_page_index = page number in get_user_pages return
710                  * data_page_offset = offset with data_page_index page.
711                  * page_length = bytes to copy for this page
712                  */
713                 gtt_page_base = offset & PAGE_MASK;
714                 gtt_page_offset = offset & ~PAGE_MASK;
715                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716                 data_page_offset = data_ptr & ~PAGE_MASK;
717
718                 page_length = remain;
719                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720                         page_length = PAGE_SIZE - gtt_page_offset;
721                 if ((data_page_offset + page_length) > PAGE_SIZE)
722                         page_length = PAGE_SIZE - data_page_offset;
723
724                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725                                         gtt_page_base, gtt_page_offset,
726                                         user_pages[data_page_index],
727                                         data_page_offset,
728                                         page_length);
729
730                 /* If we get a fault while copying data, then (presumably) our
731                  * source page isn't available.  Return the error and we'll
732                  * retry in the slow path.
733                  */
734                 if (ret)
735                         goto out_unpin_object;
736
737                 remain -= page_length;
738                 offset += page_length;
739                 data_ptr += page_length;
740         }
741
742 out_unpin_object:
743         i915_gem_object_unpin(obj);
744 out_unlock:
745         mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747         for (i = 0; i < pinned_pages; i++)
748                 page_cache_release(user_pages[i]);
749         drm_free_large(user_pages);
750
751         return ret;
752 }
753
754 /**
755  * This is the fast shmem pwrite path, which attempts to directly
756  * copy_from_user into the kmapped pages backing the object.
757  */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760                            struct drm_i915_gem_pwrite *args,
761                            struct drm_file *file_priv)
762 {
763         struct drm_i915_gem_object *obj_priv = obj->driver_private;
764         ssize_t remain;
765         loff_t offset, page_base;
766         char __user *user_data;
767         int page_offset, page_length;
768         int ret;
769
770         user_data = (char __user *) (uintptr_t) args->data_ptr;
771         remain = args->size;
772
773         mutex_lock(&dev->struct_mutex);
774
775         ret = i915_gem_object_get_pages(obj, 0);
776         if (ret != 0)
777                 goto fail_unlock;
778
779         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780         if (ret != 0)
781                 goto fail_put_pages;
782
783         obj_priv = obj->driver_private;
784         offset = args->offset;
785         obj_priv->dirty = 1;
786
787         while (remain > 0) {
788                 /* Operation in this page
789                  *
790                  * page_base = page offset within aperture
791                  * page_offset = offset within page
792                  * page_length = bytes to copy for this page
793                  */
794                 page_base = (offset & ~(PAGE_SIZE-1));
795                 page_offset = offset & (PAGE_SIZE-1);
796                 page_length = remain;
797                 if ((page_offset + remain) > PAGE_SIZE)
798                         page_length = PAGE_SIZE - page_offset;
799
800                 ret = fast_shmem_write(obj_priv->pages,
801                                        page_base, page_offset,
802                                        user_data, page_length);
803                 if (ret)
804                         goto fail_put_pages;
805
806                 remain -= page_length;
807                 user_data += page_length;
808                 offset += page_length;
809         }
810
811 fail_put_pages:
812         i915_gem_object_put_pages(obj);
813 fail_unlock:
814         mutex_unlock(&dev->struct_mutex);
815
816         return ret;
817 }
818
819 /**
820  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821  * the memory and maps it using kmap_atomic for copying.
822  *
823  * This avoids taking mmap_sem for faulting on the user's address while the
824  * struct_mutex is held.
825  */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828                            struct drm_i915_gem_pwrite *args,
829                            struct drm_file *file_priv)
830 {
831         struct drm_i915_gem_object *obj_priv = obj->driver_private;
832         struct mm_struct *mm = current->mm;
833         struct page **user_pages;
834         ssize_t remain;
835         loff_t offset, pinned_pages, i;
836         loff_t first_data_page, last_data_page, num_pages;
837         int shmem_page_index, shmem_page_offset;
838         int data_page_index,  data_page_offset;
839         int page_length;
840         int ret;
841         uint64_t data_ptr = args->data_ptr;
842         int do_bit17_swizzling;
843
844         remain = args->size;
845
846         /* Pin the user pages containing the data.  We can't fault while
847          * holding the struct mutex, and all of the pwrite implementations
848          * want to hold it while dereferencing the user data.
849          */
850         first_data_page = data_ptr / PAGE_SIZE;
851         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852         num_pages = last_data_page - first_data_page + 1;
853
854         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855         if (user_pages == NULL)
856                 return -ENOMEM;
857
858         down_read(&mm->mmap_sem);
859         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860                                       num_pages, 0, 0, user_pages, NULL);
861         up_read(&mm->mmap_sem);
862         if (pinned_pages < num_pages) {
863                 ret = -EFAULT;
864                 goto fail_put_user_pages;
865         }
866
867         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869         mutex_lock(&dev->struct_mutex);
870
871         ret = i915_gem_object_get_pages_or_evict(obj);
872         if (ret)
873                 goto fail_unlock;
874
875         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876         if (ret != 0)
877                 goto fail_put_pages;
878
879         obj_priv = obj->driver_private;
880         offset = args->offset;
881         obj_priv->dirty = 1;
882
883         while (remain > 0) {
884                 /* Operation in this page
885                  *
886                  * shmem_page_index = page number within shmem file
887                  * shmem_page_offset = offset within page in shmem file
888                  * data_page_index = page number in get_user_pages return
889                  * data_page_offset = offset with data_page_index page.
890                  * page_length = bytes to copy for this page
891                  */
892                 shmem_page_index = offset / PAGE_SIZE;
893                 shmem_page_offset = offset & ~PAGE_MASK;
894                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895                 data_page_offset = data_ptr & ~PAGE_MASK;
896
897                 page_length = remain;
898                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899                         page_length = PAGE_SIZE - shmem_page_offset;
900                 if ((data_page_offset + page_length) > PAGE_SIZE)
901                         page_length = PAGE_SIZE - data_page_offset;
902
903                 if (do_bit17_swizzling) {
904                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905                                                     shmem_page_offset,
906                                                     user_pages[data_page_index],
907                                                     data_page_offset,
908                                                     page_length,
909                                                     0);
910                 } else {
911                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912                                               shmem_page_offset,
913                                               user_pages[data_page_index],
914                                               data_page_offset,
915                                               page_length);
916                 }
917                 if (ret)
918                         goto fail_put_pages;
919
920                 remain -= page_length;
921                 data_ptr += page_length;
922                 offset += page_length;
923         }
924
925 fail_put_pages:
926         i915_gem_object_put_pages(obj);
927 fail_unlock:
928         mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930         for (i = 0; i < pinned_pages; i++)
931                 page_cache_release(user_pages[i]);
932         drm_free_large(user_pages);
933
934         return ret;
935 }
936
937 /**
938  * Writes data to the object referenced by handle.
939  *
940  * On error, the contents of the buffer that were to be modified are undefined.
941  */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944                       struct drm_file *file_priv)
945 {
946         struct drm_i915_gem_pwrite *args = data;
947         struct drm_gem_object *obj;
948         struct drm_i915_gem_object *obj_priv;
949         int ret = 0;
950
951         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952         if (obj == NULL)
953                 return -EBADF;
954         obj_priv = obj->driver_private;
955
956         /* Bounds check destination.
957          *
958          * XXX: This could use review for overflow issues...
959          */
960         if (args->offset > obj->size || args->size > obj->size ||
961             args->offset + args->size > obj->size) {
962                 drm_gem_object_unreference_unlocked(obj);
963                 return -EINVAL;
964         }
965
966         /* We can only do the GTT pwrite on untiled buffers, as otherwise
967          * it would end up going through the fenced access, and we'll get
968          * different detiling behavior between reading and writing.
969          * pread/pwrite currently are reading and writing from the CPU
970          * perspective, requiring manual detiling by the client.
971          */
972         if (obj_priv->phys_obj)
973                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975                  dev->gtt_total != 0) {
976                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977                 if (ret == -EFAULT) {
978                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979                                                        file_priv);
980                 }
981         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983         } else {
984                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985                 if (ret == -EFAULT) {
986                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987                                                          file_priv);
988                 }
989         }
990
991 #if WATCH_PWRITE
992         if (ret)
993                 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996         drm_gem_object_unreference_unlocked(obj);
997
998         return ret;
999 }
1000
1001 /**
1002  * Called when user space prepares to use an object with the CPU, either
1003  * through the mmap ioctl's mapping or a GTT mapping.
1004  */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007                           struct drm_file *file_priv)
1008 {
1009         struct drm_i915_private *dev_priv = dev->dev_private;
1010         struct drm_i915_gem_set_domain *args = data;
1011         struct drm_gem_object *obj;
1012         struct drm_i915_gem_object *obj_priv;
1013         uint32_t read_domains = args->read_domains;
1014         uint32_t write_domain = args->write_domain;
1015         int ret;
1016
1017         if (!(dev->driver->driver_features & DRIVER_GEM))
1018                 return -ENODEV;
1019
1020         /* Only handle setting domains to types used by the CPU. */
1021         if (write_domain & I915_GEM_GPU_DOMAINS)
1022                 return -EINVAL;
1023
1024         if (read_domains & I915_GEM_GPU_DOMAINS)
1025                 return -EINVAL;
1026
1027         /* Having something in the write domain implies it's in the read
1028          * domain, and only that read domain.  Enforce that in the request.
1029          */
1030         if (write_domain != 0 && read_domains != write_domain)
1031                 return -EINVAL;
1032
1033         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034         if (obj == NULL)
1035                 return -EBADF;
1036         obj_priv = obj->driver_private;
1037
1038         mutex_lock(&dev->struct_mutex);
1039
1040         intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044                  obj, obj->size, read_domains, write_domain);
1045 #endif
1046         if (read_domains & I915_GEM_DOMAIN_GTT) {
1047                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049                 /* Update the LRU on the fence for the CPU access that's
1050                  * about to occur.
1051                  */
1052                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053                         list_move_tail(&obj_priv->fence_list,
1054                                        &dev_priv->mm.fence_list);
1055                 }
1056
1057                 /* Silently promote "you're not bound, there was nothing to do"
1058                  * to success, since the client was just asking us to
1059                  * make sure everything was done.
1060                  */
1061                 if (ret == -EINVAL)
1062                         ret = 0;
1063         } else {
1064                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065         }
1066
1067         drm_gem_object_unreference(obj);
1068         mutex_unlock(&dev->struct_mutex);
1069         return ret;
1070 }
1071
1072 /**
1073  * Called when user space has done writes to this buffer
1074  */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077                       struct drm_file *file_priv)
1078 {
1079         struct drm_i915_gem_sw_finish *args = data;
1080         struct drm_gem_object *obj;
1081         struct drm_i915_gem_object *obj_priv;
1082         int ret = 0;
1083
1084         if (!(dev->driver->driver_features & DRIVER_GEM))
1085                 return -ENODEV;
1086
1087         mutex_lock(&dev->struct_mutex);
1088         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089         if (obj == NULL) {
1090                 mutex_unlock(&dev->struct_mutex);
1091                 return -EBADF;
1092         }
1093
1094 #if WATCH_BUF
1095         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096                  __func__, args->handle, obj, obj->size);
1097 #endif
1098         obj_priv = obj->driver_private;
1099
1100         /* Pinned buffers may be scanout, so flush the cache */
1101         if (obj_priv->pin_count)
1102                 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104         drm_gem_object_unreference(obj);
1105         mutex_unlock(&dev->struct_mutex);
1106         return ret;
1107 }
1108
1109 /**
1110  * Maps the contents of an object, returning the address it is mapped
1111  * into.
1112  *
1113  * While the mapping holds a reference on the contents of the object, it doesn't
1114  * imply a ref on the object itself.
1115  */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118                    struct drm_file *file_priv)
1119 {
1120         struct drm_i915_gem_mmap *args = data;
1121         struct drm_gem_object *obj;
1122         loff_t offset;
1123         unsigned long addr;
1124
1125         if (!(dev->driver->driver_features & DRIVER_GEM))
1126                 return -ENODEV;
1127
1128         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129         if (obj == NULL)
1130                 return -EBADF;
1131
1132         offset = args->offset;
1133
1134         down_write(&current->mm->mmap_sem);
1135         addr = do_mmap(obj->filp, 0, args->size,
1136                        PROT_READ | PROT_WRITE, MAP_SHARED,
1137                        args->offset);
1138         up_write(&current->mm->mmap_sem);
1139         drm_gem_object_unreference_unlocked(obj);
1140         if (IS_ERR((void *)addr))
1141                 return addr;
1142
1143         args->addr_ptr = (uint64_t) addr;
1144
1145         return 0;
1146 }
1147
1148 /**
1149  * i915_gem_fault - fault a page into the GTT
1150  * vma: VMA in question
1151  * vmf: fault info
1152  *
1153  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154  * from userspace.  The fault handler takes care of binding the object to
1155  * the GTT (if needed), allocating and programming a fence register (again,
1156  * only if needed based on whether the old reg is still valid or the object
1157  * is tiled) and inserting a new PTE into the faulting process.
1158  *
1159  * Note that the faulting process may involve evicting existing objects
1160  * from the GTT and/or fence registers to make room.  So performance may
1161  * suffer if the GTT working set is large or there are few fence registers
1162  * left.
1163  */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166         struct drm_gem_object *obj = vma->vm_private_data;
1167         struct drm_device *dev = obj->dev;
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170         pgoff_t page_offset;
1171         unsigned long pfn;
1172         int ret = 0;
1173         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175         /* We don't use vmf->pgoff since that has the fake offset */
1176         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177                 PAGE_SHIFT;
1178
1179         /* Now bind it into the GTT if needed */
1180         mutex_lock(&dev->struct_mutex);
1181         if (!obj_priv->gtt_space) {
1182                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183                 if (ret)
1184                         goto unlock;
1185
1186                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189                 if (ret)
1190                         goto unlock;
1191         }
1192
1193         /* Need a new fence register? */
1194         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195                 ret = i915_gem_object_get_fence_reg(obj);
1196                 if (ret)
1197                         goto unlock;
1198         }
1199
1200         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201                 page_offset;
1202
1203         /* Finally, remap it using the new GTT offset */
1204         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206         mutex_unlock(&dev->struct_mutex);
1207
1208         switch (ret) {
1209         case 0:
1210         case -ERESTARTSYS:
1211                 return VM_FAULT_NOPAGE;
1212         case -ENOMEM:
1213         case -EAGAIN:
1214                 return VM_FAULT_OOM;
1215         default:
1216                 return VM_FAULT_SIGBUS;
1217         }
1218 }
1219
1220 /**
1221  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222  * @obj: obj in question
1223  *
1224  * GEM memory mapping works by handing back to userspace a fake mmap offset
1225  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1226  * up the object based on the offset and sets up the various memory mapping
1227  * structures.
1228  *
1229  * This routine allocates and attaches a fake offset for @obj.
1230  */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234         struct drm_device *dev = obj->dev;
1235         struct drm_gem_mm *mm = dev->mm_private;
1236         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237         struct drm_map_list *list;
1238         struct drm_local_map *map;
1239         int ret = 0;
1240
1241         /* Set the object up for mmap'ing */
1242         list = &obj->map_list;
1243         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244         if (!list->map)
1245                 return -ENOMEM;
1246
1247         map = list->map;
1248         map->type = _DRM_GEM;
1249         map->size = obj->size;
1250         map->handle = obj;
1251
1252         /* Get a DRM GEM mmap offset allocated... */
1253         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254                                                     obj->size / PAGE_SIZE, 0, 0);
1255         if (!list->file_offset_node) {
1256                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257                 ret = -ENOMEM;
1258                 goto out_free_list;
1259         }
1260
1261         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262                                                   obj->size / PAGE_SIZE, 0);
1263         if (!list->file_offset_node) {
1264                 ret = -ENOMEM;
1265                 goto out_free_list;
1266         }
1267
1268         list->hash.key = list->file_offset_node->start;
1269         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270                 DRM_ERROR("failed to add to map hash\n");
1271                 ret = -ENOMEM;
1272                 goto out_free_mm;
1273         }
1274
1275         /* By now we should be all set, any drm_mmap request on the offset
1276          * below will get to our mmap & fault handler */
1277         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279         return 0;
1280
1281 out_free_mm:
1282         drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284         kfree(list->map);
1285
1286         return ret;
1287 }
1288
1289 /**
1290  * i915_gem_release_mmap - remove physical page mappings
1291  * @obj: obj in question
1292  *
1293  * Preserve the reservation of the mmapping with the DRM core code, but
1294  * relinquish ownership of the pages back to the system.
1295  *
1296  * It is vital that we remove the page mapping if we have mapped a tiled
1297  * object through the GTT and then lose the fence register due to
1298  * resource pressure. Similarly if the object has been moved out of the
1299  * aperture, than pages mapped into userspace must be revoked. Removing the
1300  * mapping will then trigger a page fault on the next user access, allowing
1301  * fixup by i915_gem_fault().
1302  */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306         struct drm_device *dev = obj->dev;
1307         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309         if (dev->dev_mapping)
1310                 unmap_mapping_range(dev->dev_mapping,
1311                                     obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317         struct drm_device *dev = obj->dev;
1318         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319         struct drm_gem_mm *mm = dev->mm_private;
1320         struct drm_map_list *list;
1321
1322         list = &obj->map_list;
1323         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325         if (list->file_offset_node) {
1326                 drm_mm_put_block(list->file_offset_node);
1327                 list->file_offset_node = NULL;
1328         }
1329
1330         if (list->map) {
1331                 kfree(list->map);
1332                 list->map = NULL;
1333         }
1334
1335         obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340  * @obj: object to check
1341  *
1342  * Return the required GTT alignment for an object, taking into account
1343  * potential fence register mapping if needed.
1344  */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348         struct drm_device *dev = obj->dev;
1349         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350         int start, i;
1351
1352         /*
1353          * Minimum alignment is 4k (GTT page size), but might be greater
1354          * if a fence register is needed for the object.
1355          */
1356         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357                 return 4096;
1358
1359         /*
1360          * Previous chips need to be aligned to the size of the smallest
1361          * fence register that can contain the object.
1362          */
1363         if (IS_I9XX(dev))
1364                 start = 1024*1024;
1365         else
1366                 start = 512*1024;
1367
1368         for (i = start; i < obj->size; i <<= 1)
1369                 ;
1370
1371         return i;
1372 }
1373
1374 /**
1375  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376  * @dev: DRM device
1377  * @data: GTT mapping ioctl data
1378  * @file_priv: GEM object info
1379  *
1380  * Simply returns the fake offset to userspace so it can mmap it.
1381  * The mmap call will end up in drm_gem_mmap(), which will set things
1382  * up so we can get faults in the handler above.
1383  *
1384  * The fault handler will take care of binding the object into the GTT
1385  * (since it may have been evicted to make room for something), allocating
1386  * a fence register, and mapping the appropriate aperture address into
1387  * userspace.
1388  */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391                         struct drm_file *file_priv)
1392 {
1393         struct drm_i915_gem_mmap_gtt *args = data;
1394         struct drm_i915_private *dev_priv = dev->dev_private;
1395         struct drm_gem_object *obj;
1396         struct drm_i915_gem_object *obj_priv;
1397         int ret;
1398
1399         if (!(dev->driver->driver_features & DRIVER_GEM))
1400                 return -ENODEV;
1401
1402         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403         if (obj == NULL)
1404                 return -EBADF;
1405
1406         mutex_lock(&dev->struct_mutex);
1407
1408         obj_priv = obj->driver_private;
1409
1410         if (obj_priv->madv != I915_MADV_WILLNEED) {
1411                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412                 drm_gem_object_unreference(obj);
1413                 mutex_unlock(&dev->struct_mutex);
1414                 return -EINVAL;
1415         }
1416
1417
1418         if (!obj_priv->mmap_offset) {
1419                 ret = i915_gem_create_mmap_offset(obj);
1420                 if (ret) {
1421                         drm_gem_object_unreference(obj);
1422                         mutex_unlock(&dev->struct_mutex);
1423                         return ret;
1424                 }
1425         }
1426
1427         args->offset = obj_priv->mmap_offset;
1428
1429         /*
1430          * Pull it into the GTT so that we have a page list (makes the
1431          * initial fault faster and any subsequent flushing possible).
1432          */
1433         if (!obj_priv->agp_mem) {
1434                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435                 if (ret) {
1436                         drm_gem_object_unreference(obj);
1437                         mutex_unlock(&dev->struct_mutex);
1438                         return ret;
1439                 }
1440                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441         }
1442
1443         drm_gem_object_unreference(obj);
1444         mutex_unlock(&dev->struct_mutex);
1445
1446         return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453         int page_count = obj->size / PAGE_SIZE;
1454         int i;
1455
1456         BUG_ON(obj_priv->pages_refcount == 0);
1457         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459         if (--obj_priv->pages_refcount != 0)
1460                 return;
1461
1462         if (obj_priv->tiling_mode != I915_TILING_NONE)
1463                 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465         if (obj_priv->madv == I915_MADV_DONTNEED)
1466                 obj_priv->dirty = 0;
1467
1468         for (i = 0; i < page_count; i++) {
1469                 if (obj_priv->pages[i] == NULL)
1470                         break;
1471
1472                 if (obj_priv->dirty)
1473                         set_page_dirty(obj_priv->pages[i]);
1474
1475                 if (obj_priv->madv == I915_MADV_WILLNEED)
1476                         mark_page_accessed(obj_priv->pages[i]);
1477
1478                 page_cache_release(obj_priv->pages[i]);
1479         }
1480         obj_priv->dirty = 0;
1481
1482         drm_free_large(obj_priv->pages);
1483         obj_priv->pages = NULL;
1484 }
1485
1486 static void
1487 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1488 {
1489         struct drm_device *dev = obj->dev;
1490         drm_i915_private_t *dev_priv = dev->dev_private;
1491         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493         /* Add a reference if we're newly entering the active list. */
1494         if (!obj_priv->active) {
1495                 drm_gem_object_reference(obj);
1496                 obj_priv->active = 1;
1497         }
1498         /* Move from whatever list we were on to the tail of execution. */
1499         spin_lock(&dev_priv->mm.active_list_lock);
1500         list_move_tail(&obj_priv->list,
1501                        &dev_priv->mm.active_list);
1502         spin_unlock(&dev_priv->mm.active_list_lock);
1503         obj_priv->last_rendering_seqno = seqno;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508 {
1509         struct drm_device *dev = obj->dev;
1510         drm_i915_private_t *dev_priv = dev->dev_private;
1511         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513         BUG_ON(!obj_priv->active);
1514         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515         obj_priv->last_rendering_seqno = 0;
1516 }
1517
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1521 {
1522         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523         struct inode *inode;
1524
1525         inode = obj->filp->f_path.dentry->d_inode;
1526         if (inode->i_op->truncate)
1527                 inode->i_op->truncate (inode);
1528
1529         obj_priv->madv = __I915_MADV_PURGED;
1530 }
1531
1532 static inline int
1533 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534 {
1535         return obj_priv->madv == I915_MADV_DONTNEED;
1536 }
1537
1538 static void
1539 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540 {
1541         struct drm_device *dev = obj->dev;
1542         drm_i915_private_t *dev_priv = dev->dev_private;
1543         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545         i915_verify_inactive(dev, __FILE__, __LINE__);
1546         if (obj_priv->pin_count != 0)
1547                 list_del_init(&obj_priv->list);
1548         else
1549                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
1551         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
1553         obj_priv->last_rendering_seqno = 0;
1554         if (obj_priv->active) {
1555                 obj_priv->active = 0;
1556                 drm_gem_object_unreference(obj);
1557         }
1558         i915_verify_inactive(dev, __FILE__, __LINE__);
1559 }
1560
1561 static void
1562 i915_gem_process_flushing_list(struct drm_device *dev,
1563                                uint32_t flush_domains, uint32_t seqno)
1564 {
1565         drm_i915_private_t *dev_priv = dev->dev_private;
1566         struct drm_i915_gem_object *obj_priv, *next;
1567
1568         list_for_each_entry_safe(obj_priv, next,
1569                                  &dev_priv->mm.gpu_write_list,
1570                                  gpu_write_list) {
1571                 struct drm_gem_object *obj = obj_priv->obj;
1572
1573                 if ((obj->write_domain & flush_domains) ==
1574                     obj->write_domain) {
1575                         uint32_t old_write_domain = obj->write_domain;
1576
1577                         obj->write_domain = 0;
1578                         list_del_init(&obj_priv->gpu_write_list);
1579                         i915_gem_object_move_to_active(obj, seqno);
1580
1581                         /* update the fence lru list */
1582                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1583                                 list_move_tail(&obj_priv->fence_list,
1584                                                 &dev_priv->mm.fence_list);
1585
1586                         trace_i915_gem_object_change_domain(obj,
1587                                                             obj->read_domains,
1588                                                             old_write_domain);
1589                 }
1590         }
1591 }
1592
1593 /**
1594  * Creates a new sequence number, emitting a write of it to the status page
1595  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1596  *
1597  * Must be called with struct_lock held.
1598  *
1599  * Returned sequence numbers are nonzero on success.
1600  */
1601 uint32_t
1602 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1603                  uint32_t flush_domains)
1604 {
1605         drm_i915_private_t *dev_priv = dev->dev_private;
1606         struct drm_i915_file_private *i915_file_priv = NULL;
1607         struct drm_i915_gem_request *request;
1608         uint32_t seqno;
1609         int was_empty;
1610         RING_LOCALS;
1611
1612         if (file_priv != NULL)
1613                 i915_file_priv = file_priv->driver_priv;
1614
1615         request = kzalloc(sizeof(*request), GFP_KERNEL);
1616         if (request == NULL)
1617                 return 0;
1618
1619         /* Grab the seqno we're going to make this request be, and bump the
1620          * next (skipping 0 so it can be the reserved no-seqno value).
1621          */
1622         seqno = dev_priv->mm.next_gem_seqno;
1623         dev_priv->mm.next_gem_seqno++;
1624         if (dev_priv->mm.next_gem_seqno == 0)
1625                 dev_priv->mm.next_gem_seqno++;
1626
1627         BEGIN_LP_RING(4);
1628         OUT_RING(MI_STORE_DWORD_INDEX);
1629         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1630         OUT_RING(seqno);
1631
1632         OUT_RING(MI_USER_INTERRUPT);
1633         ADVANCE_LP_RING();
1634
1635         DRM_DEBUG_DRIVER("%d\n", seqno);
1636
1637         request->seqno = seqno;
1638         request->emitted_jiffies = jiffies;
1639         was_empty = list_empty(&dev_priv->mm.request_list);
1640         list_add_tail(&request->list, &dev_priv->mm.request_list);
1641         if (i915_file_priv) {
1642                 list_add_tail(&request->client_list,
1643                               &i915_file_priv->mm.request_list);
1644         } else {
1645                 INIT_LIST_HEAD(&request->client_list);
1646         }
1647
1648         /* Associate any objects on the flushing list matching the write
1649          * domain we're flushing with our flush.
1650          */
1651         if (flush_domains != 0) 
1652                 i915_gem_process_flushing_list(dev, flush_domains, seqno);
1653
1654         if (!dev_priv->mm.suspended) {
1655                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1656                 if (was_empty)
1657                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1658         }
1659         return seqno;
1660 }
1661
1662 /**
1663  * Command execution barrier
1664  *
1665  * Ensures that all commands in the ring are finished
1666  * before signalling the CPU
1667  */
1668 static uint32_t
1669 i915_retire_commands(struct drm_device *dev)
1670 {
1671         drm_i915_private_t *dev_priv = dev->dev_private;
1672         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1673         uint32_t flush_domains = 0;
1674         RING_LOCALS;
1675
1676         /* The sampler always gets flushed on i965 (sigh) */
1677         if (IS_I965G(dev))
1678                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1679         BEGIN_LP_RING(2);
1680         OUT_RING(cmd);
1681         OUT_RING(0); /* noop */
1682         ADVANCE_LP_RING();
1683         return flush_domains;
1684 }
1685
1686 /**
1687  * Moves buffers associated only with the given active seqno from the active
1688  * to inactive list, potentially freeing them.
1689  */
1690 static void
1691 i915_gem_retire_request(struct drm_device *dev,
1692                         struct drm_i915_gem_request *request)
1693 {
1694         drm_i915_private_t *dev_priv = dev->dev_private;
1695
1696         trace_i915_gem_request_retire(dev, request->seqno);
1697
1698         /* Move any buffers on the active list that are no longer referenced
1699          * by the ringbuffer to the flushing/inactive lists as appropriate.
1700          */
1701         spin_lock(&dev_priv->mm.active_list_lock);
1702         while (!list_empty(&dev_priv->mm.active_list)) {
1703                 struct drm_gem_object *obj;
1704                 struct drm_i915_gem_object *obj_priv;
1705
1706                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1707                                             struct drm_i915_gem_object,
1708                                             list);
1709                 obj = obj_priv->obj;
1710
1711                 /* If the seqno being retired doesn't match the oldest in the
1712                  * list, then the oldest in the list must still be newer than
1713                  * this seqno.
1714                  */
1715                 if (obj_priv->last_rendering_seqno != request->seqno)
1716                         goto out;
1717
1718 #if WATCH_LRU
1719                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1720                          __func__, request->seqno, obj);
1721 #endif
1722
1723                 if (obj->write_domain != 0)
1724                         i915_gem_object_move_to_flushing(obj);
1725                 else {
1726                         /* Take a reference on the object so it won't be
1727                          * freed while the spinlock is held.  The list
1728                          * protection for this spinlock is safe when breaking
1729                          * the lock like this since the next thing we do
1730                          * is just get the head of the list again.
1731                          */
1732                         drm_gem_object_reference(obj);
1733                         i915_gem_object_move_to_inactive(obj);
1734                         spin_unlock(&dev_priv->mm.active_list_lock);
1735                         drm_gem_object_unreference(obj);
1736                         spin_lock(&dev_priv->mm.active_list_lock);
1737                 }
1738         }
1739 out:
1740         spin_unlock(&dev_priv->mm.active_list_lock);
1741 }
1742
1743 /**
1744  * Returns true if seq1 is later than seq2.
1745  */
1746 bool
1747 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1748 {
1749         return (int32_t)(seq1 - seq2) >= 0;
1750 }
1751
1752 uint32_t
1753 i915_get_gem_seqno(struct drm_device *dev)
1754 {
1755         drm_i915_private_t *dev_priv = dev->dev_private;
1756
1757         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1758 }
1759
1760 /**
1761  * This function clears the request list as sequence numbers are passed.
1762  */
1763 void
1764 i915_gem_retire_requests(struct drm_device *dev)
1765 {
1766         drm_i915_private_t *dev_priv = dev->dev_private;
1767         uint32_t seqno;
1768
1769         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1770                 return;
1771
1772         seqno = i915_get_gem_seqno(dev);
1773
1774         while (!list_empty(&dev_priv->mm.request_list)) {
1775                 struct drm_i915_gem_request *request;
1776                 uint32_t retiring_seqno;
1777
1778                 request = list_first_entry(&dev_priv->mm.request_list,
1779                                            struct drm_i915_gem_request,
1780                                            list);
1781                 retiring_seqno = request->seqno;
1782
1783                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1784                     atomic_read(&dev_priv->mm.wedged)) {
1785                         i915_gem_retire_request(dev, request);
1786
1787                         list_del(&request->list);
1788                         list_del(&request->client_list);
1789                         kfree(request);
1790                 } else
1791                         break;
1792         }
1793
1794         if (unlikely (dev_priv->trace_irq_seqno &&
1795                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1796                 i915_user_irq_put(dev);
1797                 dev_priv->trace_irq_seqno = 0;
1798         }
1799 }
1800
1801 void
1802 i915_gem_retire_work_handler(struct work_struct *work)
1803 {
1804         drm_i915_private_t *dev_priv;
1805         struct drm_device *dev;
1806
1807         dev_priv = container_of(work, drm_i915_private_t,
1808                                 mm.retire_work.work);
1809         dev = dev_priv->dev;
1810
1811         mutex_lock(&dev->struct_mutex);
1812         i915_gem_retire_requests(dev);
1813         if (!dev_priv->mm.suspended &&
1814             !list_empty(&dev_priv->mm.request_list))
1815                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1816         mutex_unlock(&dev->struct_mutex);
1817 }
1818
1819 int
1820 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1821 {
1822         drm_i915_private_t *dev_priv = dev->dev_private;
1823         u32 ier;
1824         int ret = 0;
1825
1826         BUG_ON(seqno == 0);
1827
1828         if (atomic_read(&dev_priv->mm.wedged))
1829                 return -EIO;
1830
1831         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1832                 if (HAS_PCH_SPLIT(dev))
1833                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1834                 else
1835                         ier = I915_READ(IER);
1836                 if (!ier) {
1837                         DRM_ERROR("something (likely vbetool) disabled "
1838                                   "interrupts, re-enabling\n");
1839                         i915_driver_irq_preinstall(dev);
1840                         i915_driver_irq_postinstall(dev);
1841                 }
1842
1843                 trace_i915_gem_request_wait_begin(dev, seqno);
1844
1845                 dev_priv->mm.waiting_gem_seqno = seqno;
1846                 i915_user_irq_get(dev);
1847                 if (interruptible)
1848                         ret = wait_event_interruptible(dev_priv->irq_queue,
1849                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1850                                 atomic_read(&dev_priv->mm.wedged));
1851                 else
1852                         wait_event(dev_priv->irq_queue,
1853                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1854                                 atomic_read(&dev_priv->mm.wedged));
1855
1856                 i915_user_irq_put(dev);
1857                 dev_priv->mm.waiting_gem_seqno = 0;
1858
1859                 trace_i915_gem_request_wait_end(dev, seqno);
1860         }
1861         if (atomic_read(&dev_priv->mm.wedged))
1862                 ret = -EIO;
1863
1864         if (ret && ret != -ERESTARTSYS)
1865                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1866                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1867
1868         /* Directly dispatch request retiring.  While we have the work queue
1869          * to handle this, the waiter on a request often wants an associated
1870          * buffer to have made it to the inactive list, and we would need
1871          * a separate wait queue to handle that.
1872          */
1873         if (ret == 0)
1874                 i915_gem_retire_requests(dev);
1875
1876         return ret;
1877 }
1878
1879 /**
1880  * Waits for a sequence number to be signaled, and cleans up the
1881  * request and object lists appropriately for that event.
1882  */
1883 static int
1884 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1885 {
1886         return i915_do_wait_request(dev, seqno, 1);
1887 }
1888
1889 static void
1890 i915_gem_flush(struct drm_device *dev,
1891                uint32_t invalidate_domains,
1892                uint32_t flush_domains)
1893 {
1894         drm_i915_private_t *dev_priv = dev->dev_private;
1895         uint32_t cmd;
1896         RING_LOCALS;
1897
1898 #if WATCH_EXEC
1899         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1900                   invalidate_domains, flush_domains);
1901 #endif
1902         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1903                                      invalidate_domains, flush_domains);
1904
1905         if (flush_domains & I915_GEM_DOMAIN_CPU)
1906                 drm_agp_chipset_flush(dev);
1907
1908         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1909                 /*
1910                  * read/write caches:
1911                  *
1912                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1913                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1914                  * also flushed at 2d versus 3d pipeline switches.
1915                  *
1916                  * read-only caches:
1917                  *
1918                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1919                  * MI_READ_FLUSH is set, and is always flushed on 965.
1920                  *
1921                  * I915_GEM_DOMAIN_COMMAND may not exist?
1922                  *
1923                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1924                  * invalidated when MI_EXE_FLUSH is set.
1925                  *
1926                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1927                  * invalidated with every MI_FLUSH.
1928                  *
1929                  * TLBs:
1930                  *
1931                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1932                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1933                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1934                  * are flushed at any MI_FLUSH.
1935                  */
1936
1937                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1938                 if ((invalidate_domains|flush_domains) &
1939                     I915_GEM_DOMAIN_RENDER)
1940                         cmd &= ~MI_NO_WRITE_FLUSH;
1941                 if (!IS_I965G(dev)) {
1942                         /*
1943                          * On the 965, the sampler cache always gets flushed
1944                          * and this bit is reserved.
1945                          */
1946                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1947                                 cmd |= MI_READ_FLUSH;
1948                 }
1949                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1950                         cmd |= MI_EXE_FLUSH;
1951
1952 #if WATCH_EXEC
1953                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1954 #endif
1955                 BEGIN_LP_RING(2);
1956                 OUT_RING(cmd);
1957                 OUT_RING(MI_NOOP);
1958                 ADVANCE_LP_RING();
1959         }
1960 }
1961
1962 /**
1963  * Ensures that all rendering to the object has completed and the object is
1964  * safe to unbind from the GTT or access from the CPU.
1965  */
1966 static int
1967 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1968 {
1969         struct drm_device *dev = obj->dev;
1970         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1971         int ret;
1972
1973         /* This function only exists to support waiting for existing rendering,
1974          * not for emitting required flushes.
1975          */
1976         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1977
1978         /* If there is rendering queued on the buffer being evicted, wait for
1979          * it.
1980          */
1981         if (obj_priv->active) {
1982 #if WATCH_BUF
1983                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1984                           __func__, obj, obj_priv->last_rendering_seqno);
1985 #endif
1986                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1987                 if (ret != 0)
1988                         return ret;
1989         }
1990
1991         return 0;
1992 }
1993
1994 /**
1995  * Unbinds an object from the GTT aperture.
1996  */
1997 int
1998 i915_gem_object_unbind(struct drm_gem_object *obj)
1999 {
2000         struct drm_device *dev = obj->dev;
2001         drm_i915_private_t *dev_priv = dev->dev_private;
2002         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2003         int ret = 0;
2004
2005 #if WATCH_BUF
2006         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2007         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2008 #endif
2009         if (obj_priv->gtt_space == NULL)
2010                 return 0;
2011
2012         if (obj_priv->pin_count != 0) {
2013                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2014                 return -EINVAL;
2015         }
2016
2017         /* blow away mappings if mapped through GTT */
2018         i915_gem_release_mmap(obj);
2019
2020         /* Move the object to the CPU domain to ensure that
2021          * any possible CPU writes while it's not in the GTT
2022          * are flushed when we go to remap it. This will
2023          * also ensure that all pending GPU writes are finished
2024          * before we unbind.
2025          */
2026         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2027         if (ret) {
2028                 if (ret != -ERESTARTSYS)
2029                         DRM_ERROR("set_domain failed: %d\n", ret);
2030                 return ret;
2031         }
2032
2033         BUG_ON(obj_priv->active);
2034
2035         /* release the fence reg _after_ flushing */
2036         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2037                 i915_gem_clear_fence_reg(obj);
2038
2039         if (obj_priv->agp_mem != NULL) {
2040                 drm_unbind_agp(obj_priv->agp_mem);
2041                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2042                 obj_priv->agp_mem = NULL;
2043         }
2044
2045         i915_gem_object_put_pages(obj);
2046         BUG_ON(obj_priv->pages_refcount);
2047
2048         if (obj_priv->gtt_space) {
2049                 atomic_dec(&dev->gtt_count);
2050                 atomic_sub(obj->size, &dev->gtt_memory);
2051
2052                 drm_mm_put_block(obj_priv->gtt_space);
2053                 obj_priv->gtt_space = NULL;
2054         }
2055
2056         /* Remove ourselves from the LRU list if present. */
2057         spin_lock(&dev_priv->mm.active_list_lock);
2058         if (!list_empty(&obj_priv->list))
2059                 list_del_init(&obj_priv->list);
2060         spin_unlock(&dev_priv->mm.active_list_lock);
2061
2062         if (i915_gem_object_is_purgeable(obj_priv))
2063                 i915_gem_object_truncate(obj);
2064
2065         trace_i915_gem_object_unbind(obj);
2066
2067         return 0;
2068 }
2069
2070 static struct drm_gem_object *
2071 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2072 {
2073         drm_i915_private_t *dev_priv = dev->dev_private;
2074         struct drm_i915_gem_object *obj_priv;
2075         struct drm_gem_object *best = NULL;
2076         struct drm_gem_object *first = NULL;
2077
2078         /* Try to find the smallest clean object */
2079         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2080                 struct drm_gem_object *obj = obj_priv->obj;
2081                 if (obj->size >= min_size) {
2082                         if ((!obj_priv->dirty ||
2083                              i915_gem_object_is_purgeable(obj_priv)) &&
2084                             (!best || obj->size < best->size)) {
2085                                 best = obj;
2086                                 if (best->size == min_size)
2087                                         return best;
2088                         }
2089                         if (!first)
2090                             first = obj;
2091                 }
2092         }
2093
2094         return best ? best : first;
2095 }
2096
2097 static int
2098 i915_gpu_idle(struct drm_device *dev)
2099 {
2100         drm_i915_private_t *dev_priv = dev->dev_private;
2101         bool lists_empty;
2102         uint32_t seqno;
2103
2104         spin_lock(&dev_priv->mm.active_list_lock);
2105         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2106                       list_empty(&dev_priv->mm.active_list);
2107         spin_unlock(&dev_priv->mm.active_list_lock);
2108
2109         if (lists_empty)
2110                 return 0;
2111
2112         /* Flush everything onto the inactive list. */
2113         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2114         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2115         if (seqno == 0)
2116                 return -ENOMEM;
2117
2118         return i915_wait_request(dev, seqno);
2119 }
2120
2121 static int
2122 i915_gem_evict_everything(struct drm_device *dev)
2123 {
2124         drm_i915_private_t *dev_priv = dev->dev_private;
2125         int ret;
2126         bool lists_empty;
2127
2128         spin_lock(&dev_priv->mm.active_list_lock);
2129         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2130                        list_empty(&dev_priv->mm.flushing_list) &&
2131                        list_empty(&dev_priv->mm.active_list));
2132         spin_unlock(&dev_priv->mm.active_list_lock);
2133
2134         if (lists_empty)
2135                 return -ENOSPC;
2136
2137         /* Flush everything (on to the inactive lists) and evict */
2138         ret = i915_gpu_idle(dev);
2139         if (ret)
2140                 return ret;
2141
2142         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2143
2144         ret = i915_gem_evict_from_inactive_list(dev);
2145         if (ret)
2146                 return ret;
2147
2148         spin_lock(&dev_priv->mm.active_list_lock);
2149         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2150                        list_empty(&dev_priv->mm.flushing_list) &&
2151                        list_empty(&dev_priv->mm.active_list));
2152         spin_unlock(&dev_priv->mm.active_list_lock);
2153         BUG_ON(!lists_empty);
2154
2155         return 0;
2156 }
2157
2158 static int
2159 i915_gem_evict_something(struct drm_device *dev, int min_size)
2160 {
2161         drm_i915_private_t *dev_priv = dev->dev_private;
2162         struct drm_gem_object *obj;
2163         int ret;
2164
2165         for (;;) {
2166                 i915_gem_retire_requests(dev);
2167
2168                 /* If there's an inactive buffer available now, grab it
2169                  * and be done.
2170                  */
2171                 obj = i915_gem_find_inactive_object(dev, min_size);
2172                 if (obj) {
2173                         struct drm_i915_gem_object *obj_priv;
2174
2175 #if WATCH_LRU
2176                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2177 #endif
2178                         obj_priv = obj->driver_private;
2179                         BUG_ON(obj_priv->pin_count != 0);
2180                         BUG_ON(obj_priv->active);
2181
2182                         /* Wait on the rendering and unbind the buffer. */
2183                         return i915_gem_object_unbind(obj);
2184                 }
2185
2186                 /* If we didn't get anything, but the ring is still processing
2187                  * things, wait for the next to finish and hopefully leave us
2188                  * a buffer to evict.
2189                  */
2190                 if (!list_empty(&dev_priv->mm.request_list)) {
2191                         struct drm_i915_gem_request *request;
2192
2193                         request = list_first_entry(&dev_priv->mm.request_list,
2194                                                    struct drm_i915_gem_request,
2195                                                    list);
2196
2197                         ret = i915_wait_request(dev, request->seqno);
2198                         if (ret)
2199                                 return ret;
2200
2201                         continue;
2202                 }
2203
2204                 /* If we didn't have anything on the request list but there
2205                  * are buffers awaiting a flush, emit one and try again.
2206                  * When we wait on it, those buffers waiting for that flush
2207                  * will get moved to inactive.
2208                  */
2209                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2210                         struct drm_i915_gem_object *obj_priv;
2211
2212                         /* Find an object that we can immediately reuse */
2213                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2214                                 obj = obj_priv->obj;
2215                                 if (obj->size >= min_size)
2216                                         break;
2217
2218                                 obj = NULL;
2219                         }
2220
2221                         if (obj != NULL) {
2222                                 uint32_t seqno;
2223
2224                                 i915_gem_flush(dev,
2225                                                obj->write_domain,
2226                                                obj->write_domain);
2227                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2228                                 if (seqno == 0)
2229                                         return -ENOMEM;
2230
2231                                 ret = i915_wait_request(dev, seqno);
2232                                 if (ret)
2233                                         return ret;
2234
2235                                 continue;
2236                         }
2237                 }
2238
2239                 /* If we didn't do any of the above, there's no single buffer
2240                  * large enough to swap out for the new one, so just evict
2241                  * everything and start again. (This should be rare.)
2242                  */
2243                 if (!list_empty (&dev_priv->mm.inactive_list))
2244                         return i915_gem_evict_from_inactive_list(dev);
2245                 else
2246                         return i915_gem_evict_everything(dev);
2247         }
2248 }
2249
2250 int
2251 i915_gem_object_get_pages(struct drm_gem_object *obj,
2252                           gfp_t gfpmask)
2253 {
2254         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2255         int page_count, i;
2256         struct address_space *mapping;
2257         struct inode *inode;
2258         struct page *page;
2259         int ret;
2260
2261         if (obj_priv->pages_refcount++ != 0)
2262                 return 0;
2263
2264         /* Get the list of pages out of our struct file.  They'll be pinned
2265          * at this point until we release them.
2266          */
2267         page_count = obj->size / PAGE_SIZE;
2268         BUG_ON(obj_priv->pages != NULL);
2269         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2270         if (obj_priv->pages == NULL) {
2271                 obj_priv->pages_refcount--;
2272                 return -ENOMEM;
2273         }
2274
2275         inode = obj->filp->f_path.dentry->d_inode;
2276         mapping = inode->i_mapping;
2277         for (i = 0; i < page_count; i++) {
2278                 page = read_cache_page_gfp(mapping, i,
2279                                            mapping_gfp_mask (mapping) |
2280                                            __GFP_COLD |
2281                                            gfpmask);
2282                 if (IS_ERR(page)) {
2283                         ret = PTR_ERR(page);
2284                         i915_gem_object_put_pages(obj);
2285                         return ret;
2286                 }
2287                 obj_priv->pages[i] = page;
2288         }
2289
2290         if (obj_priv->tiling_mode != I915_TILING_NONE)
2291                 i915_gem_object_do_bit_17_swizzle(obj);
2292
2293         return 0;
2294 }
2295
2296 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2297 {
2298         struct drm_gem_object *obj = reg->obj;
2299         struct drm_device *dev = obj->dev;
2300         drm_i915_private_t *dev_priv = dev->dev_private;
2301         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2302         int regnum = obj_priv->fence_reg;
2303         uint64_t val;
2304
2305         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2306                     0xfffff000) << 32;
2307         val |= obj_priv->gtt_offset & 0xfffff000;
2308         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2309                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2310
2311         if (obj_priv->tiling_mode == I915_TILING_Y)
2312                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2313         val |= I965_FENCE_REG_VALID;
2314
2315         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2316 }
2317
2318 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2319 {
2320         struct drm_gem_object *obj = reg->obj;
2321         struct drm_device *dev = obj->dev;
2322         drm_i915_private_t *dev_priv = dev->dev_private;
2323         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2324         int regnum = obj_priv->fence_reg;
2325         uint64_t val;
2326
2327         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2328                     0xfffff000) << 32;
2329         val |= obj_priv->gtt_offset & 0xfffff000;
2330         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2331         if (obj_priv->tiling_mode == I915_TILING_Y)
2332                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2333         val |= I965_FENCE_REG_VALID;
2334
2335         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2336 }
2337
2338 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2339 {
2340         struct drm_gem_object *obj = reg->obj;
2341         struct drm_device *dev = obj->dev;
2342         drm_i915_private_t *dev_priv = dev->dev_private;
2343         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2344         int regnum = obj_priv->fence_reg;
2345         int tile_width;
2346         uint32_t fence_reg, val;
2347         uint32_t pitch_val;
2348
2349         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2350             (obj_priv->gtt_offset & (obj->size - 1))) {
2351                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2352                      __func__, obj_priv->gtt_offset, obj->size);
2353                 return;
2354         }
2355
2356         if (obj_priv->tiling_mode == I915_TILING_Y &&
2357             HAS_128_BYTE_Y_TILING(dev))
2358                 tile_width = 128;
2359         else
2360                 tile_width = 512;
2361
2362         /* Note: pitch better be a power of two tile widths */
2363         pitch_val = obj_priv->stride / tile_width;
2364         pitch_val = ffs(pitch_val) - 1;
2365
2366         val = obj_priv->gtt_offset;
2367         if (obj_priv->tiling_mode == I915_TILING_Y)
2368                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2369         val |= I915_FENCE_SIZE_BITS(obj->size);
2370         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2371         val |= I830_FENCE_REG_VALID;
2372
2373         if (regnum < 8)
2374                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2375         else
2376                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2377         I915_WRITE(fence_reg, val);
2378 }
2379
2380 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2381 {
2382         struct drm_gem_object *obj = reg->obj;
2383         struct drm_device *dev = obj->dev;
2384         drm_i915_private_t *dev_priv = dev->dev_private;
2385         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2386         int regnum = obj_priv->fence_reg;
2387         uint32_t val;
2388         uint32_t pitch_val;
2389         uint32_t fence_size_bits;
2390
2391         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2392             (obj_priv->gtt_offset & (obj->size - 1))) {
2393                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2394                      __func__, obj_priv->gtt_offset);
2395                 return;
2396         }
2397
2398         pitch_val = obj_priv->stride / 128;
2399         pitch_val = ffs(pitch_val) - 1;
2400         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2401
2402         val = obj_priv->gtt_offset;
2403         if (obj_priv->tiling_mode == I915_TILING_Y)
2404                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2405         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2406         WARN_ON(fence_size_bits & ~0x00000f00);
2407         val |= fence_size_bits;
2408         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2409         val |= I830_FENCE_REG_VALID;
2410
2411         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2412 }
2413
2414 static int i915_find_fence_reg(struct drm_device *dev)
2415 {
2416         struct drm_i915_fence_reg *reg = NULL;
2417         struct drm_i915_gem_object *obj_priv = NULL;
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419         struct drm_gem_object *obj = NULL;
2420         int i, avail, ret;
2421
2422         /* First try to find a free reg */
2423         avail = 0;
2424         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2425                 reg = &dev_priv->fence_regs[i];
2426                 if (!reg->obj)
2427                         return i;
2428
2429                 obj_priv = reg->obj->driver_private;
2430                 if (!obj_priv->pin_count)
2431                     avail++;
2432         }
2433
2434         if (avail == 0)
2435                 return -ENOSPC;
2436
2437         /* None available, try to steal one or wait for a user to finish */
2438         i = I915_FENCE_REG_NONE;
2439         list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2440                             fence_list) {
2441                 obj = obj_priv->obj;
2442
2443                 if (obj_priv->pin_count)
2444                         continue;
2445
2446                 /* found one! */
2447                 i = obj_priv->fence_reg;
2448                 break;
2449         }
2450
2451         BUG_ON(i == I915_FENCE_REG_NONE);
2452
2453         /* We only have a reference on obj from the active list. put_fence_reg
2454          * might drop that one, causing a use-after-free in it. So hold a
2455          * private reference to obj like the other callers of put_fence_reg
2456          * (set_tiling ioctl) do. */
2457         drm_gem_object_reference(obj);
2458         ret = i915_gem_object_put_fence_reg(obj);
2459         drm_gem_object_unreference(obj);
2460         if (ret != 0)
2461                 return ret;
2462
2463         return i;
2464 }
2465
2466 /**
2467  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2468  * @obj: object to map through a fence reg
2469  *
2470  * When mapping objects through the GTT, userspace wants to be able to write
2471  * to them without having to worry about swizzling if the object is tiled.
2472  *
2473  * This function walks the fence regs looking for a free one for @obj,
2474  * stealing one if it can't find any.
2475  *
2476  * It then sets up the reg based on the object's properties: address, pitch
2477  * and tiling format.
2478  */
2479 int
2480 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2481 {
2482         struct drm_device *dev = obj->dev;
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2485         struct drm_i915_fence_reg *reg = NULL;
2486         int ret;
2487
2488         /* Just update our place in the LRU if our fence is getting used. */
2489         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2490                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2491                 return 0;
2492         }
2493
2494         switch (obj_priv->tiling_mode) {
2495         case I915_TILING_NONE:
2496                 WARN(1, "allocating a fence for non-tiled object?\n");
2497                 break;
2498         case I915_TILING_X:
2499                 if (!obj_priv->stride)
2500                         return -EINVAL;
2501                 WARN((obj_priv->stride & (512 - 1)),
2502                      "object 0x%08x is X tiled but has non-512B pitch\n",
2503                      obj_priv->gtt_offset);
2504                 break;
2505         case I915_TILING_Y:
2506                 if (!obj_priv->stride)
2507                         return -EINVAL;
2508                 WARN((obj_priv->stride & (128 - 1)),
2509                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2510                      obj_priv->gtt_offset);
2511                 break;
2512         }
2513
2514         ret = i915_find_fence_reg(dev);
2515         if (ret < 0)
2516                 return ret;
2517
2518         obj_priv->fence_reg = ret;
2519         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2520         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2521
2522         reg->obj = obj;
2523
2524         if (IS_GEN6(dev))
2525                 sandybridge_write_fence_reg(reg);
2526         else if (IS_I965G(dev))
2527                 i965_write_fence_reg(reg);
2528         else if (IS_I9XX(dev))
2529                 i915_write_fence_reg(reg);
2530         else
2531                 i830_write_fence_reg(reg);
2532
2533         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2534                         obj_priv->tiling_mode);
2535
2536         return 0;
2537 }
2538
2539 /**
2540  * i915_gem_clear_fence_reg - clear out fence register info
2541  * @obj: object to clear
2542  *
2543  * Zeroes out the fence register itself and clears out the associated
2544  * data structures in dev_priv and obj_priv.
2545  */
2546 static void
2547 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2548 {
2549         struct drm_device *dev = obj->dev;
2550         drm_i915_private_t *dev_priv = dev->dev_private;
2551         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2552
2553         if (IS_GEN6(dev)) {
2554                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2555                              (obj_priv->fence_reg * 8), 0);
2556         } else if (IS_I965G(dev)) {
2557                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2558         } else {
2559                 uint32_t fence_reg;
2560
2561                 if (obj_priv->fence_reg < 8)
2562                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2563                 else
2564                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2565                                                        8) * 4;
2566
2567                 I915_WRITE(fence_reg, 0);
2568         }
2569
2570         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2571         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2572         list_del_init(&obj_priv->fence_list);
2573 }
2574
2575 /**
2576  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2577  * to the buffer to finish, and then resets the fence register.
2578  * @obj: tiled object holding a fence register.
2579  *
2580  * Zeroes out the fence register itself and clears out the associated
2581  * data structures in dev_priv and obj_priv.
2582  */
2583 int
2584 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2585 {
2586         struct drm_device *dev = obj->dev;
2587         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2588
2589         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2590                 return 0;
2591
2592         /* If we've changed tiling, GTT-mappings of the object
2593          * need to re-fault to ensure that the correct fence register
2594          * setup is in place.
2595          */
2596         i915_gem_release_mmap(obj);
2597
2598         /* On the i915, GPU access to tiled buffers is via a fence,
2599          * therefore we must wait for any outstanding access to complete
2600          * before clearing the fence.
2601          */
2602         if (!IS_I965G(dev)) {
2603                 int ret;
2604
2605                 i915_gem_object_flush_gpu_write_domain(obj);
2606                 ret = i915_gem_object_wait_rendering(obj);
2607                 if (ret != 0)
2608                         return ret;
2609         }
2610
2611         i915_gem_object_flush_gtt_write_domain(obj);
2612         i915_gem_clear_fence_reg (obj);
2613
2614         return 0;
2615 }
2616
2617 /**
2618  * Finds free space in the GTT aperture and binds the object there.
2619  */
2620 static int
2621 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2622 {
2623         struct drm_device *dev = obj->dev;
2624         drm_i915_private_t *dev_priv = dev->dev_private;
2625         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2626         struct drm_mm_node *free_space;
2627         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2628         int ret;
2629
2630         if (obj_priv->madv != I915_MADV_WILLNEED) {
2631                 DRM_ERROR("Attempting to bind a purgeable object\n");
2632                 return -EINVAL;
2633         }
2634
2635         if (alignment == 0)
2636                 alignment = i915_gem_get_gtt_alignment(obj);
2637         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2638                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2639                 return -EINVAL;
2640         }
2641
2642  search_free:
2643         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2644                                         obj->size, alignment, 0);
2645         if (free_space != NULL) {
2646                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2647                                                        alignment);
2648                 if (obj_priv->gtt_space != NULL) {
2649                         obj_priv->gtt_space->private = obj;
2650                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2651                 }
2652         }
2653         if (obj_priv->gtt_space == NULL) {
2654                 /* If the gtt is empty and we're still having trouble
2655                  * fitting our object in, we're out of memory.
2656                  */
2657 #if WATCH_LRU
2658                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2659 #endif
2660                 ret = i915_gem_evict_something(dev, obj->size);
2661                 if (ret)
2662                         return ret;
2663
2664                 goto search_free;
2665         }
2666
2667 #if WATCH_BUF
2668         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2669                  obj->size, obj_priv->gtt_offset);
2670 #endif
2671         ret = i915_gem_object_get_pages(obj, gfpmask);
2672         if (ret) {
2673                 drm_mm_put_block(obj_priv->gtt_space);
2674                 obj_priv->gtt_space = NULL;
2675
2676                 if (ret == -ENOMEM) {
2677                         /* first try to clear up some space from the GTT */
2678                         ret = i915_gem_evict_something(dev, obj->size);
2679                         if (ret) {
2680                                 /* now try to shrink everyone else */
2681                                 if (gfpmask) {
2682                                         gfpmask = 0;
2683                                         goto search_free;
2684                                 }
2685
2686                                 return ret;
2687                         }
2688
2689                         goto search_free;
2690                 }
2691
2692                 return ret;
2693         }
2694
2695         /* Create an AGP memory structure pointing at our pages, and bind it
2696          * into the GTT.
2697          */
2698         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2699                                                obj_priv->pages,
2700                                                obj->size >> PAGE_SHIFT,
2701                                                obj_priv->gtt_offset,
2702                                                obj_priv->agp_type);
2703         if (obj_priv->agp_mem == NULL) {
2704                 i915_gem_object_put_pages(obj);
2705                 drm_mm_put_block(obj_priv->gtt_space);
2706                 obj_priv->gtt_space = NULL;
2707
2708                 ret = i915_gem_evict_something(dev, obj->size);
2709                 if (ret)
2710                         return ret;
2711
2712                 goto search_free;
2713         }
2714         atomic_inc(&dev->gtt_count);
2715         atomic_add(obj->size, &dev->gtt_memory);
2716
2717         /* Assert that the object is not currently in any GPU domain. As it
2718          * wasn't in the GTT, there shouldn't be any way it could have been in
2719          * a GPU cache
2720          */
2721         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2722         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2723
2724         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2725
2726         return 0;
2727 }
2728
2729 void
2730 i915_gem_clflush_object(struct drm_gem_object *obj)
2731 {
2732         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2733
2734         /* If we don't have a page list set up, then we're not pinned
2735          * to GPU, and we can ignore the cache flush because it'll happen
2736          * again at bind time.
2737          */
2738         if (obj_priv->pages == NULL)
2739                 return;
2740
2741         trace_i915_gem_object_clflush(obj);
2742
2743         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2744 }
2745
2746 /** Flushes any GPU write domain for the object if it's dirty. */
2747 static void
2748 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2749 {
2750         struct drm_device *dev = obj->dev;
2751         uint32_t seqno;
2752         uint32_t old_write_domain;
2753
2754         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2755                 return;
2756
2757         /* Queue the GPU write cache flushing we need. */
2758         old_write_domain = obj->write_domain;
2759         i915_gem_flush(dev, 0, obj->write_domain);
2760         seqno = i915_add_request(dev, NULL, obj->write_domain);
2761         BUG_ON(obj->write_domain);
2762         i915_gem_object_move_to_active(obj, seqno);
2763
2764         trace_i915_gem_object_change_domain(obj,
2765                                             obj->read_domains,
2766                                             old_write_domain);
2767 }
2768
2769 /** Flushes the GTT write domain for the object if it's dirty. */
2770 static void
2771 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2772 {
2773         uint32_t old_write_domain;
2774
2775         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2776                 return;
2777
2778         /* No actual flushing is required for the GTT write domain.   Writes
2779          * to it immediately go to main memory as far as we know, so there's
2780          * no chipset flush.  It also doesn't land in render cache.
2781          */
2782         old_write_domain = obj->write_domain;
2783         obj->write_domain = 0;
2784
2785         trace_i915_gem_object_change_domain(obj,
2786                                             obj->read_domains,
2787                                             old_write_domain);
2788 }
2789
2790 /** Flushes the CPU write domain for the object if it's dirty. */
2791 static void
2792 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2793 {
2794         struct drm_device *dev = obj->dev;
2795         uint32_t old_write_domain;
2796
2797         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2798                 return;
2799
2800         i915_gem_clflush_object(obj);
2801         drm_agp_chipset_flush(dev);
2802         old_write_domain = obj->write_domain;
2803         obj->write_domain = 0;
2804
2805         trace_i915_gem_object_change_domain(obj,
2806                                             obj->read_domains,
2807                                             old_write_domain);
2808 }
2809
2810 void
2811 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2812 {
2813         switch (obj->write_domain) {
2814         case I915_GEM_DOMAIN_GTT:
2815                 i915_gem_object_flush_gtt_write_domain(obj);
2816                 break;
2817         case I915_GEM_DOMAIN_CPU:
2818                 i915_gem_object_flush_cpu_write_domain(obj);
2819                 break;
2820         default:
2821                 i915_gem_object_flush_gpu_write_domain(obj);
2822                 break;
2823         }
2824 }
2825
2826 /**
2827  * Moves a single object to the GTT read, and possibly write domain.
2828  *
2829  * This function returns when the move is complete, including waiting on
2830  * flushes to occur.
2831  */
2832 int
2833 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2834 {
2835         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2836         uint32_t old_write_domain, old_read_domains;
2837         int ret;
2838
2839         /* Not valid to be called on unbound objects. */
2840         if (obj_priv->gtt_space == NULL)
2841                 return -EINVAL;
2842
2843         i915_gem_object_flush_gpu_write_domain(obj);
2844         /* Wait on any GPU rendering and flushing to occur. */
2845         ret = i915_gem_object_wait_rendering(obj);
2846         if (ret != 0)
2847                 return ret;
2848
2849         old_write_domain = obj->write_domain;
2850         old_read_domains = obj->read_domains;
2851
2852         /* If we're writing through the GTT domain, then CPU and GPU caches
2853          * will need to be invalidated at next use.
2854          */
2855         if (write)
2856                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2857
2858         i915_gem_object_flush_cpu_write_domain(obj);
2859
2860         /* It should now be out of any other write domains, and we can update
2861          * the domain values for our changes.
2862          */
2863         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2864         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2865         if (write) {
2866                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2867                 obj_priv->dirty = 1;
2868         }
2869
2870         trace_i915_gem_object_change_domain(obj,
2871                                             old_read_domains,
2872                                             old_write_domain);
2873
2874         return 0;
2875 }
2876
2877 /*
2878  * Prepare buffer for display plane. Use uninterruptible for possible flush
2879  * wait, as in modesetting process we're not supposed to be interrupted.
2880  */
2881 int
2882 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2883 {
2884         struct drm_device *dev = obj->dev;
2885         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2886         uint32_t old_write_domain, old_read_domains;
2887         int ret;
2888
2889         /* Not valid to be called on unbound objects. */
2890         if (obj_priv->gtt_space == NULL)
2891                 return -EINVAL;
2892
2893         i915_gem_object_flush_gpu_write_domain(obj);
2894
2895         /* Wait on any GPU rendering and flushing to occur. */
2896         if (obj_priv->active) {
2897 #if WATCH_BUF
2898                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2899                           __func__, obj, obj_priv->last_rendering_seqno);
2900 #endif
2901                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2902                 if (ret != 0)
2903                         return ret;
2904         }
2905
2906         old_write_domain = obj->write_domain;
2907         old_read_domains = obj->read_domains;
2908
2909         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2910
2911         i915_gem_object_flush_cpu_write_domain(obj);
2912
2913         /* It should now be out of any other write domains, and we can update
2914          * the domain values for our changes.
2915          */
2916         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2917         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2918         obj->write_domain = I915_GEM_DOMAIN_GTT;
2919         obj_priv->dirty = 1;
2920
2921         trace_i915_gem_object_change_domain(obj,
2922                                             old_read_domains,
2923                                             old_write_domain);
2924
2925         return 0;
2926 }
2927
2928 /**
2929  * Moves a single object to the CPU read, and possibly write domain.
2930  *
2931  * This function returns when the move is complete, including waiting on
2932  * flushes to occur.
2933  */
2934 static int
2935 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2936 {
2937         uint32_t old_write_domain, old_read_domains;
2938         int ret;
2939
2940         i915_gem_object_flush_gpu_write_domain(obj);
2941         /* Wait on any GPU rendering and flushing to occur. */
2942         ret = i915_gem_object_wait_rendering(obj);
2943         if (ret != 0)
2944                 return ret;
2945
2946         i915_gem_object_flush_gtt_write_domain(obj);
2947
2948         /* If we have a partially-valid cache of the object in the CPU,
2949          * finish invalidating it and free the per-page flags.
2950          */
2951         i915_gem_object_set_to_full_cpu_read_domain(obj);
2952
2953         old_write_domain = obj->write_domain;
2954         old_read_domains = obj->read_domains;
2955
2956         /* Flush the CPU cache if it's still invalid. */
2957         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2958                 i915_gem_clflush_object(obj);
2959
2960                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2961         }
2962
2963         /* It should now be out of any other write domains, and we can update
2964          * the domain values for our changes.
2965          */
2966         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2967
2968         /* If we're writing through the CPU, then the GPU read domains will
2969          * need to be invalidated at next use.
2970          */
2971         if (write) {
2972                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2973                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2974         }
2975
2976         trace_i915_gem_object_change_domain(obj,
2977                                             old_read_domains,
2978                                             old_write_domain);
2979
2980         return 0;
2981 }
2982
2983 /*
2984  * Set the next domain for the specified object. This
2985  * may not actually perform the necessary flushing/invaliding though,
2986  * as that may want to be batched with other set_domain operations
2987  *
2988  * This is (we hope) the only really tricky part of gem. The goal
2989  * is fairly simple -- track which caches hold bits of the object
2990  * and make sure they remain coherent. A few concrete examples may
2991  * help to explain how it works. For shorthand, we use the notation
2992  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2993  * a pair of read and write domain masks.
2994  *
2995  * Case 1: the batch buffer
2996  *
2997  *      1. Allocated
2998  *      2. Written by CPU
2999  *      3. Mapped to GTT
3000  *      4. Read by GPU
3001  *      5. Unmapped from GTT
3002  *      6. Freed
3003  *
3004  *      Let's take these a step at a time
3005  *
3006  *      1. Allocated
3007  *              Pages allocated from the kernel may still have
3008  *              cache contents, so we set them to (CPU, CPU) always.
3009  *      2. Written by CPU (using pwrite)
3010  *              The pwrite function calls set_domain (CPU, CPU) and
3011  *              this function does nothing (as nothing changes)
3012  *      3. Mapped by GTT
3013  *              This function asserts that the object is not
3014  *              currently in any GPU-based read or write domains
3015  *      4. Read by GPU
3016  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3017  *              As write_domain is zero, this function adds in the
3018  *              current read domains (CPU+COMMAND, 0).
3019  *              flush_domains is set to CPU.
3020  *              invalidate_domains is set to COMMAND
3021  *              clflush is run to get data out of the CPU caches
3022  *              then i915_dev_set_domain calls i915_gem_flush to
3023  *              emit an MI_FLUSH and drm_agp_chipset_flush
3024  *      5. Unmapped from GTT
3025  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3026  *              flush_domains and invalidate_domains end up both zero
3027  *              so no flushing/invalidating happens
3028  *      6. Freed
3029  *              yay, done
3030  *
3031  * Case 2: The shared render buffer
3032  *
3033  *      1. Allocated
3034  *      2. Mapped to GTT
3035  *      3. Read/written by GPU
3036  *      4. set_domain to (CPU,CPU)
3037  *      5. Read/written by CPU
3038  *      6. Read/written by GPU
3039  *
3040  *      1. Allocated
3041  *              Same as last example, (CPU, CPU)
3042  *      2. Mapped to GTT
3043  *              Nothing changes (assertions find that it is not in the GPU)
3044  *      3. Read/written by GPU
3045  *              execbuffer calls set_domain (RENDER, RENDER)
3046  *              flush_domains gets CPU
3047  *              invalidate_domains gets GPU
3048  *              clflush (obj)
3049  *              MI_FLUSH and drm_agp_chipset_flush
3050  *      4. set_domain (CPU, CPU)
3051  *              flush_domains gets GPU
3052  *              invalidate_domains gets CPU
3053  *              wait_rendering (obj) to make sure all drawing is complete.
3054  *              This will include an MI_FLUSH to get the data from GPU
3055  *              to memory
3056  *              clflush (obj) to invalidate the CPU cache
3057  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3058  *      5. Read/written by CPU
3059  *              cache lines are loaded and dirtied
3060  *      6. Read written by GPU
3061  *              Same as last GPU access
3062  *
3063  * Case 3: The constant buffer
3064  *
3065  *      1. Allocated
3066  *      2. Written by CPU
3067  *      3. Read by GPU
3068  *      4. Updated (written) by CPU again
3069  *      5. Read by GPU
3070  *
3071  *      1. Allocated
3072  *              (CPU, CPU)
3073  *      2. Written by CPU
3074  *              (CPU, CPU)
3075  *      3. Read by GPU
3076  *              (CPU+RENDER, 0)
3077  *              flush_domains = CPU
3078  *              invalidate_domains = RENDER
3079  *              clflush (obj)
3080  *              MI_FLUSH
3081  *              drm_agp_chipset_flush
3082  *      4. Updated (written) by CPU again
3083  *              (CPU, CPU)
3084  *              flush_domains = 0 (no previous write domain)
3085  *              invalidate_domains = 0 (no new read domains)
3086  *      5. Read by GPU
3087  *              (CPU+RENDER, 0)
3088  *              flush_domains = CPU
3089  *              invalidate_domains = RENDER
3090  *              clflush (obj)
3091  *              MI_FLUSH
3092  *              drm_agp_chipset_flush
3093  */
3094 static void
3095 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3096 {
3097         struct drm_device               *dev = obj->dev;
3098         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3099         uint32_t                        invalidate_domains = 0;
3100         uint32_t                        flush_domains = 0;
3101         uint32_t                        old_read_domains;
3102
3103         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3104         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3105
3106         intel_mark_busy(dev, obj);
3107
3108 #if WATCH_BUF
3109         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3110                  __func__, obj,
3111                  obj->read_domains, obj->pending_read_domains,
3112                  obj->write_domain, obj->pending_write_domain);
3113 #endif
3114         /*
3115          * If the object isn't moving to a new write domain,
3116          * let the object stay in multiple read domains
3117          */
3118         if (obj->pending_write_domain == 0)
3119                 obj->pending_read_domains |= obj->read_domains;
3120         else
3121                 obj_priv->dirty = 1;
3122
3123         /*
3124          * Flush the current write domain if
3125          * the new read domains don't match. Invalidate
3126          * any read domains which differ from the old
3127          * write domain
3128          */
3129         if (obj->write_domain &&
3130             obj->write_domain != obj->pending_read_domains) {
3131                 flush_domains |= obj->write_domain;
3132                 invalidate_domains |=
3133                         obj->pending_read_domains & ~obj->write_domain;
3134         }
3135         /*
3136          * Invalidate any read caches which may have
3137          * stale data. That is, any new read domains.
3138          */
3139         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3140         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3141 #if WATCH_BUF
3142                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3143                          __func__, flush_domains, invalidate_domains);
3144 #endif
3145                 i915_gem_clflush_object(obj);
3146         }
3147
3148         old_read_domains = obj->read_domains;
3149
3150         /* The actual obj->write_domain will be updated with
3151          * pending_write_domain after we emit the accumulated flush for all
3152          * of our domain changes in execbuffers (which clears objects'
3153          * write_domains).  So if we have a current write domain that we
3154          * aren't changing, set pending_write_domain to that.
3155          */
3156         if (flush_domains == 0 && obj->pending_write_domain == 0)
3157                 obj->pending_write_domain = obj->write_domain;
3158         obj->read_domains = obj->pending_read_domains;
3159
3160         dev->invalidate_domains |= invalidate_domains;
3161         dev->flush_domains |= flush_domains;
3162 #if WATCH_BUF
3163         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3164                  __func__,
3165                  obj->read_domains, obj->write_domain,
3166                  dev->invalidate_domains, dev->flush_domains);
3167 #endif
3168
3169         trace_i915_gem_object_change_domain(obj,
3170                                             old_read_domains,
3171                                             obj->write_domain);
3172 }
3173
3174 /**
3175  * Moves the object from a partially CPU read to a full one.
3176  *
3177  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3178  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3179  */
3180 static void
3181 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3182 {
3183         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3184
3185         if (!obj_priv->page_cpu_valid)
3186                 return;
3187
3188         /* If we're partially in the CPU read domain, finish moving it in.
3189          */
3190         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3191                 int i;
3192
3193                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3194                         if (obj_priv->page_cpu_valid[i])
3195                                 continue;
3196                         drm_clflush_pages(obj_priv->pages + i, 1);
3197                 }
3198         }
3199
3200         /* Free the page_cpu_valid mappings which are now stale, whether
3201          * or not we've got I915_GEM_DOMAIN_CPU.
3202          */
3203         kfree(obj_priv->page_cpu_valid);
3204         obj_priv->page_cpu_valid = NULL;
3205 }
3206
3207 /**
3208  * Set the CPU read domain on a range of the object.
3209  *
3210  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3211  * not entirely valid.  The page_cpu_valid member of the object flags which
3212  * pages have been flushed, and will be respected by
3213  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3214  * of the whole object.
3215  *
3216  * This function returns when the move is complete, including waiting on
3217  * flushes to occur.
3218  */
3219 static int
3220 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3221                                           uint64_t offset, uint64_t size)
3222 {
3223         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3224         uint32_t old_read_domains;
3225         int i, ret;
3226
3227         if (offset == 0 && size == obj->size)
3228                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3229
3230         i915_gem_object_flush_gpu_write_domain(obj);
3231         /* Wait on any GPU rendering and flushing to occur. */
3232         ret = i915_gem_object_wait_rendering(obj);
3233         if (ret != 0)
3234                 return ret;
3235         i915_gem_object_flush_gtt_write_domain(obj);
3236
3237         /* If we're already fully in the CPU read domain, we're done. */
3238         if (obj_priv->page_cpu_valid == NULL &&
3239             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3240                 return 0;
3241
3242         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3243          * newly adding I915_GEM_DOMAIN_CPU
3244          */
3245         if (obj_priv->page_cpu_valid == NULL) {
3246                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3247                                                    GFP_KERNEL);
3248                 if (obj_priv->page_cpu_valid == NULL)
3249                         return -ENOMEM;
3250         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3251                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3252
3253         /* Flush the cache on any pages that are still invalid from the CPU's
3254          * perspective.
3255          */
3256         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3257              i++) {
3258                 if (obj_priv->page_cpu_valid[i])
3259                         continue;
3260
3261                 drm_clflush_pages(obj_priv->pages + i, 1);
3262
3263                 obj_priv->page_cpu_valid[i] = 1;
3264         }
3265
3266         /* It should now be out of any other write domains, and we can update
3267          * the domain values for our changes.
3268          */
3269         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3270
3271         old_read_domains = obj->read_domains;
3272         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3273
3274         trace_i915_gem_object_change_domain(obj,
3275                                             old_read_domains,
3276                                             obj->write_domain);
3277
3278         return 0;
3279 }
3280
3281 /**
3282  * Pin an object to the GTT and evaluate the relocations landing in it.
3283  */
3284 static int
3285 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3286                                  struct drm_file *file_priv,
3287                                  struct drm_i915_gem_exec_object2 *entry,
3288                                  struct drm_i915_gem_relocation_entry *relocs)
3289 {
3290         struct drm_device *dev = obj->dev;
3291         drm_i915_private_t *dev_priv = dev->dev_private;
3292         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3293         int i, ret;
3294         void __iomem *reloc_page;
3295         bool need_fence;
3296
3297         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3298                      obj_priv->tiling_mode != I915_TILING_NONE;
3299
3300         /* Check fence reg constraints and rebind if necessary */
3301         if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3302             obj_priv->tiling_mode))
3303                 i915_gem_object_unbind(obj);
3304
3305         /* Choose the GTT offset for our buffer and put it there. */
3306         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3307         if (ret)
3308                 return ret;
3309
3310         /*
3311          * Pre-965 chips need a fence register set up in order to
3312          * properly handle blits to/from tiled surfaces.
3313          */
3314         if (need_fence) {
3315                 ret = i915_gem_object_get_fence_reg(obj);
3316                 if (ret != 0) {
3317                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3318                                 DRM_ERROR("Failure to install fence: %d\n",
3319                                           ret);
3320                         i915_gem_object_unpin(obj);
3321                         return ret;
3322                 }
3323         }
3324
3325         entry->offset = obj_priv->gtt_offset;
3326
3327         /* Apply the relocations, using the GTT aperture to avoid cache
3328          * flushing requirements.
3329          */
3330         for (i = 0; i < entry->relocation_count; i++) {
3331                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3332                 struct drm_gem_object *target_obj;
3333                 struct drm_i915_gem_object *target_obj_priv;
3334                 uint32_t reloc_val, reloc_offset;
3335                 uint32_t __iomem *reloc_entry;
3336
3337                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3338                                                    reloc->target_handle);
3339                 if (target_obj == NULL) {
3340                         i915_gem_object_unpin(obj);
3341                         return -EBADF;
3342                 }
3343                 target_obj_priv = target_obj->driver_private;
3344
3345 #if WATCH_RELOC
3346                 DRM_INFO("%s: obj %p offset %08x target %d "
3347                          "read %08x write %08x gtt %08x "
3348                          "presumed %08x delta %08x\n",
3349                          __func__,
3350                          obj,
3351                          (int) reloc->offset,
3352                          (int) reloc->target_handle,
3353                          (int) reloc->read_domains,
3354                          (int) reloc->write_domain,
3355                          (int) target_obj_priv->gtt_offset,
3356                          (int) reloc->presumed_offset,
3357                          reloc->delta);
3358 #endif
3359
3360                 /* The target buffer should have appeared before us in the
3361                  * exec_object list, so it should have a GTT space bound by now.
3362                  */
3363                 if (target_obj_priv->gtt_space == NULL) {
3364                         DRM_ERROR("No GTT space found for object %d\n",
3365                                   reloc->target_handle);
3366                         drm_gem_object_unreference(target_obj);
3367                         i915_gem_object_unpin(obj);
3368                         return -EINVAL;
3369                 }
3370
3371                 /* Validate that the target is in a valid r/w GPU domain */
3372                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3373                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3374                         DRM_ERROR("reloc with read/write CPU domains: "
3375                                   "obj %p target %d offset %d "
3376                                   "read %08x write %08x",
3377                                   obj, reloc->target_handle,
3378                                   (int) reloc->offset,
3379                                   reloc->read_domains,
3380                                   reloc->write_domain);
3381                         drm_gem_object_unreference(target_obj);
3382                         i915_gem_object_unpin(obj);
3383                         return -EINVAL;
3384                 }
3385                 if (reloc->write_domain && target_obj->pending_write_domain &&
3386                     reloc->write_domain != target_obj->pending_write_domain) {
3387                         DRM_ERROR("Write domain conflict: "
3388                                   "obj %p target %d offset %d "
3389                                   "new %08x old %08x\n",
3390                                   obj, reloc->target_handle,
3391                                   (int) reloc->offset,
3392                                   reloc->write_domain,
3393                                   target_obj->pending_write_domain);
3394                         drm_gem_object_unreference(target_obj);
3395                         i915_gem_object_unpin(obj);
3396                         return -EINVAL;
3397                 }
3398
3399                 target_obj->pending_read_domains |= reloc->read_domains;
3400                 target_obj->pending_write_domain |= reloc->write_domain;
3401
3402                 /* If the relocation already has the right value in it, no
3403                  * more work needs to be done.
3404                  */
3405                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3406                         drm_gem_object_unreference(target_obj);
3407                         continue;
3408                 }
3409
3410                 /* Check that the relocation address is valid... */
3411                 if (reloc->offset > obj->size - 4) {
3412                         DRM_ERROR("Relocation beyond object bounds: "
3413                                   "obj %p target %d offset %d size %d.\n",
3414                                   obj, reloc->target_handle,
3415                                   (int) reloc->offset, (int) obj->size);
3416                         drm_gem_object_unreference(target_obj);
3417                         i915_gem_object_unpin(obj);
3418                         return -EINVAL;
3419                 }
3420                 if (reloc->offset & 3) {
3421                         DRM_ERROR("Relocation not 4-byte aligned: "
3422                                   "obj %p target %d offset %d.\n",
3423                                   obj, reloc->target_handle,
3424                                   (int) reloc->offset);
3425                         drm_gem_object_unreference(target_obj);
3426                         i915_gem_object_unpin(obj);
3427                         return -EINVAL;
3428                 }
3429
3430                 /* and points to somewhere within the target object. */
3431                 if (reloc->delta >= target_obj->size) {
3432                         DRM_ERROR("Relocation beyond target object bounds: "
3433                                   "obj %p target %d delta %d size %d.\n",
3434                                   obj, reloc->target_handle,
3435                                   (int) reloc->delta, (int) target_obj->size);
3436                         drm_gem_object_unreference(target_obj);
3437                         i915_gem_object_unpin(obj);
3438                         return -EINVAL;
3439                 }
3440
3441                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3442                 if (ret != 0) {
3443                         drm_gem_object_unreference(target_obj);
3444                         i915_gem_object_unpin(obj);
3445                         return -EINVAL;
3446                 }
3447
3448                 /* Map the page containing the relocation we're going to
3449                  * perform.
3450                  */
3451                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3452                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3453                                                       (reloc_offset &
3454                                                        ~(PAGE_SIZE - 1)));
3455                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3456                                                    (reloc_offset & (PAGE_SIZE - 1)));
3457                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3458
3459 #if WATCH_BUF
3460                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3461                           obj, (unsigned int) reloc->offset,
3462                           readl(reloc_entry), reloc_val);
3463 #endif
3464                 writel(reloc_val, reloc_entry);
3465                 io_mapping_unmap_atomic(reloc_page);
3466
3467                 /* The updated presumed offset for this entry will be
3468                  * copied back out to the user.
3469                  */
3470                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3471
3472                 drm_gem_object_unreference(target_obj);
3473         }
3474
3475 #if WATCH_BUF
3476         if (0)
3477                 i915_gem_dump_object(obj, 128, __func__, ~0);
3478 #endif
3479         return 0;
3480 }
3481
3482 /** Dispatch a batchbuffer to the ring
3483  */
3484 static int
3485 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3486                               struct drm_i915_gem_execbuffer2 *exec,
3487                               struct drm_clip_rect *cliprects,
3488                               uint64_t exec_offset)
3489 {
3490         drm_i915_private_t *dev_priv = dev->dev_private;
3491         int nbox = exec->num_cliprects;
3492         int i = 0, count;
3493         uint32_t exec_start, exec_len;
3494         RING_LOCALS;
3495
3496         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3497         exec_len = (uint32_t) exec->batch_len;
3498
3499         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3500
3501         count = nbox ? nbox : 1;
3502
3503         for (i = 0; i < count; i++) {
3504                 if (i < nbox) {
3505                         int ret = i915_emit_box(dev, cliprects, i,
3506                                                 exec->DR1, exec->DR4);
3507                         if (ret)
3508                                 return ret;
3509                 }
3510
3511                 if (IS_I830(dev) || IS_845G(dev)) {
3512                         BEGIN_LP_RING(4);
3513                         OUT_RING(MI_BATCH_BUFFER);
3514                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3515                         OUT_RING(exec_start + exec_len - 4);
3516                         OUT_RING(0);
3517                         ADVANCE_LP_RING();
3518                 } else {
3519                         BEGIN_LP_RING(2);
3520                         if (IS_I965G(dev)) {
3521                                 OUT_RING(MI_BATCH_BUFFER_START |
3522                                          (2 << 6) |
3523                                          MI_BATCH_NON_SECURE_I965);
3524                                 OUT_RING(exec_start);
3525                         } else {
3526                                 OUT_RING(MI_BATCH_BUFFER_START |
3527                                          (2 << 6));
3528                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3529                         }
3530                         ADVANCE_LP_RING();
3531                 }
3532         }
3533
3534         /* XXX breadcrumb */
3535         return 0;
3536 }
3537
3538 /* Throttle our rendering by waiting until the ring has completed our requests
3539  * emitted over 20 msec ago.
3540  *
3541  * Note that if we were to use the current jiffies each time around the loop,
3542  * we wouldn't escape the function with any frames outstanding if the time to
3543  * render a frame was over 20ms.
3544  *
3545  * This should get us reasonable parallelism between CPU and GPU but also
3546  * relatively low latency when blocking on a particular request to finish.
3547  */
3548 static int
3549 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3550 {
3551         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3552         int ret = 0;
3553         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3554
3555         mutex_lock(&dev->struct_mutex);
3556         while (!list_empty(&i915_file_priv->mm.request_list)) {
3557                 struct drm_i915_gem_request *request;
3558
3559                 request = list_first_entry(&i915_file_priv->mm.request_list,
3560                                            struct drm_i915_gem_request,
3561                                            client_list);
3562
3563                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3564                         break;
3565
3566                 ret = i915_wait_request(dev, request->seqno);
3567                 if (ret != 0)
3568                         break;
3569         }
3570         mutex_unlock(&dev->struct_mutex);
3571
3572         return ret;
3573 }
3574
3575 static int
3576 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3577                               uint32_t buffer_count,
3578                               struct drm_i915_gem_relocation_entry **relocs)
3579 {
3580         uint32_t reloc_count = 0, reloc_index = 0, i;
3581         int ret;
3582
3583         *relocs = NULL;
3584         for (i = 0; i < buffer_count; i++) {
3585                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3586                         return -EINVAL;
3587                 reloc_count += exec_list[i].relocation_count;
3588         }
3589
3590         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3591         if (*relocs == NULL) {
3592                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3593                 return -ENOMEM;
3594         }
3595
3596         for (i = 0; i < buffer_count; i++) {
3597                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3598
3599                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3600
3601                 ret = copy_from_user(&(*relocs)[reloc_index],
3602                                      user_relocs,
3603                                      exec_list[i].relocation_count *
3604                                      sizeof(**relocs));
3605                 if (ret != 0) {
3606                         drm_free_large(*relocs);
3607                         *relocs = NULL;
3608                         return -EFAULT;
3609                 }
3610
3611                 reloc_index += exec_list[i].relocation_count;
3612         }
3613
3614         return 0;
3615 }
3616
3617 static int
3618 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3619                             uint32_t buffer_count,
3620                             struct drm_i915_gem_relocation_entry *relocs)
3621 {
3622         uint32_t reloc_count = 0, i;
3623         int ret = 0;
3624
3625         if (relocs == NULL)
3626             return 0;
3627
3628         for (i = 0; i < buffer_count; i++) {
3629                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3630                 int unwritten;
3631
3632                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3633
3634                 unwritten = copy_to_user(user_relocs,
3635                                          &relocs[reloc_count],
3636                                          exec_list[i].relocation_count *
3637                                          sizeof(*relocs));
3638
3639                 if (unwritten) {
3640                         ret = -EFAULT;
3641                         goto err;
3642                 }
3643
3644                 reloc_count += exec_list[i].relocation_count;
3645         }
3646
3647 err:
3648         drm_free_large(relocs);
3649
3650         return ret;
3651 }
3652
3653 static int
3654 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3655                            uint64_t exec_offset)
3656 {
3657         uint32_t exec_start, exec_len;
3658
3659         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3660         exec_len = (uint32_t) exec->batch_len;
3661
3662         if ((exec_start | exec_len) & 0x7)
3663                 return -EINVAL;
3664
3665         if (!exec_start)
3666                 return -EINVAL;
3667
3668         return 0;
3669 }
3670
3671 static int
3672 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3673                                struct drm_gem_object **object_list,
3674                                int count)
3675 {
3676         drm_i915_private_t *dev_priv = dev->dev_private;
3677         struct drm_i915_gem_object *obj_priv;
3678         DEFINE_WAIT(wait);
3679         int i, ret = 0;
3680
3681         for (;;) {
3682                 prepare_to_wait(&dev_priv->pending_flip_queue,
3683                                 &wait, TASK_INTERRUPTIBLE);
3684                 for (i = 0; i < count; i++) {
3685                         obj_priv = object_list[i]->driver_private;
3686                         if (atomic_read(&obj_priv->pending_flip) > 0)
3687                                 break;
3688                 }
3689                 if (i == count)
3690                         break;
3691
3692                 if (!signal_pending(current)) {
3693                         mutex_unlock(&dev->struct_mutex);
3694                         schedule();
3695                         mutex_lock(&dev->struct_mutex);
3696                         continue;
3697                 }
3698                 ret = -ERESTARTSYS;
3699                 break;
3700         }
3701         finish_wait(&dev_priv->pending_flip_queue, &wait);
3702
3703         return ret;
3704 }
3705
3706 int
3707 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3708                        struct drm_file *file_priv,
3709                        struct drm_i915_gem_execbuffer2 *args,
3710                        struct drm_i915_gem_exec_object2 *exec_list)
3711 {
3712         drm_i915_private_t *dev_priv = dev->dev_private;
3713         struct drm_gem_object **object_list = NULL;
3714         struct drm_gem_object *batch_obj;
3715         struct drm_i915_gem_object *obj_priv;
3716         struct drm_clip_rect *cliprects = NULL;
3717         struct drm_i915_gem_relocation_entry *relocs = NULL;
3718         int ret = 0, ret2, i, pinned = 0;
3719         uint64_t exec_offset;
3720         uint32_t seqno, flush_domains, reloc_index;
3721         int pin_tries, flips;
3722
3723 #if WATCH_EXEC
3724         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3725                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3726 #endif
3727
3728         if (args->buffer_count < 1) {
3729                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3730                 return -EINVAL;
3731         }
3732         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3733         if (object_list == NULL) {
3734                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3735                           args->buffer_count);
3736                 ret = -ENOMEM;
3737                 goto pre_mutex_err;
3738         }
3739
3740         if (args->num_cliprects != 0) {
3741                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3742                                     GFP_KERNEL);
3743                 if (cliprects == NULL) {
3744                         ret = -ENOMEM;
3745                         goto pre_mutex_err;
3746                 }
3747
3748                 ret = copy_from_user(cliprects,
3749                                      (struct drm_clip_rect __user *)
3750                                      (uintptr_t) args->cliprects_ptr,
3751                                      sizeof(*cliprects) * args->num_cliprects);
3752                 if (ret != 0) {
3753                         DRM_ERROR("copy %d cliprects failed: %d\n",
3754                                   args->num_cliprects, ret);
3755                         goto pre_mutex_err;
3756                 }
3757         }
3758
3759         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3760                                             &relocs);
3761         if (ret != 0)
3762                 goto pre_mutex_err;
3763
3764         mutex_lock(&dev->struct_mutex);
3765
3766         i915_verify_inactive(dev, __FILE__, __LINE__);
3767
3768         if (atomic_read(&dev_priv->mm.wedged)) {
3769                 mutex_unlock(&dev->struct_mutex);
3770                 ret = -EIO;
3771                 goto pre_mutex_err;
3772         }
3773
3774         if (dev_priv->mm.suspended) {
3775                 mutex_unlock(&dev->struct_mutex);
3776                 ret = -EBUSY;
3777                 goto pre_mutex_err;
3778         }
3779
3780         /* Look up object handles */
3781         flips = 0;
3782         for (i = 0; i < args->buffer_count; i++) {
3783                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3784                                                        exec_list[i].handle);
3785                 if (object_list[i] == NULL) {
3786                         DRM_ERROR("Invalid object handle %d at index %d\n",
3787                                    exec_list[i].handle, i);
3788                         /* prevent error path from reading uninitialized data */
3789                         args->buffer_count = i + 1;
3790                         ret = -EBADF;
3791                         goto err;
3792                 }
3793
3794                 obj_priv = object_list[i]->driver_private;
3795                 if (obj_priv->in_execbuffer) {
3796                         DRM_ERROR("Object %p appears more than once in object list\n",
3797                                    object_list[i]);
3798                         /* prevent error path from reading uninitialized data */
3799                         args->buffer_count = i + 1;
3800                         ret = -EBADF;
3801                         goto err;
3802                 }
3803                 obj_priv->in_execbuffer = true;
3804                 flips += atomic_read(&obj_priv->pending_flip);
3805         }
3806
3807         if (flips > 0) {
3808                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3809                                                      args->buffer_count);
3810                 if (ret)
3811                         goto err;
3812         }
3813
3814         /* Pin and relocate */
3815         for (pin_tries = 0; ; pin_tries++) {
3816                 ret = 0;
3817                 reloc_index = 0;
3818
3819                 for (i = 0; i < args->buffer_count; i++) {
3820                         object_list[i]->pending_read_domains = 0;
3821                         object_list[i]->pending_write_domain = 0;
3822                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3823                                                                file_priv,
3824                                                                &exec_list[i],
3825                                                                &relocs[reloc_index]);
3826                         if (ret)
3827                                 break;
3828                         pinned = i + 1;
3829                         reloc_index += exec_list[i].relocation_count;
3830                 }
3831                 /* success */
3832                 if (ret == 0)
3833                         break;
3834
3835                 /* error other than GTT full, or we've already tried again */
3836                 if (ret != -ENOSPC || pin_tries >= 1) {
3837                         if (ret != -ERESTARTSYS) {
3838                                 unsigned long long total_size = 0;
3839                                 for (i = 0; i < args->buffer_count; i++)
3840                                         total_size += object_list[i]->size;
3841                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3842                                           pinned+1, args->buffer_count,
3843                                           total_size, ret);
3844                                 DRM_ERROR("%d objects [%d pinned], "
3845                                           "%d object bytes [%d pinned], "
3846                                           "%d/%d gtt bytes\n",
3847                                           atomic_read(&dev->object_count),
3848                                           atomic_read(&dev->pin_count),
3849                                           atomic_read(&dev->object_memory),
3850                                           atomic_read(&dev->pin_memory),
3851                                           atomic_read(&dev->gtt_memory),
3852                                           dev->gtt_total);
3853                         }
3854                         goto err;
3855                 }
3856
3857                 /* unpin all of our buffers */
3858                 for (i = 0; i < pinned; i++)
3859                         i915_gem_object_unpin(object_list[i]);
3860                 pinned = 0;
3861
3862                 /* evict everyone we can from the aperture */
3863                 ret = i915_gem_evict_everything(dev);
3864                 if (ret && ret != -ENOSPC)
3865                         goto err;
3866         }
3867
3868         /* Set the pending read domains for the batch buffer to COMMAND */
3869         batch_obj = object_list[args->buffer_count-1];
3870         if (batch_obj->pending_write_domain) {
3871                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3872                 ret = -EINVAL;
3873                 goto err;
3874         }
3875         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3876
3877         /* Sanity check the batch buffer, prior to moving objects */
3878         exec_offset = exec_list[args->buffer_count - 1].offset;
3879         ret = i915_gem_check_execbuffer (args, exec_offset);
3880         if (ret != 0) {
3881                 DRM_ERROR("execbuf with invalid offset/length\n");
3882                 goto err;
3883         }
3884
3885         i915_verify_inactive(dev, __FILE__, __LINE__);
3886
3887         /* Zero the global flush/invalidate flags. These
3888          * will be modified as new domains are computed
3889          * for each object
3890          */
3891         dev->invalidate_domains = 0;
3892         dev->flush_domains = 0;
3893
3894         for (i = 0; i < args->buffer_count; i++) {
3895                 struct drm_gem_object *obj = object_list[i];
3896
3897                 /* Compute new gpu domains and update invalidate/flush */
3898                 i915_gem_object_set_to_gpu_domain(obj);
3899         }
3900
3901         i915_verify_inactive(dev, __FILE__, __LINE__);
3902
3903         if (dev->invalidate_domains | dev->flush_domains) {
3904 #if WATCH_EXEC
3905                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3906                           __func__,
3907                          dev->invalidate_domains,
3908                          dev->flush_domains);
3909 #endif
3910                 i915_gem_flush(dev,
3911                                dev->invalidate_domains,
3912                                dev->flush_domains);
3913                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3914                         (void)i915_add_request(dev, file_priv,
3915                                                dev->flush_domains);
3916         }
3917
3918         for (i = 0; i < args->buffer_count; i++) {
3919                 struct drm_gem_object *obj = object_list[i];
3920                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3921                 uint32_t old_write_domain = obj->write_domain;
3922
3923                 obj->write_domain = obj->pending_write_domain;
3924                 if (obj->write_domain)
3925                         list_move_tail(&obj_priv->gpu_write_list,
3926                                        &dev_priv->mm.gpu_write_list);
3927                 else
3928                         list_del_init(&obj_priv->gpu_write_list);
3929
3930                 trace_i915_gem_object_change_domain(obj,
3931                                                     obj->read_domains,
3932                                                     old_write_domain);
3933         }
3934
3935         i915_verify_inactive(dev, __FILE__, __LINE__);
3936
3937 #if WATCH_COHERENCY
3938         for (i = 0; i < args->buffer_count; i++) {
3939                 i915_gem_object_check_coherency(object_list[i],
3940                                                 exec_list[i].handle);
3941         }
3942 #endif
3943
3944 #if WATCH_EXEC
3945         i915_gem_dump_object(batch_obj,
3946                               args->batch_len,
3947                               __func__,
3948                               ~0);
3949 #endif
3950
3951         /* Exec the batchbuffer */
3952         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3953         if (ret) {
3954                 DRM_ERROR("dispatch failed %d\n", ret);
3955                 goto err;
3956         }
3957
3958         /*
3959          * Ensure that the commands in the batch buffer are
3960          * finished before the interrupt fires
3961          */
3962         flush_domains = i915_retire_commands(dev);
3963
3964         i915_verify_inactive(dev, __FILE__, __LINE__);
3965
3966         /*
3967          * Get a seqno representing the execution of the current buffer,
3968          * which we can wait on.  We would like to mitigate these interrupts,
3969          * likely by only creating seqnos occasionally (so that we have
3970          * *some* interrupts representing completion of buffers that we can
3971          * wait on when trying to clear up gtt space).
3972          */
3973         seqno = i915_add_request(dev, file_priv, flush_domains);
3974         BUG_ON(seqno == 0);
3975         for (i = 0; i < args->buffer_count; i++) {
3976                 struct drm_gem_object *obj = object_list[i];
3977
3978                 i915_gem_object_move_to_active(obj, seqno);
3979 #if WATCH_LRU
3980                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3981 #endif
3982         }
3983 #if WATCH_LRU
3984         i915_dump_lru(dev, __func__);
3985 #endif
3986
3987         i915_verify_inactive(dev, __FILE__, __LINE__);
3988
3989 err:
3990         for (i = 0; i < pinned; i++)
3991                 i915_gem_object_unpin(object_list[i]);
3992
3993         for (i = 0; i < args->buffer_count; i++) {
3994                 if (object_list[i]) {
3995                         obj_priv = object_list[i]->driver_private;
3996                         obj_priv->in_execbuffer = false;
3997                 }
3998                 drm_gem_object_unreference(object_list[i]);
3999         }
4000
4001         mutex_unlock(&dev->struct_mutex);
4002
4003 pre_mutex_err:
4004         /* Copy the updated relocations out regardless of current error
4005          * state.  Failure to update the relocs would mean that the next
4006          * time userland calls execbuf, it would do so with presumed offset
4007          * state that didn't match the actual object state.
4008          */
4009         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4010                                            relocs);
4011         if (ret2 != 0) {
4012                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4013
4014                 if (ret == 0)
4015                         ret = ret2;
4016         }
4017
4018         drm_free_large(object_list);
4019         kfree(cliprects);
4020
4021         return ret;
4022 }
4023
4024 /*
4025  * Legacy execbuffer just creates an exec2 list from the original exec object
4026  * list array and passes it to the real function.
4027  */
4028 int
4029 i915_gem_execbuffer(struct drm_device *dev, void *data,
4030                     struct drm_file *file_priv)
4031 {
4032         struct drm_i915_gem_execbuffer *args = data;
4033         struct drm_i915_gem_execbuffer2 exec2;
4034         struct drm_i915_gem_exec_object *exec_list = NULL;
4035         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4036         int ret, i;
4037
4038 #if WATCH_EXEC
4039         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4040                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4041 #endif
4042
4043         if (args->buffer_count < 1) {
4044                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4045                 return -EINVAL;
4046         }
4047
4048         /* Copy in the exec list from userland */
4049         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4050         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4051         if (exec_list == NULL || exec2_list == NULL) {
4052                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4053                           args->buffer_count);
4054                 drm_free_large(exec_list);
4055                 drm_free_large(exec2_list);
4056                 return -ENOMEM;
4057         }
4058         ret = copy_from_user(exec_list,
4059                              (struct drm_i915_relocation_entry __user *)
4060                              (uintptr_t) args->buffers_ptr,
4061                              sizeof(*exec_list) * args->buffer_count);
4062         if (ret != 0) {
4063                 DRM_ERROR("copy %d exec entries failed %d\n",
4064                           args->buffer_count, ret);
4065                 drm_free_large(exec_list);
4066                 drm_free_large(exec2_list);
4067                 return -EFAULT;
4068         }
4069
4070         for (i = 0; i < args->buffer_count; i++) {
4071                 exec2_list[i].handle = exec_list[i].handle;
4072                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4073                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4074                 exec2_list[i].alignment = exec_list[i].alignment;
4075                 exec2_list[i].offset = exec_list[i].offset;
4076                 if (!IS_I965G(dev))
4077                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4078                 else
4079                         exec2_list[i].flags = 0;
4080         }
4081
4082         exec2.buffers_ptr = args->buffers_ptr;
4083         exec2.buffer_count = args->buffer_count;
4084         exec2.batch_start_offset = args->batch_start_offset;
4085         exec2.batch_len = args->batch_len;
4086         exec2.DR1 = args->DR1;
4087         exec2.DR4 = args->DR4;
4088         exec2.num_cliprects = args->num_cliprects;
4089         exec2.cliprects_ptr = args->cliprects_ptr;
4090         exec2.flags = 0;
4091
4092         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4093         if (!ret) {
4094                 /* Copy the new buffer offsets back to the user's exec list. */
4095                 for (i = 0; i < args->buffer_count; i++)
4096                         exec_list[i].offset = exec2_list[i].offset;
4097                 /* ... and back out to userspace */
4098                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4099                                    (uintptr_t) args->buffers_ptr,
4100                                    exec_list,
4101                                    sizeof(*exec_list) * args->buffer_count);
4102                 if (ret) {
4103                         ret = -EFAULT;
4104                         DRM_ERROR("failed to copy %d exec entries "
4105                                   "back to user (%d)\n",
4106                                   args->buffer_count, ret);
4107                 }
4108         }
4109
4110         drm_free_large(exec_list);
4111         drm_free_large(exec2_list);
4112         return ret;
4113 }
4114
4115 int
4116 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4117                      struct drm_file *file_priv)
4118 {
4119         struct drm_i915_gem_execbuffer2 *args = data;
4120         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4121         int ret;
4122
4123 #if WATCH_EXEC
4124         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4125                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4126 #endif
4127
4128         if (args->buffer_count < 1) {
4129                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4130                 return -EINVAL;
4131         }
4132
4133         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4134         if (exec2_list == NULL) {
4135                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4136                           args->buffer_count);
4137                 return -ENOMEM;
4138         }
4139         ret = copy_from_user(exec2_list,
4140                              (struct drm_i915_relocation_entry __user *)
4141                              (uintptr_t) args->buffers_ptr,
4142                              sizeof(*exec2_list) * args->buffer_count);
4143         if (ret != 0) {
4144                 DRM_ERROR("copy %d exec entries failed %d\n",
4145                           args->buffer_count, ret);
4146                 drm_free_large(exec2_list);
4147                 return -EFAULT;
4148         }
4149
4150         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4151         if (!ret) {
4152                 /* Copy the new buffer offsets back to the user's exec list. */
4153                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4154                                    (uintptr_t) args->buffers_ptr,
4155                                    exec2_list,
4156                                    sizeof(*exec2_list) * args->buffer_count);
4157                 if (ret) {
4158                         ret = -EFAULT;
4159                         DRM_ERROR("failed to copy %d exec entries "
4160                                   "back to user (%d)\n",
4161                                   args->buffer_count, ret);
4162                 }
4163         }
4164
4165         drm_free_large(exec2_list);
4166         return ret;
4167 }
4168
4169 int
4170 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4171 {
4172         struct drm_device *dev = obj->dev;
4173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4174         int ret;
4175
4176         i915_verify_inactive(dev, __FILE__, __LINE__);
4177         if (obj_priv->gtt_space == NULL) {
4178                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4179                 if (ret)
4180                         return ret;
4181         }
4182
4183         obj_priv->pin_count++;
4184
4185         /* If the object is not active and not pending a flush,
4186          * remove it from the inactive list
4187          */
4188         if (obj_priv->pin_count == 1) {
4189                 atomic_inc(&dev->pin_count);
4190                 atomic_add(obj->size, &dev->pin_memory);
4191                 if (!obj_priv->active &&
4192                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4193                     !list_empty(&obj_priv->list))
4194                         list_del_init(&obj_priv->list);
4195         }
4196         i915_verify_inactive(dev, __FILE__, __LINE__);
4197
4198         return 0;
4199 }
4200
4201 void
4202 i915_gem_object_unpin(struct drm_gem_object *obj)
4203 {
4204         struct drm_device *dev = obj->dev;
4205         drm_i915_private_t *dev_priv = dev->dev_private;
4206         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4207
4208         i915_verify_inactive(dev, __FILE__, __LINE__);
4209         obj_priv->pin_count--;
4210         BUG_ON(obj_priv->pin_count < 0);
4211         BUG_ON(obj_priv->gtt_space == NULL);
4212
4213         /* If the object is no longer pinned, and is
4214          * neither active nor being flushed, then stick it on
4215          * the inactive list
4216          */
4217         if (obj_priv->pin_count == 0) {
4218                 if (!obj_priv->active &&
4219                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4220                         list_move_tail(&obj_priv->list,
4221                                        &dev_priv->mm.inactive_list);
4222                 atomic_dec(&dev->pin_count);
4223                 atomic_sub(obj->size, &dev->pin_memory);
4224         }
4225         i915_verify_inactive(dev, __FILE__, __LINE__);
4226 }
4227
4228 int
4229 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4230                    struct drm_file *file_priv)
4231 {
4232         struct drm_i915_gem_pin *args = data;
4233         struct drm_gem_object *obj;
4234         struct drm_i915_gem_object *obj_priv;
4235         int ret;
4236
4237         mutex_lock(&dev->struct_mutex);
4238
4239         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4240         if (obj == NULL) {
4241                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4242                           args->handle);
4243                 mutex_unlock(&dev->struct_mutex);
4244                 return -EBADF;
4245         }
4246         obj_priv = obj->driver_private;
4247
4248         if (obj_priv->madv != I915_MADV_WILLNEED) {
4249                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4250                 drm_gem_object_unreference(obj);
4251                 mutex_unlock(&dev->struct_mutex);
4252                 return -EINVAL;
4253         }
4254
4255         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4256                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4257                           args->handle);
4258                 drm_gem_object_unreference(obj);
4259                 mutex_unlock(&dev->struct_mutex);
4260                 return -EINVAL;
4261         }
4262
4263         obj_priv->user_pin_count++;
4264         obj_priv->pin_filp = file_priv;
4265         if (obj_priv->user_pin_count == 1) {
4266                 ret = i915_gem_object_pin(obj, args->alignment);
4267                 if (ret != 0) {
4268                         drm_gem_object_unreference(obj);
4269                         mutex_unlock(&dev->struct_mutex);
4270                         return ret;
4271                 }
4272         }
4273
4274         /* XXX - flush the CPU caches for pinned objects
4275          * as the X server doesn't manage domains yet
4276          */
4277         i915_gem_object_flush_cpu_write_domain(obj);
4278         args->offset = obj_priv->gtt_offset;
4279         drm_gem_object_unreference(obj);
4280         mutex_unlock(&dev->struct_mutex);
4281
4282         return 0;
4283 }
4284
4285 int
4286 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4287                      struct drm_file *file_priv)
4288 {
4289         struct drm_i915_gem_pin *args = data;
4290         struct drm_gem_object *obj;
4291         struct drm_i915_gem_object *obj_priv;
4292
4293         mutex_lock(&dev->struct_mutex);
4294
4295         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4296         if (obj == NULL) {
4297                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4298                           args->handle);
4299                 mutex_unlock(&dev->struct_mutex);
4300                 return -EBADF;
4301         }
4302
4303         obj_priv = obj->driver_private;
4304         if (obj_priv->pin_filp != file_priv) {
4305                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4306                           args->handle);
4307                 drm_gem_object_unreference(obj);
4308                 mutex_unlock(&dev->struct_mutex);
4309                 return -EINVAL;
4310         }
4311         obj_priv->user_pin_count--;
4312         if (obj_priv->user_pin_count == 0) {
4313                 obj_priv->pin_filp = NULL;
4314                 i915_gem_object_unpin(obj);
4315         }
4316
4317         drm_gem_object_unreference(obj);
4318         mutex_unlock(&dev->struct_mutex);
4319         return 0;
4320 }
4321
4322 int
4323 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4324                     struct drm_file *file_priv)
4325 {
4326         struct drm_i915_gem_busy *args = data;
4327         struct drm_gem_object *obj;
4328         struct drm_i915_gem_object *obj_priv;
4329
4330         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4331         if (obj == NULL) {
4332                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4333                           args->handle);
4334                 return -EBADF;
4335         }
4336
4337         mutex_lock(&dev->struct_mutex);
4338         /* Update the active list for the hardware's current position.
4339          * Otherwise this only updates on a delayed timer or when irqs are
4340          * actually unmasked, and our working set ends up being larger than
4341          * required.
4342          */
4343         i915_gem_retire_requests(dev);
4344
4345         obj_priv = obj->driver_private;
4346         /* Don't count being on the flushing list against the object being
4347          * done.  Otherwise, a buffer left on the flushing list but not getting
4348          * flushed (because nobody's flushing that domain) won't ever return
4349          * unbusy and get reused by libdrm's bo cache.  The other expected
4350          * consumer of this interface, OpenGL's occlusion queries, also specs
4351          * that the objects get unbusy "eventually" without any interference.
4352          */
4353         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4354
4355         drm_gem_object_unreference(obj);
4356         mutex_unlock(&dev->struct_mutex);
4357         return 0;
4358 }
4359
4360 int
4361 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4362                         struct drm_file *file_priv)
4363 {
4364     return i915_gem_ring_throttle(dev, file_priv);
4365 }
4366
4367 int
4368 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4369                        struct drm_file *file_priv)
4370 {
4371         struct drm_i915_gem_madvise *args = data;
4372         struct drm_gem_object *obj;
4373         struct drm_i915_gem_object *obj_priv;
4374
4375         switch (args->madv) {
4376         case I915_MADV_DONTNEED:
4377         case I915_MADV_WILLNEED:
4378             break;
4379         default:
4380             return -EINVAL;
4381         }
4382
4383         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4384         if (obj == NULL) {
4385                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4386                           args->handle);
4387                 return -EBADF;
4388         }
4389
4390         mutex_lock(&dev->struct_mutex);
4391         obj_priv = obj->driver_private;
4392
4393         if (obj_priv->pin_count) {
4394                 drm_gem_object_unreference(obj);
4395                 mutex_unlock(&dev->struct_mutex);
4396
4397                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4398                 return -EINVAL;
4399         }
4400
4401         if (obj_priv->madv != __I915_MADV_PURGED)
4402                 obj_priv->madv = args->madv;
4403
4404         /* if the object is no longer bound, discard its backing storage */
4405         if (i915_gem_object_is_purgeable(obj_priv) &&
4406             obj_priv->gtt_space == NULL)
4407                 i915_gem_object_truncate(obj);
4408
4409         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4410
4411         drm_gem_object_unreference(obj);
4412         mutex_unlock(&dev->struct_mutex);
4413
4414         return 0;
4415 }
4416
4417 int i915_gem_init_object(struct drm_gem_object *obj)
4418 {
4419         struct drm_i915_gem_object *obj_priv;
4420
4421         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4422         if (obj_priv == NULL)
4423                 return -ENOMEM;
4424
4425         /*
4426          * We've just allocated pages from the kernel,
4427          * so they've just been written by the CPU with
4428          * zeros. They'll need to be clflushed before we
4429          * use them with the GPU.
4430          */
4431         obj->write_domain = I915_GEM_DOMAIN_CPU;
4432         obj->read_domains = I915_GEM_DOMAIN_CPU;
4433
4434         obj_priv->agp_type = AGP_USER_MEMORY;
4435
4436         obj->driver_private = obj_priv;
4437         obj_priv->obj = obj;
4438         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4439         INIT_LIST_HEAD(&obj_priv->list);
4440         INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4441         INIT_LIST_HEAD(&obj_priv->fence_list);
4442         obj_priv->madv = I915_MADV_WILLNEED;
4443
4444         trace_i915_gem_object_create(obj);
4445
4446         return 0;
4447 }
4448
4449 void i915_gem_free_object(struct drm_gem_object *obj)
4450 {
4451         struct drm_device *dev = obj->dev;
4452         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4453
4454         trace_i915_gem_object_destroy(obj);
4455
4456         while (obj_priv->pin_count > 0)
4457                 i915_gem_object_unpin(obj);
4458
4459         if (obj_priv->phys_obj)
4460                 i915_gem_detach_phys_object(dev, obj);
4461
4462         i915_gem_object_unbind(obj);
4463
4464         if (obj_priv->mmap_offset)
4465                 i915_gem_free_mmap_offset(obj);
4466
4467         kfree(obj_priv->page_cpu_valid);
4468         kfree(obj_priv->bit_17);
4469         kfree(obj->driver_private);
4470 }
4471
4472 /** Unbinds all inactive objects. */
4473 static int
4474 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4475 {
4476         drm_i915_private_t *dev_priv = dev->dev_private;
4477
4478         while (!list_empty(&dev_priv->mm.inactive_list)) {
4479                 struct drm_gem_object *obj;
4480                 int ret;
4481
4482                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4483                                        struct drm_i915_gem_object,
4484                                        list)->obj;
4485
4486                 ret = i915_gem_object_unbind(obj);
4487                 if (ret != 0) {
4488                         DRM_ERROR("Error unbinding object: %d\n", ret);
4489                         return ret;
4490                 }
4491         }
4492
4493         return 0;
4494 }
4495
4496 int
4497 i915_gem_idle(struct drm_device *dev)
4498 {
4499         drm_i915_private_t *dev_priv = dev->dev_private;
4500         int ret;
4501
4502         mutex_lock(&dev->struct_mutex);
4503
4504         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4505                 mutex_unlock(&dev->struct_mutex);
4506                 return 0;
4507         }
4508
4509         ret = i915_gpu_idle(dev);
4510         if (ret) {
4511                 mutex_unlock(&dev->struct_mutex);
4512                 return ret;
4513         }
4514
4515         /* Under UMS, be paranoid and evict. */
4516         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4517                 ret = i915_gem_evict_from_inactive_list(dev);
4518                 if (ret) {
4519                         mutex_unlock(&dev->struct_mutex);
4520                         return ret;
4521                 }
4522         }
4523
4524         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4525          * We need to replace this with a semaphore, or something.
4526          * And not confound mm.suspended!
4527          */
4528         dev_priv->mm.suspended = 1;
4529         del_timer(&dev_priv->hangcheck_timer);
4530
4531         i915_kernel_lost_context(dev);
4532         i915_gem_cleanup_ringbuffer(dev);
4533
4534         mutex_unlock(&dev->struct_mutex);
4535
4536         /* Cancel the retire work handler, which should be idle now. */
4537         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4538
4539         return 0;
4540 }
4541
4542 static int
4543 i915_gem_init_hws(struct drm_device *dev)
4544 {
4545         drm_i915_private_t *dev_priv = dev->dev_private;
4546         struct drm_gem_object *obj;
4547         struct drm_i915_gem_object *obj_priv;
4548         int ret;
4549
4550         /* If we need a physical address for the status page, it's already
4551          * initialized at driver load time.
4552          */
4553         if (!I915_NEED_GFX_HWS(dev))
4554                 return 0;
4555
4556         obj = drm_gem_object_alloc(dev, 4096);
4557         if (obj == NULL) {
4558                 DRM_ERROR("Failed to allocate status page\n");
4559                 return -ENOMEM;
4560         }
4561         obj_priv = obj->driver_private;
4562         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4563
4564         ret = i915_gem_object_pin(obj, 4096);
4565         if (ret != 0) {
4566                 drm_gem_object_unreference(obj);
4567                 return ret;
4568         }
4569
4570         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4571
4572         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4573         if (dev_priv->hw_status_page == NULL) {
4574                 DRM_ERROR("Failed to map status page.\n");
4575                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4576                 i915_gem_object_unpin(obj);
4577                 drm_gem_object_unreference(obj);
4578                 return -EINVAL;
4579         }
4580         dev_priv->hws_obj = obj;
4581         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4582         if (IS_GEN6(dev)) {
4583                 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4584                 I915_READ(HWS_PGA_GEN6); /* posting read */
4585         } else {
4586                 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4587                 I915_READ(HWS_PGA); /* posting read */
4588         }
4589         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4590
4591         return 0;
4592 }
4593
4594 static void
4595 i915_gem_cleanup_hws(struct drm_device *dev)
4596 {
4597         drm_i915_private_t *dev_priv = dev->dev_private;
4598         struct drm_gem_object *obj;
4599         struct drm_i915_gem_object *obj_priv;
4600
4601         if (dev_priv->hws_obj == NULL)
4602                 return;
4603
4604         obj = dev_priv->hws_obj;
4605         obj_priv = obj->driver_private;
4606
4607         kunmap(obj_priv->pages[0]);
4608         i915_gem_object_unpin(obj);
4609         drm_gem_object_unreference(obj);
4610         dev_priv->hws_obj = NULL;
4611
4612         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4613         dev_priv->hw_status_page = NULL;
4614
4615         /* Write high address into HWS_PGA when disabling. */
4616         I915_WRITE(HWS_PGA, 0x1ffff000);
4617 }
4618
4619 int
4620 i915_gem_init_ringbuffer(struct drm_device *dev)
4621 {
4622         drm_i915_private_t *dev_priv = dev->dev_private;
4623         struct drm_gem_object *obj;
4624         struct drm_i915_gem_object *obj_priv;
4625         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4626         int ret;
4627         u32 head;
4628
4629         ret = i915_gem_init_hws(dev);
4630         if (ret != 0)
4631                 return ret;
4632
4633         obj = drm_gem_object_alloc(dev, 128 * 1024);
4634         if (obj == NULL) {
4635                 DRM_ERROR("Failed to allocate ringbuffer\n");
4636                 i915_gem_cleanup_hws(dev);
4637                 return -ENOMEM;
4638         }
4639         obj_priv = obj->driver_private;
4640
4641         ret = i915_gem_object_pin(obj, 4096);
4642         if (ret != 0) {
4643                 drm_gem_object_unreference(obj);
4644                 i915_gem_cleanup_hws(dev);
4645                 return ret;
4646         }
4647
4648         /* Set up the kernel mapping for the ring. */
4649         ring->Size = obj->size;
4650
4651         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4652         ring->map.size = obj->size;
4653         ring->map.type = 0;
4654         ring->map.flags = 0;
4655         ring->map.mtrr = 0;
4656
4657         drm_core_ioremap_wc(&ring->map, dev);
4658         if (ring->map.handle == NULL) {
4659                 DRM_ERROR("Failed to map ringbuffer.\n");
4660                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4661                 i915_gem_object_unpin(obj);
4662                 drm_gem_object_unreference(obj);
4663                 i915_gem_cleanup_hws(dev);
4664                 return -EINVAL;
4665         }
4666         ring->ring_obj = obj;
4667         ring->virtual_start = ring->map.handle;
4668
4669         /* Stop the ring if it's running. */
4670         I915_WRITE(PRB0_CTL, 0);
4671         I915_WRITE(PRB0_TAIL, 0);
4672         I915_WRITE(PRB0_HEAD, 0);
4673
4674         /* Initialize the ring. */
4675         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4676         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4677
4678         /* G45 ring initialization fails to reset head to zero */
4679         if (head != 0) {
4680                 DRM_ERROR("Ring head not reset to zero "
4681                           "ctl %08x head %08x tail %08x start %08x\n",
4682                           I915_READ(PRB0_CTL),
4683                           I915_READ(PRB0_HEAD),
4684                           I915_READ(PRB0_TAIL),
4685                           I915_READ(PRB0_START));
4686                 I915_WRITE(PRB0_HEAD, 0);
4687
4688                 DRM_ERROR("Ring head forced to zero "
4689                           "ctl %08x head %08x tail %08x start %08x\n",
4690                           I915_READ(PRB0_CTL),
4691                           I915_READ(PRB0_HEAD),
4692                           I915_READ(PRB0_TAIL),
4693                           I915_READ(PRB0_START));
4694         }
4695
4696         I915_WRITE(PRB0_CTL,
4697                    ((obj->size - 4096) & RING_NR_PAGES) |
4698                    RING_NO_REPORT |
4699                    RING_VALID);
4700
4701         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4702
4703         /* If the head is still not zero, the ring is dead */
4704         if (head != 0) {
4705                 DRM_ERROR("Ring initialization failed "
4706                           "ctl %08x head %08x tail %08x start %08x\n",
4707                           I915_READ(PRB0_CTL),
4708                           I915_READ(PRB0_HEAD),
4709                           I915_READ(PRB0_TAIL),
4710                           I915_READ(PRB0_START));
4711                 return -EIO;
4712         }
4713
4714         /* Update our cache of the ring state */
4715         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4716                 i915_kernel_lost_context(dev);
4717         else {
4718                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4719                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4720                 ring->space = ring->head - (ring->tail + 8);
4721                 if (ring->space < 0)
4722                         ring->space += ring->Size;
4723         }
4724
4725         return 0;
4726 }
4727
4728 void
4729 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4730 {
4731         drm_i915_private_t *dev_priv = dev->dev_private;
4732
4733         if (dev_priv->ring.ring_obj == NULL)
4734                 return;
4735
4736         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4737
4738         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4739         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4740         dev_priv->ring.ring_obj = NULL;
4741         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4742
4743         i915_gem_cleanup_hws(dev);
4744 }
4745
4746 int
4747 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4748                        struct drm_file *file_priv)
4749 {
4750         drm_i915_private_t *dev_priv = dev->dev_private;
4751         int ret;
4752
4753         if (drm_core_check_feature(dev, DRIVER_MODESET))
4754                 return 0;
4755
4756         if (atomic_read(&dev_priv->mm.wedged)) {
4757                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4758                 atomic_set(&dev_priv->mm.wedged, 0);
4759         }
4760
4761         mutex_lock(&dev->struct_mutex);
4762         dev_priv->mm.suspended = 0;
4763
4764         ret = i915_gem_init_ringbuffer(dev);
4765         if (ret != 0) {
4766                 mutex_unlock(&dev->struct_mutex);
4767                 return ret;
4768         }
4769
4770         spin_lock(&dev_priv->mm.active_list_lock);
4771         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4772         spin_unlock(&dev_priv->mm.active_list_lock);
4773
4774         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4775         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4776         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4777         mutex_unlock(&dev->struct_mutex);
4778
4779         drm_irq_install(dev);
4780
4781         return 0;
4782 }
4783
4784 int
4785 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4786                        struct drm_file *file_priv)
4787 {
4788         if (drm_core_check_feature(dev, DRIVER_MODESET))
4789                 return 0;
4790
4791         drm_irq_uninstall(dev);
4792         return i915_gem_idle(dev);
4793 }
4794
4795 void
4796 i915_gem_lastclose(struct drm_device *dev)
4797 {
4798         int ret;
4799
4800         if (drm_core_check_feature(dev, DRIVER_MODESET))
4801                 return;
4802
4803         ret = i915_gem_idle(dev);
4804         if (ret)
4805                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4806 }
4807
4808 void
4809 i915_gem_load(struct drm_device *dev)
4810 {
4811         int i;
4812         drm_i915_private_t *dev_priv = dev->dev_private;
4813
4814         spin_lock_init(&dev_priv->mm.active_list_lock);
4815         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4816         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4817         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4818         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4819         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4820         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4821         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4822                           i915_gem_retire_work_handler);
4823         dev_priv->mm.next_gem_seqno = 1;
4824
4825         spin_lock(&shrink_list_lock);
4826         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4827         spin_unlock(&shrink_list_lock);
4828
4829         /* Old X drivers will take 0-2 for front, back, depth buffers */
4830         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4831                 dev_priv->fence_reg_start = 3;
4832
4833         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4834                 dev_priv->num_fence_regs = 16;
4835         else
4836                 dev_priv->num_fence_regs = 8;
4837
4838         /* Initialize fence registers to zero */
4839         if (IS_I965G(dev)) {
4840                 for (i = 0; i < 16; i++)
4841                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4842         } else {
4843                 for (i = 0; i < 8; i++)
4844                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4845                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4846                         for (i = 0; i < 8; i++)
4847                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4848         }
4849         i915_gem_detect_bit_6_swizzle(dev);
4850         init_waitqueue_head(&dev_priv->pending_flip_queue);
4851 }
4852
4853 /*
4854  * Create a physically contiguous memory object for this object
4855  * e.g. for cursor + overlay regs
4856  */
4857 int i915_gem_init_phys_object(struct drm_device *dev,
4858                               int id, int size)
4859 {
4860         drm_i915_private_t *dev_priv = dev->dev_private;
4861         struct drm_i915_gem_phys_object *phys_obj;
4862         int ret;
4863
4864         if (dev_priv->mm.phys_objs[id - 1] || !size)
4865                 return 0;
4866
4867         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4868         if (!phys_obj)
4869                 return -ENOMEM;
4870
4871         phys_obj->id = id;
4872
4873         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4874         if (!phys_obj->handle) {
4875                 ret = -ENOMEM;
4876                 goto kfree_obj;
4877         }
4878 #ifdef CONFIG_X86
4879         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4880 #endif
4881
4882         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4883
4884         return 0;
4885 kfree_obj:
4886         kfree(phys_obj);
4887         return ret;
4888 }
4889
4890 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4891 {
4892         drm_i915_private_t *dev_priv = dev->dev_private;
4893         struct drm_i915_gem_phys_object *phys_obj;
4894
4895         if (!dev_priv->mm.phys_objs[id - 1])
4896                 return;
4897
4898         phys_obj = dev_priv->mm.phys_objs[id - 1];
4899         if (phys_obj->cur_obj) {
4900                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4901         }
4902
4903 #ifdef CONFIG_X86
4904         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4905 #endif
4906         drm_pci_free(dev, phys_obj->handle);
4907         kfree(phys_obj);
4908         dev_priv->mm.phys_objs[id - 1] = NULL;
4909 }
4910
4911 void i915_gem_free_all_phys_object(struct drm_device *dev)
4912 {
4913         int i;
4914
4915         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4916                 i915_gem_free_phys_object(dev, i);
4917 }
4918
4919 void i915_gem_detach_phys_object(struct drm_device *dev,
4920                                  struct drm_gem_object *obj)
4921 {
4922         struct drm_i915_gem_object *obj_priv;
4923         int i;
4924         int ret;
4925         int page_count;
4926
4927         obj_priv = obj->driver_private;
4928         if (!obj_priv->phys_obj)
4929                 return;
4930
4931         ret = i915_gem_object_get_pages(obj, 0);
4932         if (ret)
4933                 goto out;
4934
4935         page_count = obj->size / PAGE_SIZE;
4936
4937         for (i = 0; i < page_count; i++) {
4938                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4939                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4940
4941                 memcpy(dst, src, PAGE_SIZE);
4942                 kunmap_atomic(dst, KM_USER0);
4943         }
4944         drm_clflush_pages(obj_priv->pages, page_count);
4945         drm_agp_chipset_flush(dev);
4946
4947         i915_gem_object_put_pages(obj);
4948 out:
4949         obj_priv->phys_obj->cur_obj = NULL;
4950         obj_priv->phys_obj = NULL;
4951 }
4952
4953 int
4954 i915_gem_attach_phys_object(struct drm_device *dev,
4955                             struct drm_gem_object *obj, int id)
4956 {
4957         drm_i915_private_t *dev_priv = dev->dev_private;
4958         struct drm_i915_gem_object *obj_priv;
4959         int ret = 0;
4960         int page_count;
4961         int i;
4962
4963         if (id > I915_MAX_PHYS_OBJECT)
4964                 return -EINVAL;
4965
4966         obj_priv = obj->driver_private;
4967
4968         if (obj_priv->phys_obj) {
4969                 if (obj_priv->phys_obj->id == id)
4970                         return 0;
4971                 i915_gem_detach_phys_object(dev, obj);
4972         }
4973
4974
4975         /* create a new object */
4976         if (!dev_priv->mm.phys_objs[id - 1]) {
4977                 ret = i915_gem_init_phys_object(dev, id,
4978                                                 obj->size);
4979                 if (ret) {
4980                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4981                         goto out;
4982                 }
4983         }
4984
4985         /* bind to the object */
4986         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4987         obj_priv->phys_obj->cur_obj = obj;
4988
4989         ret = i915_gem_object_get_pages(obj, 0);
4990         if (ret) {
4991                 DRM_ERROR("failed to get page list\n");
4992                 goto out;
4993         }
4994
4995         page_count = obj->size / PAGE_SIZE;
4996
4997         for (i = 0; i < page_count; i++) {
4998                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4999                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5000
5001                 memcpy(dst, src, PAGE_SIZE);
5002                 kunmap_atomic(src, KM_USER0);
5003         }
5004
5005         i915_gem_object_put_pages(obj);
5006
5007         return 0;
5008 out:
5009         return ret;
5010 }
5011
5012 static int
5013 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5014                      struct drm_i915_gem_pwrite *args,
5015                      struct drm_file *file_priv)
5016 {
5017         struct drm_i915_gem_object *obj_priv = obj->driver_private;
5018         void *obj_addr;
5019         int ret;
5020         char __user *user_data;
5021
5022         user_data = (char __user *) (uintptr_t) args->data_ptr;
5023         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5024
5025         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5026         ret = copy_from_user(obj_addr, user_data, args->size);
5027         if (ret)
5028                 return -EFAULT;
5029
5030         drm_agp_chipset_flush(dev);
5031         return 0;
5032 }
5033
5034 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5035 {
5036         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5037
5038         /* Clean up our request list when the client is going away, so that
5039          * later retire_requests won't dereference our soon-to-be-gone
5040          * file_priv.
5041          */
5042         mutex_lock(&dev->struct_mutex);
5043         while (!list_empty(&i915_file_priv->mm.request_list))
5044                 list_del_init(i915_file_priv->mm.request_list.next);
5045         mutex_unlock(&dev->struct_mutex);
5046 }
5047
5048 static int
5049 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5050 {
5051         drm_i915_private_t *dev_priv, *next_dev;
5052         struct drm_i915_gem_object *obj_priv, *next_obj;
5053         int cnt = 0;
5054         int would_deadlock = 1;
5055
5056         /* "fast-path" to count number of available objects */
5057         if (nr_to_scan == 0) {
5058                 spin_lock(&shrink_list_lock);
5059                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5060                         struct drm_device *dev = dev_priv->dev;
5061
5062                         if (mutex_trylock(&dev->struct_mutex)) {
5063                                 list_for_each_entry(obj_priv,
5064                                                     &dev_priv->mm.inactive_list,
5065                                                     list)
5066                                         cnt++;
5067                                 mutex_unlock(&dev->struct_mutex);
5068                         }
5069                 }
5070                 spin_unlock(&shrink_list_lock);
5071
5072                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5073         }
5074
5075         spin_lock(&shrink_list_lock);
5076
5077         /* first scan for clean buffers */
5078         list_for_each_entry_safe(dev_priv, next_dev,
5079                                  &shrink_list, mm.shrink_list) {
5080                 struct drm_device *dev = dev_priv->dev;
5081
5082                 if (! mutex_trylock(&dev->struct_mutex))
5083                         continue;
5084
5085                 spin_unlock(&shrink_list_lock);
5086
5087                 i915_gem_retire_requests(dev);
5088
5089                 list_for_each_entry_safe(obj_priv, next_obj,
5090                                          &dev_priv->mm.inactive_list,
5091                                          list) {
5092                         if (i915_gem_object_is_purgeable(obj_priv)) {
5093                                 i915_gem_object_unbind(obj_priv->obj);
5094                                 if (--nr_to_scan <= 0)
5095                                         break;
5096                         }
5097                 }
5098
5099                 spin_lock(&shrink_list_lock);
5100                 mutex_unlock(&dev->struct_mutex);
5101
5102                 would_deadlock = 0;
5103
5104                 if (nr_to_scan <= 0)
5105                         break;
5106         }
5107
5108         /* second pass, evict/count anything still on the inactive list */
5109         list_for_each_entry_safe(dev_priv, next_dev,
5110                                  &shrink_list, mm.shrink_list) {
5111                 struct drm_device *dev = dev_priv->dev;
5112
5113                 if (! mutex_trylock(&dev->struct_mutex))
5114                         continue;
5115
5116                 spin_unlock(&shrink_list_lock);
5117
5118                 list_for_each_entry_safe(obj_priv, next_obj,
5119                                          &dev_priv->mm.inactive_list,
5120                                          list) {
5121                         if (nr_to_scan > 0) {
5122                                 i915_gem_object_unbind(obj_priv->obj);
5123                                 nr_to_scan--;
5124                         } else
5125                                 cnt++;
5126                 }
5127
5128                 spin_lock(&shrink_list_lock);
5129                 mutex_unlock(&dev->struct_mutex);
5130
5131                 would_deadlock = 0;
5132         }
5133
5134         spin_unlock(&shrink_list_lock);
5135
5136         if (would_deadlock)
5137                 return -1;
5138         else if (cnt > 0)
5139                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5140         else
5141                 return 0;
5142 }
5143
5144 static struct shrinker shrinker = {
5145         .shrink = i915_gem_shrink,
5146         .seeks = DEFAULT_SEEKS,
5147 };
5148
5149 __init void
5150 i915_gem_shrinker_init(void)
5151 {
5152     register_shrinker(&shrinker);
5153 }
5154
5155 __exit void
5156 i915_gem_shrinker_exit(void)
5157 {
5158     unregister_shrinker(&shrinker);
5159 }