firewire: ohci: add a function for reading PHY registers
[safe/jmp/linux-2.6] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
235
236 #define QUIRK_CYCLE_TIMER               1
237 #define QUIRK_RESET_PACKET              2
238 #define QUIRK_BE_HEADERS                4
239
240 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
241 static const struct {
242         unsigned short vendor, device, flags;
243 } ohci_quirks[] = {
244         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
245                                                             QUIRK_RESET_PACKET},
246         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
247         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
248         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
249         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
250         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
251 };
252
253 /* This overrides anything that was found in ohci_quirks[]. */
254 static int param_quirks;
255 module_param_named(quirks, param_quirks, int, 0644);
256 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
257         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
258         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
259         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
260         ")");
261
262 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
263
264 #define OHCI_PARAM_DEBUG_AT_AR          1
265 #define OHCI_PARAM_DEBUG_SELFIDS        2
266 #define OHCI_PARAM_DEBUG_IRQS           4
267 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
268
269 static int param_debug;
270 module_param_named(debug, param_debug, int, 0644);
271 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
272         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
273         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
274         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
275         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276         ", or a combination, or all = -1)");
277
278 static void log_irqs(u32 evt)
279 {
280         if (likely(!(param_debug &
281                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
282                 return;
283
284         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
285             !(evt & OHCI1394_busReset))
286                 return;
287
288         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
290             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
291             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
292             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
293             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
294             evt & OHCI1394_isochRx              ? " IR"                 : "",
295             evt & OHCI1394_isochTx              ? " IT"                 : "",
296             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
297             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
298             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
299             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
300             evt & OHCI1394_busReset             ? " busReset"           : "",
301             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
302                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
303                     OHCI1394_respTxComplete | OHCI1394_isochRx |
304                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
305                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306                     OHCI1394_regAccessFail | OHCI1394_busReset)
307                                                 ? " ?"                  : "");
308 }
309
310 static const char *speed[] = {
311         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
312 };
313 static const char *power[] = {
314         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
315         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
316 };
317 static const char port[] = { '.', '-', 'p', 'c', };
318
319 static char _p(u32 *s, int shift)
320 {
321         return port[*s >> shift & 3];
322 }
323
324 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
325 {
326         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
327                 return;
328
329         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
330                   self_id_count, generation, node_id);
331
332         for (; self_id_count--; ++s)
333                 if ((*s & 1 << 23) == 0)
334                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
335                             "%s gc=%d %s %s%s%s\n",
336                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
337                             speed[*s >> 14 & 3], *s >> 16 & 63,
338                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
339                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340                 else
341                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
342                             *s, *s >> 24 & 63,
343                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
344                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
345 }
346
347 static const char *evts[] = {
348         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
349         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
350         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
351         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
352         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
353         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
354         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
355         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
356         [0x10] = "-reserved-",          [0x11] = "ack_complete",
357         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
358         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
359         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
360         [0x18] = "-reserved-",          [0x19] = "-reserved-",
361         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
362         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
363         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
364         [0x20] = "pending/cancelled",
365 };
366 static const char *tcodes[] = {
367         [0x0] = "QW req",               [0x1] = "BW req",
368         [0x2] = "W resp",               [0x3] = "-reserved-",
369         [0x4] = "QR req",               [0x5] = "BR req",
370         [0x6] = "QR resp",              [0x7] = "BR resp",
371         [0x8] = "cycle start",          [0x9] = "Lk req",
372         [0xa] = "async stream packet",  [0xb] = "Lk resp",
373         [0xc] = "-reserved-",           [0xd] = "-reserved-",
374         [0xe] = "link internal",        [0xf] = "-reserved-",
375 };
376 static const char *phys[] = {
377         [0x0] = "phy config packet",    [0x1] = "link-on packet",
378         [0x2] = "self-id packet",       [0x3] = "-reserved-",
379 };
380
381 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
382 {
383         int tcode = header[0] >> 4 & 0xf;
384         char specific[12];
385
386         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
387                 return;
388
389         if (unlikely(evt >= ARRAY_SIZE(evts)))
390                         evt = 0x1f;
391
392         if (evt == OHCI1394_evt_bus_reset) {
393                 fw_notify("A%c evt_bus_reset, generation %d\n",
394                     dir, (header[2] >> 16) & 0xff);
395                 return;
396         }
397
398         if (header[0] == ~header[1]) {
399                 fw_notify("A%c %s, %s, %08x\n",
400                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401                 return;
402         }
403
404         switch (tcode) {
405         case 0x0: case 0x6: case 0x8:
406                 snprintf(specific, sizeof(specific), " = %08x",
407                          be32_to_cpu((__force __be32)header[3]));
408                 break;
409         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
410                 snprintf(specific, sizeof(specific), " %x,%x",
411                          header[3] >> 16, header[3] & 0xffff);
412                 break;
413         default:
414                 specific[0] = '\0';
415         }
416
417         switch (tcode) {
418         case 0xe: case 0xa:
419                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420                 break;
421         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422                 fw_notify("A%c spd %x tl %02x, "
423                     "%04x -> %04x, %s, "
424                     "%s, %04x%08x%s\n",
425                     dir, speed, header[0] >> 10 & 0x3f,
426                     header[1] >> 16, header[0] >> 16, evts[evt],
427                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
428                 break;
429         default:
430                 fw_notify("A%c spd %x tl %02x, "
431                     "%04x -> %04x, %s, "
432                     "%s%s\n",
433                     dir, speed, header[0] >> 10 & 0x3f,
434                     header[1] >> 16, header[0] >> 16, evts[evt],
435                     tcodes[tcode], specific);
436         }
437 }
438
439 #else
440
441 #define log_irqs(evt)
442 #define log_selfids(node_id, generation, self_id_count, sid)
443 #define log_ar_at_event(dir, speed, header, evt)
444
445 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
446
447 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
448 {
449         writel(data, ohci->registers + offset);
450 }
451
452 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
453 {
454         return readl(ohci->registers + offset);
455 }
456
457 static inline void flush_writes(const struct fw_ohci *ohci)
458 {
459         /* Do a dummy read to flush writes. */
460         reg_read(ohci, OHCI1394_Version);
461 }
462
463 static int read_phy_reg(struct fw_card *card, int addr, u32 *value)
464 {
465         struct fw_ohci *ohci = fw_ohci(card);
466         u32 val;
467
468         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
469         flush_writes(ohci);
470         msleep(2);
471         val = reg_read(ohci, OHCI1394_PhyControl);
472         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
473                 fw_error("failed to read phy reg bits\n");
474                 return -EBUSY;
475         }
476
477         *value = OHCI1394_PhyControl_ReadData(val);
478
479         return 0;
480 }
481
482 static int ohci_update_phy_reg(struct fw_card *card, int addr,
483                                int clear_bits, int set_bits)
484 {
485         struct fw_ohci *ohci = fw_ohci(card);
486         u32 old;
487         int err;
488
489         err = read_phy_reg(card, addr, &old);
490         if (err < 0)
491                 return err;
492
493         old = (old & ~clear_bits) | set_bits;
494         reg_write(ohci, OHCI1394_PhyControl,
495                   OHCI1394_PhyControl_Write(addr, old));
496
497         return 0;
498 }
499
500 static int ar_context_add_page(struct ar_context *ctx)
501 {
502         struct device *dev = ctx->ohci->card.device;
503         struct ar_buffer *ab;
504         dma_addr_t uninitialized_var(ab_bus);
505         size_t offset;
506
507         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
508         if (ab == NULL)
509                 return -ENOMEM;
510
511         ab->next = NULL;
512         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
513         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
514                                                     DESCRIPTOR_STATUS |
515                                                     DESCRIPTOR_BRANCH_ALWAYS);
516         offset = offsetof(struct ar_buffer, data);
517         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
518         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
519         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
520         ab->descriptor.branch_address = 0;
521
522         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
523         ctx->last_buffer->next = ab;
524         ctx->last_buffer = ab;
525
526         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
527         flush_writes(ctx->ohci);
528
529         return 0;
530 }
531
532 static void ar_context_release(struct ar_context *ctx)
533 {
534         struct ar_buffer *ab, *ab_next;
535         size_t offset;
536         dma_addr_t ab_bus;
537
538         for (ab = ctx->current_buffer; ab; ab = ab_next) {
539                 ab_next = ab->next;
540                 offset = offsetof(struct ar_buffer, data);
541                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
542                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
543                                   ab, ab_bus);
544         }
545 }
546
547 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
548 #define cond_le32_to_cpu(v) \
549         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
550 #else
551 #define cond_le32_to_cpu(v) le32_to_cpu(v)
552 #endif
553
554 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
555 {
556         struct fw_ohci *ohci = ctx->ohci;
557         struct fw_packet p;
558         u32 status, length, tcode;
559         int evt;
560
561         p.header[0] = cond_le32_to_cpu(buffer[0]);
562         p.header[1] = cond_le32_to_cpu(buffer[1]);
563         p.header[2] = cond_le32_to_cpu(buffer[2]);
564
565         tcode = (p.header[0] >> 4) & 0x0f;
566         switch (tcode) {
567         case TCODE_WRITE_QUADLET_REQUEST:
568         case TCODE_READ_QUADLET_RESPONSE:
569                 p.header[3] = (__force __u32) buffer[3];
570                 p.header_length = 16;
571                 p.payload_length = 0;
572                 break;
573
574         case TCODE_READ_BLOCK_REQUEST :
575                 p.header[3] = cond_le32_to_cpu(buffer[3]);
576                 p.header_length = 16;
577                 p.payload_length = 0;
578                 break;
579
580         case TCODE_WRITE_BLOCK_REQUEST:
581         case TCODE_READ_BLOCK_RESPONSE:
582         case TCODE_LOCK_REQUEST:
583         case TCODE_LOCK_RESPONSE:
584                 p.header[3] = cond_le32_to_cpu(buffer[3]);
585                 p.header_length = 16;
586                 p.payload_length = p.header[3] >> 16;
587                 break;
588
589         case TCODE_WRITE_RESPONSE:
590         case TCODE_READ_QUADLET_REQUEST:
591         case OHCI_TCODE_PHY_PACKET:
592                 p.header_length = 12;
593                 p.payload_length = 0;
594                 break;
595
596         default:
597                 /* FIXME: Stop context, discard everything, and restart? */
598                 p.header_length = 0;
599                 p.payload_length = 0;
600         }
601
602         p.payload = (void *) buffer + p.header_length;
603
604         /* FIXME: What to do about evt_* errors? */
605         length = (p.header_length + p.payload_length + 3) / 4;
606         status = cond_le32_to_cpu(buffer[length]);
607         evt    = (status >> 16) & 0x1f;
608
609         p.ack        = evt - 16;
610         p.speed      = (status >> 21) & 0x7;
611         p.timestamp  = status & 0xffff;
612         p.generation = ohci->request_generation;
613
614         log_ar_at_event('R', p.speed, p.header, evt);
615
616         /*
617          * The OHCI bus reset handler synthesizes a phy packet with
618          * the new generation number when a bus reset happens (see
619          * section 8.4.2.3).  This helps us determine when a request
620          * was received and make sure we send the response in the same
621          * generation.  We only need this for requests; for responses
622          * we use the unique tlabel for finding the matching
623          * request.
624          *
625          * Alas some chips sometimes emit bus reset packets with a
626          * wrong generation.  We set the correct generation for these
627          * at a slightly incorrect time (in bus_reset_tasklet).
628          */
629         if (evt == OHCI1394_evt_bus_reset) {
630                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
631                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
632         } else if (ctx == &ohci->ar_request_ctx) {
633                 fw_core_handle_request(&ohci->card, &p);
634         } else {
635                 fw_core_handle_response(&ohci->card, &p);
636         }
637
638         return buffer + length + 1;
639 }
640
641 static void ar_context_tasklet(unsigned long data)
642 {
643         struct ar_context *ctx = (struct ar_context *)data;
644         struct fw_ohci *ohci = ctx->ohci;
645         struct ar_buffer *ab;
646         struct descriptor *d;
647         void *buffer, *end;
648
649         ab = ctx->current_buffer;
650         d = &ab->descriptor;
651
652         if (d->res_count == 0) {
653                 size_t size, rest, offset;
654                 dma_addr_t start_bus;
655                 void *start;
656
657                 /*
658                  * This descriptor is finished and we may have a
659                  * packet split across this and the next buffer. We
660                  * reuse the page for reassembling the split packet.
661                  */
662
663                 offset = offsetof(struct ar_buffer, data);
664                 start = buffer = ab;
665                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
666
667                 ab = ab->next;
668                 d = &ab->descriptor;
669                 size = buffer + PAGE_SIZE - ctx->pointer;
670                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
671                 memmove(buffer, ctx->pointer, size);
672                 memcpy(buffer + size, ab->data, rest);
673                 ctx->current_buffer = ab;
674                 ctx->pointer = (void *) ab->data + rest;
675                 end = buffer + size + rest;
676
677                 while (buffer < end)
678                         buffer = handle_ar_packet(ctx, buffer);
679
680                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
681                                   start, start_bus);
682                 ar_context_add_page(ctx);
683         } else {
684                 buffer = ctx->pointer;
685                 ctx->pointer = end =
686                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
687
688                 while (buffer < end)
689                         buffer = handle_ar_packet(ctx, buffer);
690         }
691 }
692
693 static int ar_context_init(struct ar_context *ctx,
694                            struct fw_ohci *ohci, u32 regs)
695 {
696         struct ar_buffer ab;
697
698         ctx->regs        = regs;
699         ctx->ohci        = ohci;
700         ctx->last_buffer = &ab;
701         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
702
703         ar_context_add_page(ctx);
704         ar_context_add_page(ctx);
705         ctx->current_buffer = ab.next;
706         ctx->pointer = ctx->current_buffer->data;
707
708         return 0;
709 }
710
711 static void ar_context_run(struct ar_context *ctx)
712 {
713         struct ar_buffer *ab = ctx->current_buffer;
714         dma_addr_t ab_bus;
715         size_t offset;
716
717         offset = offsetof(struct ar_buffer, data);
718         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
719
720         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
721         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
722         flush_writes(ctx->ohci);
723 }
724
725 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
726 {
727         int b, key;
728
729         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
730         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
731
732         /* figure out which descriptor the branch address goes in */
733         if (z == 2 && (b == 3 || key == 2))
734                 return d;
735         else
736                 return d + z - 1;
737 }
738
739 static void context_tasklet(unsigned long data)
740 {
741         struct context *ctx = (struct context *) data;
742         struct descriptor *d, *last;
743         u32 address;
744         int z;
745         struct descriptor_buffer *desc;
746
747         desc = list_entry(ctx->buffer_list.next,
748                         struct descriptor_buffer, list);
749         last = ctx->last;
750         while (last->branch_address != 0) {
751                 struct descriptor_buffer *old_desc = desc;
752                 address = le32_to_cpu(last->branch_address);
753                 z = address & 0xf;
754                 address &= ~0xf;
755
756                 /* If the branch address points to a buffer outside of the
757                  * current buffer, advance to the next buffer. */
758                 if (address < desc->buffer_bus ||
759                                 address >= desc->buffer_bus + desc->used)
760                         desc = list_entry(desc->list.next,
761                                         struct descriptor_buffer, list);
762                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
763                 last = find_branch_descriptor(d, z);
764
765                 if (!ctx->callback(ctx, d, last))
766                         break;
767
768                 if (old_desc != desc) {
769                         /* If we've advanced to the next buffer, move the
770                          * previous buffer to the free list. */
771                         unsigned long flags;
772                         old_desc->used = 0;
773                         spin_lock_irqsave(&ctx->ohci->lock, flags);
774                         list_move_tail(&old_desc->list, &ctx->buffer_list);
775                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
776                 }
777                 ctx->last = last;
778         }
779 }
780
781 /*
782  * Allocate a new buffer and add it to the list of free buffers for this
783  * context.  Must be called with ohci->lock held.
784  */
785 static int context_add_buffer(struct context *ctx)
786 {
787         struct descriptor_buffer *desc;
788         dma_addr_t uninitialized_var(bus_addr);
789         int offset;
790
791         /*
792          * 16MB of descriptors should be far more than enough for any DMA
793          * program.  This will catch run-away userspace or DoS attacks.
794          */
795         if (ctx->total_allocation >= 16*1024*1024)
796                 return -ENOMEM;
797
798         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
799                         &bus_addr, GFP_ATOMIC);
800         if (!desc)
801                 return -ENOMEM;
802
803         offset = (void *)&desc->buffer - (void *)desc;
804         desc->buffer_size = PAGE_SIZE - offset;
805         desc->buffer_bus = bus_addr + offset;
806         desc->used = 0;
807
808         list_add_tail(&desc->list, &ctx->buffer_list);
809         ctx->total_allocation += PAGE_SIZE;
810
811         return 0;
812 }
813
814 static int context_init(struct context *ctx, struct fw_ohci *ohci,
815                         u32 regs, descriptor_callback_t callback)
816 {
817         ctx->ohci = ohci;
818         ctx->regs = regs;
819         ctx->total_allocation = 0;
820
821         INIT_LIST_HEAD(&ctx->buffer_list);
822         if (context_add_buffer(ctx) < 0)
823                 return -ENOMEM;
824
825         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
826                         struct descriptor_buffer, list);
827
828         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
829         ctx->callback = callback;
830
831         /*
832          * We put a dummy descriptor in the buffer that has a NULL
833          * branch address and looks like it's been sent.  That way we
834          * have a descriptor to append DMA programs to.
835          */
836         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
837         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
838         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
839         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
840         ctx->last = ctx->buffer_tail->buffer;
841         ctx->prev = ctx->buffer_tail->buffer;
842
843         return 0;
844 }
845
846 static void context_release(struct context *ctx)
847 {
848         struct fw_card *card = &ctx->ohci->card;
849         struct descriptor_buffer *desc, *tmp;
850
851         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
852                 dma_free_coherent(card->device, PAGE_SIZE, desc,
853                         desc->buffer_bus -
854                         ((void *)&desc->buffer - (void *)desc));
855 }
856
857 /* Must be called with ohci->lock held */
858 static struct descriptor *context_get_descriptors(struct context *ctx,
859                                                   int z, dma_addr_t *d_bus)
860 {
861         struct descriptor *d = NULL;
862         struct descriptor_buffer *desc = ctx->buffer_tail;
863
864         if (z * sizeof(*d) > desc->buffer_size)
865                 return NULL;
866
867         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
868                 /* No room for the descriptor in this buffer, so advance to the
869                  * next one. */
870
871                 if (desc->list.next == &ctx->buffer_list) {
872                         /* If there is no free buffer next in the list,
873                          * allocate one. */
874                         if (context_add_buffer(ctx) < 0)
875                                 return NULL;
876                 }
877                 desc = list_entry(desc->list.next,
878                                 struct descriptor_buffer, list);
879                 ctx->buffer_tail = desc;
880         }
881
882         d = desc->buffer + desc->used / sizeof(*d);
883         memset(d, 0, z * sizeof(*d));
884         *d_bus = desc->buffer_bus + desc->used;
885
886         return d;
887 }
888
889 static void context_run(struct context *ctx, u32 extra)
890 {
891         struct fw_ohci *ohci = ctx->ohci;
892
893         reg_write(ohci, COMMAND_PTR(ctx->regs),
894                   le32_to_cpu(ctx->last->branch_address));
895         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
896         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
897         flush_writes(ohci);
898 }
899
900 static void context_append(struct context *ctx,
901                            struct descriptor *d, int z, int extra)
902 {
903         dma_addr_t d_bus;
904         struct descriptor_buffer *desc = ctx->buffer_tail;
905
906         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
907
908         desc->used += (z + extra) * sizeof(*d);
909         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
910         ctx->prev = find_branch_descriptor(d, z);
911
912         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
913         flush_writes(ctx->ohci);
914 }
915
916 static void context_stop(struct context *ctx)
917 {
918         u32 reg;
919         int i;
920
921         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
922         flush_writes(ctx->ohci);
923
924         for (i = 0; i < 10; i++) {
925                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
926                 if ((reg & CONTEXT_ACTIVE) == 0)
927                         return;
928
929                 mdelay(1);
930         }
931         fw_error("Error: DMA context still active (0x%08x)\n", reg);
932 }
933
934 struct driver_data {
935         struct fw_packet *packet;
936 };
937
938 /*
939  * This function apppends a packet to the DMA queue for transmission.
940  * Must always be called with the ochi->lock held to ensure proper
941  * generation handling and locking around packet queue manipulation.
942  */
943 static int at_context_queue_packet(struct context *ctx,
944                                    struct fw_packet *packet)
945 {
946         struct fw_ohci *ohci = ctx->ohci;
947         dma_addr_t d_bus, uninitialized_var(payload_bus);
948         struct driver_data *driver_data;
949         struct descriptor *d, *last;
950         __le32 *header;
951         int z, tcode;
952         u32 reg;
953
954         d = context_get_descriptors(ctx, 4, &d_bus);
955         if (d == NULL) {
956                 packet->ack = RCODE_SEND_ERROR;
957                 return -1;
958         }
959
960         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
961         d[0].res_count = cpu_to_le16(packet->timestamp);
962
963         /*
964          * The DMA format for asyncronous link packets is different
965          * from the IEEE1394 layout, so shift the fields around
966          * accordingly.  If header_length is 8, it's a PHY packet, to
967          * which we need to prepend an extra quadlet.
968          */
969
970         header = (__le32 *) &d[1];
971         switch (packet->header_length) {
972         case 16:
973         case 12:
974                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
975                                         (packet->speed << 16));
976                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
977                                         (packet->header[0] & 0xffff0000));
978                 header[2] = cpu_to_le32(packet->header[2]);
979
980                 tcode = (packet->header[0] >> 4) & 0x0f;
981                 if (TCODE_IS_BLOCK_PACKET(tcode))
982                         header[3] = cpu_to_le32(packet->header[3]);
983                 else
984                         header[3] = (__force __le32) packet->header[3];
985
986                 d[0].req_count = cpu_to_le16(packet->header_length);
987                 break;
988
989         case 8:
990                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
991                                         (packet->speed << 16));
992                 header[1] = cpu_to_le32(packet->header[0]);
993                 header[2] = cpu_to_le32(packet->header[1]);
994                 d[0].req_count = cpu_to_le16(12);
995                 break;
996
997         case 4:
998                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
999                                         (packet->speed << 16));
1000                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1001                 d[0].req_count = cpu_to_le16(8);
1002                 break;
1003
1004         default:
1005                 /* BUG(); */
1006                 packet->ack = RCODE_SEND_ERROR;
1007                 return -1;
1008         }
1009
1010         driver_data = (struct driver_data *) &d[3];
1011         driver_data->packet = packet;
1012         packet->driver_data = driver_data;
1013
1014         if (packet->payload_length > 0) {
1015                 payload_bus =
1016                         dma_map_single(ohci->card.device, packet->payload,
1017                                        packet->payload_length, DMA_TO_DEVICE);
1018                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1019                         packet->ack = RCODE_SEND_ERROR;
1020                         return -1;
1021                 }
1022                 packet->payload_bus     = payload_bus;
1023                 packet->payload_mapped  = true;
1024
1025                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1026                 d[2].data_address = cpu_to_le32(payload_bus);
1027                 last = &d[2];
1028                 z = 3;
1029         } else {
1030                 last = &d[0];
1031                 z = 2;
1032         }
1033
1034         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1035                                      DESCRIPTOR_IRQ_ALWAYS |
1036                                      DESCRIPTOR_BRANCH_ALWAYS);
1037
1038         /*
1039          * If the controller and packet generations don't match, we need to
1040          * bail out and try again.  If IntEvent.busReset is set, the AT context
1041          * is halted, so appending to the context and trying to run it is
1042          * futile.  Most controllers do the right thing and just flush the AT
1043          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1044          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1045          * up stalling out.  So we just bail out in software and try again
1046          * later, and everyone is happy.
1047          * FIXME: Document how the locking works.
1048          */
1049         if (ohci->generation != packet->generation ||
1050             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1051                 if (packet->payload_mapped)
1052                         dma_unmap_single(ohci->card.device, payload_bus,
1053                                          packet->payload_length, DMA_TO_DEVICE);
1054                 packet->ack = RCODE_GENERATION;
1055                 return -1;
1056         }
1057
1058         context_append(ctx, d, z, 4 - z);
1059
1060         /* If the context isn't already running, start it up. */
1061         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1062         if ((reg & CONTEXT_RUN) == 0)
1063                 context_run(ctx, 0);
1064
1065         return 0;
1066 }
1067
1068 static int handle_at_packet(struct context *context,
1069                             struct descriptor *d,
1070                             struct descriptor *last)
1071 {
1072         struct driver_data *driver_data;
1073         struct fw_packet *packet;
1074         struct fw_ohci *ohci = context->ohci;
1075         int evt;
1076
1077         if (last->transfer_status == 0)
1078                 /* This descriptor isn't done yet, stop iteration. */
1079                 return 0;
1080
1081         driver_data = (struct driver_data *) &d[3];
1082         packet = driver_data->packet;
1083         if (packet == NULL)
1084                 /* This packet was cancelled, just continue. */
1085                 return 1;
1086
1087         if (packet->payload_mapped)
1088                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1089                                  packet->payload_length, DMA_TO_DEVICE);
1090
1091         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1092         packet->timestamp = le16_to_cpu(last->res_count);
1093
1094         log_ar_at_event('T', packet->speed, packet->header, evt);
1095
1096         switch (evt) {
1097         case OHCI1394_evt_timeout:
1098                 /* Async response transmit timed out. */
1099                 packet->ack = RCODE_CANCELLED;
1100                 break;
1101
1102         case OHCI1394_evt_flushed:
1103                 /*
1104                  * The packet was flushed should give same error as
1105                  * when we try to use a stale generation count.
1106                  */
1107                 packet->ack = RCODE_GENERATION;
1108                 break;
1109
1110         case OHCI1394_evt_missing_ack:
1111                 /*
1112                  * Using a valid (current) generation count, but the
1113                  * node is not on the bus or not sending acks.
1114                  */
1115                 packet->ack = RCODE_NO_ACK;
1116                 break;
1117
1118         case ACK_COMPLETE + 0x10:
1119         case ACK_PENDING + 0x10:
1120         case ACK_BUSY_X + 0x10:
1121         case ACK_BUSY_A + 0x10:
1122         case ACK_BUSY_B + 0x10:
1123         case ACK_DATA_ERROR + 0x10:
1124         case ACK_TYPE_ERROR + 0x10:
1125                 packet->ack = evt - 0x10;
1126                 break;
1127
1128         default:
1129                 packet->ack = RCODE_SEND_ERROR;
1130                 break;
1131         }
1132
1133         packet->callback(packet, &ohci->card, packet->ack);
1134
1135         return 1;
1136 }
1137
1138 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1139 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1140 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1141 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1142 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1143
1144 static void handle_local_rom(struct fw_ohci *ohci,
1145                              struct fw_packet *packet, u32 csr)
1146 {
1147         struct fw_packet response;
1148         int tcode, length, i;
1149
1150         tcode = HEADER_GET_TCODE(packet->header[0]);
1151         if (TCODE_IS_BLOCK_PACKET(tcode))
1152                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1153         else
1154                 length = 4;
1155
1156         i = csr - CSR_CONFIG_ROM;
1157         if (i + length > CONFIG_ROM_SIZE) {
1158                 fw_fill_response(&response, packet->header,
1159                                  RCODE_ADDRESS_ERROR, NULL, 0);
1160         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1161                 fw_fill_response(&response, packet->header,
1162                                  RCODE_TYPE_ERROR, NULL, 0);
1163         } else {
1164                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1165                                  (void *) ohci->config_rom + i, length);
1166         }
1167
1168         fw_core_handle_response(&ohci->card, &response);
1169 }
1170
1171 static void handle_local_lock(struct fw_ohci *ohci,
1172                               struct fw_packet *packet, u32 csr)
1173 {
1174         struct fw_packet response;
1175         int tcode, length, ext_tcode, sel;
1176         __be32 *payload, lock_old;
1177         u32 lock_arg, lock_data;
1178
1179         tcode = HEADER_GET_TCODE(packet->header[0]);
1180         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1181         payload = packet->payload;
1182         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1183
1184         if (tcode == TCODE_LOCK_REQUEST &&
1185             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1186                 lock_arg = be32_to_cpu(payload[0]);
1187                 lock_data = be32_to_cpu(payload[1]);
1188         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1189                 lock_arg = 0;
1190                 lock_data = 0;
1191         } else {
1192                 fw_fill_response(&response, packet->header,
1193                                  RCODE_TYPE_ERROR, NULL, 0);
1194                 goto out;
1195         }
1196
1197         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1198         reg_write(ohci, OHCI1394_CSRData, lock_data);
1199         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1200         reg_write(ohci, OHCI1394_CSRControl, sel);
1201
1202         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1203                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1204         else
1205                 fw_notify("swap not done yet\n");
1206
1207         fw_fill_response(&response, packet->header,
1208                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1209  out:
1210         fw_core_handle_response(&ohci->card, &response);
1211 }
1212
1213 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1214 {
1215         u64 offset;
1216         u32 csr;
1217
1218         if (ctx == &ctx->ohci->at_request_ctx) {
1219                 packet->ack = ACK_PENDING;
1220                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1221         }
1222
1223         offset =
1224                 ((unsigned long long)
1225                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1226                 packet->header[2];
1227         csr = offset - CSR_REGISTER_BASE;
1228
1229         /* Handle config rom reads. */
1230         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1231                 handle_local_rom(ctx->ohci, packet, csr);
1232         else switch (csr) {
1233         case CSR_BUS_MANAGER_ID:
1234         case CSR_BANDWIDTH_AVAILABLE:
1235         case CSR_CHANNELS_AVAILABLE_HI:
1236         case CSR_CHANNELS_AVAILABLE_LO:
1237                 handle_local_lock(ctx->ohci, packet, csr);
1238                 break;
1239         default:
1240                 if (ctx == &ctx->ohci->at_request_ctx)
1241                         fw_core_handle_request(&ctx->ohci->card, packet);
1242                 else
1243                         fw_core_handle_response(&ctx->ohci->card, packet);
1244                 break;
1245         }
1246
1247         if (ctx == &ctx->ohci->at_response_ctx) {
1248                 packet->ack = ACK_COMPLETE;
1249                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1250         }
1251 }
1252
1253 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1254 {
1255         unsigned long flags;
1256         int ret;
1257
1258         spin_lock_irqsave(&ctx->ohci->lock, flags);
1259
1260         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1261             ctx->ohci->generation == packet->generation) {
1262                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1263                 handle_local_request(ctx, packet);
1264                 return;
1265         }
1266
1267         ret = at_context_queue_packet(ctx, packet);
1268         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1269
1270         if (ret < 0)
1271                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1272
1273 }
1274
1275 static void bus_reset_tasklet(unsigned long data)
1276 {
1277         struct fw_ohci *ohci = (struct fw_ohci *)data;
1278         int self_id_count, i, j, reg;
1279         int generation, new_generation;
1280         unsigned long flags;
1281         void *free_rom = NULL;
1282         dma_addr_t free_rom_bus = 0;
1283
1284         reg = reg_read(ohci, OHCI1394_NodeID);
1285         if (!(reg & OHCI1394_NodeID_idValid)) {
1286                 fw_notify("node ID not valid, new bus reset in progress\n");
1287                 return;
1288         }
1289         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1290                 fw_notify("malconfigured bus\n");
1291                 return;
1292         }
1293         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1294                                OHCI1394_NodeID_nodeNumber);
1295
1296         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1297         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1298                 fw_notify("inconsistent self IDs\n");
1299                 return;
1300         }
1301         /*
1302          * The count in the SelfIDCount register is the number of
1303          * bytes in the self ID receive buffer.  Since we also receive
1304          * the inverted quadlets and a header quadlet, we shift one
1305          * bit extra to get the actual number of self IDs.
1306          */
1307         self_id_count = (reg >> 3) & 0xff;
1308         if (self_id_count == 0 || self_id_count > 252) {
1309                 fw_notify("inconsistent self IDs\n");
1310                 return;
1311         }
1312         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1313         rmb();
1314
1315         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1316                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1317                         fw_notify("inconsistent self IDs\n");
1318                         return;
1319                 }
1320                 ohci->self_id_buffer[j] =
1321                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1322         }
1323         rmb();
1324
1325         /*
1326          * Check the consistency of the self IDs we just read.  The
1327          * problem we face is that a new bus reset can start while we
1328          * read out the self IDs from the DMA buffer. If this happens,
1329          * the DMA buffer will be overwritten with new self IDs and we
1330          * will read out inconsistent data.  The OHCI specification
1331          * (section 11.2) recommends a technique similar to
1332          * linux/seqlock.h, where we remember the generation of the
1333          * self IDs in the buffer before reading them out and compare
1334          * it to the current generation after reading them out.  If
1335          * the two generations match we know we have a consistent set
1336          * of self IDs.
1337          */
1338
1339         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1340         if (new_generation != generation) {
1341                 fw_notify("recursive bus reset detected, "
1342                           "discarding self ids\n");
1343                 return;
1344         }
1345
1346         /* FIXME: Document how the locking works. */
1347         spin_lock_irqsave(&ohci->lock, flags);
1348
1349         ohci->generation = generation;
1350         context_stop(&ohci->at_request_ctx);
1351         context_stop(&ohci->at_response_ctx);
1352         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1353
1354         if (ohci->quirks & QUIRK_RESET_PACKET)
1355                 ohci->request_generation = generation;
1356
1357         /*
1358          * This next bit is unrelated to the AT context stuff but we
1359          * have to do it under the spinlock also.  If a new config rom
1360          * was set up before this reset, the old one is now no longer
1361          * in use and we can free it. Update the config rom pointers
1362          * to point to the current config rom and clear the
1363          * next_config_rom pointer so a new udpate can take place.
1364          */
1365
1366         if (ohci->next_config_rom != NULL) {
1367                 if (ohci->next_config_rom != ohci->config_rom) {
1368                         free_rom      = ohci->config_rom;
1369                         free_rom_bus  = ohci->config_rom_bus;
1370                 }
1371                 ohci->config_rom      = ohci->next_config_rom;
1372                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1373                 ohci->next_config_rom = NULL;
1374
1375                 /*
1376                  * Restore config_rom image and manually update
1377                  * config_rom registers.  Writing the header quadlet
1378                  * will indicate that the config rom is ready, so we
1379                  * do that last.
1380                  */
1381                 reg_write(ohci, OHCI1394_BusOptions,
1382                           be32_to_cpu(ohci->config_rom[2]));
1383                 ohci->config_rom[0] = ohci->next_header;
1384                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1385                           be32_to_cpu(ohci->next_header));
1386         }
1387
1388 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1389         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1390         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1391 #endif
1392
1393         spin_unlock_irqrestore(&ohci->lock, flags);
1394
1395         if (free_rom)
1396                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1397                                   free_rom, free_rom_bus);
1398
1399         log_selfids(ohci->node_id, generation,
1400                     self_id_count, ohci->self_id_buffer);
1401
1402         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1403                                  self_id_count, ohci->self_id_buffer);
1404 }
1405
1406 static irqreturn_t irq_handler(int irq, void *data)
1407 {
1408         struct fw_ohci *ohci = data;
1409         u32 event, iso_event;
1410         int i;
1411
1412         event = reg_read(ohci, OHCI1394_IntEventClear);
1413
1414         if (!event || !~event)
1415                 return IRQ_NONE;
1416
1417         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1418         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1419         log_irqs(event);
1420
1421         if (event & OHCI1394_selfIDComplete)
1422                 tasklet_schedule(&ohci->bus_reset_tasklet);
1423
1424         if (event & OHCI1394_RQPkt)
1425                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1426
1427         if (event & OHCI1394_RSPkt)
1428                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1429
1430         if (event & OHCI1394_reqTxComplete)
1431                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1432
1433         if (event & OHCI1394_respTxComplete)
1434                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1435
1436         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1437         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1438
1439         while (iso_event) {
1440                 i = ffs(iso_event) - 1;
1441                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1442                 iso_event &= ~(1 << i);
1443         }
1444
1445         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1446         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1447
1448         while (iso_event) {
1449                 i = ffs(iso_event) - 1;
1450                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1451                 iso_event &= ~(1 << i);
1452         }
1453
1454         if (unlikely(event & OHCI1394_regAccessFail))
1455                 fw_error("Register access failure - "
1456                          "please notify linux1394-devel@lists.sf.net\n");
1457
1458         if (unlikely(event & OHCI1394_postedWriteErr))
1459                 fw_error("PCI posted write error\n");
1460
1461         if (unlikely(event & OHCI1394_cycleTooLong)) {
1462                 if (printk_ratelimit())
1463                         fw_notify("isochronous cycle too long\n");
1464                 reg_write(ohci, OHCI1394_LinkControlSet,
1465                           OHCI1394_LinkControl_cycleMaster);
1466         }
1467
1468         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1469                 /*
1470                  * We need to clear this event bit in order to make
1471                  * cycleMatch isochronous I/O work.  In theory we should
1472                  * stop active cycleMatch iso contexts now and restart
1473                  * them at least two cycles later.  (FIXME?)
1474                  */
1475                 if (printk_ratelimit())
1476                         fw_notify("isochronous cycle inconsistent\n");
1477         }
1478
1479         return IRQ_HANDLED;
1480 }
1481
1482 static int software_reset(struct fw_ohci *ohci)
1483 {
1484         int i;
1485
1486         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1487
1488         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1489                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1490                      OHCI1394_HCControl_softReset) == 0)
1491                         return 0;
1492                 msleep(1);
1493         }
1494
1495         return -EBUSY;
1496 }
1497
1498 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1499 {
1500         size_t size = length * 4;
1501
1502         memcpy(dest, src, size);
1503         if (size < CONFIG_ROM_SIZE)
1504                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1505 }
1506
1507 static int ohci_enable(struct fw_card *card,
1508                        const __be32 *config_rom, size_t length)
1509 {
1510         struct fw_ohci *ohci = fw_ohci(card);
1511         struct pci_dev *dev = to_pci_dev(card->device);
1512         u32 lps;
1513         int i;
1514
1515         if (software_reset(ohci)) {
1516                 fw_error("Failed to reset ohci card.\n");
1517                 return -EBUSY;
1518         }
1519
1520         /*
1521          * Now enable LPS, which we need in order to start accessing
1522          * most of the registers.  In fact, on some cards (ALI M5251),
1523          * accessing registers in the SClk domain without LPS enabled
1524          * will lock up the machine.  Wait 50msec to make sure we have
1525          * full link enabled.  However, with some cards (well, at least
1526          * a JMicron PCIe card), we have to try again sometimes.
1527          */
1528         reg_write(ohci, OHCI1394_HCControlSet,
1529                   OHCI1394_HCControl_LPS |
1530                   OHCI1394_HCControl_postedWriteEnable);
1531         flush_writes(ohci);
1532
1533         for (lps = 0, i = 0; !lps && i < 3; i++) {
1534                 msleep(50);
1535                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1536                       OHCI1394_HCControl_LPS;
1537         }
1538
1539         if (!lps) {
1540                 fw_error("Failed to set Link Power Status\n");
1541                 return -EIO;
1542         }
1543
1544         reg_write(ohci, OHCI1394_HCControlClear,
1545                   OHCI1394_HCControl_noByteSwapData);
1546
1547         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1548         reg_write(ohci, OHCI1394_LinkControlClear,
1549                   OHCI1394_LinkControl_rcvPhyPkt);
1550         reg_write(ohci, OHCI1394_LinkControlSet,
1551                   OHCI1394_LinkControl_rcvSelfID |
1552                   OHCI1394_LinkControl_cycleTimerEnable |
1553                   OHCI1394_LinkControl_cycleMaster);
1554
1555         reg_write(ohci, OHCI1394_ATRetries,
1556                   OHCI1394_MAX_AT_REQ_RETRIES |
1557                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1558                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1559
1560         ar_context_run(&ohci->ar_request_ctx);
1561         ar_context_run(&ohci->ar_response_ctx);
1562
1563         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1564         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1565         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1566         reg_write(ohci, OHCI1394_IntMaskSet,
1567                   OHCI1394_selfIDComplete |
1568                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1569                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1570                   OHCI1394_isochRx | OHCI1394_isochTx |
1571                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1572                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1573                   OHCI1394_masterIntEnable);
1574         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1575                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1576
1577         /* Activate link_on bit and contender bit in our self ID packets.*/
1578         if (ohci_update_phy_reg(card, 4, 0,
1579                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1580                 return -EIO;
1581
1582         /*
1583          * When the link is not yet enabled, the atomic config rom
1584          * update mechanism described below in ohci_set_config_rom()
1585          * is not active.  We have to update ConfigRomHeader and
1586          * BusOptions manually, and the write to ConfigROMmap takes
1587          * effect immediately.  We tie this to the enabling of the
1588          * link, so we have a valid config rom before enabling - the
1589          * OHCI requires that ConfigROMhdr and BusOptions have valid
1590          * values before enabling.
1591          *
1592          * However, when the ConfigROMmap is written, some controllers
1593          * always read back quadlets 0 and 2 from the config rom to
1594          * the ConfigRomHeader and BusOptions registers on bus reset.
1595          * They shouldn't do that in this initial case where the link
1596          * isn't enabled.  This means we have to use the same
1597          * workaround here, setting the bus header to 0 and then write
1598          * the right values in the bus reset tasklet.
1599          */
1600
1601         if (config_rom) {
1602                 ohci->next_config_rom =
1603                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1604                                            &ohci->next_config_rom_bus,
1605                                            GFP_KERNEL);
1606                 if (ohci->next_config_rom == NULL)
1607                         return -ENOMEM;
1608
1609                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1610         } else {
1611                 /*
1612                  * In the suspend case, config_rom is NULL, which
1613                  * means that we just reuse the old config rom.
1614                  */
1615                 ohci->next_config_rom = ohci->config_rom;
1616                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1617         }
1618
1619         ohci->next_header = ohci->next_config_rom[0];
1620         ohci->next_config_rom[0] = 0;
1621         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1622         reg_write(ohci, OHCI1394_BusOptions,
1623                   be32_to_cpu(ohci->next_config_rom[2]));
1624         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1625
1626         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1627
1628         if (request_irq(dev->irq, irq_handler,
1629                         IRQF_SHARED, ohci_driver_name, ohci)) {
1630                 fw_error("Failed to allocate shared interrupt %d.\n",
1631                          dev->irq);
1632                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1633                                   ohci->config_rom, ohci->config_rom_bus);
1634                 return -EIO;
1635         }
1636
1637         reg_write(ohci, OHCI1394_HCControlSet,
1638                   OHCI1394_HCControl_linkEnable |
1639                   OHCI1394_HCControl_BIBimageValid);
1640         flush_writes(ohci);
1641
1642         /*
1643          * We are ready to go, initiate bus reset to finish the
1644          * initialization.
1645          */
1646
1647         fw_core_initiate_bus_reset(&ohci->card, 1);
1648
1649         return 0;
1650 }
1651
1652 static int ohci_set_config_rom(struct fw_card *card,
1653                                const __be32 *config_rom, size_t length)
1654 {
1655         struct fw_ohci *ohci;
1656         unsigned long flags;
1657         int ret = -EBUSY;
1658         __be32 *next_config_rom;
1659         dma_addr_t uninitialized_var(next_config_rom_bus);
1660
1661         ohci = fw_ohci(card);
1662
1663         /*
1664          * When the OHCI controller is enabled, the config rom update
1665          * mechanism is a bit tricky, but easy enough to use.  See
1666          * section 5.5.6 in the OHCI specification.
1667          *
1668          * The OHCI controller caches the new config rom address in a
1669          * shadow register (ConfigROMmapNext) and needs a bus reset
1670          * for the changes to take place.  When the bus reset is
1671          * detected, the controller loads the new values for the
1672          * ConfigRomHeader and BusOptions registers from the specified
1673          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1674          * shadow register. All automatically and atomically.
1675          *
1676          * Now, there's a twist to this story.  The automatic load of
1677          * ConfigRomHeader and BusOptions doesn't honor the
1678          * noByteSwapData bit, so with a be32 config rom, the
1679          * controller will load be32 values in to these registers
1680          * during the atomic update, even on litte endian
1681          * architectures.  The workaround we use is to put a 0 in the
1682          * header quadlet; 0 is endian agnostic and means that the
1683          * config rom isn't ready yet.  In the bus reset tasklet we
1684          * then set up the real values for the two registers.
1685          *
1686          * We use ohci->lock to avoid racing with the code that sets
1687          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1688          */
1689
1690         next_config_rom =
1691                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1692                                    &next_config_rom_bus, GFP_KERNEL);
1693         if (next_config_rom == NULL)
1694                 return -ENOMEM;
1695
1696         spin_lock_irqsave(&ohci->lock, flags);
1697
1698         if (ohci->next_config_rom == NULL) {
1699                 ohci->next_config_rom = next_config_rom;
1700                 ohci->next_config_rom_bus = next_config_rom_bus;
1701
1702                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1703
1704                 ohci->next_header = config_rom[0];
1705                 ohci->next_config_rom[0] = 0;
1706
1707                 reg_write(ohci, OHCI1394_ConfigROMmap,
1708                           ohci->next_config_rom_bus);
1709                 ret = 0;
1710         }
1711
1712         spin_unlock_irqrestore(&ohci->lock, flags);
1713
1714         /*
1715          * Now initiate a bus reset to have the changes take
1716          * effect. We clean up the old config rom memory and DMA
1717          * mappings in the bus reset tasklet, since the OHCI
1718          * controller could need to access it before the bus reset
1719          * takes effect.
1720          */
1721         if (ret == 0)
1722                 fw_core_initiate_bus_reset(&ohci->card, 1);
1723         else
1724                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1725                                   next_config_rom, next_config_rom_bus);
1726
1727         return ret;
1728 }
1729
1730 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1731 {
1732         struct fw_ohci *ohci = fw_ohci(card);
1733
1734         at_context_transmit(&ohci->at_request_ctx, packet);
1735 }
1736
1737 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1738 {
1739         struct fw_ohci *ohci = fw_ohci(card);
1740
1741         at_context_transmit(&ohci->at_response_ctx, packet);
1742 }
1743
1744 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1745 {
1746         struct fw_ohci *ohci = fw_ohci(card);
1747         struct context *ctx = &ohci->at_request_ctx;
1748         struct driver_data *driver_data = packet->driver_data;
1749         int ret = -ENOENT;
1750
1751         tasklet_disable(&ctx->tasklet);
1752
1753         if (packet->ack != 0)
1754                 goto out;
1755
1756         if (packet->payload_mapped)
1757                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1758                                  packet->payload_length, DMA_TO_DEVICE);
1759
1760         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1761         driver_data->packet = NULL;
1762         packet->ack = RCODE_CANCELLED;
1763         packet->callback(packet, &ohci->card, packet->ack);
1764         ret = 0;
1765  out:
1766         tasklet_enable(&ctx->tasklet);
1767
1768         return ret;
1769 }
1770
1771 static int ohci_enable_phys_dma(struct fw_card *card,
1772                                 int node_id, int generation)
1773 {
1774 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1775         return 0;
1776 #else
1777         struct fw_ohci *ohci = fw_ohci(card);
1778         unsigned long flags;
1779         int n, ret = 0;
1780
1781         /*
1782          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1783          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1784          */
1785
1786         spin_lock_irqsave(&ohci->lock, flags);
1787
1788         if (ohci->generation != generation) {
1789                 ret = -ESTALE;
1790                 goto out;
1791         }
1792
1793         /*
1794          * Note, if the node ID contains a non-local bus ID, physical DMA is
1795          * enabled for _all_ nodes on remote buses.
1796          */
1797
1798         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1799         if (n < 32)
1800                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1801         else
1802                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1803
1804         flush_writes(ohci);
1805  out:
1806         spin_unlock_irqrestore(&ohci->lock, flags);
1807
1808         return ret;
1809 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1810 }
1811
1812 static u32 cycle_timer_ticks(u32 cycle_timer)
1813 {
1814         u32 ticks;
1815
1816         ticks = cycle_timer & 0xfff;
1817         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1818         ticks += (3072 * 8000) * (cycle_timer >> 25);
1819
1820         return ticks;
1821 }
1822
1823 /*
1824  * Some controllers exhibit one or more of the following bugs when updating the
1825  * iso cycle timer register:
1826  *  - When the lowest six bits are wrapping around to zero, a read that happens
1827  *    at the same time will return garbage in the lowest ten bits.
1828  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1829  *    not incremented for about 60 ns.
1830  *  - Occasionally, the entire register reads zero.
1831  *
1832  * To catch these, we read the register three times and ensure that the
1833  * difference between each two consecutive reads is approximately the same, i.e.
1834  * less than twice the other.  Furthermore, any negative difference indicates an
1835  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1836  * execute, so we have enough precision to compute the ratio of the differences.)
1837  */
1838 static u32 ohci_get_cycle_time(struct fw_card *card)
1839 {
1840         struct fw_ohci *ohci = fw_ohci(card);
1841         u32 c0, c1, c2;
1842         u32 t0, t1, t2;
1843         s32 diff01, diff12;
1844         int i;
1845
1846         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1847
1848         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1849                 i = 0;
1850                 c1 = c2;
1851                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1852                 do {
1853                         c0 = c1;
1854                         c1 = c2;
1855                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1856                         t0 = cycle_timer_ticks(c0);
1857                         t1 = cycle_timer_ticks(c1);
1858                         t2 = cycle_timer_ticks(c2);
1859                         diff01 = t1 - t0;
1860                         diff12 = t2 - t1;
1861                 } while ((diff01 <= 0 || diff12 <= 0 ||
1862                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1863                          && i++ < 20);
1864         }
1865
1866         return c2;
1867 }
1868
1869 static void copy_iso_headers(struct iso_context *ctx, void *p)
1870 {
1871         int i = ctx->header_length;
1872
1873         if (i + ctx->base.header_size > PAGE_SIZE)
1874                 return;
1875
1876         /*
1877          * The iso header is byteswapped to little endian by
1878          * the controller, but the remaining header quadlets
1879          * are big endian.  We want to present all the headers
1880          * as big endian, so we have to swap the first quadlet.
1881          */
1882         if (ctx->base.header_size > 0)
1883                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1884         if (ctx->base.header_size > 4)
1885                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1886         if (ctx->base.header_size > 8)
1887                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1888         ctx->header_length += ctx->base.header_size;
1889 }
1890
1891 static int handle_ir_packet_per_buffer(struct context *context,
1892                                        struct descriptor *d,
1893                                        struct descriptor *last)
1894 {
1895         struct iso_context *ctx =
1896                 container_of(context, struct iso_context, context);
1897         struct descriptor *pd;
1898         __le32 *ir_header;
1899         void *p;
1900
1901         for (pd = d; pd <= last; pd++) {
1902                 if (pd->transfer_status)
1903                         break;
1904         }
1905         if (pd > last)
1906                 /* Descriptor(s) not done yet, stop iteration */
1907                 return 0;
1908
1909         p = last + 1;
1910         copy_iso_headers(ctx, p);
1911
1912         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1913                 ir_header = (__le32 *) p;
1914                 ctx->base.callback(&ctx->base,
1915                                    le32_to_cpu(ir_header[0]) & 0xffff,
1916                                    ctx->header_length, ctx->header,
1917                                    ctx->base.callback_data);
1918                 ctx->header_length = 0;
1919         }
1920
1921         return 1;
1922 }
1923
1924 static int handle_it_packet(struct context *context,
1925                             struct descriptor *d,
1926                             struct descriptor *last)
1927 {
1928         struct iso_context *ctx =
1929                 container_of(context, struct iso_context, context);
1930         int i;
1931         struct descriptor *pd;
1932
1933         for (pd = d; pd <= last; pd++)
1934                 if (pd->transfer_status)
1935                         break;
1936         if (pd > last)
1937                 /* Descriptor(s) not done yet, stop iteration */
1938                 return 0;
1939
1940         i = ctx->header_length;
1941         if (i + 4 < PAGE_SIZE) {
1942                 /* Present this value as big-endian to match the receive code */
1943                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1944                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1945                                 le16_to_cpu(pd->res_count));
1946                 ctx->header_length += 4;
1947         }
1948         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1949                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1950                                    ctx->header_length, ctx->header,
1951                                    ctx->base.callback_data);
1952                 ctx->header_length = 0;
1953         }
1954         return 1;
1955 }
1956
1957 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1958                                 int type, int channel, size_t header_size)
1959 {
1960         struct fw_ohci *ohci = fw_ohci(card);
1961         struct iso_context *ctx, *list;
1962         descriptor_callback_t callback;
1963         u64 *channels, dont_care = ~0ULL;
1964         u32 *mask, regs;
1965         unsigned long flags;
1966         int index, ret = -ENOMEM;
1967
1968         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1969                 channels = &dont_care;
1970                 mask = &ohci->it_context_mask;
1971                 list = ohci->it_context_list;
1972                 callback = handle_it_packet;
1973         } else {
1974                 channels = &ohci->ir_context_channels;
1975                 mask = &ohci->ir_context_mask;
1976                 list = ohci->ir_context_list;
1977                 callback = handle_ir_packet_per_buffer;
1978         }
1979
1980         spin_lock_irqsave(&ohci->lock, flags);
1981         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1982         if (index >= 0) {
1983                 *channels &= ~(1ULL << channel);
1984                 *mask &= ~(1 << index);
1985         }
1986         spin_unlock_irqrestore(&ohci->lock, flags);
1987
1988         if (index < 0)
1989                 return ERR_PTR(-EBUSY);
1990
1991         if (type == FW_ISO_CONTEXT_TRANSMIT)
1992                 regs = OHCI1394_IsoXmitContextBase(index);
1993         else
1994                 regs = OHCI1394_IsoRcvContextBase(index);
1995
1996         ctx = &list[index];
1997         memset(ctx, 0, sizeof(*ctx));
1998         ctx->header_length = 0;
1999         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2000         if (ctx->header == NULL)
2001                 goto out;
2002
2003         ret = context_init(&ctx->context, ohci, regs, callback);
2004         if (ret < 0)
2005                 goto out_with_header;
2006
2007         return &ctx->base;
2008
2009  out_with_header:
2010         free_page((unsigned long)ctx->header);
2011  out:
2012         spin_lock_irqsave(&ohci->lock, flags);
2013         *mask |= 1 << index;
2014         spin_unlock_irqrestore(&ohci->lock, flags);
2015
2016         return ERR_PTR(ret);
2017 }
2018
2019 static int ohci_start_iso(struct fw_iso_context *base,
2020                           s32 cycle, u32 sync, u32 tags)
2021 {
2022         struct iso_context *ctx = container_of(base, struct iso_context, base);
2023         struct fw_ohci *ohci = ctx->context.ohci;
2024         u32 control, match;
2025         int index;
2026
2027         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2028                 index = ctx - ohci->it_context_list;
2029                 match = 0;
2030                 if (cycle >= 0)
2031                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2032                                 (cycle & 0x7fff) << 16;
2033
2034                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2035                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2036                 context_run(&ctx->context, match);
2037         } else {
2038                 index = ctx - ohci->ir_context_list;
2039                 control = IR_CONTEXT_ISOCH_HEADER;
2040                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2041                 if (cycle >= 0) {
2042                         match |= (cycle & 0x07fff) << 12;
2043                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2044                 }
2045
2046                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2047                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2048                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2049                 context_run(&ctx->context, control);
2050         }
2051
2052         return 0;
2053 }
2054
2055 static int ohci_stop_iso(struct fw_iso_context *base)
2056 {
2057         struct fw_ohci *ohci = fw_ohci(base->card);
2058         struct iso_context *ctx = container_of(base, struct iso_context, base);
2059         int index;
2060
2061         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2062                 index = ctx - ohci->it_context_list;
2063                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2064         } else {
2065                 index = ctx - ohci->ir_context_list;
2066                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2067         }
2068         flush_writes(ohci);
2069         context_stop(&ctx->context);
2070
2071         return 0;
2072 }
2073
2074 static void ohci_free_iso_context(struct fw_iso_context *base)
2075 {
2076         struct fw_ohci *ohci = fw_ohci(base->card);
2077         struct iso_context *ctx = container_of(base, struct iso_context, base);
2078         unsigned long flags;
2079         int index;
2080
2081         ohci_stop_iso(base);
2082         context_release(&ctx->context);
2083         free_page((unsigned long)ctx->header);
2084
2085         spin_lock_irqsave(&ohci->lock, flags);
2086
2087         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2088                 index = ctx - ohci->it_context_list;
2089                 ohci->it_context_mask |= 1 << index;
2090         } else {
2091                 index = ctx - ohci->ir_context_list;
2092                 ohci->ir_context_mask |= 1 << index;
2093                 ohci->ir_context_channels |= 1ULL << base->channel;
2094         }
2095
2096         spin_unlock_irqrestore(&ohci->lock, flags);
2097 }
2098
2099 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2100                                    struct fw_iso_packet *packet,
2101                                    struct fw_iso_buffer *buffer,
2102                                    unsigned long payload)
2103 {
2104         struct iso_context *ctx = container_of(base, struct iso_context, base);
2105         struct descriptor *d, *last, *pd;
2106         struct fw_iso_packet *p;
2107         __le32 *header;
2108         dma_addr_t d_bus, page_bus;
2109         u32 z, header_z, payload_z, irq;
2110         u32 payload_index, payload_end_index, next_page_index;
2111         int page, end_page, i, length, offset;
2112
2113         p = packet;
2114         payload_index = payload;
2115
2116         if (p->skip)
2117                 z = 1;
2118         else
2119                 z = 2;
2120         if (p->header_length > 0)
2121                 z++;
2122
2123         /* Determine the first page the payload isn't contained in. */
2124         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2125         if (p->payload_length > 0)
2126                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2127         else
2128                 payload_z = 0;
2129
2130         z += payload_z;
2131
2132         /* Get header size in number of descriptors. */
2133         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2134
2135         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2136         if (d == NULL)
2137                 return -ENOMEM;
2138
2139         if (!p->skip) {
2140                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2141                 d[0].req_count = cpu_to_le16(8);
2142                 /*
2143                  * Link the skip address to this descriptor itself.  This causes
2144                  * a context to skip a cycle whenever lost cycles or FIFO
2145                  * overruns occur, without dropping the data.  The application
2146                  * should then decide whether this is an error condition or not.
2147                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2148                  */
2149                 d[0].branch_address = cpu_to_le32(d_bus | z);
2150
2151                 header = (__le32 *) &d[1];
2152                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2153                                         IT_HEADER_TAG(p->tag) |
2154                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2155                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2156                                         IT_HEADER_SPEED(ctx->base.speed));
2157                 header[1] =
2158                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2159                                                           p->payload_length));
2160         }
2161
2162         if (p->header_length > 0) {
2163                 d[2].req_count    = cpu_to_le16(p->header_length);
2164                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2165                 memcpy(&d[z], p->header, p->header_length);
2166         }
2167
2168         pd = d + z - payload_z;
2169         payload_end_index = payload_index + p->payload_length;
2170         for (i = 0; i < payload_z; i++) {
2171                 page               = payload_index >> PAGE_SHIFT;
2172                 offset             = payload_index & ~PAGE_MASK;
2173                 next_page_index    = (page + 1) << PAGE_SHIFT;
2174                 length             =
2175                         min(next_page_index, payload_end_index) - payload_index;
2176                 pd[i].req_count    = cpu_to_le16(length);
2177
2178                 page_bus = page_private(buffer->pages[page]);
2179                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2180
2181                 payload_index += length;
2182         }
2183
2184         if (p->interrupt)
2185                 irq = DESCRIPTOR_IRQ_ALWAYS;
2186         else
2187                 irq = DESCRIPTOR_NO_IRQ;
2188
2189         last = z == 2 ? d : d + z - 1;
2190         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2191                                      DESCRIPTOR_STATUS |
2192                                      DESCRIPTOR_BRANCH_ALWAYS |
2193                                      irq);
2194
2195         context_append(&ctx->context, d, z, header_z);
2196
2197         return 0;
2198 }
2199
2200 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2201                                         struct fw_iso_packet *packet,
2202                                         struct fw_iso_buffer *buffer,
2203                                         unsigned long payload)
2204 {
2205         struct iso_context *ctx = container_of(base, struct iso_context, base);
2206         struct descriptor *d, *pd;
2207         struct fw_iso_packet *p = packet;
2208         dma_addr_t d_bus, page_bus;
2209         u32 z, header_z, rest;
2210         int i, j, length;
2211         int page, offset, packet_count, header_size, payload_per_buffer;
2212
2213         /*
2214          * The OHCI controller puts the isochronous header and trailer in the
2215          * buffer, so we need at least 8 bytes.
2216          */
2217         packet_count = p->header_length / ctx->base.header_size;
2218         header_size  = max(ctx->base.header_size, (size_t)8);
2219
2220         /* Get header size in number of descriptors. */
2221         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2222         page     = payload >> PAGE_SHIFT;
2223         offset   = payload & ~PAGE_MASK;
2224         payload_per_buffer = p->payload_length / packet_count;
2225
2226         for (i = 0; i < packet_count; i++) {
2227                 /* d points to the header descriptor */
2228                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2229                 d = context_get_descriptors(&ctx->context,
2230                                 z + header_z, &d_bus);
2231                 if (d == NULL)
2232                         return -ENOMEM;
2233
2234                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2235                                               DESCRIPTOR_INPUT_MORE);
2236                 if (p->skip && i == 0)
2237                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2238                 d->req_count    = cpu_to_le16(header_size);
2239                 d->res_count    = d->req_count;
2240                 d->transfer_status = 0;
2241                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2242
2243                 rest = payload_per_buffer;
2244                 pd = d;
2245                 for (j = 1; j < z; j++) {
2246                         pd++;
2247                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2248                                                   DESCRIPTOR_INPUT_MORE);
2249
2250                         if (offset + rest < PAGE_SIZE)
2251                                 length = rest;
2252                         else
2253                                 length = PAGE_SIZE - offset;
2254                         pd->req_count = cpu_to_le16(length);
2255                         pd->res_count = pd->req_count;
2256                         pd->transfer_status = 0;
2257
2258                         page_bus = page_private(buffer->pages[page]);
2259                         pd->data_address = cpu_to_le32(page_bus + offset);
2260
2261                         offset = (offset + length) & ~PAGE_MASK;
2262                         rest -= length;
2263                         if (offset == 0)
2264                                 page++;
2265                 }
2266                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2267                                           DESCRIPTOR_INPUT_LAST |
2268                                           DESCRIPTOR_BRANCH_ALWAYS);
2269                 if (p->interrupt && i == packet_count - 1)
2270                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2271
2272                 context_append(&ctx->context, d, z, header_z);
2273         }
2274
2275         return 0;
2276 }
2277
2278 static int ohci_queue_iso(struct fw_iso_context *base,
2279                           struct fw_iso_packet *packet,
2280                           struct fw_iso_buffer *buffer,
2281                           unsigned long payload)
2282 {
2283         struct iso_context *ctx = container_of(base, struct iso_context, base);
2284         unsigned long flags;
2285         int ret;
2286
2287         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2288         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2289                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2290         else
2291                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2292                                                         buffer, payload);
2293         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2294
2295         return ret;
2296 }
2297
2298 static const struct fw_card_driver ohci_driver = {
2299         .enable                 = ohci_enable,
2300         .update_phy_reg         = ohci_update_phy_reg,
2301         .set_config_rom         = ohci_set_config_rom,
2302         .send_request           = ohci_send_request,
2303         .send_response          = ohci_send_response,
2304         .cancel_packet          = ohci_cancel_packet,
2305         .enable_phys_dma        = ohci_enable_phys_dma,
2306         .get_cycle_time         = ohci_get_cycle_time,
2307
2308         .allocate_iso_context   = ohci_allocate_iso_context,
2309         .free_iso_context       = ohci_free_iso_context,
2310         .queue_iso              = ohci_queue_iso,
2311         .start_iso              = ohci_start_iso,
2312         .stop_iso               = ohci_stop_iso,
2313 };
2314
2315 #ifdef CONFIG_PPC_PMAC
2316 static void ohci_pmac_on(struct pci_dev *dev)
2317 {
2318         if (machine_is(powermac)) {
2319                 struct device_node *ofn = pci_device_to_OF_node(dev);
2320
2321                 if (ofn) {
2322                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2323                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2324                 }
2325         }
2326 }
2327
2328 static void ohci_pmac_off(struct pci_dev *dev)
2329 {
2330         if (machine_is(powermac)) {
2331                 struct device_node *ofn = pci_device_to_OF_node(dev);
2332
2333                 if (ofn) {
2334                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2335                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2336                 }
2337         }
2338 }
2339 #else
2340 #define ohci_pmac_on(dev)
2341 #define ohci_pmac_off(dev)
2342 #endif /* CONFIG_PPC_PMAC */
2343
2344 static int __devinit pci_probe(struct pci_dev *dev,
2345                                const struct pci_device_id *ent)
2346 {
2347         struct fw_ohci *ohci;
2348         u32 bus_options, max_receive, link_speed, version;
2349         u64 guid;
2350         int i, err, n_ir, n_it;
2351         size_t size;
2352
2353         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2354         if (ohci == NULL) {
2355                 err = -ENOMEM;
2356                 goto fail;
2357         }
2358
2359         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2360
2361         ohci_pmac_on(dev);
2362
2363         err = pci_enable_device(dev);
2364         if (err) {
2365                 fw_error("Failed to enable OHCI hardware\n");
2366                 goto fail_free;
2367         }
2368
2369         pci_set_master(dev);
2370         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2371         pci_set_drvdata(dev, ohci);
2372
2373         spin_lock_init(&ohci->lock);
2374
2375         tasklet_init(&ohci->bus_reset_tasklet,
2376                      bus_reset_tasklet, (unsigned long)ohci);
2377
2378         err = pci_request_region(dev, 0, ohci_driver_name);
2379         if (err) {
2380                 fw_error("MMIO resource unavailable\n");
2381                 goto fail_disable;
2382         }
2383
2384         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2385         if (ohci->registers == NULL) {
2386                 fw_error("Failed to remap registers\n");
2387                 err = -ENXIO;
2388                 goto fail_iomem;
2389         }
2390
2391         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2392                 if (ohci_quirks[i].vendor == dev->vendor &&
2393                     (ohci_quirks[i].device == dev->device ||
2394                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2395                         ohci->quirks = ohci_quirks[i].flags;
2396                         break;
2397                 }
2398         if (param_quirks)
2399                 ohci->quirks = param_quirks;
2400
2401         ar_context_init(&ohci->ar_request_ctx, ohci,
2402                         OHCI1394_AsReqRcvContextControlSet);
2403
2404         ar_context_init(&ohci->ar_response_ctx, ohci,
2405                         OHCI1394_AsRspRcvContextControlSet);
2406
2407         context_init(&ohci->at_request_ctx, ohci,
2408                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2409
2410         context_init(&ohci->at_response_ctx, ohci,
2411                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2412
2413         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2414         ohci->ir_context_channels = ~0ULL;
2415         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2416         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2417         n_ir = hweight32(ohci->ir_context_mask);
2418         size = sizeof(struct iso_context) * n_ir;
2419         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2420
2421         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2422         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2423         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2424         n_it = hweight32(ohci->it_context_mask);
2425         size = sizeof(struct iso_context) * n_it;
2426         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2427
2428         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2429                 err = -ENOMEM;
2430                 goto fail_contexts;
2431         }
2432
2433         /* self-id dma buffer allocation */
2434         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2435                                                SELF_ID_BUF_SIZE,
2436                                                &ohci->self_id_bus,
2437                                                GFP_KERNEL);
2438         if (ohci->self_id_cpu == NULL) {
2439                 err = -ENOMEM;
2440                 goto fail_contexts;
2441         }
2442
2443         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2444         max_receive = (bus_options >> 12) & 0xf;
2445         link_speed = bus_options & 0x7;
2446         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2447                 reg_read(ohci, OHCI1394_GUIDLo);
2448
2449         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2450         if (err)
2451                 goto fail_self_id;
2452
2453         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2454         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2455                   "%d IR + %d IT contexts, quirks 0x%x\n",
2456                   dev_name(&dev->dev), version >> 16, version & 0xff,
2457                   n_ir, n_it, ohci->quirks);
2458
2459         return 0;
2460
2461  fail_self_id:
2462         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2463                           ohci->self_id_cpu, ohci->self_id_bus);
2464  fail_contexts:
2465         kfree(ohci->ir_context_list);
2466         kfree(ohci->it_context_list);
2467         context_release(&ohci->at_response_ctx);
2468         context_release(&ohci->at_request_ctx);
2469         ar_context_release(&ohci->ar_response_ctx);
2470         ar_context_release(&ohci->ar_request_ctx);
2471         pci_iounmap(dev, ohci->registers);
2472  fail_iomem:
2473         pci_release_region(dev, 0);
2474  fail_disable:
2475         pci_disable_device(dev);
2476  fail_free:
2477         kfree(&ohci->card);
2478         ohci_pmac_off(dev);
2479  fail:
2480         if (err == -ENOMEM)
2481                 fw_error("Out of memory\n");
2482
2483         return err;
2484 }
2485
2486 static void pci_remove(struct pci_dev *dev)
2487 {
2488         struct fw_ohci *ohci;
2489
2490         ohci = pci_get_drvdata(dev);
2491         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2492         flush_writes(ohci);
2493         fw_core_remove_card(&ohci->card);
2494
2495         /*
2496          * FIXME: Fail all pending packets here, now that the upper
2497          * layers can't queue any more.
2498          */
2499
2500         software_reset(ohci);
2501         free_irq(dev->irq, ohci);
2502
2503         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2504                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2505                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2506         if (ohci->config_rom)
2507                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2508                                   ohci->config_rom, ohci->config_rom_bus);
2509         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2510                           ohci->self_id_cpu, ohci->self_id_bus);
2511         ar_context_release(&ohci->ar_request_ctx);
2512         ar_context_release(&ohci->ar_response_ctx);
2513         context_release(&ohci->at_request_ctx);
2514         context_release(&ohci->at_response_ctx);
2515         kfree(ohci->it_context_list);
2516         kfree(ohci->ir_context_list);
2517         pci_iounmap(dev, ohci->registers);
2518         pci_release_region(dev, 0);
2519         pci_disable_device(dev);
2520         kfree(&ohci->card);
2521         ohci_pmac_off(dev);
2522
2523         fw_notify("Removed fw-ohci device.\n");
2524 }
2525
2526 #ifdef CONFIG_PM
2527 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2528 {
2529         struct fw_ohci *ohci = pci_get_drvdata(dev);
2530         int err;
2531
2532         software_reset(ohci);
2533         free_irq(dev->irq, ohci);
2534         err = pci_save_state(dev);
2535         if (err) {
2536                 fw_error("pci_save_state failed\n");
2537                 return err;
2538         }
2539         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2540         if (err)
2541                 fw_error("pci_set_power_state failed with %d\n", err);
2542         ohci_pmac_off(dev);
2543
2544         return 0;
2545 }
2546
2547 static int pci_resume(struct pci_dev *dev)
2548 {
2549         struct fw_ohci *ohci = pci_get_drvdata(dev);
2550         int err;
2551
2552         ohci_pmac_on(dev);
2553         pci_set_power_state(dev, PCI_D0);
2554         pci_restore_state(dev);
2555         err = pci_enable_device(dev);
2556         if (err) {
2557                 fw_error("pci_enable_device failed\n");
2558                 return err;
2559         }
2560
2561         return ohci_enable(&ohci->card, NULL, 0);
2562 }
2563 #endif
2564
2565 static const struct pci_device_id pci_table[] = {
2566         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2567         { }
2568 };
2569
2570 MODULE_DEVICE_TABLE(pci, pci_table);
2571
2572 static struct pci_driver fw_ohci_pci_driver = {
2573         .name           = ohci_driver_name,
2574         .id_table       = pci_table,
2575         .probe          = pci_probe,
2576         .remove         = pci_remove,
2577 #ifdef CONFIG_PM
2578         .resume         = pci_resume,
2579         .suspend        = pci_suspend,
2580 #endif
2581 };
2582
2583 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2584 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2585 MODULE_LICENSE("GPL");
2586
2587 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2588 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2589 MODULE_ALIAS("ohci1394");
2590 #endif
2591
2592 static int __init fw_ohci_init(void)
2593 {
2594         return pci_register_driver(&fw_ohci_pci_driver);
2595 }
2596
2597 static void __exit fw_ohci_cleanup(void)
2598 {
2599         pci_unregister_driver(&fw_ohci_pci_driver);
2600 }
2601
2602 module_init(fw_ohci_init);
2603 module_exit(fw_ohci_cleanup);