firewire: fw-sbp2: expose module parameter for workarounds
[safe/jmp/linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 #include "fw-transaction.h"
49 #include "fw-topology.h"
50 #include "fw-device.h"
51
52 /*
53  * So far only bridges from Oxford Semiconductor are known to support
54  * concurrent logins. Depending on firmware, four or two concurrent logins
55  * are possible on OXFW911 and newer Oxsemi bridges.
56  *
57  * Concurrent logins are useful together with cluster filesystems.
58  */
59 static int sbp2_param_exclusive_login = 1;
60 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
61 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
62                  "(default = Y, use N for concurrent initiators)");
63
64 /*
65  * Flags for firmware oddities
66  *
67  * - 128kB max transfer
68  *   Limit transfer size. Necessary for some old bridges.
69  *
70  * - 36 byte inquiry
71  *   When scsi_mod probes the device, let the inquiry command look like that
72  *   from MS Windows.
73  *
74  * - skip mode page 8
75  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
76  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
77  *
78  * - fix capacity
79  *   Tell sd_mod to correct the last sector number reported by read_capacity.
80  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
81  *   Don't use this with devices which don't have this bug.
82  *
83  * - override internal blacklist
84  *   Instead of adding to the built-in blacklist, use only the workarounds
85  *   specified in the module load parameter.
86  *   Useful if a blacklist entry interfered with a non-broken device.
87  */
88 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
89 #define SBP2_WORKAROUND_INQUIRY_36      0x2
90 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
91 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
92 #define SBP2_WORKAROUND_OVERRIDE        0x100
93
94 static int sbp2_param_workarounds;
95 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
96 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
97         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
98         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
99         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
100         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
101         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
102         ", or a combination)");
103
104 /* I don't know why the SCSI stack doesn't define something like this... */
105 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
106
107 static const char sbp2_driver_name[] = "sbp2";
108
109 /*
110  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
111  * and one struct scsi_device per sbp2_logical_unit.
112  */
113 struct sbp2_logical_unit {
114         struct sbp2_target *tgt;
115         struct list_head link;
116         struct scsi_device *sdev;
117         struct fw_address_handler address_handler;
118         struct list_head orb_list;
119
120         u64 command_block_agent_address;
121         u16 lun;
122         int login_id;
123
124         /*
125          * The generation is updated once we've logged in or reconnected
126          * to the logical unit.  Thus, I/O to the device will automatically
127          * fail and get retried if it happens in a window where the device
128          * is not ready, e.g. after a bus reset but before we reconnect.
129          */
130         int generation;
131         int retries;
132         struct delayed_work work;
133 };
134
135 /*
136  * We create one struct sbp2_target per IEEE 1212 Unit Directory
137  * and one struct Scsi_Host per sbp2_target.
138  */
139 struct sbp2_target {
140         struct kref kref;
141         struct fw_unit *unit;
142
143         u64 management_agent_address;
144         int directory_id;
145         int node_id;
146         int address_high;
147
148         unsigned workarounds;
149         struct list_head lu_list;
150 };
151
152 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
153 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
154 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
155
156 #define SBP2_ORB_NULL                   0x80000000
157
158 #define SBP2_DIRECTION_TO_MEDIA         0x0
159 #define SBP2_DIRECTION_FROM_MEDIA       0x1
160
161 /* Unit directory keys */
162 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
163 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
164 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
165
166 /* Management orb opcodes */
167 #define SBP2_LOGIN_REQUEST              0x0
168 #define SBP2_QUERY_LOGINS_REQUEST       0x1
169 #define SBP2_RECONNECT_REQUEST          0x3
170 #define SBP2_SET_PASSWORD_REQUEST       0x4
171 #define SBP2_LOGOUT_REQUEST             0x7
172 #define SBP2_ABORT_TASK_REQUEST         0xb
173 #define SBP2_ABORT_TASK_SET             0xc
174 #define SBP2_LOGICAL_UNIT_RESET         0xe
175 #define SBP2_TARGET_RESET_REQUEST       0xf
176
177 /* Offsets for command block agent registers */
178 #define SBP2_AGENT_STATE                0x00
179 #define SBP2_AGENT_RESET                0x04
180 #define SBP2_ORB_POINTER                0x08
181 #define SBP2_DOORBELL                   0x10
182 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
183
184 /* Status write response codes */
185 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
186 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
187 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
188 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
189
190 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
191 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
192 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
193 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
194 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
195 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
196 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
197 #define STATUS_GET_DATA(v)              ((v).data)
198
199 struct sbp2_status {
200         u32 status;
201         u32 orb_low;
202         u8 data[24];
203 };
204
205 struct sbp2_pointer {
206         u32 high;
207         u32 low;
208 };
209
210 struct sbp2_orb {
211         struct fw_transaction t;
212         struct kref kref;
213         dma_addr_t request_bus;
214         int rcode;
215         struct sbp2_pointer pointer;
216         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
217         struct list_head link;
218 };
219
220 #define MANAGEMENT_ORB_LUN(v)                   ((v))
221 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
222 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
223 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
224 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
225 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
226
227 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
228 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
229
230 struct sbp2_management_orb {
231         struct sbp2_orb base;
232         struct {
233                 struct sbp2_pointer password;
234                 struct sbp2_pointer response;
235                 u32 misc;
236                 u32 length;
237                 struct sbp2_pointer status_fifo;
238         } request;
239         __be32 response[4];
240         dma_addr_t response_bus;
241         struct completion done;
242         struct sbp2_status status;
243 };
244
245 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
246 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
247
248 struct sbp2_login_response {
249         u32 misc;
250         struct sbp2_pointer command_block_agent;
251         u32 reconnect_hold;
252 };
253 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
254 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
255 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
256 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
257 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
258 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
259 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
260 #define COMMAND_ORB_NOTIFY              ((1) << 31)
261
262 struct sbp2_command_orb {
263         struct sbp2_orb base;
264         struct {
265                 struct sbp2_pointer next;
266                 struct sbp2_pointer data_descriptor;
267                 u32 misc;
268                 u8 command_block[12];
269         } request;
270         struct scsi_cmnd *cmd;
271         scsi_done_fn_t done;
272         struct sbp2_logical_unit *lu;
273
274         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
275         dma_addr_t page_table_bus;
276 };
277
278 /*
279  * List of devices with known bugs.
280  *
281  * The firmware_revision field, masked with 0xffff00, is the best
282  * indicator for the type of bridge chip of a device.  It yields a few
283  * false positives but this did not break correctly behaving devices
284  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
285  * from the config rom can never match that.
286  */
287 static const struct {
288         u32 firmware_revision;
289         u32 model;
290         unsigned workarounds;
291 } sbp2_workarounds_table[] = {
292         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
293                 .firmware_revision      = 0x002800,
294                 .model                  = 0x001010,
295                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
296                                           SBP2_WORKAROUND_MODE_SENSE_8,
297         },
298         /* Initio bridges, actually only needed for some older ones */ {
299                 .firmware_revision      = 0x000200,
300                 .model                  = ~0,
301                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
302         },
303         /* Symbios bridge */ {
304                 .firmware_revision      = 0xa0b800,
305                 .model                  = ~0,
306                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
307         },
308
309         /*
310          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
311          * these iPods do not feature the read_capacity bug according
312          * to one report.  Read_capacity behaviour as well as model_id
313          * could change due to Apple-supplied firmware updates though.
314          */
315
316         /* iPod 4th generation. */ {
317                 .firmware_revision      = 0x0a2700,
318                 .model                  = 0x000021,
319                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
320         },
321         /* iPod mini */ {
322                 .firmware_revision      = 0x0a2700,
323                 .model                  = 0x000023,
324                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
325         },
326         /* iPod Photo */ {
327                 .firmware_revision      = 0x0a2700,
328                 .model                  = 0x00007e,
329                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
330         }
331 };
332
333 static void
334 free_orb(struct kref *kref)
335 {
336         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
337
338         kfree(orb);
339 }
340
341 static void
342 sbp2_status_write(struct fw_card *card, struct fw_request *request,
343                   int tcode, int destination, int source,
344                   int generation, int speed,
345                   unsigned long long offset,
346                   void *payload, size_t length, void *callback_data)
347 {
348         struct sbp2_logical_unit *lu = callback_data;
349         struct sbp2_orb *orb;
350         struct sbp2_status status;
351         size_t header_size;
352         unsigned long flags;
353
354         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
355             length == 0 || length > sizeof(status)) {
356                 fw_send_response(card, request, RCODE_TYPE_ERROR);
357                 return;
358         }
359
360         header_size = min(length, 2 * sizeof(u32));
361         fw_memcpy_from_be32(&status, payload, header_size);
362         if (length > header_size)
363                 memcpy(status.data, payload + 8, length - header_size);
364         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
365                 fw_notify("non-orb related status write, not handled\n");
366                 fw_send_response(card, request, RCODE_COMPLETE);
367                 return;
368         }
369
370         /* Lookup the orb corresponding to this status write. */
371         spin_lock_irqsave(&card->lock, flags);
372         list_for_each_entry(orb, &lu->orb_list, link) {
373                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
374                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
375                         orb->rcode = RCODE_COMPLETE;
376                         list_del(&orb->link);
377                         break;
378                 }
379         }
380         spin_unlock_irqrestore(&card->lock, flags);
381
382         if (&orb->link != &lu->orb_list)
383                 orb->callback(orb, &status);
384         else
385                 fw_error("status write for unknown orb\n");
386
387         kref_put(&orb->kref, free_orb);
388
389         fw_send_response(card, request, RCODE_COMPLETE);
390 }
391
392 static void
393 complete_transaction(struct fw_card *card, int rcode,
394                      void *payload, size_t length, void *data)
395 {
396         struct sbp2_orb *orb = data;
397         unsigned long flags;
398
399         /*
400          * This is a little tricky.  We can get the status write for
401          * the orb before we get this callback.  The status write
402          * handler above will assume the orb pointer transaction was
403          * successful and set the rcode to RCODE_COMPLETE for the orb.
404          * So this callback only sets the rcode if it hasn't already
405          * been set and only does the cleanup if the transaction
406          * failed and we didn't already get a status write.
407          */
408         spin_lock_irqsave(&card->lock, flags);
409
410         if (orb->rcode == -1)
411                 orb->rcode = rcode;
412         if (orb->rcode != RCODE_COMPLETE) {
413                 list_del(&orb->link);
414                 spin_unlock_irqrestore(&card->lock, flags);
415                 orb->callback(orb, NULL);
416         } else {
417                 spin_unlock_irqrestore(&card->lock, flags);
418         }
419
420         kref_put(&orb->kref, free_orb);
421 }
422
423 static void
424 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
425               int node_id, int generation, u64 offset)
426 {
427         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
428         unsigned long flags;
429
430         orb->pointer.high = 0;
431         orb->pointer.low = orb->request_bus;
432         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
433
434         spin_lock_irqsave(&device->card->lock, flags);
435         list_add_tail(&orb->link, &lu->orb_list);
436         spin_unlock_irqrestore(&device->card->lock, flags);
437
438         /* Take a ref for the orb list and for the transaction callback. */
439         kref_get(&orb->kref);
440         kref_get(&orb->kref);
441
442         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
443                         node_id, generation, device->max_speed, offset,
444                         &orb->pointer, sizeof(orb->pointer),
445                         complete_transaction, orb);
446 }
447
448 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
449 {
450         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
451         struct sbp2_orb *orb, *next;
452         struct list_head list;
453         unsigned long flags;
454         int retval = -ENOENT;
455
456         INIT_LIST_HEAD(&list);
457         spin_lock_irqsave(&device->card->lock, flags);
458         list_splice_init(&lu->orb_list, &list);
459         spin_unlock_irqrestore(&device->card->lock, flags);
460
461         list_for_each_entry_safe(orb, next, &list, link) {
462                 retval = 0;
463                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
464                         continue;
465
466                 orb->rcode = RCODE_CANCELLED;
467                 orb->callback(orb, NULL);
468         }
469
470         return retval;
471 }
472
473 static void
474 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
475 {
476         struct sbp2_management_orb *orb =
477                 container_of(base_orb, struct sbp2_management_orb, base);
478
479         if (status)
480                 memcpy(&orb->status, status, sizeof(*status));
481         complete(&orb->done);
482 }
483
484 static int
485 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
486                          int generation, int function, int lun_or_login_id,
487                          void *response)
488 {
489         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
490         struct sbp2_management_orb *orb;
491         int retval = -ENOMEM;
492
493         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
494         if (orb == NULL)
495                 return -ENOMEM;
496
497         kref_init(&orb->base.kref);
498         orb->response_bus =
499                 dma_map_single(device->card->device, &orb->response,
500                                sizeof(orb->response), DMA_FROM_DEVICE);
501         if (dma_mapping_error(orb->response_bus))
502                 goto fail_mapping_response;
503
504         orb->request.response.high    = 0;
505         orb->request.response.low     = orb->response_bus;
506
507         orb->request.misc =
508                 MANAGEMENT_ORB_NOTIFY |
509                 MANAGEMENT_ORB_FUNCTION(function) |
510                 MANAGEMENT_ORB_LUN(lun_or_login_id);
511         orb->request.length =
512                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
513
514         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
515         orb->request.status_fifo.low  = lu->address_handler.offset;
516
517         if (function == SBP2_LOGIN_REQUEST) {
518                 orb->request.misc |=
519                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
520                         MANAGEMENT_ORB_RECONNECT(0);
521         }
522
523         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
524
525         init_completion(&orb->done);
526         orb->base.callback = complete_management_orb;
527
528         orb->base.request_bus =
529                 dma_map_single(device->card->device, &orb->request,
530                                sizeof(orb->request), DMA_TO_DEVICE);
531         if (dma_mapping_error(orb->base.request_bus))
532                 goto fail_mapping_request;
533
534         sbp2_send_orb(&orb->base, lu, node_id, generation,
535                       lu->tgt->management_agent_address);
536
537         wait_for_completion_timeout(&orb->done,
538                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
539
540         retval = -EIO;
541         if (sbp2_cancel_orbs(lu) == 0) {
542                 fw_error("orb reply timed out, rcode=0x%02x\n",
543                          orb->base.rcode);
544                 goto out;
545         }
546
547         if (orb->base.rcode != RCODE_COMPLETE) {
548                 fw_error("management write failed, rcode 0x%02x\n",
549                          orb->base.rcode);
550                 goto out;
551         }
552
553         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
554             STATUS_GET_SBP_STATUS(orb->status) != 0) {
555                 fw_error("error status: %d:%d\n",
556                          STATUS_GET_RESPONSE(orb->status),
557                          STATUS_GET_SBP_STATUS(orb->status));
558                 goto out;
559         }
560
561         retval = 0;
562  out:
563         dma_unmap_single(device->card->device, orb->base.request_bus,
564                          sizeof(orb->request), DMA_TO_DEVICE);
565  fail_mapping_request:
566         dma_unmap_single(device->card->device, orb->response_bus,
567                          sizeof(orb->response), DMA_FROM_DEVICE);
568  fail_mapping_response:
569         if (response)
570                 fw_memcpy_from_be32(response,
571                                     orb->response, sizeof(orb->response));
572         kref_put(&orb->base.kref, free_orb);
573
574         return retval;
575 }
576
577 static void
578 complete_agent_reset_write(struct fw_card *card, int rcode,
579                            void *payload, size_t length, void *data)
580 {
581         struct fw_transaction *t = data;
582
583         kfree(t);
584 }
585
586 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
587 {
588         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
589         struct fw_transaction *t;
590         static u32 zero;
591
592         t = kzalloc(sizeof(*t), GFP_ATOMIC);
593         if (t == NULL)
594                 return -ENOMEM;
595
596         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
597                         lu->tgt->node_id, lu->generation, device->max_speed,
598                         lu->command_block_agent_address + SBP2_AGENT_RESET,
599                         &zero, sizeof(zero), complete_agent_reset_write, t);
600
601         return 0;
602 }
603
604 static void sbp2_release_target(struct kref *kref)
605 {
606         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
607         struct sbp2_logical_unit *lu, *next;
608         struct Scsi_Host *shost =
609                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
610
611         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
612                 if (lu->sdev)
613                         scsi_remove_device(lu->sdev);
614
615                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
616                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
617                 fw_core_remove_address_handler(&lu->address_handler);
618                 list_del(&lu->link);
619                 kfree(lu);
620         }
621         scsi_remove_host(shost);
622         fw_notify("released %s\n", tgt->unit->device.bus_id);
623
624         put_device(&tgt->unit->device);
625         scsi_host_put(shost);
626 }
627
628 static void sbp2_reconnect(struct work_struct *work);
629
630 static void sbp2_login(struct work_struct *work)
631 {
632         struct sbp2_logical_unit *lu =
633                 container_of(work, struct sbp2_logical_unit, work.work);
634         struct Scsi_Host *shost =
635                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
636         struct scsi_device *sdev;
637         struct scsi_lun eight_bytes_lun;
638         struct fw_unit *unit = lu->tgt->unit;
639         struct fw_device *device = fw_device(unit->device.parent);
640         struct sbp2_login_response response;
641         int generation, node_id, local_node_id;
642
643         generation    = device->card->generation;
644         node_id       = device->node->node_id;
645         local_node_id = device->card->local_node->node_id;
646
647         if (sbp2_send_management_orb(lu, node_id, generation,
648                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
649                 if (lu->retries++ < 5) {
650                         schedule_delayed_work(&lu->work, DIV_ROUND_UP(HZ, 5));
651                 } else {
652                         fw_error("failed to login to %s LUN %04x\n",
653                                  unit->device.bus_id, lu->lun);
654                         kref_put(&lu->tgt->kref, sbp2_release_target);
655                 }
656                 return;
657         }
658
659         lu->generation        = generation;
660         lu->tgt->node_id      = node_id;
661         lu->tgt->address_high = local_node_id << 16;
662
663         /* Get command block agent offset and login id. */
664         lu->command_block_agent_address =
665                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
666                 response.command_block_agent.low;
667         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
668
669         fw_notify("logged in to %s LUN %04x (%d retries)\n",
670                   unit->device.bus_id, lu->lun, lu->retries);
671
672 #if 0
673         /* FIXME: The linux1394 sbp2 does this last step. */
674         sbp2_set_busy_timeout(scsi_id);
675 #endif
676
677         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
678         sbp2_agent_reset(lu);
679
680         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
681         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
682         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
683
684         sdev = __scsi_add_device(shost, 0, 0,
685                                  scsilun_to_int(&eight_bytes_lun), lu);
686         if (IS_ERR(sdev)) {
687                 sbp2_send_management_orb(lu, node_id, generation,
688                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
689                 /*
690                  * Set this back to sbp2_login so we fall back and
691                  * retry login on bus reset.
692                  */
693                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
694         } else {
695                 lu->sdev = sdev;
696                 scsi_device_put(sdev);
697         }
698         kref_put(&lu->tgt->kref, sbp2_release_target);
699 }
700
701 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
702 {
703         struct sbp2_logical_unit *lu;
704
705         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
706         if (!lu)
707                 return -ENOMEM;
708
709         lu->address_handler.length           = 0x100;
710         lu->address_handler.address_callback = sbp2_status_write;
711         lu->address_handler.callback_data    = lu;
712
713         if (fw_core_add_address_handler(&lu->address_handler,
714                                         &fw_high_memory_region) < 0) {
715                 kfree(lu);
716                 return -ENOMEM;
717         }
718
719         lu->tgt  = tgt;
720         lu->sdev = NULL;
721         lu->lun  = lun_entry & 0xffff;
722         lu->retries = 0;
723         INIT_LIST_HEAD(&lu->orb_list);
724         INIT_DELAYED_WORK(&lu->work, sbp2_login);
725
726         list_add_tail(&lu->link, &tgt->lu_list);
727         return 0;
728 }
729
730 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
731 {
732         struct fw_csr_iterator ci;
733         int key, value;
734
735         fw_csr_iterator_init(&ci, directory);
736         while (fw_csr_iterator_next(&ci, &key, &value))
737                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
738                     sbp2_add_logical_unit(tgt, value) < 0)
739                         return -ENOMEM;
740         return 0;
741 }
742
743 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
744                               u32 *model, u32 *firmware_revision)
745 {
746         struct fw_csr_iterator ci;
747         int key, value;
748
749         fw_csr_iterator_init(&ci, directory);
750         while (fw_csr_iterator_next(&ci, &key, &value)) {
751                 switch (key) {
752
753                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
754                         tgt->management_agent_address =
755                                         CSR_REGISTER_BASE + 4 * value;
756                         break;
757
758                 case CSR_DIRECTORY_ID:
759                         tgt->directory_id = value;
760                         break;
761
762                 case CSR_MODEL:
763                         *model = value;
764                         break;
765
766                 case SBP2_CSR_FIRMWARE_REVISION:
767                         *firmware_revision = value;
768                         break;
769
770                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
771                         if (sbp2_add_logical_unit(tgt, value) < 0)
772                                 return -ENOMEM;
773                         break;
774
775                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
776                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
777                                 return -ENOMEM;
778                         break;
779                 }
780         }
781         return 0;
782 }
783
784 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
785                                   u32 firmware_revision)
786 {
787         int i;
788         unsigned w = sbp2_param_workarounds;
789
790         if (w)
791                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
792                           "if you need the workarounds parameter for %s\n",
793                           tgt->unit->device.bus_id);
794
795         if (w & SBP2_WORKAROUND_OVERRIDE)
796                 goto out;
797
798         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
799
800                 if (sbp2_workarounds_table[i].firmware_revision !=
801                     (firmware_revision & 0xffffff00))
802                         continue;
803
804                 if (sbp2_workarounds_table[i].model != model &&
805                     sbp2_workarounds_table[i].model != ~0)
806                         continue;
807
808                 w |= sbp2_workarounds_table[i].workarounds;
809                 break;
810         }
811  out:
812         if (w)
813                 fw_notify("Workarounds for %s: 0x%x "
814                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
815                           tgt->unit->device.bus_id,
816                           w, firmware_revision, model);
817         tgt->workarounds = w;
818 }
819
820 static struct scsi_host_template scsi_driver_template;
821
822 static int sbp2_probe(struct device *dev)
823 {
824         struct fw_unit *unit = fw_unit(dev);
825         struct fw_device *device = fw_device(unit->device.parent);
826         struct sbp2_target *tgt;
827         struct sbp2_logical_unit *lu;
828         struct Scsi_Host *shost;
829         u32 model, firmware_revision;
830
831         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
832         if (shost == NULL)
833                 return -ENOMEM;
834
835         tgt = (struct sbp2_target *)shost->hostdata;
836         unit->device.driver_data = tgt;
837         tgt->unit = unit;
838         kref_init(&tgt->kref);
839         INIT_LIST_HEAD(&tgt->lu_list);
840
841         if (fw_device_enable_phys_dma(device) < 0)
842                 goto fail_shost_put;
843
844         if (scsi_add_host(shost, &unit->device) < 0)
845                 goto fail_shost_put;
846
847         /* Initialize to values that won't match anything in our table. */
848         firmware_revision = 0xff000000;
849         model = 0xff000000;
850
851         /* implicit directory ID */
852         tgt->directory_id = ((unit->directory - device->config_rom) * 4
853                              + CSR_CONFIG_ROM) & 0xffffff;
854
855         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
856                                &firmware_revision) < 0)
857                 goto fail_tgt_put;
858
859         sbp2_init_workarounds(tgt, model, firmware_revision);
860
861         get_device(&unit->device);
862
863         /*
864          * We schedule work to do the login so we can easily
865          * reschedule retries. Always get the ref before scheduling
866          * work.
867          */
868         list_for_each_entry(lu, &tgt->lu_list, link)
869                 if (schedule_delayed_work(&lu->work, 0))
870                         kref_get(&tgt->kref);
871         return 0;
872
873  fail_tgt_put:
874         kref_put(&tgt->kref, sbp2_release_target);
875         return -ENOMEM;
876
877  fail_shost_put:
878         scsi_host_put(shost);
879         return -ENOMEM;
880 }
881
882 static int sbp2_remove(struct device *dev)
883 {
884         struct fw_unit *unit = fw_unit(dev);
885         struct sbp2_target *tgt = unit->device.driver_data;
886
887         kref_put(&tgt->kref, sbp2_release_target);
888         return 0;
889 }
890
891 static void sbp2_reconnect(struct work_struct *work)
892 {
893         struct sbp2_logical_unit *lu =
894                 container_of(work, struct sbp2_logical_unit, work.work);
895         struct fw_unit *unit = lu->tgt->unit;
896         struct fw_device *device = fw_device(unit->device.parent);
897         int generation, node_id, local_node_id;
898
899         generation    = device->card->generation;
900         node_id       = device->node->node_id;
901         local_node_id = device->card->local_node->node_id;
902
903         if (sbp2_send_management_orb(lu, node_id, generation,
904                                      SBP2_RECONNECT_REQUEST,
905                                      lu->login_id, NULL) < 0) {
906                 if (lu->retries++ >= 5) {
907                         fw_error("failed to reconnect to %s\n",
908                                  unit->device.bus_id);
909                         /* Fall back and try to log in again. */
910                         lu->retries = 0;
911                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
912                 }
913                 schedule_delayed_work(&lu->work, DIV_ROUND_UP(HZ, 5));
914                 return;
915         }
916
917         lu->generation        = generation;
918         lu->tgt->node_id      = node_id;
919         lu->tgt->address_high = local_node_id << 16;
920
921         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
922                   unit->device.bus_id, lu->lun, lu->retries);
923
924         sbp2_agent_reset(lu);
925         sbp2_cancel_orbs(lu);
926
927         kref_put(&lu->tgt->kref, sbp2_release_target);
928 }
929
930 static void sbp2_update(struct fw_unit *unit)
931 {
932         struct sbp2_target *tgt = unit->device.driver_data;
933         struct sbp2_logical_unit *lu;
934
935         fw_device_enable_phys_dma(fw_device(unit->device.parent));
936
937         /*
938          * Fw-core serializes sbp2_update() against sbp2_remove().
939          * Iteration over tgt->lu_list is therefore safe here.
940          */
941         list_for_each_entry(lu, &tgt->lu_list, link) {
942                 lu->retries = 0;
943                 if (schedule_delayed_work(&lu->work, 0))
944                         kref_get(&tgt->kref);
945         }
946 }
947
948 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
949 #define SBP2_SW_VERSION_ENTRY   0x00010483
950
951 static const struct fw_device_id sbp2_id_table[] = {
952         {
953                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
954                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
955                 .version      = SBP2_SW_VERSION_ENTRY,
956         },
957         { }
958 };
959
960 static struct fw_driver sbp2_driver = {
961         .driver   = {
962                 .owner  = THIS_MODULE,
963                 .name   = sbp2_driver_name,
964                 .bus    = &fw_bus_type,
965                 .probe  = sbp2_probe,
966                 .remove = sbp2_remove,
967         },
968         .update   = sbp2_update,
969         .id_table = sbp2_id_table,
970 };
971
972 static unsigned int
973 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
974 {
975         int sam_status;
976
977         sense_data[0] = 0x70;
978         sense_data[1] = 0x0;
979         sense_data[2] = sbp2_status[1];
980         sense_data[3] = sbp2_status[4];
981         sense_data[4] = sbp2_status[5];
982         sense_data[5] = sbp2_status[6];
983         sense_data[6] = sbp2_status[7];
984         sense_data[7] = 10;
985         sense_data[8] = sbp2_status[8];
986         sense_data[9] = sbp2_status[9];
987         sense_data[10] = sbp2_status[10];
988         sense_data[11] = sbp2_status[11];
989         sense_data[12] = sbp2_status[2];
990         sense_data[13] = sbp2_status[3];
991         sense_data[14] = sbp2_status[12];
992         sense_data[15] = sbp2_status[13];
993
994         sam_status = sbp2_status[0] & 0x3f;
995
996         switch (sam_status) {
997         case SAM_STAT_GOOD:
998         case SAM_STAT_CHECK_CONDITION:
999         case SAM_STAT_CONDITION_MET:
1000         case SAM_STAT_BUSY:
1001         case SAM_STAT_RESERVATION_CONFLICT:
1002         case SAM_STAT_COMMAND_TERMINATED:
1003                 return DID_OK << 16 | sam_status;
1004
1005         default:
1006                 return DID_ERROR << 16;
1007         }
1008 }
1009
1010 static void
1011 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1012 {
1013         struct sbp2_command_orb *orb =
1014                 container_of(base_orb, struct sbp2_command_orb, base);
1015         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1016         int result;
1017
1018         if (status != NULL) {
1019                 if (STATUS_GET_DEAD(*status))
1020                         sbp2_agent_reset(orb->lu);
1021
1022                 switch (STATUS_GET_RESPONSE(*status)) {
1023                 case SBP2_STATUS_REQUEST_COMPLETE:
1024                         result = DID_OK << 16;
1025                         break;
1026                 case SBP2_STATUS_TRANSPORT_FAILURE:
1027                         result = DID_BUS_BUSY << 16;
1028                         break;
1029                 case SBP2_STATUS_ILLEGAL_REQUEST:
1030                 case SBP2_STATUS_VENDOR_DEPENDENT:
1031                 default:
1032                         result = DID_ERROR << 16;
1033                         break;
1034                 }
1035
1036                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1037                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1038                                                            orb->cmd->sense_buffer);
1039         } else {
1040                 /*
1041                  * If the orb completes with status == NULL, something
1042                  * went wrong, typically a bus reset happened mid-orb
1043                  * or when sending the write (less likely).
1044                  */
1045                 result = DID_BUS_BUSY << 16;
1046         }
1047
1048         dma_unmap_single(device->card->device, orb->base.request_bus,
1049                          sizeof(orb->request), DMA_TO_DEVICE);
1050
1051         if (scsi_sg_count(orb->cmd) > 0)
1052                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1053                              scsi_sg_count(orb->cmd),
1054                              orb->cmd->sc_data_direction);
1055
1056         if (orb->page_table_bus != 0)
1057                 dma_unmap_single(device->card->device, orb->page_table_bus,
1058                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1059
1060         orb->cmd->result = result;
1061         orb->done(orb->cmd);
1062 }
1063
1064 static int
1065 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1066                      struct sbp2_logical_unit *lu)
1067 {
1068         struct scatterlist *sg;
1069         int sg_len, l, i, j, count;
1070         dma_addr_t sg_addr;
1071
1072         sg = scsi_sglist(orb->cmd);
1073         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1074                            orb->cmd->sc_data_direction);
1075         if (count == 0)
1076                 goto fail;
1077
1078         /*
1079          * Handle the special case where there is only one element in
1080          * the scatter list by converting it to an immediate block
1081          * request. This is also a workaround for broken devices such
1082          * as the second generation iPod which doesn't support page
1083          * tables.
1084          */
1085         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1086                 orb->request.data_descriptor.high = lu->tgt->address_high;
1087                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1088                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1089                 return 0;
1090         }
1091
1092         /*
1093          * Convert the scatterlist to an sbp2 page table.  If any
1094          * scatterlist entries are too big for sbp2, we split them as we
1095          * go.  Even if we ask the block I/O layer to not give us sg
1096          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1097          * during DMA mapping, and Linux currently doesn't prevent this.
1098          */
1099         for (i = 0, j = 0; i < count; i++) {
1100                 sg_len = sg_dma_len(sg + i);
1101                 sg_addr = sg_dma_address(sg + i);
1102                 while (sg_len) {
1103                         /* FIXME: This won't get us out of the pinch. */
1104                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1105                                 fw_error("page table overflow\n");
1106                                 goto fail_page_table;
1107                         }
1108                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1109                         orb->page_table[j].low = sg_addr;
1110                         orb->page_table[j].high = (l << 16);
1111                         sg_addr += l;
1112                         sg_len -= l;
1113                         j++;
1114                 }
1115         }
1116
1117         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1118                           sizeof(orb->page_table[0]) * j);
1119         orb->page_table_bus =
1120                 dma_map_single(device->card->device, orb->page_table,
1121                                sizeof(orb->page_table), DMA_TO_DEVICE);
1122         if (dma_mapping_error(orb->page_table_bus))
1123                 goto fail_page_table;
1124
1125         /*
1126          * The data_descriptor pointer is the one case where we need
1127          * to fill in the node ID part of the address.  All other
1128          * pointers assume that the data referenced reside on the
1129          * initiator (i.e. us), but data_descriptor can refer to data
1130          * on other nodes so we need to put our ID in descriptor.high.
1131          */
1132         orb->request.data_descriptor.high = lu->tgt->address_high;
1133         orb->request.data_descriptor.low  = orb->page_table_bus;
1134         orb->request.misc |=
1135                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1136                 COMMAND_ORB_DATA_SIZE(j);
1137
1138         return 0;
1139
1140  fail_page_table:
1141         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1142                      orb->cmd->sc_data_direction);
1143  fail:
1144         return -ENOMEM;
1145 }
1146
1147 /* SCSI stack integration */
1148
1149 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1150 {
1151         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1152         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1153         struct sbp2_command_orb *orb;
1154         unsigned max_payload;
1155         int retval = SCSI_MLQUEUE_HOST_BUSY;
1156
1157         /*
1158          * Bidirectional commands are not yet implemented, and unknown
1159          * transfer direction not handled.
1160          */
1161         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1162                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1163                 cmd->result = DID_ERROR << 16;
1164                 done(cmd);
1165                 return 0;
1166         }
1167
1168         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1169         if (orb == NULL) {
1170                 fw_notify("failed to alloc orb\n");
1171                 return SCSI_MLQUEUE_HOST_BUSY;
1172         }
1173
1174         /* Initialize rcode to something not RCODE_COMPLETE. */
1175         orb->base.rcode = -1;
1176         kref_init(&orb->base.kref);
1177
1178         orb->lu   = lu;
1179         orb->done = done;
1180         orb->cmd  = cmd;
1181
1182         orb->request.next.high   = SBP2_ORB_NULL;
1183         orb->request.next.low    = 0x0;
1184         /*
1185          * At speed 100 we can do 512 bytes per packet, at speed 200,
1186          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1187          * specifies the max payload size as 2 ^ (max_payload + 2), so
1188          * if we set this to max_speed + 7, we get the right value.
1189          */
1190         max_payload = min(device->max_speed + 7,
1191                           device->card->max_receive - 1);
1192         orb->request.misc =
1193                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1194                 COMMAND_ORB_SPEED(device->max_speed) |
1195                 COMMAND_ORB_NOTIFY;
1196
1197         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1198                 orb->request.misc |=
1199                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1200         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1201                 orb->request.misc |=
1202                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1203
1204         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1205                 goto out;
1206
1207         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1208
1209         memset(orb->request.command_block,
1210                0, sizeof(orb->request.command_block));
1211         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1212
1213         orb->base.callback = complete_command_orb;
1214         orb->base.request_bus =
1215                 dma_map_single(device->card->device, &orb->request,
1216                                sizeof(orb->request), DMA_TO_DEVICE);
1217         if (dma_mapping_error(orb->base.request_bus))
1218                 goto out;
1219
1220         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1221                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1222         retval = 0;
1223  out:
1224         kref_put(&orb->base.kref, free_orb);
1225         return retval;
1226 }
1227
1228 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1229 {
1230         struct sbp2_logical_unit *lu = sdev->hostdata;
1231
1232         sdev->allow_restart = 1;
1233
1234         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1235                 sdev->inquiry_len = 36;
1236
1237         return 0;
1238 }
1239
1240 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1241 {
1242         struct sbp2_logical_unit *lu = sdev->hostdata;
1243
1244         sdev->use_10_for_rw = 1;
1245
1246         if (sdev->type == TYPE_ROM)
1247                 sdev->use_10_for_ms = 1;
1248
1249         if (sdev->type == TYPE_DISK &&
1250             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1251                 sdev->skip_ms_page_8 = 1;
1252
1253         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1254                 sdev->fix_capacity = 1;
1255
1256         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1257                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1258
1259         return 0;
1260 }
1261
1262 /*
1263  * Called by scsi stack when something has really gone wrong.  Usually
1264  * called when a command has timed-out for some reason.
1265  */
1266 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1267 {
1268         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1269
1270         fw_notify("sbp2_scsi_abort\n");
1271         sbp2_agent_reset(lu);
1272         sbp2_cancel_orbs(lu);
1273
1274         return SUCCESS;
1275 }
1276
1277 /*
1278  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1279  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1280  *
1281  * This is the concatenation of target port identifier and logical unit
1282  * identifier as per SAM-2...SAM-4 annex A.
1283  */
1284 static ssize_t
1285 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1286                             char *buf)
1287 {
1288         struct scsi_device *sdev = to_scsi_device(dev);
1289         struct sbp2_logical_unit *lu;
1290         struct fw_device *device;
1291
1292         if (!sdev)
1293                 return 0;
1294
1295         lu = sdev->hostdata;
1296         device = fw_device(lu->tgt->unit->device.parent);
1297
1298         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1299                         device->config_rom[3], device->config_rom[4],
1300                         lu->tgt->directory_id, lu->lun);
1301 }
1302
1303 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1304
1305 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1306         &dev_attr_ieee1394_id,
1307         NULL
1308 };
1309
1310 static struct scsi_host_template scsi_driver_template = {
1311         .module                 = THIS_MODULE,
1312         .name                   = "SBP-2 IEEE-1394",
1313         .proc_name              = sbp2_driver_name,
1314         .queuecommand           = sbp2_scsi_queuecommand,
1315         .slave_alloc            = sbp2_scsi_slave_alloc,
1316         .slave_configure        = sbp2_scsi_slave_configure,
1317         .eh_abort_handler       = sbp2_scsi_abort,
1318         .this_id                = -1,
1319         .sg_tablesize           = SG_ALL,
1320         .use_clustering         = ENABLE_CLUSTERING,
1321         .cmd_per_lun            = 1,
1322         .can_queue              = 1,
1323         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1324 };
1325
1326 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1327 MODULE_DESCRIPTION("SCSI over IEEE1394");
1328 MODULE_LICENSE("GPL");
1329 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1330
1331 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1332 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1333 MODULE_ALIAS("sbp2");
1334 #endif
1335
1336 static int __init sbp2_init(void)
1337 {
1338         return driver_register(&sbp2_driver.driver);
1339 }
1340
1341 static void __exit sbp2_cleanup(void)
1342 {
1343         driver_unregister(&sbp2_driver.driver);
1344 }
1345
1346 module_init(sbp2_init);
1347 module_exit(sbp2_cleanup);