firewire: fw-sbp2: refactor workq and kref handling
[safe/jmp/linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48
49 #include "fw-transaction.h"
50 #include "fw-topology.h"
51 #include "fw-device.h"
52
53 /*
54  * So far only bridges from Oxford Semiconductor are known to support
55  * concurrent logins. Depending on firmware, four or two concurrent logins
56  * are possible on OXFW911 and newer Oxsemi bridges.
57  *
58  * Concurrent logins are useful together with cluster filesystems.
59  */
60 static int sbp2_param_exclusive_login = 1;
61 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
62 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
63                  "(default = Y, use N for concurrent initiators)");
64
65 /*
66  * Flags for firmware oddities
67  *
68  * - 128kB max transfer
69  *   Limit transfer size. Necessary for some old bridges.
70  *
71  * - 36 byte inquiry
72  *   When scsi_mod probes the device, let the inquiry command look like that
73  *   from MS Windows.
74  *
75  * - skip mode page 8
76  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
77  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
78  *
79  * - fix capacity
80  *   Tell sd_mod to correct the last sector number reported by read_capacity.
81  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
82  *   Don't use this with devices which don't have this bug.
83  *
84  * - override internal blacklist
85  *   Instead of adding to the built-in blacklist, use only the workarounds
86  *   specified in the module load parameter.
87  *   Useful if a blacklist entry interfered with a non-broken device.
88  */
89 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
90 #define SBP2_WORKAROUND_INQUIRY_36      0x2
91 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
92 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
93 #define SBP2_WORKAROUND_OVERRIDE        0x100
94
95 static int sbp2_param_workarounds;
96 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
97 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
98         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
99         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
100         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
101         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
102         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
103         ", or a combination)");
104
105 /* I don't know why the SCSI stack doesn't define something like this... */
106 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107
108 static const char sbp2_driver_name[] = "sbp2";
109
110 /*
111  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
112  * and one struct scsi_device per sbp2_logical_unit.
113  */
114 struct sbp2_logical_unit {
115         struct sbp2_target *tgt;
116         struct list_head link;
117         struct scsi_device *sdev;
118         struct fw_address_handler address_handler;
119         struct list_head orb_list;
120
121         u64 command_block_agent_address;
122         u16 lun;
123         int login_id;
124
125         /*
126          * The generation is updated once we've logged in or reconnected
127          * to the logical unit.  Thus, I/O to the device will automatically
128          * fail and get retried if it happens in a window where the device
129          * is not ready, e.g. after a bus reset but before we reconnect.
130          */
131         int generation;
132         int retries;
133         struct delayed_work work;
134 };
135
136 /*
137  * We create one struct sbp2_target per IEEE 1212 Unit Directory
138  * and one struct Scsi_Host per sbp2_target.
139  */
140 struct sbp2_target {
141         struct kref kref;
142         struct fw_unit *unit;
143
144         u64 management_agent_address;
145         int directory_id;
146         int node_id;
147         int address_high;
148
149         unsigned workarounds;
150         struct list_head lu_list;
151 };
152
153 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
154 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
155 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
156
157 #define SBP2_ORB_NULL                   0x80000000
158
159 #define SBP2_DIRECTION_TO_MEDIA         0x0
160 #define SBP2_DIRECTION_FROM_MEDIA       0x1
161
162 /* Unit directory keys */
163 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
164 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
165 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
166
167 /* Management orb opcodes */
168 #define SBP2_LOGIN_REQUEST              0x0
169 #define SBP2_QUERY_LOGINS_REQUEST       0x1
170 #define SBP2_RECONNECT_REQUEST          0x3
171 #define SBP2_SET_PASSWORD_REQUEST       0x4
172 #define SBP2_LOGOUT_REQUEST             0x7
173 #define SBP2_ABORT_TASK_REQUEST         0xb
174 #define SBP2_ABORT_TASK_SET             0xc
175 #define SBP2_LOGICAL_UNIT_RESET         0xe
176 #define SBP2_TARGET_RESET_REQUEST       0xf
177
178 /* Offsets for command block agent registers */
179 #define SBP2_AGENT_STATE                0x00
180 #define SBP2_AGENT_RESET                0x04
181 #define SBP2_ORB_POINTER                0x08
182 #define SBP2_DOORBELL                   0x10
183 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
184
185 /* Status write response codes */
186 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
187 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
188 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
189 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
190
191 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
192 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
193 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
194 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
195 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
196 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
197 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
198 #define STATUS_GET_DATA(v)              ((v).data)
199
200 struct sbp2_status {
201         u32 status;
202         u32 orb_low;
203         u8 data[24];
204 };
205
206 struct sbp2_pointer {
207         u32 high;
208         u32 low;
209 };
210
211 struct sbp2_orb {
212         struct fw_transaction t;
213         struct kref kref;
214         dma_addr_t request_bus;
215         int rcode;
216         struct sbp2_pointer pointer;
217         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
218         struct list_head link;
219 };
220
221 #define MANAGEMENT_ORB_LUN(v)                   ((v))
222 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
223 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
224 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
225 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
226 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
227
228 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
229 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
230
231 struct sbp2_management_orb {
232         struct sbp2_orb base;
233         struct {
234                 struct sbp2_pointer password;
235                 struct sbp2_pointer response;
236                 u32 misc;
237                 u32 length;
238                 struct sbp2_pointer status_fifo;
239         } request;
240         __be32 response[4];
241         dma_addr_t response_bus;
242         struct completion done;
243         struct sbp2_status status;
244 };
245
246 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
247 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
248
249 struct sbp2_login_response {
250         u32 misc;
251         struct sbp2_pointer command_block_agent;
252         u32 reconnect_hold;
253 };
254 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
255 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
256 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
257 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
258 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
259 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
260 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
261 #define COMMAND_ORB_NOTIFY              ((1) << 31)
262
263 struct sbp2_command_orb {
264         struct sbp2_orb base;
265         struct {
266                 struct sbp2_pointer next;
267                 struct sbp2_pointer data_descriptor;
268                 u32 misc;
269                 u8 command_block[12];
270         } request;
271         struct scsi_cmnd *cmd;
272         scsi_done_fn_t done;
273         struct sbp2_logical_unit *lu;
274
275         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
276         dma_addr_t page_table_bus;
277 };
278
279 /*
280  * List of devices with known bugs.
281  *
282  * The firmware_revision field, masked with 0xffff00, is the best
283  * indicator for the type of bridge chip of a device.  It yields a few
284  * false positives but this did not break correctly behaving devices
285  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
286  * from the config rom can never match that.
287  */
288 static const struct {
289         u32 firmware_revision;
290         u32 model;
291         unsigned workarounds;
292 } sbp2_workarounds_table[] = {
293         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
294                 .firmware_revision      = 0x002800,
295                 .model                  = 0x001010,
296                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
297                                           SBP2_WORKAROUND_MODE_SENSE_8,
298         },
299         /* Initio bridges, actually only needed for some older ones */ {
300                 .firmware_revision      = 0x000200,
301                 .model                  = ~0,
302                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
303         },
304         /* Symbios bridge */ {
305                 .firmware_revision      = 0xa0b800,
306                 .model                  = ~0,
307                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
308         },
309
310         /*
311          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
312          * these iPods do not feature the read_capacity bug according
313          * to one report.  Read_capacity behaviour as well as model_id
314          * could change due to Apple-supplied firmware updates though.
315          */
316
317         /* iPod 4th generation. */ {
318                 .firmware_revision      = 0x0a2700,
319                 .model                  = 0x000021,
320                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
321         },
322         /* iPod mini */ {
323                 .firmware_revision      = 0x0a2700,
324                 .model                  = 0x000023,
325                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
326         },
327         /* iPod Photo */ {
328                 .firmware_revision      = 0x0a2700,
329                 .model                  = 0x00007e,
330                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
331         }
332 };
333
334 static void
335 free_orb(struct kref *kref)
336 {
337         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
338
339         kfree(orb);
340 }
341
342 static void
343 sbp2_status_write(struct fw_card *card, struct fw_request *request,
344                   int tcode, int destination, int source,
345                   int generation, int speed,
346                   unsigned long long offset,
347                   void *payload, size_t length, void *callback_data)
348 {
349         struct sbp2_logical_unit *lu = callback_data;
350         struct sbp2_orb *orb;
351         struct sbp2_status status;
352         size_t header_size;
353         unsigned long flags;
354
355         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
356             length == 0 || length > sizeof(status)) {
357                 fw_send_response(card, request, RCODE_TYPE_ERROR);
358                 return;
359         }
360
361         header_size = min(length, 2 * sizeof(u32));
362         fw_memcpy_from_be32(&status, payload, header_size);
363         if (length > header_size)
364                 memcpy(status.data, payload + 8, length - header_size);
365         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
366                 fw_notify("non-orb related status write, not handled\n");
367                 fw_send_response(card, request, RCODE_COMPLETE);
368                 return;
369         }
370
371         /* Lookup the orb corresponding to this status write. */
372         spin_lock_irqsave(&card->lock, flags);
373         list_for_each_entry(orb, &lu->orb_list, link) {
374                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
375                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
376                         orb->rcode = RCODE_COMPLETE;
377                         list_del(&orb->link);
378                         break;
379                 }
380         }
381         spin_unlock_irqrestore(&card->lock, flags);
382
383         if (&orb->link != &lu->orb_list)
384                 orb->callback(orb, &status);
385         else
386                 fw_error("status write for unknown orb\n");
387
388         kref_put(&orb->kref, free_orb);
389
390         fw_send_response(card, request, RCODE_COMPLETE);
391 }
392
393 static void
394 complete_transaction(struct fw_card *card, int rcode,
395                      void *payload, size_t length, void *data)
396 {
397         struct sbp2_orb *orb = data;
398         unsigned long flags;
399
400         /*
401          * This is a little tricky.  We can get the status write for
402          * the orb before we get this callback.  The status write
403          * handler above will assume the orb pointer transaction was
404          * successful and set the rcode to RCODE_COMPLETE for the orb.
405          * So this callback only sets the rcode if it hasn't already
406          * been set and only does the cleanup if the transaction
407          * failed and we didn't already get a status write.
408          */
409         spin_lock_irqsave(&card->lock, flags);
410
411         if (orb->rcode == -1)
412                 orb->rcode = rcode;
413         if (orb->rcode != RCODE_COMPLETE) {
414                 list_del(&orb->link);
415                 spin_unlock_irqrestore(&card->lock, flags);
416                 orb->callback(orb, NULL);
417         } else {
418                 spin_unlock_irqrestore(&card->lock, flags);
419         }
420
421         kref_put(&orb->kref, free_orb);
422 }
423
424 static void
425 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
426               int node_id, int generation, u64 offset)
427 {
428         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
429         unsigned long flags;
430
431         orb->pointer.high = 0;
432         orb->pointer.low = orb->request_bus;
433         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
434
435         spin_lock_irqsave(&device->card->lock, flags);
436         list_add_tail(&orb->link, &lu->orb_list);
437         spin_unlock_irqrestore(&device->card->lock, flags);
438
439         /* Take a ref for the orb list and for the transaction callback. */
440         kref_get(&orb->kref);
441         kref_get(&orb->kref);
442
443         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
444                         node_id, generation, device->max_speed, offset,
445                         &orb->pointer, sizeof(orb->pointer),
446                         complete_transaction, orb);
447 }
448
449 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
450 {
451         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
452         struct sbp2_orb *orb, *next;
453         struct list_head list;
454         unsigned long flags;
455         int retval = -ENOENT;
456
457         INIT_LIST_HEAD(&list);
458         spin_lock_irqsave(&device->card->lock, flags);
459         list_splice_init(&lu->orb_list, &list);
460         spin_unlock_irqrestore(&device->card->lock, flags);
461
462         list_for_each_entry_safe(orb, next, &list, link) {
463                 retval = 0;
464                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
465                         continue;
466
467                 orb->rcode = RCODE_CANCELLED;
468                 orb->callback(orb, NULL);
469         }
470
471         return retval;
472 }
473
474 static void
475 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
476 {
477         struct sbp2_management_orb *orb =
478                 container_of(base_orb, struct sbp2_management_orb, base);
479
480         if (status)
481                 memcpy(&orb->status, status, sizeof(*status));
482         complete(&orb->done);
483 }
484
485 static int
486 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
487                          int generation, int function, int lun_or_login_id,
488                          void *response)
489 {
490         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
491         struct sbp2_management_orb *orb;
492         int retval = -ENOMEM;
493
494         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
495         if (orb == NULL)
496                 return -ENOMEM;
497
498         kref_init(&orb->base.kref);
499         orb->response_bus =
500                 dma_map_single(device->card->device, &orb->response,
501                                sizeof(orb->response), DMA_FROM_DEVICE);
502         if (dma_mapping_error(orb->response_bus))
503                 goto fail_mapping_response;
504
505         orb->request.response.high    = 0;
506         orb->request.response.low     = orb->response_bus;
507
508         orb->request.misc =
509                 MANAGEMENT_ORB_NOTIFY |
510                 MANAGEMENT_ORB_FUNCTION(function) |
511                 MANAGEMENT_ORB_LUN(lun_or_login_id);
512         orb->request.length =
513                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
514
515         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
516         orb->request.status_fifo.low  = lu->address_handler.offset;
517
518         if (function == SBP2_LOGIN_REQUEST) {
519                 orb->request.misc |=
520                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
521                         MANAGEMENT_ORB_RECONNECT(0);
522         }
523
524         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
525
526         init_completion(&orb->done);
527         orb->base.callback = complete_management_orb;
528
529         orb->base.request_bus =
530                 dma_map_single(device->card->device, &orb->request,
531                                sizeof(orb->request), DMA_TO_DEVICE);
532         if (dma_mapping_error(orb->base.request_bus))
533                 goto fail_mapping_request;
534
535         sbp2_send_orb(&orb->base, lu, node_id, generation,
536                       lu->tgt->management_agent_address);
537
538         wait_for_completion_timeout(&orb->done,
539                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
540
541         retval = -EIO;
542         if (sbp2_cancel_orbs(lu) == 0) {
543                 fw_error("orb reply timed out, rcode=0x%02x\n",
544                          orb->base.rcode);
545                 goto out;
546         }
547
548         if (orb->base.rcode != RCODE_COMPLETE) {
549                 fw_error("management write failed, rcode 0x%02x\n",
550                          orb->base.rcode);
551                 goto out;
552         }
553
554         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
555             STATUS_GET_SBP_STATUS(orb->status) != 0) {
556                 fw_error("error status: %d:%d\n",
557                          STATUS_GET_RESPONSE(orb->status),
558                          STATUS_GET_SBP_STATUS(orb->status));
559                 goto out;
560         }
561
562         retval = 0;
563  out:
564         dma_unmap_single(device->card->device, orb->base.request_bus,
565                          sizeof(orb->request), DMA_TO_DEVICE);
566  fail_mapping_request:
567         dma_unmap_single(device->card->device, orb->response_bus,
568                          sizeof(orb->response), DMA_FROM_DEVICE);
569  fail_mapping_response:
570         if (response)
571                 fw_memcpy_from_be32(response,
572                                     orb->response, sizeof(orb->response));
573         kref_put(&orb->base.kref, free_orb);
574
575         return retval;
576 }
577
578 static void
579 complete_agent_reset_write(struct fw_card *card, int rcode,
580                            void *payload, size_t length, void *data)
581 {
582         struct fw_transaction *t = data;
583
584         kfree(t);
585 }
586
587 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
588 {
589         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590         struct fw_transaction *t;
591         static u32 zero;
592
593         t = kzalloc(sizeof(*t), GFP_ATOMIC);
594         if (t == NULL)
595                 return -ENOMEM;
596
597         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598                         lu->tgt->node_id, lu->generation, device->max_speed,
599                         lu->command_block_agent_address + SBP2_AGENT_RESET,
600                         &zero, sizeof(zero), complete_agent_reset_write, t);
601
602         return 0;
603 }
604
605 static void sbp2_release_target(struct kref *kref)
606 {
607         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
608         struct sbp2_logical_unit *lu, *next;
609         struct Scsi_Host *shost =
610                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
611
612         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
613                 if (lu->sdev)
614                         scsi_remove_device(lu->sdev);
615
616                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
617                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
618                 fw_core_remove_address_handler(&lu->address_handler);
619                 list_del(&lu->link);
620                 kfree(lu);
621         }
622         scsi_remove_host(shost);
623         fw_notify("released %s\n", tgt->unit->device.bus_id);
624
625         put_device(&tgt->unit->device);
626         scsi_host_put(shost);
627 }
628
629 static struct workqueue_struct *sbp2_wq;
630
631 /*
632  * Always get the target's kref when scheduling work on one its units.
633  * Each workqueue job is responsible to call sbp2_target_put() upon return.
634  */
635 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
636 {
637         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
638                 kref_get(&lu->tgt->kref);
639 }
640
641 static void sbp2_target_put(struct sbp2_target *tgt)
642 {
643         kref_put(&tgt->kref, sbp2_release_target);
644 }
645
646 static void sbp2_reconnect(struct work_struct *work);
647
648 static void sbp2_login(struct work_struct *work)
649 {
650         struct sbp2_logical_unit *lu =
651                 container_of(work, struct sbp2_logical_unit, work.work);
652         struct Scsi_Host *shost =
653                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
654         struct scsi_device *sdev;
655         struct scsi_lun eight_bytes_lun;
656         struct fw_unit *unit = lu->tgt->unit;
657         struct fw_device *device = fw_device(unit->device.parent);
658         struct sbp2_login_response response;
659         int generation, node_id, local_node_id;
660
661         generation    = device->card->generation;
662         node_id       = device->node->node_id;
663         local_node_id = device->card->local_node->node_id;
664
665         if (sbp2_send_management_orb(lu, node_id, generation,
666                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
667                 if (lu->retries++ < 5)
668                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
669                 else
670                         fw_error("failed to login to %s LUN %04x\n",
671                                  unit->device.bus_id, lu->lun);
672                 goto out;
673         }
674
675         lu->generation        = generation;
676         lu->tgt->node_id      = node_id;
677         lu->tgt->address_high = local_node_id << 16;
678
679         /* Get command block agent offset and login id. */
680         lu->command_block_agent_address =
681                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
682                 response.command_block_agent.low;
683         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
684
685         fw_notify("logged in to %s LUN %04x (%d retries)\n",
686                   unit->device.bus_id, lu->lun, lu->retries);
687
688 #if 0
689         /* FIXME: The linux1394 sbp2 does this last step. */
690         sbp2_set_busy_timeout(scsi_id);
691 #endif
692
693         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
694         sbp2_agent_reset(lu);
695
696         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
697         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
698         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
699
700         sdev = __scsi_add_device(shost, 0, 0,
701                                  scsilun_to_int(&eight_bytes_lun), lu);
702         if (IS_ERR(sdev)) {
703                 sbp2_send_management_orb(lu, node_id, generation,
704                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
705                 /*
706                  * Set this back to sbp2_login so we fall back and
707                  * retry login on bus reset.
708                  */
709                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
710         } else {
711                 lu->sdev = sdev;
712                 scsi_device_put(sdev);
713         }
714  out:
715         sbp2_target_put(lu->tgt);
716 }
717
718 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
719 {
720         struct sbp2_logical_unit *lu;
721
722         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
723         if (!lu)
724                 return -ENOMEM;
725
726         lu->address_handler.length           = 0x100;
727         lu->address_handler.address_callback = sbp2_status_write;
728         lu->address_handler.callback_data    = lu;
729
730         if (fw_core_add_address_handler(&lu->address_handler,
731                                         &fw_high_memory_region) < 0) {
732                 kfree(lu);
733                 return -ENOMEM;
734         }
735
736         lu->tgt  = tgt;
737         lu->sdev = NULL;
738         lu->lun  = lun_entry & 0xffff;
739         lu->retries = 0;
740         INIT_LIST_HEAD(&lu->orb_list);
741         INIT_DELAYED_WORK(&lu->work, sbp2_login);
742
743         list_add_tail(&lu->link, &tgt->lu_list);
744         return 0;
745 }
746
747 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
748 {
749         struct fw_csr_iterator ci;
750         int key, value;
751
752         fw_csr_iterator_init(&ci, directory);
753         while (fw_csr_iterator_next(&ci, &key, &value))
754                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
755                     sbp2_add_logical_unit(tgt, value) < 0)
756                         return -ENOMEM;
757         return 0;
758 }
759
760 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
761                               u32 *model, u32 *firmware_revision)
762 {
763         struct fw_csr_iterator ci;
764         int key, value;
765
766         fw_csr_iterator_init(&ci, directory);
767         while (fw_csr_iterator_next(&ci, &key, &value)) {
768                 switch (key) {
769
770                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
771                         tgt->management_agent_address =
772                                         CSR_REGISTER_BASE + 4 * value;
773                         break;
774
775                 case CSR_DIRECTORY_ID:
776                         tgt->directory_id = value;
777                         break;
778
779                 case CSR_MODEL:
780                         *model = value;
781                         break;
782
783                 case SBP2_CSR_FIRMWARE_REVISION:
784                         *firmware_revision = value;
785                         break;
786
787                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
788                         if (sbp2_add_logical_unit(tgt, value) < 0)
789                                 return -ENOMEM;
790                         break;
791
792                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
793                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
794                                 return -ENOMEM;
795                         break;
796                 }
797         }
798         return 0;
799 }
800
801 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
802                                   u32 firmware_revision)
803 {
804         int i;
805         unsigned w = sbp2_param_workarounds;
806
807         if (w)
808                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
809                           "if you need the workarounds parameter for %s\n",
810                           tgt->unit->device.bus_id);
811
812         if (w & SBP2_WORKAROUND_OVERRIDE)
813                 goto out;
814
815         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
816
817                 if (sbp2_workarounds_table[i].firmware_revision !=
818                     (firmware_revision & 0xffffff00))
819                         continue;
820
821                 if (sbp2_workarounds_table[i].model != model &&
822                     sbp2_workarounds_table[i].model != ~0)
823                         continue;
824
825                 w |= sbp2_workarounds_table[i].workarounds;
826                 break;
827         }
828  out:
829         if (w)
830                 fw_notify("Workarounds for %s: 0x%x "
831                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
832                           tgt->unit->device.bus_id,
833                           w, firmware_revision, model);
834         tgt->workarounds = w;
835 }
836
837 static struct scsi_host_template scsi_driver_template;
838
839 static int sbp2_probe(struct device *dev)
840 {
841         struct fw_unit *unit = fw_unit(dev);
842         struct fw_device *device = fw_device(unit->device.parent);
843         struct sbp2_target *tgt;
844         struct sbp2_logical_unit *lu;
845         struct Scsi_Host *shost;
846         u32 model, firmware_revision;
847
848         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
849         if (shost == NULL)
850                 return -ENOMEM;
851
852         tgt = (struct sbp2_target *)shost->hostdata;
853         unit->device.driver_data = tgt;
854         tgt->unit = unit;
855         kref_init(&tgt->kref);
856         INIT_LIST_HEAD(&tgt->lu_list);
857
858         if (fw_device_enable_phys_dma(device) < 0)
859                 goto fail_shost_put;
860
861         if (scsi_add_host(shost, &unit->device) < 0)
862                 goto fail_shost_put;
863
864         /* Initialize to values that won't match anything in our table. */
865         firmware_revision = 0xff000000;
866         model = 0xff000000;
867
868         /* implicit directory ID */
869         tgt->directory_id = ((unit->directory - device->config_rom) * 4
870                              + CSR_CONFIG_ROM) & 0xffffff;
871
872         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
873                                &firmware_revision) < 0)
874                 goto fail_tgt_put;
875
876         sbp2_init_workarounds(tgt, model, firmware_revision);
877
878         get_device(&unit->device);
879
880         /* Do the login in a workqueue so we can easily reschedule retries. */
881         list_for_each_entry(lu, &tgt->lu_list, link)
882                 sbp2_queue_work(lu, 0);
883         return 0;
884
885  fail_tgt_put:
886         sbp2_target_put(tgt);
887         return -ENOMEM;
888
889  fail_shost_put:
890         scsi_host_put(shost);
891         return -ENOMEM;
892 }
893
894 static int sbp2_remove(struct device *dev)
895 {
896         struct fw_unit *unit = fw_unit(dev);
897         struct sbp2_target *tgt = unit->device.driver_data;
898
899         sbp2_target_put(tgt);
900         return 0;
901 }
902
903 static void sbp2_reconnect(struct work_struct *work)
904 {
905         struct sbp2_logical_unit *lu =
906                 container_of(work, struct sbp2_logical_unit, work.work);
907         struct fw_unit *unit = lu->tgt->unit;
908         struct fw_device *device = fw_device(unit->device.parent);
909         int generation, node_id, local_node_id;
910
911         generation    = device->card->generation;
912         node_id       = device->node->node_id;
913         local_node_id = device->card->local_node->node_id;
914
915         if (sbp2_send_management_orb(lu, node_id, generation,
916                                      SBP2_RECONNECT_REQUEST,
917                                      lu->login_id, NULL) < 0) {
918                 if (lu->retries++ >= 5) {
919                         fw_error("failed to reconnect to %s\n",
920                                  unit->device.bus_id);
921                         /* Fall back and try to log in again. */
922                         lu->retries = 0;
923                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
924                 }
925                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
926                 goto out;
927         }
928
929         lu->generation        = generation;
930         lu->tgt->node_id      = node_id;
931         lu->tgt->address_high = local_node_id << 16;
932
933         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
934                   unit->device.bus_id, lu->lun, lu->retries);
935
936         sbp2_agent_reset(lu);
937         sbp2_cancel_orbs(lu);
938  out:
939         sbp2_target_put(lu->tgt);
940 }
941
942 static void sbp2_update(struct fw_unit *unit)
943 {
944         struct sbp2_target *tgt = unit->device.driver_data;
945         struct sbp2_logical_unit *lu;
946
947         fw_device_enable_phys_dma(fw_device(unit->device.parent));
948
949         /*
950          * Fw-core serializes sbp2_update() against sbp2_remove().
951          * Iteration over tgt->lu_list is therefore safe here.
952          */
953         list_for_each_entry(lu, &tgt->lu_list, link) {
954                 lu->retries = 0;
955                 sbp2_queue_work(lu, 0);
956         }
957 }
958
959 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
960 #define SBP2_SW_VERSION_ENTRY   0x00010483
961
962 static const struct fw_device_id sbp2_id_table[] = {
963         {
964                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
965                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
966                 .version      = SBP2_SW_VERSION_ENTRY,
967         },
968         { }
969 };
970
971 static struct fw_driver sbp2_driver = {
972         .driver   = {
973                 .owner  = THIS_MODULE,
974                 .name   = sbp2_driver_name,
975                 .bus    = &fw_bus_type,
976                 .probe  = sbp2_probe,
977                 .remove = sbp2_remove,
978         },
979         .update   = sbp2_update,
980         .id_table = sbp2_id_table,
981 };
982
983 static unsigned int
984 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
985 {
986         int sam_status;
987
988         sense_data[0] = 0x70;
989         sense_data[1] = 0x0;
990         sense_data[2] = sbp2_status[1];
991         sense_data[3] = sbp2_status[4];
992         sense_data[4] = sbp2_status[5];
993         sense_data[5] = sbp2_status[6];
994         sense_data[6] = sbp2_status[7];
995         sense_data[7] = 10;
996         sense_data[8] = sbp2_status[8];
997         sense_data[9] = sbp2_status[9];
998         sense_data[10] = sbp2_status[10];
999         sense_data[11] = sbp2_status[11];
1000         sense_data[12] = sbp2_status[2];
1001         sense_data[13] = sbp2_status[3];
1002         sense_data[14] = sbp2_status[12];
1003         sense_data[15] = sbp2_status[13];
1004
1005         sam_status = sbp2_status[0] & 0x3f;
1006
1007         switch (sam_status) {
1008         case SAM_STAT_GOOD:
1009         case SAM_STAT_CHECK_CONDITION:
1010         case SAM_STAT_CONDITION_MET:
1011         case SAM_STAT_BUSY:
1012         case SAM_STAT_RESERVATION_CONFLICT:
1013         case SAM_STAT_COMMAND_TERMINATED:
1014                 return DID_OK << 16 | sam_status;
1015
1016         default:
1017                 return DID_ERROR << 16;
1018         }
1019 }
1020
1021 static void
1022 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1023 {
1024         struct sbp2_command_orb *orb =
1025                 container_of(base_orb, struct sbp2_command_orb, base);
1026         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1027         int result;
1028
1029         if (status != NULL) {
1030                 if (STATUS_GET_DEAD(*status))
1031                         sbp2_agent_reset(orb->lu);
1032
1033                 switch (STATUS_GET_RESPONSE(*status)) {
1034                 case SBP2_STATUS_REQUEST_COMPLETE:
1035                         result = DID_OK << 16;
1036                         break;
1037                 case SBP2_STATUS_TRANSPORT_FAILURE:
1038                         result = DID_BUS_BUSY << 16;
1039                         break;
1040                 case SBP2_STATUS_ILLEGAL_REQUEST:
1041                 case SBP2_STATUS_VENDOR_DEPENDENT:
1042                 default:
1043                         result = DID_ERROR << 16;
1044                         break;
1045                 }
1046
1047                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1048                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1049                                                            orb->cmd->sense_buffer);
1050         } else {
1051                 /*
1052                  * If the orb completes with status == NULL, something
1053                  * went wrong, typically a bus reset happened mid-orb
1054                  * or when sending the write (less likely).
1055                  */
1056                 result = DID_BUS_BUSY << 16;
1057         }
1058
1059         dma_unmap_single(device->card->device, orb->base.request_bus,
1060                          sizeof(orb->request), DMA_TO_DEVICE);
1061
1062         if (scsi_sg_count(orb->cmd) > 0)
1063                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1064                              scsi_sg_count(orb->cmd),
1065                              orb->cmd->sc_data_direction);
1066
1067         if (orb->page_table_bus != 0)
1068                 dma_unmap_single(device->card->device, orb->page_table_bus,
1069                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1070
1071         orb->cmd->result = result;
1072         orb->done(orb->cmd);
1073 }
1074
1075 static int
1076 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1077                      struct sbp2_logical_unit *lu)
1078 {
1079         struct scatterlist *sg;
1080         int sg_len, l, i, j, count;
1081         dma_addr_t sg_addr;
1082
1083         sg = scsi_sglist(orb->cmd);
1084         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1085                            orb->cmd->sc_data_direction);
1086         if (count == 0)
1087                 goto fail;
1088
1089         /*
1090          * Handle the special case where there is only one element in
1091          * the scatter list by converting it to an immediate block
1092          * request. This is also a workaround for broken devices such
1093          * as the second generation iPod which doesn't support page
1094          * tables.
1095          */
1096         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1097                 orb->request.data_descriptor.high = lu->tgt->address_high;
1098                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1099                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1100                 return 0;
1101         }
1102
1103         /*
1104          * Convert the scatterlist to an sbp2 page table.  If any
1105          * scatterlist entries are too big for sbp2, we split them as we
1106          * go.  Even if we ask the block I/O layer to not give us sg
1107          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1108          * during DMA mapping, and Linux currently doesn't prevent this.
1109          */
1110         for (i = 0, j = 0; i < count; i++) {
1111                 sg_len = sg_dma_len(sg + i);
1112                 sg_addr = sg_dma_address(sg + i);
1113                 while (sg_len) {
1114                         /* FIXME: This won't get us out of the pinch. */
1115                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1116                                 fw_error("page table overflow\n");
1117                                 goto fail_page_table;
1118                         }
1119                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1120                         orb->page_table[j].low = sg_addr;
1121                         orb->page_table[j].high = (l << 16);
1122                         sg_addr += l;
1123                         sg_len -= l;
1124                         j++;
1125                 }
1126         }
1127
1128         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1129                           sizeof(orb->page_table[0]) * j);
1130         orb->page_table_bus =
1131                 dma_map_single(device->card->device, orb->page_table,
1132                                sizeof(orb->page_table), DMA_TO_DEVICE);
1133         if (dma_mapping_error(orb->page_table_bus))
1134                 goto fail_page_table;
1135
1136         /*
1137          * The data_descriptor pointer is the one case where we need
1138          * to fill in the node ID part of the address.  All other
1139          * pointers assume that the data referenced reside on the
1140          * initiator (i.e. us), but data_descriptor can refer to data
1141          * on other nodes so we need to put our ID in descriptor.high.
1142          */
1143         orb->request.data_descriptor.high = lu->tgt->address_high;
1144         orb->request.data_descriptor.low  = orb->page_table_bus;
1145         orb->request.misc |=
1146                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1147                 COMMAND_ORB_DATA_SIZE(j);
1148
1149         return 0;
1150
1151  fail_page_table:
1152         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1153                      orb->cmd->sc_data_direction);
1154  fail:
1155         return -ENOMEM;
1156 }
1157
1158 /* SCSI stack integration */
1159
1160 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1161 {
1162         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1163         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1164         struct sbp2_command_orb *orb;
1165         unsigned max_payload;
1166         int retval = SCSI_MLQUEUE_HOST_BUSY;
1167
1168         /*
1169          * Bidirectional commands are not yet implemented, and unknown
1170          * transfer direction not handled.
1171          */
1172         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1173                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1174                 cmd->result = DID_ERROR << 16;
1175                 done(cmd);
1176                 return 0;
1177         }
1178
1179         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1180         if (orb == NULL) {
1181                 fw_notify("failed to alloc orb\n");
1182                 return SCSI_MLQUEUE_HOST_BUSY;
1183         }
1184
1185         /* Initialize rcode to something not RCODE_COMPLETE. */
1186         orb->base.rcode = -1;
1187         kref_init(&orb->base.kref);
1188
1189         orb->lu   = lu;
1190         orb->done = done;
1191         orb->cmd  = cmd;
1192
1193         orb->request.next.high   = SBP2_ORB_NULL;
1194         orb->request.next.low    = 0x0;
1195         /*
1196          * At speed 100 we can do 512 bytes per packet, at speed 200,
1197          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1198          * specifies the max payload size as 2 ^ (max_payload + 2), so
1199          * if we set this to max_speed + 7, we get the right value.
1200          */
1201         max_payload = min(device->max_speed + 7,
1202                           device->card->max_receive - 1);
1203         orb->request.misc =
1204                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1205                 COMMAND_ORB_SPEED(device->max_speed) |
1206                 COMMAND_ORB_NOTIFY;
1207
1208         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1209                 orb->request.misc |=
1210                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1211         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1212                 orb->request.misc |=
1213                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1214
1215         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1216                 goto out;
1217
1218         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1219
1220         memset(orb->request.command_block,
1221                0, sizeof(orb->request.command_block));
1222         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1223
1224         orb->base.callback = complete_command_orb;
1225         orb->base.request_bus =
1226                 dma_map_single(device->card->device, &orb->request,
1227                                sizeof(orb->request), DMA_TO_DEVICE);
1228         if (dma_mapping_error(orb->base.request_bus))
1229                 goto out;
1230
1231         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1232                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1233         retval = 0;
1234  out:
1235         kref_put(&orb->base.kref, free_orb);
1236         return retval;
1237 }
1238
1239 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1240 {
1241         struct sbp2_logical_unit *lu = sdev->hostdata;
1242
1243         sdev->allow_restart = 1;
1244
1245         /*
1246          * Update the dma alignment (minimum alignment requirements for
1247          * start and end of DMA transfers) to be a sector
1248          */
1249         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1250
1251         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1252                 sdev->inquiry_len = 36;
1253
1254         return 0;
1255 }
1256
1257 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1258 {
1259         struct sbp2_logical_unit *lu = sdev->hostdata;
1260
1261         sdev->use_10_for_rw = 1;
1262
1263         if (sdev->type == TYPE_ROM)
1264                 sdev->use_10_for_ms = 1;
1265
1266         if (sdev->type == TYPE_DISK &&
1267             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1268                 sdev->skip_ms_page_8 = 1;
1269
1270         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1271                 sdev->fix_capacity = 1;
1272
1273         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1274                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1275
1276         return 0;
1277 }
1278
1279 /*
1280  * Called by scsi stack when something has really gone wrong.  Usually
1281  * called when a command has timed-out for some reason.
1282  */
1283 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1284 {
1285         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1286
1287         fw_notify("sbp2_scsi_abort\n");
1288         sbp2_agent_reset(lu);
1289         sbp2_cancel_orbs(lu);
1290
1291         return SUCCESS;
1292 }
1293
1294 /*
1295  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1296  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1297  *
1298  * This is the concatenation of target port identifier and logical unit
1299  * identifier as per SAM-2...SAM-4 annex A.
1300  */
1301 static ssize_t
1302 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1303                             char *buf)
1304 {
1305         struct scsi_device *sdev = to_scsi_device(dev);
1306         struct sbp2_logical_unit *lu;
1307         struct fw_device *device;
1308
1309         if (!sdev)
1310                 return 0;
1311
1312         lu = sdev->hostdata;
1313         device = fw_device(lu->tgt->unit->device.parent);
1314
1315         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1316                         device->config_rom[3], device->config_rom[4],
1317                         lu->tgt->directory_id, lu->lun);
1318 }
1319
1320 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1321
1322 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1323         &dev_attr_ieee1394_id,
1324         NULL
1325 };
1326
1327 static struct scsi_host_template scsi_driver_template = {
1328         .module                 = THIS_MODULE,
1329         .name                   = "SBP-2 IEEE-1394",
1330         .proc_name              = sbp2_driver_name,
1331         .queuecommand           = sbp2_scsi_queuecommand,
1332         .slave_alloc            = sbp2_scsi_slave_alloc,
1333         .slave_configure        = sbp2_scsi_slave_configure,
1334         .eh_abort_handler       = sbp2_scsi_abort,
1335         .this_id                = -1,
1336         .sg_tablesize           = SG_ALL,
1337         .use_clustering         = ENABLE_CLUSTERING,
1338         .cmd_per_lun            = 1,
1339         .can_queue              = 1,
1340         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1341 };
1342
1343 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1344 MODULE_DESCRIPTION("SCSI over IEEE1394");
1345 MODULE_LICENSE("GPL");
1346 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1347
1348 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1349 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1350 MODULE_ALIAS("sbp2");
1351 #endif
1352
1353 static int __init sbp2_init(void)
1354 {
1355         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1356         if (!sbp2_wq)
1357                 return -ENOMEM;
1358
1359         return driver_register(&sbp2_driver.driver);
1360 }
1361
1362 static void __exit sbp2_cleanup(void)
1363 {
1364         driver_unregister(&sbp2_driver.driver);
1365         destroy_workqueue(sbp2_wq);
1366 }
1367
1368 module_init(sbp2_init);
1369 module_exit(sbp2_cleanup);