firewire: fw-cdev: use device generation, not card generation
[safe/jmp/linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48
49 #include "fw-transaction.h"
50 #include "fw-topology.h"
51 #include "fw-device.h"
52
53 /*
54  * So far only bridges from Oxford Semiconductor are known to support
55  * concurrent logins. Depending on firmware, four or two concurrent logins
56  * are possible on OXFW911 and newer Oxsemi bridges.
57  *
58  * Concurrent logins are useful together with cluster filesystems.
59  */
60 static int sbp2_param_exclusive_login = 1;
61 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
62 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
63                  "(default = Y, use N for concurrent initiators)");
64
65 /*
66  * Flags for firmware oddities
67  *
68  * - 128kB max transfer
69  *   Limit transfer size. Necessary for some old bridges.
70  *
71  * - 36 byte inquiry
72  *   When scsi_mod probes the device, let the inquiry command look like that
73  *   from MS Windows.
74  *
75  * - skip mode page 8
76  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
77  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
78  *
79  * - fix capacity
80  *   Tell sd_mod to correct the last sector number reported by read_capacity.
81  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
82  *   Don't use this with devices which don't have this bug.
83  *
84  * - override internal blacklist
85  *   Instead of adding to the built-in blacklist, use only the workarounds
86  *   specified in the module load parameter.
87  *   Useful if a blacklist entry interfered with a non-broken device.
88  */
89 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
90 #define SBP2_WORKAROUND_INQUIRY_36      0x2
91 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
92 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
93 #define SBP2_WORKAROUND_OVERRIDE        0x100
94
95 static int sbp2_param_workarounds;
96 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
97 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
98         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
99         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
100         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
101         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
102         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
103         ", or a combination)");
104
105 /* I don't know why the SCSI stack doesn't define something like this... */
106 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107
108 static const char sbp2_driver_name[] = "sbp2";
109
110 /*
111  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
112  * and one struct scsi_device per sbp2_logical_unit.
113  */
114 struct sbp2_logical_unit {
115         struct sbp2_target *tgt;
116         struct list_head link;
117         struct scsi_device *sdev;
118         struct fw_address_handler address_handler;
119         struct list_head orb_list;
120
121         u64 command_block_agent_address;
122         u16 lun;
123         int login_id;
124
125         /*
126          * The generation is updated once we've logged in or reconnected
127          * to the logical unit.  Thus, I/O to the device will automatically
128          * fail and get retried if it happens in a window where the device
129          * is not ready, e.g. after a bus reset but before we reconnect.
130          */
131         int generation;
132         int retries;
133         struct delayed_work work;
134 };
135
136 /*
137  * We create one struct sbp2_target per IEEE 1212 Unit Directory
138  * and one struct Scsi_Host per sbp2_target.
139  */
140 struct sbp2_target {
141         struct kref kref;
142         struct fw_unit *unit;
143
144         u64 management_agent_address;
145         int directory_id;
146         int node_id;
147         int address_high;
148
149         unsigned workarounds;
150         struct list_head lu_list;
151 };
152
153 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
154 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
155 #define SBP2_ORB_NULL                   0x80000000
156
157 #define SBP2_DIRECTION_TO_MEDIA         0x0
158 #define SBP2_DIRECTION_FROM_MEDIA       0x1
159
160 /* Unit directory keys */
161 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
162 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
163 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
164
165 /* Management orb opcodes */
166 #define SBP2_LOGIN_REQUEST              0x0
167 #define SBP2_QUERY_LOGINS_REQUEST       0x1
168 #define SBP2_RECONNECT_REQUEST          0x3
169 #define SBP2_SET_PASSWORD_REQUEST       0x4
170 #define SBP2_LOGOUT_REQUEST             0x7
171 #define SBP2_ABORT_TASK_REQUEST         0xb
172 #define SBP2_ABORT_TASK_SET             0xc
173 #define SBP2_LOGICAL_UNIT_RESET         0xe
174 #define SBP2_TARGET_RESET_REQUEST       0xf
175
176 /* Offsets for command block agent registers */
177 #define SBP2_AGENT_STATE                0x00
178 #define SBP2_AGENT_RESET                0x04
179 #define SBP2_ORB_POINTER                0x08
180 #define SBP2_DOORBELL                   0x10
181 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
182
183 /* Status write response codes */
184 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
185 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
186 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
187 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
188
189 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
190 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
191 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
192 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
193 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
194 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
195 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
196 #define STATUS_GET_DATA(v)              ((v).data)
197
198 struct sbp2_status {
199         u32 status;
200         u32 orb_low;
201         u8 data[24];
202 };
203
204 struct sbp2_pointer {
205         u32 high;
206         u32 low;
207 };
208
209 struct sbp2_orb {
210         struct fw_transaction t;
211         struct kref kref;
212         dma_addr_t request_bus;
213         int rcode;
214         struct sbp2_pointer pointer;
215         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
216         struct list_head link;
217 };
218
219 #define MANAGEMENT_ORB_LUN(v)                   ((v))
220 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
221 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
222 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
223 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
224 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
225
226 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
227 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
228
229 struct sbp2_management_orb {
230         struct sbp2_orb base;
231         struct {
232                 struct sbp2_pointer password;
233                 struct sbp2_pointer response;
234                 u32 misc;
235                 u32 length;
236                 struct sbp2_pointer status_fifo;
237         } request;
238         __be32 response[4];
239         dma_addr_t response_bus;
240         struct completion done;
241         struct sbp2_status status;
242 };
243
244 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
245 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
246
247 struct sbp2_login_response {
248         u32 misc;
249         struct sbp2_pointer command_block_agent;
250         u32 reconnect_hold;
251 };
252 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
253 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
254 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
255 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
256 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
257 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
258 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
259 #define COMMAND_ORB_NOTIFY              ((1) << 31)
260
261 struct sbp2_command_orb {
262         struct sbp2_orb base;
263         struct {
264                 struct sbp2_pointer next;
265                 struct sbp2_pointer data_descriptor;
266                 u32 misc;
267                 u8 command_block[12];
268         } request;
269         struct scsi_cmnd *cmd;
270         scsi_done_fn_t done;
271         struct sbp2_logical_unit *lu;
272
273         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
274         dma_addr_t page_table_bus;
275 };
276
277 /*
278  * List of devices with known bugs.
279  *
280  * The firmware_revision field, masked with 0xffff00, is the best
281  * indicator for the type of bridge chip of a device.  It yields a few
282  * false positives but this did not break correctly behaving devices
283  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
284  * from the config rom can never match that.
285  */
286 static const struct {
287         u32 firmware_revision;
288         u32 model;
289         unsigned workarounds;
290 } sbp2_workarounds_table[] = {
291         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
292                 .firmware_revision      = 0x002800,
293                 .model                  = 0x001010,
294                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
295                                           SBP2_WORKAROUND_MODE_SENSE_8,
296         },
297         /* Initio bridges, actually only needed for some older ones */ {
298                 .firmware_revision      = 0x000200,
299                 .model                  = ~0,
300                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
301         },
302         /* Symbios bridge */ {
303                 .firmware_revision      = 0xa0b800,
304                 .model                  = ~0,
305                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
306         },
307
308         /*
309          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
310          * these iPods do not feature the read_capacity bug according
311          * to one report.  Read_capacity behaviour as well as model_id
312          * could change due to Apple-supplied firmware updates though.
313          */
314
315         /* iPod 4th generation. */ {
316                 .firmware_revision      = 0x0a2700,
317                 .model                  = 0x000021,
318                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
319         },
320         /* iPod mini */ {
321                 .firmware_revision      = 0x0a2700,
322                 .model                  = 0x000023,
323                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
324         },
325         /* iPod Photo */ {
326                 .firmware_revision      = 0x0a2700,
327                 .model                  = 0x00007e,
328                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
329         }
330 };
331
332 static void
333 free_orb(struct kref *kref)
334 {
335         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
336
337         kfree(orb);
338 }
339
340 static void
341 sbp2_status_write(struct fw_card *card, struct fw_request *request,
342                   int tcode, int destination, int source,
343                   int generation, int speed,
344                   unsigned long long offset,
345                   void *payload, size_t length, void *callback_data)
346 {
347         struct sbp2_logical_unit *lu = callback_data;
348         struct sbp2_orb *orb;
349         struct sbp2_status status;
350         size_t header_size;
351         unsigned long flags;
352
353         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
354             length == 0 || length > sizeof(status)) {
355                 fw_send_response(card, request, RCODE_TYPE_ERROR);
356                 return;
357         }
358
359         header_size = min(length, 2 * sizeof(u32));
360         fw_memcpy_from_be32(&status, payload, header_size);
361         if (length > header_size)
362                 memcpy(status.data, payload + 8, length - header_size);
363         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
364                 fw_notify("non-orb related status write, not handled\n");
365                 fw_send_response(card, request, RCODE_COMPLETE);
366                 return;
367         }
368
369         /* Lookup the orb corresponding to this status write. */
370         spin_lock_irqsave(&card->lock, flags);
371         list_for_each_entry(orb, &lu->orb_list, link) {
372                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
373                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
374                         orb->rcode = RCODE_COMPLETE;
375                         list_del(&orb->link);
376                         break;
377                 }
378         }
379         spin_unlock_irqrestore(&card->lock, flags);
380
381         if (&orb->link != &lu->orb_list)
382                 orb->callback(orb, &status);
383         else
384                 fw_error("status write for unknown orb\n");
385
386         kref_put(&orb->kref, free_orb);
387
388         fw_send_response(card, request, RCODE_COMPLETE);
389 }
390
391 static void
392 complete_transaction(struct fw_card *card, int rcode,
393                      void *payload, size_t length, void *data)
394 {
395         struct sbp2_orb *orb = data;
396         unsigned long flags;
397
398         /*
399          * This is a little tricky.  We can get the status write for
400          * the orb before we get this callback.  The status write
401          * handler above will assume the orb pointer transaction was
402          * successful and set the rcode to RCODE_COMPLETE for the orb.
403          * So this callback only sets the rcode if it hasn't already
404          * been set and only does the cleanup if the transaction
405          * failed and we didn't already get a status write.
406          */
407         spin_lock_irqsave(&card->lock, flags);
408
409         if (orb->rcode == -1)
410                 orb->rcode = rcode;
411         if (orb->rcode != RCODE_COMPLETE) {
412                 list_del(&orb->link);
413                 spin_unlock_irqrestore(&card->lock, flags);
414                 orb->callback(orb, NULL);
415         } else {
416                 spin_unlock_irqrestore(&card->lock, flags);
417         }
418
419         kref_put(&orb->kref, free_orb);
420 }
421
422 static void
423 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
424               int node_id, int generation, u64 offset)
425 {
426         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
427         unsigned long flags;
428
429         orb->pointer.high = 0;
430         orb->pointer.low = orb->request_bus;
431         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
432
433         spin_lock_irqsave(&device->card->lock, flags);
434         list_add_tail(&orb->link, &lu->orb_list);
435         spin_unlock_irqrestore(&device->card->lock, flags);
436
437         /* Take a ref for the orb list and for the transaction callback. */
438         kref_get(&orb->kref);
439         kref_get(&orb->kref);
440
441         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
442                         node_id, generation, device->max_speed, offset,
443                         &orb->pointer, sizeof(orb->pointer),
444                         complete_transaction, orb);
445 }
446
447 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
448 {
449         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
450         struct sbp2_orb *orb, *next;
451         struct list_head list;
452         unsigned long flags;
453         int retval = -ENOENT;
454
455         INIT_LIST_HEAD(&list);
456         spin_lock_irqsave(&device->card->lock, flags);
457         list_splice_init(&lu->orb_list, &list);
458         spin_unlock_irqrestore(&device->card->lock, flags);
459
460         list_for_each_entry_safe(orb, next, &list, link) {
461                 retval = 0;
462                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
463                         continue;
464
465                 orb->rcode = RCODE_CANCELLED;
466                 orb->callback(orb, NULL);
467         }
468
469         return retval;
470 }
471
472 static void
473 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
474 {
475         struct sbp2_management_orb *orb =
476                 container_of(base_orb, struct sbp2_management_orb, base);
477
478         if (status)
479                 memcpy(&orb->status, status, sizeof(*status));
480         complete(&orb->done);
481 }
482
483 static int
484 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
485                          int generation, int function, int lun_or_login_id,
486                          void *response)
487 {
488         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
489         struct sbp2_management_orb *orb;
490         int retval = -ENOMEM;
491
492         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
493         if (orb == NULL)
494                 return -ENOMEM;
495
496         kref_init(&orb->base.kref);
497         orb->response_bus =
498                 dma_map_single(device->card->device, &orb->response,
499                                sizeof(orb->response), DMA_FROM_DEVICE);
500         if (dma_mapping_error(orb->response_bus))
501                 goto fail_mapping_response;
502
503         orb->request.response.high    = 0;
504         orb->request.response.low     = orb->response_bus;
505
506         orb->request.misc =
507                 MANAGEMENT_ORB_NOTIFY |
508                 MANAGEMENT_ORB_FUNCTION(function) |
509                 MANAGEMENT_ORB_LUN(lun_or_login_id);
510         orb->request.length =
511                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
512
513         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
514         orb->request.status_fifo.low  = lu->address_handler.offset;
515
516         if (function == SBP2_LOGIN_REQUEST) {
517                 /* Ask for 2^2 == 4 seconds reconnect grace period */
518                 orb->request.misc |=
519                         MANAGEMENT_ORB_RECONNECT(2) |
520                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
521         }
522
523         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
524
525         init_completion(&orb->done);
526         orb->base.callback = complete_management_orb;
527
528         orb->base.request_bus =
529                 dma_map_single(device->card->device, &orb->request,
530                                sizeof(orb->request), DMA_TO_DEVICE);
531         if (dma_mapping_error(orb->base.request_bus))
532                 goto fail_mapping_request;
533
534         sbp2_send_orb(&orb->base, lu, node_id, generation,
535                       lu->tgt->management_agent_address);
536
537         wait_for_completion_timeout(&orb->done,
538                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
539
540         retval = -EIO;
541         if (sbp2_cancel_orbs(lu) == 0) {
542                 fw_error("orb reply timed out, rcode=0x%02x\n",
543                          orb->base.rcode);
544                 goto out;
545         }
546
547         if (orb->base.rcode != RCODE_COMPLETE) {
548                 fw_error("management write failed, rcode 0x%02x\n",
549                          orb->base.rcode);
550                 goto out;
551         }
552
553         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
554             STATUS_GET_SBP_STATUS(orb->status) != 0) {
555                 fw_error("error status: %d:%d\n",
556                          STATUS_GET_RESPONSE(orb->status),
557                          STATUS_GET_SBP_STATUS(orb->status));
558                 goto out;
559         }
560
561         retval = 0;
562  out:
563         dma_unmap_single(device->card->device, orb->base.request_bus,
564                          sizeof(orb->request), DMA_TO_DEVICE);
565  fail_mapping_request:
566         dma_unmap_single(device->card->device, orb->response_bus,
567                          sizeof(orb->response), DMA_FROM_DEVICE);
568  fail_mapping_response:
569         if (response)
570                 fw_memcpy_from_be32(response,
571                                     orb->response, sizeof(orb->response));
572         kref_put(&orb->base.kref, free_orb);
573
574         return retval;
575 }
576
577 static void
578 complete_agent_reset_write(struct fw_card *card, int rcode,
579                            void *payload, size_t length, void *data)
580 {
581         struct fw_transaction *t = data;
582
583         kfree(t);
584 }
585
586 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
587 {
588         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
589         struct fw_transaction *t;
590         static u32 zero;
591
592         t = kzalloc(sizeof(*t), GFP_ATOMIC);
593         if (t == NULL)
594                 return -ENOMEM;
595
596         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
597                         lu->tgt->node_id, lu->generation, device->max_speed,
598                         lu->command_block_agent_address + SBP2_AGENT_RESET,
599                         &zero, sizeof(zero), complete_agent_reset_write, t);
600
601         return 0;
602 }
603
604 static void sbp2_release_target(struct kref *kref)
605 {
606         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
607         struct sbp2_logical_unit *lu, *next;
608         struct Scsi_Host *shost =
609                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
610         struct fw_device *device = fw_device(tgt->unit->device.parent);
611
612         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
613                 if (lu->sdev)
614                         scsi_remove_device(lu->sdev);
615
616                 if (!fw_device_is_shutdown(device))
617                         sbp2_send_management_orb(lu, tgt->node_id,
618                                         lu->generation, SBP2_LOGOUT_REQUEST,
619                                         lu->login_id, NULL);
620
621                 fw_core_remove_address_handler(&lu->address_handler);
622                 list_del(&lu->link);
623                 kfree(lu);
624         }
625         scsi_remove_host(shost);
626         fw_notify("released %s\n", tgt->unit->device.bus_id);
627
628         put_device(&tgt->unit->device);
629         scsi_host_put(shost);
630 }
631
632 static struct workqueue_struct *sbp2_wq;
633
634 /*
635  * Always get the target's kref when scheduling work on one its units.
636  * Each workqueue job is responsible to call sbp2_target_put() upon return.
637  */
638 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
639 {
640         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
641                 kref_get(&lu->tgt->kref);
642 }
643
644 static void sbp2_target_put(struct sbp2_target *tgt)
645 {
646         kref_put(&tgt->kref, sbp2_release_target);
647 }
648
649 static void sbp2_reconnect(struct work_struct *work);
650
651 static void sbp2_login(struct work_struct *work)
652 {
653         struct sbp2_logical_unit *lu =
654                 container_of(work, struct sbp2_logical_unit, work.work);
655         struct Scsi_Host *shost =
656                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
657         struct scsi_device *sdev;
658         struct scsi_lun eight_bytes_lun;
659         struct fw_unit *unit = lu->tgt->unit;
660         struct fw_device *device = fw_device(unit->device.parent);
661         struct sbp2_login_response response;
662         int generation, node_id, local_node_id;
663
664         generation    = device->generation;
665         node_id       = device->node_id;
666         local_node_id = device->card->node_id;
667
668         if (sbp2_send_management_orb(lu, node_id, generation,
669                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
670                 if (lu->retries++ < 5)
671                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
672                 else
673                         fw_error("failed to login to %s LUN %04x\n",
674                                  unit->device.bus_id, lu->lun);
675                 goto out;
676         }
677
678         lu->generation        = generation;
679         lu->tgt->node_id      = node_id;
680         lu->tgt->address_high = local_node_id << 16;
681
682         /* Get command block agent offset and login id. */
683         lu->command_block_agent_address =
684                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
685                 response.command_block_agent.low;
686         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
687
688         fw_notify("logged in to %s LUN %04x (%d retries)\n",
689                   unit->device.bus_id, lu->lun, lu->retries);
690
691 #if 0
692         /* FIXME: The linux1394 sbp2 does this last step. */
693         sbp2_set_busy_timeout(scsi_id);
694 #endif
695
696         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
697         sbp2_agent_reset(lu);
698
699         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
700         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
701         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
702
703         sdev = __scsi_add_device(shost, 0, 0,
704                                  scsilun_to_int(&eight_bytes_lun), lu);
705         if (IS_ERR(sdev)) {
706                 sbp2_send_management_orb(lu, node_id, generation,
707                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
708                 /*
709                  * Set this back to sbp2_login so we fall back and
710                  * retry login on bus reset.
711                  */
712                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
713         } else {
714                 lu->sdev = sdev;
715                 scsi_device_put(sdev);
716         }
717  out:
718         sbp2_target_put(lu->tgt);
719 }
720
721 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
722 {
723         struct sbp2_logical_unit *lu;
724
725         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
726         if (!lu)
727                 return -ENOMEM;
728
729         lu->address_handler.length           = 0x100;
730         lu->address_handler.address_callback = sbp2_status_write;
731         lu->address_handler.callback_data    = lu;
732
733         if (fw_core_add_address_handler(&lu->address_handler,
734                                         &fw_high_memory_region) < 0) {
735                 kfree(lu);
736                 return -ENOMEM;
737         }
738
739         lu->tgt  = tgt;
740         lu->sdev = NULL;
741         lu->lun  = lun_entry & 0xffff;
742         lu->retries = 0;
743         INIT_LIST_HEAD(&lu->orb_list);
744         INIT_DELAYED_WORK(&lu->work, sbp2_login);
745
746         list_add_tail(&lu->link, &tgt->lu_list);
747         return 0;
748 }
749
750 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
751 {
752         struct fw_csr_iterator ci;
753         int key, value;
754
755         fw_csr_iterator_init(&ci, directory);
756         while (fw_csr_iterator_next(&ci, &key, &value))
757                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
758                     sbp2_add_logical_unit(tgt, value) < 0)
759                         return -ENOMEM;
760         return 0;
761 }
762
763 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
764                               u32 *model, u32 *firmware_revision)
765 {
766         struct fw_csr_iterator ci;
767         int key, value;
768
769         fw_csr_iterator_init(&ci, directory);
770         while (fw_csr_iterator_next(&ci, &key, &value)) {
771                 switch (key) {
772
773                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
774                         tgt->management_agent_address =
775                                         CSR_REGISTER_BASE + 4 * value;
776                         break;
777
778                 case CSR_DIRECTORY_ID:
779                         tgt->directory_id = value;
780                         break;
781
782                 case CSR_MODEL:
783                         *model = value;
784                         break;
785
786                 case SBP2_CSR_FIRMWARE_REVISION:
787                         *firmware_revision = value;
788                         break;
789
790                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
791                         if (sbp2_add_logical_unit(tgt, value) < 0)
792                                 return -ENOMEM;
793                         break;
794
795                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
796                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
797                                 return -ENOMEM;
798                         break;
799                 }
800         }
801         return 0;
802 }
803
804 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
805                                   u32 firmware_revision)
806 {
807         int i;
808         unsigned w = sbp2_param_workarounds;
809
810         if (w)
811                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
812                           "if you need the workarounds parameter for %s\n",
813                           tgt->unit->device.bus_id);
814
815         if (w & SBP2_WORKAROUND_OVERRIDE)
816                 goto out;
817
818         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
819
820                 if (sbp2_workarounds_table[i].firmware_revision !=
821                     (firmware_revision & 0xffffff00))
822                         continue;
823
824                 if (sbp2_workarounds_table[i].model != model &&
825                     sbp2_workarounds_table[i].model != ~0)
826                         continue;
827
828                 w |= sbp2_workarounds_table[i].workarounds;
829                 break;
830         }
831  out:
832         if (w)
833                 fw_notify("Workarounds for %s: 0x%x "
834                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
835                           tgt->unit->device.bus_id,
836                           w, firmware_revision, model);
837         tgt->workarounds = w;
838 }
839
840 static struct scsi_host_template scsi_driver_template;
841
842 static int sbp2_probe(struct device *dev)
843 {
844         struct fw_unit *unit = fw_unit(dev);
845         struct fw_device *device = fw_device(unit->device.parent);
846         struct sbp2_target *tgt;
847         struct sbp2_logical_unit *lu;
848         struct Scsi_Host *shost;
849         u32 model, firmware_revision;
850
851         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
852         if (shost == NULL)
853                 return -ENOMEM;
854
855         tgt = (struct sbp2_target *)shost->hostdata;
856         unit->device.driver_data = tgt;
857         tgt->unit = unit;
858         kref_init(&tgt->kref);
859         INIT_LIST_HEAD(&tgt->lu_list);
860
861         if (fw_device_enable_phys_dma(device) < 0)
862                 goto fail_shost_put;
863
864         if (scsi_add_host(shost, &unit->device) < 0)
865                 goto fail_shost_put;
866
867         /* Initialize to values that won't match anything in our table. */
868         firmware_revision = 0xff000000;
869         model = 0xff000000;
870
871         /* implicit directory ID */
872         tgt->directory_id = ((unit->directory - device->config_rom) * 4
873                              + CSR_CONFIG_ROM) & 0xffffff;
874
875         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
876                                &firmware_revision) < 0)
877                 goto fail_tgt_put;
878
879         sbp2_init_workarounds(tgt, model, firmware_revision);
880
881         get_device(&unit->device);
882
883         /* Do the login in a workqueue so we can easily reschedule retries. */
884         list_for_each_entry(lu, &tgt->lu_list, link)
885                 sbp2_queue_work(lu, 0);
886         return 0;
887
888  fail_tgt_put:
889         sbp2_target_put(tgt);
890         return -ENOMEM;
891
892  fail_shost_put:
893         scsi_host_put(shost);
894         return -ENOMEM;
895 }
896
897 static int sbp2_remove(struct device *dev)
898 {
899         struct fw_unit *unit = fw_unit(dev);
900         struct sbp2_target *tgt = unit->device.driver_data;
901
902         sbp2_target_put(tgt);
903         return 0;
904 }
905
906 static void sbp2_reconnect(struct work_struct *work)
907 {
908         struct sbp2_logical_unit *lu =
909                 container_of(work, struct sbp2_logical_unit, work.work);
910         struct fw_unit *unit = lu->tgt->unit;
911         struct fw_device *device = fw_device(unit->device.parent);
912         int generation, node_id, local_node_id;
913
914         generation    = device->generation;
915         node_id       = device->node_id;
916         local_node_id = device->card->node_id;
917
918         if (sbp2_send_management_orb(lu, node_id, generation,
919                                      SBP2_RECONNECT_REQUEST,
920                                      lu->login_id, NULL) < 0) {
921                 if (lu->retries++ >= 5) {
922                         fw_error("failed to reconnect to %s\n",
923                                  unit->device.bus_id);
924                         /* Fall back and try to log in again. */
925                         lu->retries = 0;
926                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
927                 }
928                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
929                 goto out;
930         }
931
932         lu->generation        = generation;
933         lu->tgt->node_id      = node_id;
934         lu->tgt->address_high = local_node_id << 16;
935
936         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
937                   unit->device.bus_id, lu->lun, lu->retries);
938
939         sbp2_agent_reset(lu);
940         sbp2_cancel_orbs(lu);
941  out:
942         sbp2_target_put(lu->tgt);
943 }
944
945 static void sbp2_update(struct fw_unit *unit)
946 {
947         struct sbp2_target *tgt = unit->device.driver_data;
948         struct sbp2_logical_unit *lu;
949
950         fw_device_enable_phys_dma(fw_device(unit->device.parent));
951
952         /*
953          * Fw-core serializes sbp2_update() against sbp2_remove().
954          * Iteration over tgt->lu_list is therefore safe here.
955          */
956         list_for_each_entry(lu, &tgt->lu_list, link) {
957                 lu->retries = 0;
958                 sbp2_queue_work(lu, 0);
959         }
960 }
961
962 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
963 #define SBP2_SW_VERSION_ENTRY   0x00010483
964
965 static const struct fw_device_id sbp2_id_table[] = {
966         {
967                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
968                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
969                 .version      = SBP2_SW_VERSION_ENTRY,
970         },
971         { }
972 };
973
974 static struct fw_driver sbp2_driver = {
975         .driver   = {
976                 .owner  = THIS_MODULE,
977                 .name   = sbp2_driver_name,
978                 .bus    = &fw_bus_type,
979                 .probe  = sbp2_probe,
980                 .remove = sbp2_remove,
981         },
982         .update   = sbp2_update,
983         .id_table = sbp2_id_table,
984 };
985
986 static unsigned int
987 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
988 {
989         int sam_status;
990
991         sense_data[0] = 0x70;
992         sense_data[1] = 0x0;
993         sense_data[2] = sbp2_status[1];
994         sense_data[3] = sbp2_status[4];
995         sense_data[4] = sbp2_status[5];
996         sense_data[5] = sbp2_status[6];
997         sense_data[6] = sbp2_status[7];
998         sense_data[7] = 10;
999         sense_data[8] = sbp2_status[8];
1000         sense_data[9] = sbp2_status[9];
1001         sense_data[10] = sbp2_status[10];
1002         sense_data[11] = sbp2_status[11];
1003         sense_data[12] = sbp2_status[2];
1004         sense_data[13] = sbp2_status[3];
1005         sense_data[14] = sbp2_status[12];
1006         sense_data[15] = sbp2_status[13];
1007
1008         sam_status = sbp2_status[0] & 0x3f;
1009
1010         switch (sam_status) {
1011         case SAM_STAT_GOOD:
1012         case SAM_STAT_CHECK_CONDITION:
1013         case SAM_STAT_CONDITION_MET:
1014         case SAM_STAT_BUSY:
1015         case SAM_STAT_RESERVATION_CONFLICT:
1016         case SAM_STAT_COMMAND_TERMINATED:
1017                 return DID_OK << 16 | sam_status;
1018
1019         default:
1020                 return DID_ERROR << 16;
1021         }
1022 }
1023
1024 static void
1025 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1026 {
1027         struct sbp2_command_orb *orb =
1028                 container_of(base_orb, struct sbp2_command_orb, base);
1029         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1030         int result;
1031
1032         if (status != NULL) {
1033                 if (STATUS_GET_DEAD(*status))
1034                         sbp2_agent_reset(orb->lu);
1035
1036                 switch (STATUS_GET_RESPONSE(*status)) {
1037                 case SBP2_STATUS_REQUEST_COMPLETE:
1038                         result = DID_OK << 16;
1039                         break;
1040                 case SBP2_STATUS_TRANSPORT_FAILURE:
1041                         result = DID_BUS_BUSY << 16;
1042                         break;
1043                 case SBP2_STATUS_ILLEGAL_REQUEST:
1044                 case SBP2_STATUS_VENDOR_DEPENDENT:
1045                 default:
1046                         result = DID_ERROR << 16;
1047                         break;
1048                 }
1049
1050                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1051                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1052                                                            orb->cmd->sense_buffer);
1053         } else {
1054                 /*
1055                  * If the orb completes with status == NULL, something
1056                  * went wrong, typically a bus reset happened mid-orb
1057                  * or when sending the write (less likely).
1058                  */
1059                 result = DID_BUS_BUSY << 16;
1060         }
1061
1062         dma_unmap_single(device->card->device, orb->base.request_bus,
1063                          sizeof(orb->request), DMA_TO_DEVICE);
1064
1065         if (scsi_sg_count(orb->cmd) > 0)
1066                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1067                              scsi_sg_count(orb->cmd),
1068                              orb->cmd->sc_data_direction);
1069
1070         if (orb->page_table_bus != 0)
1071                 dma_unmap_single(device->card->device, orb->page_table_bus,
1072                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1073
1074         orb->cmd->result = result;
1075         orb->done(orb->cmd);
1076 }
1077
1078 static int
1079 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1080                      struct sbp2_logical_unit *lu)
1081 {
1082         struct scatterlist *sg;
1083         int sg_len, l, i, j, count;
1084         dma_addr_t sg_addr;
1085
1086         sg = scsi_sglist(orb->cmd);
1087         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1088                            orb->cmd->sc_data_direction);
1089         if (count == 0)
1090                 goto fail;
1091
1092         /*
1093          * Handle the special case where there is only one element in
1094          * the scatter list by converting it to an immediate block
1095          * request. This is also a workaround for broken devices such
1096          * as the second generation iPod which doesn't support page
1097          * tables.
1098          */
1099         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1100                 orb->request.data_descriptor.high = lu->tgt->address_high;
1101                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1102                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1103                 return 0;
1104         }
1105
1106         /*
1107          * Convert the scatterlist to an sbp2 page table.  If any
1108          * scatterlist entries are too big for sbp2, we split them as we
1109          * go.  Even if we ask the block I/O layer to not give us sg
1110          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1111          * during DMA mapping, and Linux currently doesn't prevent this.
1112          */
1113         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1114                 sg_len = sg_dma_len(sg);
1115                 sg_addr = sg_dma_address(sg);
1116                 while (sg_len) {
1117                         /* FIXME: This won't get us out of the pinch. */
1118                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1119                                 fw_error("page table overflow\n");
1120                                 goto fail_page_table;
1121                         }
1122                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1123                         orb->page_table[j].low = sg_addr;
1124                         orb->page_table[j].high = (l << 16);
1125                         sg_addr += l;
1126                         sg_len -= l;
1127                         j++;
1128                 }
1129         }
1130
1131         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1132                           sizeof(orb->page_table[0]) * j);
1133         orb->page_table_bus =
1134                 dma_map_single(device->card->device, orb->page_table,
1135                                sizeof(orb->page_table), DMA_TO_DEVICE);
1136         if (dma_mapping_error(orb->page_table_bus))
1137                 goto fail_page_table;
1138
1139         /*
1140          * The data_descriptor pointer is the one case where we need
1141          * to fill in the node ID part of the address.  All other
1142          * pointers assume that the data referenced reside on the
1143          * initiator (i.e. us), but data_descriptor can refer to data
1144          * on other nodes so we need to put our ID in descriptor.high.
1145          */
1146         orb->request.data_descriptor.high = lu->tgt->address_high;
1147         orb->request.data_descriptor.low  = orb->page_table_bus;
1148         orb->request.misc |=
1149                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1150                 COMMAND_ORB_DATA_SIZE(j);
1151
1152         return 0;
1153
1154  fail_page_table:
1155         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1156                      orb->cmd->sc_data_direction);
1157  fail:
1158         return -ENOMEM;
1159 }
1160
1161 /* SCSI stack integration */
1162
1163 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1164 {
1165         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1166         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1167         struct sbp2_command_orb *orb;
1168         unsigned max_payload;
1169         int retval = SCSI_MLQUEUE_HOST_BUSY;
1170
1171         /*
1172          * Bidirectional commands are not yet implemented, and unknown
1173          * transfer direction not handled.
1174          */
1175         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1176                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1177                 cmd->result = DID_ERROR << 16;
1178                 done(cmd);
1179                 return 0;
1180         }
1181
1182         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1183         if (orb == NULL) {
1184                 fw_notify("failed to alloc orb\n");
1185                 return SCSI_MLQUEUE_HOST_BUSY;
1186         }
1187
1188         /* Initialize rcode to something not RCODE_COMPLETE. */
1189         orb->base.rcode = -1;
1190         kref_init(&orb->base.kref);
1191
1192         orb->lu   = lu;
1193         orb->done = done;
1194         orb->cmd  = cmd;
1195
1196         orb->request.next.high   = SBP2_ORB_NULL;
1197         orb->request.next.low    = 0x0;
1198         /*
1199          * At speed 100 we can do 512 bytes per packet, at speed 200,
1200          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1201          * specifies the max payload size as 2 ^ (max_payload + 2), so
1202          * if we set this to max_speed + 7, we get the right value.
1203          */
1204         max_payload = min(device->max_speed + 7,
1205                           device->card->max_receive - 1);
1206         orb->request.misc =
1207                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1208                 COMMAND_ORB_SPEED(device->max_speed) |
1209                 COMMAND_ORB_NOTIFY;
1210
1211         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1212                 orb->request.misc |=
1213                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1214         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1215                 orb->request.misc |=
1216                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1217
1218         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1219                 goto out;
1220
1221         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1222
1223         memset(orb->request.command_block,
1224                0, sizeof(orb->request.command_block));
1225         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1226
1227         orb->base.callback = complete_command_orb;
1228         orb->base.request_bus =
1229                 dma_map_single(device->card->device, &orb->request,
1230                                sizeof(orb->request), DMA_TO_DEVICE);
1231         if (dma_mapping_error(orb->base.request_bus))
1232                 goto out;
1233
1234         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1235                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1236         retval = 0;
1237  out:
1238         kref_put(&orb->base.kref, free_orb);
1239         return retval;
1240 }
1241
1242 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1243 {
1244         struct sbp2_logical_unit *lu = sdev->hostdata;
1245
1246         sdev->allow_restart = 1;
1247
1248         /*
1249          * Update the dma alignment (minimum alignment requirements for
1250          * start and end of DMA transfers) to be a sector
1251          */
1252         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1253
1254         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1255                 sdev->inquiry_len = 36;
1256
1257         return 0;
1258 }
1259
1260 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1261 {
1262         struct sbp2_logical_unit *lu = sdev->hostdata;
1263
1264         sdev->use_10_for_rw = 1;
1265
1266         if (sdev->type == TYPE_ROM)
1267                 sdev->use_10_for_ms = 1;
1268
1269         if (sdev->type == TYPE_DISK &&
1270             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1271                 sdev->skip_ms_page_8 = 1;
1272
1273         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1274                 sdev->fix_capacity = 1;
1275
1276         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1277                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1278
1279         return 0;
1280 }
1281
1282 /*
1283  * Called by scsi stack when something has really gone wrong.  Usually
1284  * called when a command has timed-out for some reason.
1285  */
1286 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1287 {
1288         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1289
1290         fw_notify("sbp2_scsi_abort\n");
1291         sbp2_agent_reset(lu);
1292         sbp2_cancel_orbs(lu);
1293
1294         return SUCCESS;
1295 }
1296
1297 /*
1298  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1299  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1300  *
1301  * This is the concatenation of target port identifier and logical unit
1302  * identifier as per SAM-2...SAM-4 annex A.
1303  */
1304 static ssize_t
1305 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1306                             char *buf)
1307 {
1308         struct scsi_device *sdev = to_scsi_device(dev);
1309         struct sbp2_logical_unit *lu;
1310         struct fw_device *device;
1311
1312         if (!sdev)
1313                 return 0;
1314
1315         lu = sdev->hostdata;
1316         device = fw_device(lu->tgt->unit->device.parent);
1317
1318         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1319                         device->config_rom[3], device->config_rom[4],
1320                         lu->tgt->directory_id, lu->lun);
1321 }
1322
1323 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1324
1325 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1326         &dev_attr_ieee1394_id,
1327         NULL
1328 };
1329
1330 static struct scsi_host_template scsi_driver_template = {
1331         .module                 = THIS_MODULE,
1332         .name                   = "SBP-2 IEEE-1394",
1333         .proc_name              = sbp2_driver_name,
1334         .queuecommand           = sbp2_scsi_queuecommand,
1335         .slave_alloc            = sbp2_scsi_slave_alloc,
1336         .slave_configure        = sbp2_scsi_slave_configure,
1337         .eh_abort_handler       = sbp2_scsi_abort,
1338         .this_id                = -1,
1339         .sg_tablesize           = SG_ALL,
1340         .use_clustering         = ENABLE_CLUSTERING,
1341         .cmd_per_lun            = 1,
1342         .can_queue              = 1,
1343         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1344 };
1345
1346 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1347 MODULE_DESCRIPTION("SCSI over IEEE1394");
1348 MODULE_LICENSE("GPL");
1349 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1350
1351 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1352 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1353 MODULE_ALIAS("sbp2");
1354 #endif
1355
1356 static int __init sbp2_init(void)
1357 {
1358         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1359         if (!sbp2_wq)
1360                 return -ENOMEM;
1361
1362         return driver_register(&sbp2_driver.driver);
1363 }
1364
1365 static void __exit sbp2_cleanup(void)
1366 {
1367         driver_unregister(&sbp2_driver.driver);
1368         destroy_workqueue(sbp2_wq);
1369 }
1370
1371 module_init(sbp2_init);
1372 module_exit(sbp2_cleanup);