firewire: Loop requests to the host controller back into the stack.
[safe/jmp/linux-2.6] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48
49 struct descriptor {
50         __le16 req_count;
51         __le16 control;
52         __le32 data_address;
53         __le32 branch_address;
54         __le16 res_count;
55         __le16 transfer_status;
56 } __attribute__((aligned(16)));
57
58 struct ar_context {
59         struct fw_ohci *ohci;
60         struct descriptor descriptor;
61         __le32 buffer[512];
62         dma_addr_t descriptor_bus;
63         dma_addr_t buffer_bus;
64
65         u32 command_ptr;
66         u32 control_set;
67         u32 control_clear;
68
69         struct tasklet_struct tasklet;
70 };
71
72 struct at_context {
73         struct fw_ohci *ohci;
74         dma_addr_t descriptor_bus;
75         dma_addr_t buffer_bus;
76
77         struct list_head list;
78
79         struct {
80                 struct descriptor more;
81                 __le32 header[4];
82                 struct descriptor last;
83         } d;
84
85         u32 command_ptr;
86         u32 control_set;
87         u32 control_clear;
88
89         struct tasklet_struct tasklet;
90 };
91
92 #define it_header_sy(v)          ((v) <<  0)
93 #define it_header_tcode(v)       ((v) <<  4)
94 #define it_header_channel(v)     ((v) <<  8)
95 #define it_header_tag(v)         ((v) << 14)
96 #define it_header_speed(v)       ((v) << 16)
97 #define it_header_data_length(v) ((v) << 16)
98
99 struct iso_context {
100         struct fw_iso_context base;
101         struct tasklet_struct tasklet;
102         u32 control_set;
103         u32 control_clear;
104         u32 command_ptr;
105         u32 context_match;
106
107         struct descriptor *buffer;
108         dma_addr_t buffer_bus;
109         struct descriptor *head_descriptor;
110         struct descriptor *tail_descriptor;
111         struct descriptor *tail_descriptor_last;
112         struct descriptor *prev_descriptor;
113 };
114
115 #define CONFIG_ROM_SIZE 1024
116
117 struct fw_ohci {
118         struct fw_card card;
119
120         __iomem char *registers;
121         dma_addr_t self_id_bus;
122         __le32 *self_id_cpu;
123         struct tasklet_struct bus_reset_tasklet;
124         int node_id;
125         int generation;
126         int request_generation;
127
128         /* Spinlock for accessing fw_ohci data.  Never call out of
129          * this driver with this lock held. */
130         spinlock_t lock;
131         u32 self_id_buffer[512];
132
133         /* Config rom buffers */
134         __be32 *config_rom;
135         dma_addr_t config_rom_bus;
136         __be32 *next_config_rom;
137         dma_addr_t next_config_rom_bus;
138         u32 next_header;
139
140         struct ar_context ar_request_ctx;
141         struct ar_context ar_response_ctx;
142         struct at_context at_request_ctx;
143         struct at_context at_response_ctx;
144
145         u32 it_context_mask;
146         struct iso_context *it_context_list;
147         u32 ir_context_mask;
148         struct iso_context *ir_context_list;
149 };
150
151 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
152 {
153         return container_of(card, struct fw_ohci, card);
154 }
155
156 #define CONTEXT_CYCLE_MATCH_ENABLE      0x80000000
157
158 #define CONTEXT_RUN     0x8000
159 #define CONTEXT_WAKE    0x1000
160 #define CONTEXT_DEAD    0x0800
161 #define CONTEXT_ACTIVE  0x0400
162
163 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
164 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
165 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
166
167 #define FW_OHCI_MAJOR                   240
168 #define OHCI1394_REGISTER_SIZE          0x800
169 #define OHCI_LOOP_COUNT                 500
170 #define OHCI1394_PCI_HCI_Control        0x40
171 #define SELF_ID_BUF_SIZE                0x800
172
173 static char ohci_driver_name[] = KBUILD_MODNAME;
174
175 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
176 {
177         writel(data, ohci->registers + offset);
178 }
179
180 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
181 {
182         return readl(ohci->registers + offset);
183 }
184
185 static inline void flush_writes(const struct fw_ohci *ohci)
186 {
187         /* Do a dummy read to flush writes. */
188         reg_read(ohci, OHCI1394_Version);
189 }
190
191 static int
192 ohci_update_phy_reg(struct fw_card *card, int addr,
193                     int clear_bits, int set_bits)
194 {
195         struct fw_ohci *ohci = fw_ohci(card);
196         u32 val, old;
197
198         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
199         msleep(2);
200         val = reg_read(ohci, OHCI1394_PhyControl);
201         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
202                 fw_error("failed to set phy reg bits.\n");
203                 return -EBUSY;
204         }
205
206         old = OHCI1394_PhyControl_ReadData(val);
207         old = (old & ~clear_bits) | set_bits;
208         reg_write(ohci, OHCI1394_PhyControl,
209                   OHCI1394_PhyControl_Write(addr, old));
210
211         return 0;
212 }
213
214 static void ar_context_run(struct ar_context *ctx)
215 {
216         reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
217         reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
218         flush_writes(ctx->ohci);
219 }
220
221 static void ar_context_tasklet(unsigned long data)
222 {
223         struct ar_context *ctx = (struct ar_context *)data;
224         struct fw_ohci *ohci = ctx->ohci;
225         struct fw_packet p;
226         u32 status, length, tcode;
227
228         /* FIXME: What to do about evt_* errors? */
229         length    = le16_to_cpu(ctx->descriptor.req_count) -
230                 le16_to_cpu(ctx->descriptor.res_count) - 4;
231         status    = le32_to_cpu(ctx->buffer[length / 4]);
232
233         p.ack        = ((status >> 16) & 0x1f) - 16;
234         p.speed      = (status >> 21) & 0x7;
235         p.timestamp  = status & 0xffff;
236         p.generation = ohci->request_generation;
237
238         p.header[0] = le32_to_cpu(ctx->buffer[0]);
239         p.header[1] = le32_to_cpu(ctx->buffer[1]);
240         p.header[2] = le32_to_cpu(ctx->buffer[2]);
241
242         tcode = (p.header[0] >> 4) & 0x0f;
243         switch (tcode) {
244         case TCODE_WRITE_QUADLET_REQUEST:
245         case TCODE_READ_QUADLET_RESPONSE:
246                 p.header[3] = ctx->buffer[3];
247                 p.header_length = 16;
248                 break;
249
250         case TCODE_WRITE_BLOCK_REQUEST:
251         case TCODE_READ_BLOCK_REQUEST :
252         case TCODE_READ_BLOCK_RESPONSE:
253         case TCODE_LOCK_REQUEST:
254         case TCODE_LOCK_RESPONSE:
255                 p.header[3] = le32_to_cpu(ctx->buffer[3]);
256                 p.header_length = 16;
257                 break;
258
259         case TCODE_WRITE_RESPONSE:
260         case TCODE_READ_QUADLET_REQUEST:
261                 p.header_length = 12;
262                 break;
263         }
264
265         p.payload = (void *) ctx->buffer + p.header_length;
266         p.payload_length = length - p.header_length;
267
268         /* The OHCI bus reset handler synthesizes a phy packet with
269          * the new generation number when a bus reset happens (see
270          * section 8.4.2.3).  This helps us determine when a request
271          * was received and make sure we send the response in the same
272          * generation.  We only need this for requests; for responses
273          * we use the unique tlabel for finding the matching
274          * request. */
275
276         if (p.ack + 16 == 0x09)
277                 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
278         else if (ctx == &ohci->ar_request_ctx)
279                 fw_core_handle_request(&ohci->card, &p);
280         else
281                 fw_core_handle_response(&ohci->card, &p);
282
283         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
284         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
285         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
286
287         dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
288                                    sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
289
290         /* FIXME: We stop and restart the ar context here, what if we
291          * stop while a receive is in progress? Maybe we could just
292          * loop the context back to itself and use it in buffer fill
293          * mode as intended... */
294
295         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
296         ar_context_run(ctx);
297 }
298
299 static int
300 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
301 {
302         ctx->descriptor_bus =
303                 dma_map_single(ohci->card.device, &ctx->descriptor,
304                                sizeof ctx->descriptor, DMA_TO_DEVICE);
305         if (ctx->descriptor_bus == 0)
306                 return -ENOMEM;
307
308         if (ctx->descriptor_bus & 0xf)
309                 fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
310                           (unsigned long)ctx->descriptor_bus);
311
312         ctx->buffer_bus =
313                 dma_map_single(ohci->card.device, ctx->buffer,
314                                sizeof ctx->buffer, DMA_FROM_DEVICE);
315
316         if (ctx->buffer_bus == 0) {
317                 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
318                                  sizeof ctx->descriptor, DMA_TO_DEVICE);
319                 return -ENOMEM;
320         }
321
322         memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
323         ctx->descriptor.control      = cpu_to_le16(descriptor_input_more |
324                                                    descriptor_status |
325                                                    descriptor_branch_always);
326         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
327         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
328         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
329
330         ctx->control_set   = control_set;
331         ctx->control_clear = control_set + 4;
332         ctx->command_ptr   = control_set + 12;
333         ctx->ohci          = ohci;
334
335         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
336
337         ar_context_run(ctx);
338
339         return 0;
340 }
341
342 static void
343 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
344 {
345         struct fw_packet *p, *next;
346
347         list_for_each_entry_safe(p, next, list, link)
348                 p->callback(p, &ohci->card, p->ack);
349 }
350
351 static void
352 complete_transmission(struct fw_packet *packet,
353                       int ack, struct list_head *list)
354 {
355         list_move_tail(&packet->link, list);
356         packet->ack = ack;
357 }
358
359 /* This function prepares the first packet in the context queue for
360  * transmission.  Must always be called with the ochi->lock held to
361  * ensure proper generation handling and locking around packet queue
362  * manipulation. */
363 static void
364 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
365 {
366         struct fw_packet *packet;
367         struct fw_ohci *ohci = ctx->ohci;
368         int z, tcode;
369
370         packet = fw_packet(ctx->list.next);
371
372         memset(&ctx->d, 0, sizeof ctx->d);
373         if (packet->payload_length > 0) {
374                 packet->payload_bus = dma_map_single(ohci->card.device,
375                                                      packet->payload,
376                                                      packet->payload_length,
377                                                      DMA_TO_DEVICE);
378                 if (packet->payload_bus == 0) {
379                         complete_transmission(packet, -ENOMEM, list);
380                         return;
381                 }
382
383                 ctx->d.more.control      =
384                         cpu_to_le16(descriptor_output_more |
385                                     descriptor_key_immediate);
386                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
387                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
388                 ctx->d.last.control      =
389                         cpu_to_le16(descriptor_output_last |
390                                     descriptor_irq_always |
391                                     descriptor_branch_always);
392                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
393                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
394                 z = 3;
395         } else {
396                 ctx->d.more.control   =
397                         cpu_to_le16(descriptor_output_last |
398                                     descriptor_key_immediate |
399                                     descriptor_irq_always |
400                                     descriptor_branch_always);
401                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
402                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
403                 z = 2;
404         }
405
406         /* The DMA format for asyncronous link packets is different
407          * from the IEEE1394 layout, so shift the fields around
408          * accordingly.  If header_length is 8, it's a PHY packet, to
409          * which we need to prepend an extra quadlet. */
410         if (packet->header_length > 8) {
411                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
412                                                (packet->speed << 16));
413                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
414                                                (packet->header[0] & 0xffff0000));
415                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
416
417                 tcode = (packet->header[0] >> 4) & 0x0f;
418                 if (TCODE_IS_BLOCK_PACKET(tcode))
419                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
420                 else
421                         ctx->d.header[3] = packet->header[3];
422         } else {
423                 ctx->d.header[0] =
424                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
425                                     (packet->speed << 16));
426                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
427                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
428                 ctx->d.more.req_count = cpu_to_le16(12);
429         }
430
431         /* FIXME: Document how the locking works. */
432         if (ohci->generation == packet->generation) {
433                 reg_write(ctx->ohci, ctx->command_ptr,
434                           ctx->descriptor_bus | z);
435                 reg_write(ctx->ohci, ctx->control_set,
436                           CONTEXT_RUN | CONTEXT_WAKE);
437         } else {
438                 /* We dont return error codes from this function; all
439                  * transmission errors are reported through the
440                  * callback. */
441                 complete_transmission(packet, -ESTALE, list);
442         }
443 }
444
445 static void at_context_stop(struct at_context *ctx)
446 {
447         u32 reg;
448
449         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
450
451         reg = reg_read(ctx->ohci, ctx->control_set);
452         if (reg & CONTEXT_ACTIVE)
453                 fw_notify("Tried to stop context, but it is still active "
454                           "(0x%08x).\n", reg);
455 }
456
457 static void at_context_tasklet(unsigned long data)
458 {
459         struct at_context *ctx = (struct at_context *)data;
460         struct fw_ohci *ohci = ctx->ohci;
461         struct fw_packet *packet;
462         LIST_HEAD(list);
463         unsigned long flags;
464         int evt;
465
466         spin_lock_irqsave(&ohci->lock, flags);
467
468         packet = fw_packet(ctx->list.next);
469
470         at_context_stop(ctx);
471
472         if (packet->payload_length > 0) {
473                 dma_unmap_single(ohci->card.device, packet->payload_bus,
474                                  packet->payload_length, DMA_TO_DEVICE);
475                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
476                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
477         }
478         else {
479                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
480                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
481         }
482
483         if (evt < 16) {
484                 switch (evt) {
485                 case OHCI1394_evt_timeout:
486                         /* Async response transmit timed out. */
487                         complete_transmission(packet, -ETIMEDOUT, &list);
488                         break;
489
490                 case OHCI1394_evt_flushed:
491                         /* The packet was flushed should give same
492                          * error as when we try to use a stale
493                          * generation count. */
494                         complete_transmission(packet, -ESTALE, &list);
495                         break;
496
497                 case OHCI1394_evt_missing_ack:
498                         /* This would be a higher level software
499                          * error, it is using a valid (current)
500                          * generation count, but the node is not on
501                          * the bus. */
502                         complete_transmission(packet, -ENODEV, &list);
503                         break;
504
505                 default:
506                         complete_transmission(packet, -EIO, &list);
507                         break;
508                 }
509         } else
510                 complete_transmission(packet, evt - 16, &list);
511
512         /* If more packets are queued, set up the next one. */
513         if (!list_empty(&ctx->list))
514                 at_context_setup_packet(ctx, &list);
515
516         spin_unlock_irqrestore(&ohci->lock, flags);
517
518         do_packet_callbacks(ohci, &list);
519 }
520
521 static int
522 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
523 {
524         INIT_LIST_HEAD(&ctx->list);
525
526         ctx->descriptor_bus =
527                 dma_map_single(ohci->card.device, &ctx->d,
528                                sizeof ctx->d, DMA_TO_DEVICE);
529         if (ctx->descriptor_bus == 0)
530                 return -ENOMEM;
531
532         ctx->control_set   = control_set;
533         ctx->control_clear = control_set + 4;
534         ctx->command_ptr   = control_set + 12;
535         ctx->ohci          = ohci;
536
537         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
538
539         return 0;
540 }
541
542 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
543
544 static void
545 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
546 {
547         LIST_HEAD(list);
548         unsigned long flags;
549         int local;
550
551         spin_lock_irqsave(&ctx->ohci->lock, flags);
552
553         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
554             ctx->ohci->generation == packet->generation) {
555                 local = 1;
556         } else {
557                 list_add_tail(&packet->link, &ctx->list);
558                 if (ctx->list.next == &packet->link)
559                         at_context_setup_packet(ctx, &list);
560                 local = 0;
561         }
562
563         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
564
565         do_packet_callbacks(ctx->ohci, &list);
566
567         if (local) {
568                 packet->ack = ACK_PENDING;
569                 packet->callback(packet, &ctx->ohci->card, packet->ack);
570                 if (ctx == &ctx->ohci->at_request_ctx)
571                         fw_core_handle_request(&ctx->ohci->card, packet);
572                 else
573                         fw_core_handle_response(&ctx->ohci->card, packet);
574         }
575 }
576
577 static void bus_reset_tasklet(unsigned long data)
578 {
579         struct fw_ohci *ohci = (struct fw_ohci *)data;
580         int self_id_count, i, j, reg;
581         int generation, new_generation;
582         unsigned long flags;
583
584         reg = reg_read(ohci, OHCI1394_NodeID);
585         if (!(reg & OHCI1394_NodeID_idValid)) {
586                 fw_error("node ID not valid, new bus reset in progress\n");
587                 return;
588         }
589         ohci->node_id = reg & 0xffff;
590
591         /* The count in the SelfIDCount register is the number of
592          * bytes in the self ID receive buffer.  Since we also receive
593          * the inverted quadlets and a header quadlet, we shift one
594          * bit extra to get the actual number of self IDs. */
595
596         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
597         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
598
599         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
600                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
601                         fw_error("inconsistent self IDs\n");
602                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
603         }
604
605         /* Check the consistency of the self IDs we just read.  The
606          * problem we face is that a new bus reset can start while we
607          * read out the self IDs from the DMA buffer. If this happens,
608          * the DMA buffer will be overwritten with new self IDs and we
609          * will read out inconsistent data.  The OHCI specification
610          * (section 11.2) recommends a technique similar to
611          * linux/seqlock.h, where we remember the generation of the
612          * self IDs in the buffer before reading them out and compare
613          * it to the current generation after reading them out.  If
614          * the two generations match we know we have a consistent set
615          * of self IDs. */
616
617         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
618         if (new_generation != generation) {
619                 fw_notify("recursive bus reset detected, "
620                           "discarding self ids\n");
621                 return;
622         }
623
624         /* FIXME: Document how the locking works. */
625         spin_lock_irqsave(&ohci->lock, flags);
626
627         ohci->generation = generation;
628         at_context_stop(&ohci->at_request_ctx);
629         at_context_stop(&ohci->at_response_ctx);
630         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
631
632         /* This next bit is unrelated to the AT context stuff but we
633          * have to do it under the spinlock also.  If a new config rom
634          * was set up before this reset, the old one is now no longer
635          * in use and we can free it. Update the config rom pointers
636          * to point to the current config rom and clear the
637          * next_config_rom pointer so a new udpate can take place. */
638
639         if (ohci->next_config_rom != NULL) {
640                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
641                                   ohci->config_rom, ohci->config_rom_bus);
642                 ohci->config_rom      = ohci->next_config_rom;
643                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
644                 ohci->next_config_rom = NULL;
645
646                 /* Restore config_rom image and manually update
647                  * config_rom registers.  Writing the header quadlet
648                  * will indicate that the config rom is ready, so we
649                  * do that last. */
650                 reg_write(ohci, OHCI1394_BusOptions,
651                           be32_to_cpu(ohci->config_rom[2]));
652                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
653                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
654         }
655
656         spin_unlock_irqrestore(&ohci->lock, flags);
657
658         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
659                                  self_id_count, ohci->self_id_buffer);
660 }
661
662 static irqreturn_t irq_handler(int irq, void *data)
663 {
664         struct fw_ohci *ohci = data;
665         u32 event, iso_event;
666         int i;
667
668         event = reg_read(ohci, OHCI1394_IntEventClear);
669
670         if (!event)
671                 return IRQ_NONE;
672
673         reg_write(ohci, OHCI1394_IntEventClear, event);
674
675         if (event & OHCI1394_selfIDComplete)
676                 tasklet_schedule(&ohci->bus_reset_tasklet);
677
678         if (event & OHCI1394_RQPkt)
679                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
680
681         if (event & OHCI1394_RSPkt)
682                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
683
684         if (event & OHCI1394_reqTxComplete)
685                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
686
687         if (event & OHCI1394_respTxComplete)
688                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
689
690         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
691         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
692
693         while (iso_event) {
694                 i = ffs(iso_event) - 1;
695                 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
696                 iso_event &= ~(1 << i);
697         }
698
699         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
700         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
701
702         while (iso_event) {
703                 i = ffs(iso_event) - 1;
704                 tasklet_schedule(&ohci->it_context_list[i].tasklet);
705                 iso_event &= ~(1 << i);
706         }
707
708         return IRQ_HANDLED;
709 }
710
711 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
712 {
713         struct fw_ohci *ohci = fw_ohci(card);
714         struct pci_dev *dev = to_pci_dev(card->device);
715
716         /* When the link is not yet enabled, the atomic config rom
717          * update mechanism described below in ohci_set_config_rom()
718          * is not active.  We have to update ConfigRomHeader and
719          * BusOptions manually, and the write to ConfigROMmap takes
720          * effect immediately.  We tie this to the enabling of the
721          * link, so we have a valid config rom before enabling - the
722          * OHCI requires that ConfigROMhdr and BusOptions have valid
723          * values before enabling.
724          *
725          * However, when the ConfigROMmap is written, some controllers
726          * always read back quadlets 0 and 2 from the config rom to
727          * the ConfigRomHeader and BusOptions registers on bus reset.
728          * They shouldn't do that in this initial case where the link
729          * isn't enabled.  This means we have to use the same
730          * workaround here, setting the bus header to 0 and then write
731          * the right values in the bus reset tasklet.
732          */
733
734         ohci->next_config_rom =
735                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
736                                    &ohci->next_config_rom_bus, GFP_KERNEL);
737         if (ohci->next_config_rom == NULL)
738                 return -ENOMEM;
739
740         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
741         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
742
743         ohci->next_header = config_rom[0];
744         ohci->next_config_rom[0] = 0;
745         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
746         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
747         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
748
749         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
750
751         if (request_irq(dev->irq, irq_handler,
752                         SA_SHIRQ, ohci_driver_name, ohci)) {
753                 fw_error("Failed to allocate shared interrupt %d.\n",
754                          dev->irq);
755                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
756                                   ohci->config_rom, ohci->config_rom_bus);
757                 return -EIO;
758         }
759
760         reg_write(ohci, OHCI1394_HCControlSet,
761                   OHCI1394_HCControl_linkEnable |
762                   OHCI1394_HCControl_BIBimageValid);
763         flush_writes(ohci);
764
765         /* We are ready to go, initiate bus reset to finish the
766          * initialization. */
767
768         fw_core_initiate_bus_reset(&ohci->card, 1);
769
770         return 0;
771 }
772
773 static int
774 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
775 {
776         struct fw_ohci *ohci;
777         unsigned long flags;
778         int retval = 0;
779         __be32 *next_config_rom;
780         dma_addr_t next_config_rom_bus;
781
782         ohci = fw_ohci(card);
783
784         /* When the OHCI controller is enabled, the config rom update
785          * mechanism is a bit tricky, but easy enough to use.  See
786          * section 5.5.6 in the OHCI specification.
787          *
788          * The OHCI controller caches the new config rom address in a
789          * shadow register (ConfigROMmapNext) and needs a bus reset
790          * for the changes to take place.  When the bus reset is
791          * detected, the controller loads the new values for the
792          * ConfigRomHeader and BusOptions registers from the specified
793          * config rom and loads ConfigROMmap from the ConfigROMmapNext
794          * shadow register. All automatically and atomically.
795          *
796          * Now, there's a twist to this story.  The automatic load of
797          * ConfigRomHeader and BusOptions doesn't honor the
798          * noByteSwapData bit, so with a be32 config rom, the
799          * controller will load be32 values in to these registers
800          * during the atomic update, even on litte endian
801          * architectures.  The workaround we use is to put a 0 in the
802          * header quadlet; 0 is endian agnostic and means that the
803          * config rom isn't ready yet.  In the bus reset tasklet we
804          * then set up the real values for the two registers.
805          *
806          * We use ohci->lock to avoid racing with the code that sets
807          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
808          */
809
810         next_config_rom =
811                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
812                                    &next_config_rom_bus, GFP_KERNEL);
813         if (next_config_rom == NULL)
814                 return -ENOMEM;
815
816         spin_lock_irqsave(&ohci->lock, flags);
817
818         if (ohci->next_config_rom == NULL) {
819                 ohci->next_config_rom = next_config_rom;
820                 ohci->next_config_rom_bus = next_config_rom_bus;
821
822                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
823                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
824                                   length * 4);
825
826                 ohci->next_header = config_rom[0];
827                 ohci->next_config_rom[0] = 0;
828
829                 reg_write(ohci, OHCI1394_ConfigROMmap,
830                           ohci->next_config_rom_bus);
831         } else {
832                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
833                                   next_config_rom, next_config_rom_bus);
834                 retval = -EBUSY;
835         }
836
837         spin_unlock_irqrestore(&ohci->lock, flags);
838
839         /* Now initiate a bus reset to have the changes take
840          * effect. We clean up the old config rom memory and DMA
841          * mappings in the bus reset tasklet, since the OHCI
842          * controller could need to access it before the bus reset
843          * takes effect. */
844         if (retval == 0)
845                 fw_core_initiate_bus_reset(&ohci->card, 1);
846
847         return retval;
848 }
849
850 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
851 {
852         struct fw_ohci *ohci = fw_ohci(card);
853
854         at_context_transmit(&ohci->at_request_ctx, packet);
855 }
856
857 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
858 {
859         struct fw_ohci *ohci = fw_ohci(card);
860
861         at_context_transmit(&ohci->at_response_ctx, packet);
862 }
863
864 static int
865 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
866 {
867         struct fw_ohci *ohci = fw_ohci(card);
868         unsigned long flags;
869         int n, retval = 0;
870
871         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
872          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
873
874         spin_lock_irqsave(&ohci->lock, flags);
875
876         if (ohci->generation != generation) {
877                 retval = -ESTALE;
878                 goto out;
879         }
880
881         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
882          * enabled for _all_ nodes on remote buses. */
883
884         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
885         if (n < 32)
886                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
887         else
888                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
889
890         flush_writes(ohci);
891  out:
892         spin_unlock_irqrestore(&ohci->lock, flags);
893         return retval;
894 }
895
896 static void ir_context_tasklet(unsigned long data)
897 {
898         struct iso_context *ctx = (struct iso_context *)data;
899
900         (void)ctx;
901 }
902
903 #define ISO_BUFFER_SIZE (64 * 1024)
904
905 static void flush_iso_context(struct iso_context *ctx)
906 {
907         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
908         struct descriptor *d, *last;
909         u32 address;
910         int z;
911
912         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
913                                 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
914
915         d    = ctx->tail_descriptor;
916         last = ctx->tail_descriptor_last;
917
918         while (last->branch_address != 0 && last->transfer_status != 0) {
919                 address = le32_to_cpu(last->branch_address);
920                 z = address & 0xf;
921                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
922
923                 if (z == 2)
924                         last = d;
925                 else
926                         last = d + z - 1;
927
928                 if (le16_to_cpu(last->control) & descriptor_irq_always)
929                         ctx->base.callback(&ctx->base,
930                                            0, le16_to_cpu(last->res_count),
931                                            ctx->base.callback_data);
932         }
933
934         ctx->tail_descriptor      = d;
935         ctx->tail_descriptor_last = last;
936 }
937
938 static void it_context_tasklet(unsigned long data)
939 {
940         struct iso_context *ctx = (struct iso_context *)data;
941
942         flush_iso_context(ctx);
943 }
944
945 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
946                                                         int type)
947 {
948         struct fw_ohci *ohci = fw_ohci(card);
949         struct iso_context *ctx, *list;
950         void (*tasklet) (unsigned long data);
951         u32 *mask;
952         unsigned long flags;
953         int index;
954
955         if (type == FW_ISO_CONTEXT_TRANSMIT) {
956                 mask = &ohci->it_context_mask;
957                 list = ohci->it_context_list;
958                 tasklet = it_context_tasklet;
959         } else {
960                 mask = &ohci->ir_context_mask;
961                 list = ohci->ir_context_list;
962                 tasklet = ir_context_tasklet;
963         }
964
965         spin_lock_irqsave(&ohci->lock, flags);
966         index = ffs(*mask) - 1;
967         if (index >= 0)
968                 *mask &= ~(1 << index);
969         spin_unlock_irqrestore(&ohci->lock, flags);
970
971         if (index < 0)
972                 return ERR_PTR(-EBUSY);
973
974         ctx = &list[index];
975         memset(ctx, 0, sizeof *ctx);
976         tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
977
978         ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
979         if (ctx->buffer == NULL) {
980                 spin_lock_irqsave(&ohci->lock, flags);
981                 *mask |= 1 << index;
982                 spin_unlock_irqrestore(&ohci->lock, flags);
983                 return ERR_PTR(-ENOMEM);
984         }
985
986         ctx->buffer_bus =
987             dma_map_single(card->device, ctx->buffer,
988                            ISO_BUFFER_SIZE, DMA_TO_DEVICE);
989
990         ctx->head_descriptor      = ctx->buffer;
991         ctx->prev_descriptor      = ctx->buffer;
992         ctx->tail_descriptor      = ctx->buffer;
993         ctx->tail_descriptor_last = ctx->buffer;
994
995         /* We put a dummy descriptor in the buffer that has a NULL
996          * branch address and looks like it's been sent.  That way we
997          * have a descriptor to append DMA programs to.  Also, the
998          * ring buffer invariant is that it always has at least one
999          * element so that head == tail means buffer full. */
1000
1001         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
1002         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
1003         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
1004         ctx->head_descriptor++;
1005
1006         return &ctx->base;
1007 }
1008
1009 static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
1010 {
1011         struct iso_context *ctx = (struct iso_context *)base;
1012         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1013         u32 cycle_match = 0;
1014         int index;
1015
1016         index = ctx - ohci->it_context_list;
1017         if (cycle > 0)
1018                 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1019                         (cycle & 0x7fff) << 16;
1020
1021         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1022         reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
1023                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
1024         reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1025         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
1026                   CONTEXT_RUN | cycle_match);
1027         flush_writes(ohci);
1028
1029         return 0;
1030 }
1031
1032 static void ohci_free_iso_context(struct fw_iso_context *base)
1033 {
1034         struct fw_ohci *ohci = fw_ohci(base->card);
1035         struct iso_context *ctx = (struct iso_context *)base;
1036         unsigned long flags;
1037         int index;
1038
1039         flush_iso_context(ctx);
1040
1041         spin_lock_irqsave(&ohci->lock, flags);
1042
1043         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1044                 index = ctx - ohci->it_context_list;
1045                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1046                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1047                 ohci->it_context_mask |= 1 << index;
1048         } else {
1049                 index = ctx - ohci->ir_context_list;
1050                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1051                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1052                 ohci->ir_context_mask |= 1 << index;
1053         }
1054         flush_writes(ohci);
1055
1056         dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1057                          ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1058
1059         spin_unlock_irqrestore(&ohci->lock, flags);
1060 }
1061
1062 static int
1063 ohci_queue_iso(struct fw_iso_context *base,
1064                struct fw_iso_packet *packet, void *payload)
1065 {
1066         struct iso_context *ctx = (struct iso_context *)base;
1067         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1068         struct descriptor *d, *end, *last, *tail, *pd;
1069         struct fw_iso_packet *p;
1070         __le32 *header;
1071         dma_addr_t d_bus;
1072         u32 z, header_z, payload_z, irq;
1073         u32 payload_index, payload_end_index, next_page_index;
1074         int index, page, end_page, i, length, offset;
1075
1076         /* FIXME: Cycle lost behavior should be configurable: lose
1077          * packet, retransmit or terminate.. */
1078
1079         p = packet;
1080         payload_index = payload - ctx->base.buffer;
1081         d = ctx->head_descriptor;
1082         tail = ctx->tail_descriptor;
1083         end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1084
1085         if (p->skip)
1086                 z = 1;
1087         else
1088                 z = 2;
1089         if (p->header_length > 0)
1090                 z++;
1091
1092         /* Determine the first page the payload isn't contained in. */
1093         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1094         if (p->payload_length > 0)
1095                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1096         else
1097                 payload_z = 0;
1098
1099         z += payload_z;
1100
1101         /* Get header size in number of descriptors. */
1102         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1103
1104         if (d + z + header_z <= tail) {
1105                 goto has_space;
1106         } else if (d > tail && d + z + header_z <= end) {
1107                 goto has_space;
1108         } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1109                 d = ctx->buffer;
1110                 goto has_space;
1111         }
1112
1113         /* No space in buffer */
1114         return -1;
1115
1116  has_space:
1117         memset(d, 0, (z + header_z) * sizeof *d);
1118         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1119
1120         if (!p->skip) {
1121                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1122                 d[0].req_count = cpu_to_le16(8);
1123
1124                 header = (__le32 *) &d[1];
1125                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1126                                         it_header_tag(p->tag) |
1127                                         it_header_tcode(TCODE_STREAM_DATA) |
1128                                         it_header_channel(ctx->base.channel) |
1129                                         it_header_speed(ctx->base.speed));
1130                 header[1] =
1131                         cpu_to_le32(it_header_data_length(p->header_length +
1132                                                           p->payload_length));
1133         }
1134
1135         if (p->header_length > 0) {
1136                 d[2].req_count    = cpu_to_le16(p->header_length);
1137                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1138                 memcpy(&d[z], p->header, p->header_length);
1139         }
1140
1141         pd = d + z - payload_z;
1142         payload_end_index = payload_index + p->payload_length;
1143         for (i = 0; i < payload_z; i++) {
1144                 page               = payload_index >> PAGE_SHIFT;
1145                 offset             = payload_index & ~PAGE_MASK;
1146                 next_page_index    = (page + 1) << PAGE_SHIFT;
1147                 length             =
1148                         min(next_page_index, payload_end_index) - payload_index;
1149                 pd[i].req_count    = cpu_to_le16(length);
1150                 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1151
1152                 payload_index += length;
1153         }
1154
1155         if (z == 2)
1156                 last = d;
1157         else
1158                 last = d + z - 1;
1159
1160         if (p->interrupt)
1161                 irq = descriptor_irq_always;
1162         else
1163                 irq = descriptor_no_irq;
1164
1165         last->control = cpu_to_le16(descriptor_output_last |
1166                                     descriptor_status |
1167                                     descriptor_branch_always |
1168                                     irq);
1169
1170         dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1171                                    ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1172
1173         ctx->head_descriptor = d + z + header_z;
1174         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1175         ctx->prev_descriptor = last;
1176
1177         index = ctx - ohci->it_context_list;
1178         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1179         flush_writes(ohci);
1180
1181         return 0;
1182 }
1183
1184 static const struct fw_card_driver ohci_driver = {
1185         .name                   = ohci_driver_name,
1186         .enable                 = ohci_enable,
1187         .update_phy_reg         = ohci_update_phy_reg,
1188         .set_config_rom         = ohci_set_config_rom,
1189         .send_request           = ohci_send_request,
1190         .send_response          = ohci_send_response,
1191         .enable_phys_dma        = ohci_enable_phys_dma,
1192
1193         .allocate_iso_context   = ohci_allocate_iso_context,
1194         .free_iso_context       = ohci_free_iso_context,
1195         .queue_iso              = ohci_queue_iso,
1196         .send_iso               = ohci_send_iso,
1197 };
1198
1199 static int software_reset(struct fw_ohci *ohci)
1200 {
1201         int i;
1202
1203         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1204
1205         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1206                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1207                      OHCI1394_HCControl_softReset) == 0)
1208                         return 0;
1209                 msleep(1);
1210         }
1211
1212         return -EBUSY;
1213 }
1214
1215 /* ---------- pci subsystem interface ---------- */
1216
1217 enum {
1218         CLEANUP_SELF_ID,
1219         CLEANUP_REGISTERS,
1220         CLEANUP_IOMEM,
1221         CLEANUP_DISABLE,
1222         CLEANUP_PUT_CARD,
1223 };
1224
1225 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1226 {
1227         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1228
1229         switch (stage) {
1230         case CLEANUP_SELF_ID:
1231                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1232                                   ohci->self_id_cpu, ohci->self_id_bus);
1233         case CLEANUP_REGISTERS:
1234                 kfree(ohci->it_context_list);
1235                 kfree(ohci->ir_context_list);
1236                 pci_iounmap(dev, ohci->registers);
1237         case CLEANUP_IOMEM:
1238                 pci_release_region(dev, 0);
1239         case CLEANUP_DISABLE:
1240                 pci_disable_device(dev);
1241         case CLEANUP_PUT_CARD:
1242                 fw_card_put(&ohci->card);
1243         }
1244
1245         return code;
1246 }
1247
1248 static int __devinit
1249 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1250 {
1251         struct fw_ohci *ohci;
1252         u32 bus_options, max_receive, link_speed;
1253         u64 guid;
1254         int error_code;
1255         size_t size;
1256
1257         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1258         if (ohci == NULL) {
1259                 fw_error("Could not malloc fw_ohci data.\n");
1260                 return -ENOMEM;
1261         }
1262
1263         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1264
1265         if (pci_enable_device(dev)) {
1266                 fw_error("Failed to enable OHCI hardware.\n");
1267                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1268         }
1269
1270         pci_set_master(dev);
1271         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1272         pci_set_drvdata(dev, ohci);
1273
1274         spin_lock_init(&ohci->lock);
1275
1276         tasklet_init(&ohci->bus_reset_tasklet,
1277                      bus_reset_tasklet, (unsigned long)ohci);
1278
1279         if (pci_request_region(dev, 0, ohci_driver_name)) {
1280                 fw_error("MMIO resource unavailable\n");
1281                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1282         }
1283
1284         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1285         if (ohci->registers == NULL) {
1286                 fw_error("Failed to remap registers\n");
1287                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1288         }
1289
1290         if (software_reset(ohci)) {
1291                 fw_error("Failed to reset ohci card.\n");
1292                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1293         }
1294
1295         /* Now enable LPS, which we need in order to start accessing
1296          * most of the registers.  In fact, on some cards (ALI M5251),
1297          * accessing registers in the SClk domain without LPS enabled
1298          * will lock up the machine.  Wait 50msec to make sure we have
1299          * full link enabled.  */
1300         reg_write(ohci, OHCI1394_HCControlSet,
1301                   OHCI1394_HCControl_LPS |
1302                   OHCI1394_HCControl_postedWriteEnable);
1303         flush_writes(ohci);
1304         msleep(50);
1305
1306         reg_write(ohci, OHCI1394_HCControlClear,
1307                   OHCI1394_HCControl_noByteSwapData);
1308
1309         reg_write(ohci, OHCI1394_LinkControlSet,
1310                   OHCI1394_LinkControl_rcvSelfID |
1311                   OHCI1394_LinkControl_cycleTimerEnable |
1312                   OHCI1394_LinkControl_cycleMaster);
1313
1314         ar_context_init(&ohci->ar_request_ctx, ohci,
1315                         OHCI1394_AsReqRcvContextControlSet);
1316
1317         ar_context_init(&ohci->ar_response_ctx, ohci,
1318                         OHCI1394_AsRspRcvContextControlSet);
1319
1320         at_context_init(&ohci->at_request_ctx, ohci,
1321                         OHCI1394_AsReqTrContextControlSet);
1322
1323         at_context_init(&ohci->at_response_ctx, ohci,
1324                         OHCI1394_AsRspTrContextControlSet);
1325
1326         reg_write(ohci, OHCI1394_ATRetries,
1327                   OHCI1394_MAX_AT_REQ_RETRIES |
1328                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1329                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1330
1331         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1332         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1333         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1334         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1335         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1336
1337         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1338         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1339         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1340         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1341         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1342
1343         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1344                 fw_error("Out of memory for it/ir contexts.\n");
1345                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1346         }
1347
1348         /* self-id dma buffer allocation */
1349         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1350                                                SELF_ID_BUF_SIZE,
1351                                                &ohci->self_id_bus,
1352                                                GFP_KERNEL);
1353         if (ohci->self_id_cpu == NULL) {
1354                 fw_error("Out of memory for self ID buffer.\n");
1355                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1356         }
1357
1358         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1359         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1360         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1361         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1362         reg_write(ohci, OHCI1394_IntMaskSet,
1363                   OHCI1394_selfIDComplete |
1364                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1365                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1366                   OHCI1394_isochRx | OHCI1394_isochTx |
1367                   OHCI1394_masterIntEnable);
1368
1369         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1370         max_receive = (bus_options >> 12) & 0xf;
1371         link_speed = bus_options & 0x7;
1372         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1373                 reg_read(ohci, OHCI1394_GUIDLo);
1374
1375         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1376         if (error_code < 0)
1377                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1378
1379         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1380
1381         return 0;
1382 }
1383
1384 static void pci_remove(struct pci_dev *dev)
1385 {
1386         struct fw_ohci *ohci;
1387
1388         ohci = pci_get_drvdata(dev);
1389         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1390         fw_core_remove_card(&ohci->card);
1391
1392         /* FIXME: Fail all pending packets here, now that the upper
1393          * layers can't queue any more. */
1394
1395         software_reset(ohci);
1396         free_irq(dev->irq, ohci);
1397         cleanup(ohci, CLEANUP_SELF_ID, 0);
1398
1399         fw_notify("Removed fw-ohci device.\n");
1400 }
1401
1402 static struct pci_device_id pci_table[] = {
1403         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1404         { }
1405 };
1406
1407 MODULE_DEVICE_TABLE(pci, pci_table);
1408
1409 static struct pci_driver fw_ohci_pci_driver = {
1410         .name           = ohci_driver_name,
1411         .id_table       = pci_table,
1412         .probe          = pci_probe,
1413         .remove         = pci_remove,
1414 };
1415
1416 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1417 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1418 MODULE_LICENSE("GPL");
1419
1420 static int __init fw_ohci_init(void)
1421 {
1422         return pci_register_driver(&fw_ohci_pci_driver);
1423 }
1424
1425 static void __exit fw_ohci_cleanup(void)
1426 {
1427         pci_unregister_driver(&fw_ohci_pci_driver);
1428 }
1429
1430 module_init(fw_ohci_init);
1431 module_exit(fw_ohci_cleanup);