firewire: fw-ohci: CycleTooLong interrupt management
[safe/jmp/linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32
33 #include <asm/page.h>
34 #include <asm/system.h>
35
36 #include "fw-ohci.h"
37 #include "fw-transaction.h"
38
39 #define DESCRIPTOR_OUTPUT_MORE          0
40 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
43 #define DESCRIPTOR_STATUS               (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
45 #define DESCRIPTOR_PING                 (1 << 7)
46 #define DESCRIPTOR_YY                   (1 << 6)
47 #define DESCRIPTOR_NO_IRQ               (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
51 #define DESCRIPTOR_WAIT                 (3 << 0)
52
53 struct descriptor {
54         __le16 req_count;
55         __le16 control;
56         __le32 data_address;
57         __le32 branch_address;
58         __le16 res_count;
59         __le16 transfer_status;
60 } __attribute__((aligned(16)));
61
62 struct db_descriptor {
63         __le16 first_size;
64         __le16 control;
65         __le16 second_req_count;
66         __le16 first_req_count;
67         __le32 branch_address;
68         __le16 second_res_count;
69         __le16 first_res_count;
70         __le32 reserved0;
71         __le32 first_buffer;
72         __le32 second_buffer;
73         __le32 reserved1;
74 } __attribute__((aligned(16)));
75
76 #define CONTROL_SET(regs)       (regs)
77 #define CONTROL_CLEAR(regs)     ((regs) + 4)
78 #define COMMAND_PTR(regs)       ((regs) + 12)
79 #define CONTEXT_MATCH(regs)     ((regs) + 16)
80
81 struct ar_buffer {
82         struct descriptor descriptor;
83         struct ar_buffer *next;
84         __le32 data[0];
85 };
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct ar_buffer *current_buffer;
90         struct ar_buffer *last_buffer;
91         void *pointer;
92         u32 regs;
93         struct tasklet_struct tasklet;
94 };
95
96 struct context;
97
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99                                      struct descriptor *d,
100                                      struct descriptor *last);
101 struct context {
102         struct fw_ohci *ohci;
103         u32 regs;
104
105         struct descriptor *buffer;
106         dma_addr_t buffer_bus;
107         size_t buffer_size;
108         struct descriptor *head_descriptor;
109         struct descriptor *tail_descriptor;
110         struct descriptor *tail_descriptor_last;
111         struct descriptor *prev_descriptor;
112
113         descriptor_callback_t callback;
114
115         struct tasklet_struct tasklet;
116 };
117
118 #define IT_HEADER_SY(v)          ((v) <<  0)
119 #define IT_HEADER_TCODE(v)       ((v) <<  4)
120 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
121 #define IT_HEADER_TAG(v)         ((v) << 14)
122 #define IT_HEADER_SPEED(v)       ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124
125 struct iso_context {
126         struct fw_iso_context base;
127         struct context context;
128         int excess_bytes;
129         void *header;
130         size_t header_length;
131 };
132
133 #define CONFIG_ROM_SIZE 1024
134
135 struct fw_ohci {
136         struct fw_card card;
137
138         u32 version;
139         __iomem char *registers;
140         dma_addr_t self_id_bus;
141         __le32 *self_id_cpu;
142         struct tasklet_struct bus_reset_tasklet;
143         int node_id;
144         int generation;
145         int request_generation;
146         u32 bus_seconds;
147
148         /*
149          * Spinlock for accessing fw_ohci data.  Never call out of
150          * this driver with this lock held.
151          */
152         spinlock_t lock;
153         u32 self_id_buffer[512];
154
155         /* Config rom buffers */
156         __be32 *config_rom;
157         dma_addr_t config_rom_bus;
158         __be32 *next_config_rom;
159         dma_addr_t next_config_rom_bus;
160         u32 next_header;
161
162         struct ar_context ar_request_ctx;
163         struct ar_context ar_response_ctx;
164         struct context at_request_ctx;
165         struct context at_response_ctx;
166
167         u32 it_context_mask;
168         struct iso_context *it_context_list;
169         u32 ir_context_mask;
170         struct iso_context *ir_context_list;
171 };
172
173 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
174 {
175         return container_of(card, struct fw_ohci, card);
176 }
177
178 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
179 #define IR_CONTEXT_BUFFER_FILL          0x80000000
180 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
181 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
182 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
183 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
184
185 #define CONTEXT_RUN     0x8000
186 #define CONTEXT_WAKE    0x1000
187 #define CONTEXT_DEAD    0x0800
188 #define CONTEXT_ACTIVE  0x0400
189
190 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
191 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
192 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
193
194 #define FW_OHCI_MAJOR                   240
195 #define OHCI1394_REGISTER_SIZE          0x800
196 #define OHCI_LOOP_COUNT                 500
197 #define OHCI1394_PCI_HCI_Control        0x40
198 #define SELF_ID_BUF_SIZE                0x800
199 #define OHCI_TCODE_PHY_PACKET           0x0e
200 #define OHCI_VERSION_1_1                0x010010
201 #define ISO_BUFFER_SIZE                 (64 * 1024)
202 #define AT_BUFFER_SIZE                  4096
203
204 static char ohci_driver_name[] = KBUILD_MODNAME;
205
206 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
207 {
208         writel(data, ohci->registers + offset);
209 }
210
211 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
212 {
213         return readl(ohci->registers + offset);
214 }
215
216 static inline void flush_writes(const struct fw_ohci *ohci)
217 {
218         /* Do a dummy read to flush writes. */
219         reg_read(ohci, OHCI1394_Version);
220 }
221
222 static int
223 ohci_update_phy_reg(struct fw_card *card, int addr,
224                     int clear_bits, int set_bits)
225 {
226         struct fw_ohci *ohci = fw_ohci(card);
227         u32 val, old;
228
229         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
230         flush_writes(ohci);
231         msleep(2);
232         val = reg_read(ohci, OHCI1394_PhyControl);
233         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
234                 fw_error("failed to set phy reg bits.\n");
235                 return -EBUSY;
236         }
237
238         old = OHCI1394_PhyControl_ReadData(val);
239         old = (old & ~clear_bits) | set_bits;
240         reg_write(ohci, OHCI1394_PhyControl,
241                   OHCI1394_PhyControl_Write(addr, old));
242
243         return 0;
244 }
245
246 static int ar_context_add_page(struct ar_context *ctx)
247 {
248         struct device *dev = ctx->ohci->card.device;
249         struct ar_buffer *ab;
250         dma_addr_t ab_bus;
251         size_t offset;
252
253         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
254         if (ab == NULL)
255                 return -ENOMEM;
256
257         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
258         if (dma_mapping_error(ab_bus)) {
259                 free_page((unsigned long) ab);
260                 return -ENOMEM;
261         }
262
263         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
264         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
265                                                     DESCRIPTOR_STATUS |
266                                                     DESCRIPTOR_BRANCH_ALWAYS);
267         offset = offsetof(struct ar_buffer, data);
268         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
269         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
270         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
271         ab->descriptor.branch_address = 0;
272
273         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
274
275         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
276         ctx->last_buffer->next = ab;
277         ctx->last_buffer = ab;
278
279         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
280         flush_writes(ctx->ohci);
281
282         return 0;
283 }
284
285 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
286 {
287         struct fw_ohci *ohci = ctx->ohci;
288         struct fw_packet p;
289         u32 status, length, tcode;
290
291         p.header[0] = le32_to_cpu(buffer[0]);
292         p.header[1] = le32_to_cpu(buffer[1]);
293         p.header[2] = le32_to_cpu(buffer[2]);
294
295         tcode = (p.header[0] >> 4) & 0x0f;
296         switch (tcode) {
297         case TCODE_WRITE_QUADLET_REQUEST:
298         case TCODE_READ_QUADLET_RESPONSE:
299                 p.header[3] = (__force __u32) buffer[3];
300                 p.header_length = 16;
301                 p.payload_length = 0;
302                 break;
303
304         case TCODE_READ_BLOCK_REQUEST :
305                 p.header[3] = le32_to_cpu(buffer[3]);
306                 p.header_length = 16;
307                 p.payload_length = 0;
308                 break;
309
310         case TCODE_WRITE_BLOCK_REQUEST:
311         case TCODE_READ_BLOCK_RESPONSE:
312         case TCODE_LOCK_REQUEST:
313         case TCODE_LOCK_RESPONSE:
314                 p.header[3] = le32_to_cpu(buffer[3]);
315                 p.header_length = 16;
316                 p.payload_length = p.header[3] >> 16;
317                 break;
318
319         case TCODE_WRITE_RESPONSE:
320         case TCODE_READ_QUADLET_REQUEST:
321         case OHCI_TCODE_PHY_PACKET:
322                 p.header_length = 12;
323                 p.payload_length = 0;
324                 break;
325         }
326
327         p.payload = (void *) buffer + p.header_length;
328
329         /* FIXME: What to do about evt_* errors? */
330         length = (p.header_length + p.payload_length + 3) / 4;
331         status = le32_to_cpu(buffer[length]);
332
333         p.ack        = ((status >> 16) & 0x1f) - 16;
334         p.speed      = (status >> 21) & 0x7;
335         p.timestamp  = status & 0xffff;
336         p.generation = ohci->request_generation;
337
338         /*
339          * The OHCI bus reset handler synthesizes a phy packet with
340          * the new generation number when a bus reset happens (see
341          * section 8.4.2.3).  This helps us determine when a request
342          * was received and make sure we send the response in the same
343          * generation.  We only need this for requests; for responses
344          * we use the unique tlabel for finding the matching
345          * request.
346          */
347
348         if (p.ack + 16 == 0x09)
349                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
350         else if (ctx == &ohci->ar_request_ctx)
351                 fw_core_handle_request(&ohci->card, &p);
352         else
353                 fw_core_handle_response(&ohci->card, &p);
354
355         return buffer + length + 1;
356 }
357
358 static void ar_context_tasklet(unsigned long data)
359 {
360         struct ar_context *ctx = (struct ar_context *)data;
361         struct fw_ohci *ohci = ctx->ohci;
362         struct ar_buffer *ab;
363         struct descriptor *d;
364         void *buffer, *end;
365
366         ab = ctx->current_buffer;
367         d = &ab->descriptor;
368
369         if (d->res_count == 0) {
370                 size_t size, rest, offset;
371
372                 /*
373                  * This descriptor is finished and we may have a
374                  * packet split across this and the next buffer. We
375                  * reuse the page for reassembling the split packet.
376                  */
377
378                 offset = offsetof(struct ar_buffer, data);
379                 dma_unmap_single(ohci->card.device,
380                         le32_to_cpu(ab->descriptor.data_address) - offset,
381                         PAGE_SIZE, DMA_BIDIRECTIONAL);
382
383                 buffer = ab;
384                 ab = ab->next;
385                 d = &ab->descriptor;
386                 size = buffer + PAGE_SIZE - ctx->pointer;
387                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
388                 memmove(buffer, ctx->pointer, size);
389                 memcpy(buffer + size, ab->data, rest);
390                 ctx->current_buffer = ab;
391                 ctx->pointer = (void *) ab->data + rest;
392                 end = buffer + size + rest;
393
394                 while (buffer < end)
395                         buffer = handle_ar_packet(ctx, buffer);
396
397                 free_page((unsigned long)buffer);
398                 ar_context_add_page(ctx);
399         } else {
400                 buffer = ctx->pointer;
401                 ctx->pointer = end =
402                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
403
404                 while (buffer < end)
405                         buffer = handle_ar_packet(ctx, buffer);
406         }
407 }
408
409 static int
410 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
411 {
412         struct ar_buffer ab;
413
414         ctx->regs        = regs;
415         ctx->ohci        = ohci;
416         ctx->last_buffer = &ab;
417         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
418
419         ar_context_add_page(ctx);
420         ar_context_add_page(ctx);
421         ctx->current_buffer = ab.next;
422         ctx->pointer = ctx->current_buffer->data;
423
424         return 0;
425 }
426
427 static void ar_context_run(struct ar_context *ctx)
428 {
429         struct ar_buffer *ab = ctx->current_buffer;
430         dma_addr_t ab_bus;
431         size_t offset;
432
433         offset = offsetof(struct ar_buffer, data);
434         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
435
436         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
437         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
438         flush_writes(ctx->ohci);
439 }
440
441 static struct descriptor *
442 find_branch_descriptor(struct descriptor *d, int z)
443 {
444         int b, key;
445
446         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
447         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
448
449         /* figure out which descriptor the branch address goes in */
450         if (z == 2 && (b == 3 || key == 2))
451                 return d;
452         else
453                 return d + z - 1;
454 }
455
456 static void context_tasklet(unsigned long data)
457 {
458         struct context *ctx = (struct context *) data;
459         struct fw_ohci *ohci = ctx->ohci;
460         struct descriptor *d, *last;
461         u32 address;
462         int z;
463
464         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
465                                 ctx->buffer_size, DMA_TO_DEVICE);
466
467         d    = ctx->tail_descriptor;
468         last = ctx->tail_descriptor_last;
469
470         while (last->branch_address != 0) {
471                 address = le32_to_cpu(last->branch_address);
472                 z = address & 0xf;
473                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
474                 last = find_branch_descriptor(d, z);
475
476                 if (!ctx->callback(ctx, d, last))
477                         break;
478
479                 ctx->tail_descriptor      = d;
480                 ctx->tail_descriptor_last = last;
481         }
482 }
483
484 static int
485 context_init(struct context *ctx, struct fw_ohci *ohci,
486              size_t buffer_size, u32 regs,
487              descriptor_callback_t callback)
488 {
489         ctx->ohci = ohci;
490         ctx->regs = regs;
491         ctx->buffer_size = buffer_size;
492         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
493         if (ctx->buffer == NULL)
494                 return -ENOMEM;
495
496         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
497         ctx->callback = callback;
498
499         ctx->buffer_bus =
500                 dma_map_single(ohci->card.device, ctx->buffer,
501                                buffer_size, DMA_TO_DEVICE);
502         if (dma_mapping_error(ctx->buffer_bus)) {
503                 kfree(ctx->buffer);
504                 return -ENOMEM;
505         }
506
507         ctx->head_descriptor      = ctx->buffer;
508         ctx->prev_descriptor      = ctx->buffer;
509         ctx->tail_descriptor      = ctx->buffer;
510         ctx->tail_descriptor_last = ctx->buffer;
511
512         /*
513          * We put a dummy descriptor in the buffer that has a NULL
514          * branch address and looks like it's been sent.  That way we
515          * have a descriptor to append DMA programs to.  Also, the
516          * ring buffer invariant is that it always has at least one
517          * element so that head == tail means buffer full.
518          */
519
520         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
521         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
522         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
523         ctx->head_descriptor++;
524
525         return 0;
526 }
527
528 static void
529 context_release(struct context *ctx)
530 {
531         struct fw_card *card = &ctx->ohci->card;
532
533         dma_unmap_single(card->device, ctx->buffer_bus,
534                          ctx->buffer_size, DMA_TO_DEVICE);
535         kfree(ctx->buffer);
536 }
537
538 static struct descriptor *
539 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
540 {
541         struct descriptor *d, *tail, *end;
542
543         d = ctx->head_descriptor;
544         tail = ctx->tail_descriptor;
545         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
546
547         if (d + z <= tail) {
548                 goto has_space;
549         } else if (d > tail && d + z <= end) {
550                 goto has_space;
551         } else if (d > tail && ctx->buffer + z <= tail) {
552                 d = ctx->buffer;
553                 goto has_space;
554         }
555
556         return NULL;
557
558  has_space:
559         memset(d, 0, z * sizeof(*d));
560         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
561
562         return d;
563 }
564
565 static void context_run(struct context *ctx, u32 extra)
566 {
567         struct fw_ohci *ohci = ctx->ohci;
568
569         reg_write(ohci, COMMAND_PTR(ctx->regs),
570                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
571         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
572         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
573         flush_writes(ohci);
574 }
575
576 static void context_append(struct context *ctx,
577                            struct descriptor *d, int z, int extra)
578 {
579         dma_addr_t d_bus;
580
581         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
582
583         ctx->head_descriptor = d + z + extra;
584         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
585         ctx->prev_descriptor = find_branch_descriptor(d, z);
586
587         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
588                                    ctx->buffer_size, DMA_TO_DEVICE);
589
590         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
591         flush_writes(ctx->ohci);
592 }
593
594 static void context_stop(struct context *ctx)
595 {
596         u32 reg;
597         int i;
598
599         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
600         flush_writes(ctx->ohci);
601
602         for (i = 0; i < 10; i++) {
603                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
604                 if ((reg & CONTEXT_ACTIVE) == 0)
605                         break;
606
607                 fw_notify("context_stop: still active (0x%08x)\n", reg);
608                 mdelay(1);
609         }
610 }
611
612 struct driver_data {
613         struct fw_packet *packet;
614 };
615
616 /*
617  * This function apppends a packet to the DMA queue for transmission.
618  * Must always be called with the ochi->lock held to ensure proper
619  * generation handling and locking around packet queue manipulation.
620  */
621 static int
622 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
623 {
624         struct fw_ohci *ohci = ctx->ohci;
625         dma_addr_t d_bus, uninitialized_var(payload_bus);
626         struct driver_data *driver_data;
627         struct descriptor *d, *last;
628         __le32 *header;
629         int z, tcode;
630         u32 reg;
631
632         d = context_get_descriptors(ctx, 4, &d_bus);
633         if (d == NULL) {
634                 packet->ack = RCODE_SEND_ERROR;
635                 return -1;
636         }
637
638         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
639         d[0].res_count = cpu_to_le16(packet->timestamp);
640
641         /*
642          * The DMA format for asyncronous link packets is different
643          * from the IEEE1394 layout, so shift the fields around
644          * accordingly.  If header_length is 8, it's a PHY packet, to
645          * which we need to prepend an extra quadlet.
646          */
647
648         header = (__le32 *) &d[1];
649         if (packet->header_length > 8) {
650                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
651                                         (packet->speed << 16));
652                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
653                                         (packet->header[0] & 0xffff0000));
654                 header[2] = cpu_to_le32(packet->header[2]);
655
656                 tcode = (packet->header[0] >> 4) & 0x0f;
657                 if (TCODE_IS_BLOCK_PACKET(tcode))
658                         header[3] = cpu_to_le32(packet->header[3]);
659                 else
660                         header[3] = (__force __le32) packet->header[3];
661
662                 d[0].req_count = cpu_to_le16(packet->header_length);
663         } else {
664                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
665                                         (packet->speed << 16));
666                 header[1] = cpu_to_le32(packet->header[0]);
667                 header[2] = cpu_to_le32(packet->header[1]);
668                 d[0].req_count = cpu_to_le16(12);
669         }
670
671         driver_data = (struct driver_data *) &d[3];
672         driver_data->packet = packet;
673         packet->driver_data = driver_data;
674
675         if (packet->payload_length > 0) {
676                 payload_bus =
677                         dma_map_single(ohci->card.device, packet->payload,
678                                        packet->payload_length, DMA_TO_DEVICE);
679                 if (dma_mapping_error(payload_bus)) {
680                         packet->ack = RCODE_SEND_ERROR;
681                         return -1;
682                 }
683
684                 d[2].req_count    = cpu_to_le16(packet->payload_length);
685                 d[2].data_address = cpu_to_le32(payload_bus);
686                 last = &d[2];
687                 z = 3;
688         } else {
689                 last = &d[0];
690                 z = 2;
691         }
692
693         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
694                                      DESCRIPTOR_IRQ_ALWAYS |
695                                      DESCRIPTOR_BRANCH_ALWAYS);
696
697         /* FIXME: Document how the locking works. */
698         if (ohci->generation != packet->generation) {
699                 if (packet->payload_length > 0)
700                         dma_unmap_single(ohci->card.device, payload_bus,
701                                          packet->payload_length, DMA_TO_DEVICE);
702                 packet->ack = RCODE_GENERATION;
703                 return -1;
704         }
705
706         context_append(ctx, d, z, 4 - z);
707
708         /* If the context isn't already running, start it up. */
709         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
710         if ((reg & CONTEXT_RUN) == 0)
711                 context_run(ctx, 0);
712
713         return 0;
714 }
715
716 static int handle_at_packet(struct context *context,
717                             struct descriptor *d,
718                             struct descriptor *last)
719 {
720         struct driver_data *driver_data;
721         struct fw_packet *packet;
722         struct fw_ohci *ohci = context->ohci;
723         dma_addr_t payload_bus;
724         int evt;
725
726         if (last->transfer_status == 0)
727                 /* This descriptor isn't done yet, stop iteration. */
728                 return 0;
729
730         driver_data = (struct driver_data *) &d[3];
731         packet = driver_data->packet;
732         if (packet == NULL)
733                 /* This packet was cancelled, just continue. */
734                 return 1;
735
736         payload_bus = le32_to_cpu(last->data_address);
737         if (payload_bus != 0)
738                 dma_unmap_single(ohci->card.device, payload_bus,
739                                  packet->payload_length, DMA_TO_DEVICE);
740
741         evt = le16_to_cpu(last->transfer_status) & 0x1f;
742         packet->timestamp = le16_to_cpu(last->res_count);
743
744         switch (evt) {
745         case OHCI1394_evt_timeout:
746                 /* Async response transmit timed out. */
747                 packet->ack = RCODE_CANCELLED;
748                 break;
749
750         case OHCI1394_evt_flushed:
751                 /*
752                  * The packet was flushed should give same error as
753                  * when we try to use a stale generation count.
754                  */
755                 packet->ack = RCODE_GENERATION;
756                 break;
757
758         case OHCI1394_evt_missing_ack:
759                 /*
760                  * Using a valid (current) generation count, but the
761                  * node is not on the bus or not sending acks.
762                  */
763                 packet->ack = RCODE_NO_ACK;
764                 break;
765
766         case ACK_COMPLETE + 0x10:
767         case ACK_PENDING + 0x10:
768         case ACK_BUSY_X + 0x10:
769         case ACK_BUSY_A + 0x10:
770         case ACK_BUSY_B + 0x10:
771         case ACK_DATA_ERROR + 0x10:
772         case ACK_TYPE_ERROR + 0x10:
773                 packet->ack = evt - 0x10;
774                 break;
775
776         default:
777                 packet->ack = RCODE_SEND_ERROR;
778                 break;
779         }
780
781         packet->callback(packet, &ohci->card, packet->ack);
782
783         return 1;
784 }
785
786 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
787 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
788 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
789 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
790 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
791
792 static void
793 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
794 {
795         struct fw_packet response;
796         int tcode, length, i;
797
798         tcode = HEADER_GET_TCODE(packet->header[0]);
799         if (TCODE_IS_BLOCK_PACKET(tcode))
800                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
801         else
802                 length = 4;
803
804         i = csr - CSR_CONFIG_ROM;
805         if (i + length > CONFIG_ROM_SIZE) {
806                 fw_fill_response(&response, packet->header,
807                                  RCODE_ADDRESS_ERROR, NULL, 0);
808         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
809                 fw_fill_response(&response, packet->header,
810                                  RCODE_TYPE_ERROR, NULL, 0);
811         } else {
812                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
813                                  (void *) ohci->config_rom + i, length);
814         }
815
816         fw_core_handle_response(&ohci->card, &response);
817 }
818
819 static void
820 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
821 {
822         struct fw_packet response;
823         int tcode, length, ext_tcode, sel;
824         __be32 *payload, lock_old;
825         u32 lock_arg, lock_data;
826
827         tcode = HEADER_GET_TCODE(packet->header[0]);
828         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
829         payload = packet->payload;
830         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
831
832         if (tcode == TCODE_LOCK_REQUEST &&
833             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
834                 lock_arg = be32_to_cpu(payload[0]);
835                 lock_data = be32_to_cpu(payload[1]);
836         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
837                 lock_arg = 0;
838                 lock_data = 0;
839         } else {
840                 fw_fill_response(&response, packet->header,
841                                  RCODE_TYPE_ERROR, NULL, 0);
842                 goto out;
843         }
844
845         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
846         reg_write(ohci, OHCI1394_CSRData, lock_data);
847         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
848         reg_write(ohci, OHCI1394_CSRControl, sel);
849
850         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
851                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
852         else
853                 fw_notify("swap not done yet\n");
854
855         fw_fill_response(&response, packet->header,
856                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
857  out:
858         fw_core_handle_response(&ohci->card, &response);
859 }
860
861 static void
862 handle_local_request(struct context *ctx, struct fw_packet *packet)
863 {
864         u64 offset;
865         u32 csr;
866
867         if (ctx == &ctx->ohci->at_request_ctx) {
868                 packet->ack = ACK_PENDING;
869                 packet->callback(packet, &ctx->ohci->card, packet->ack);
870         }
871
872         offset =
873                 ((unsigned long long)
874                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
875                 packet->header[2];
876         csr = offset - CSR_REGISTER_BASE;
877
878         /* Handle config rom reads. */
879         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
880                 handle_local_rom(ctx->ohci, packet, csr);
881         else switch (csr) {
882         case CSR_BUS_MANAGER_ID:
883         case CSR_BANDWIDTH_AVAILABLE:
884         case CSR_CHANNELS_AVAILABLE_HI:
885         case CSR_CHANNELS_AVAILABLE_LO:
886                 handle_local_lock(ctx->ohci, packet, csr);
887                 break;
888         default:
889                 if (ctx == &ctx->ohci->at_request_ctx)
890                         fw_core_handle_request(&ctx->ohci->card, packet);
891                 else
892                         fw_core_handle_response(&ctx->ohci->card, packet);
893                 break;
894         }
895
896         if (ctx == &ctx->ohci->at_response_ctx) {
897                 packet->ack = ACK_COMPLETE;
898                 packet->callback(packet, &ctx->ohci->card, packet->ack);
899         }
900 }
901
902 static void
903 at_context_transmit(struct context *ctx, struct fw_packet *packet)
904 {
905         unsigned long flags;
906         int retval;
907
908         spin_lock_irqsave(&ctx->ohci->lock, flags);
909
910         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
911             ctx->ohci->generation == packet->generation) {
912                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
913                 handle_local_request(ctx, packet);
914                 return;
915         }
916
917         retval = at_context_queue_packet(ctx, packet);
918         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
919
920         if (retval < 0)
921                 packet->callback(packet, &ctx->ohci->card, packet->ack);
922
923 }
924
925 static void bus_reset_tasklet(unsigned long data)
926 {
927         struct fw_ohci *ohci = (struct fw_ohci *)data;
928         int self_id_count, i, j, reg;
929         int generation, new_generation;
930         unsigned long flags;
931         void *free_rom = NULL;
932         dma_addr_t free_rom_bus = 0;
933
934         reg = reg_read(ohci, OHCI1394_NodeID);
935         if (!(reg & OHCI1394_NodeID_idValid)) {
936                 fw_notify("node ID not valid, new bus reset in progress\n");
937                 return;
938         }
939         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
940                 fw_notify("malconfigured bus\n");
941                 return;
942         }
943         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
944                                OHCI1394_NodeID_nodeNumber);
945
946         /*
947          * The count in the SelfIDCount register is the number of
948          * bytes in the self ID receive buffer.  Since we also receive
949          * the inverted quadlets and a header quadlet, we shift one
950          * bit extra to get the actual number of self IDs.
951          */
952
953         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
954         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
955         rmb();
956
957         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
958                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
959                         fw_error("inconsistent self IDs\n");
960                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
961         }
962         rmb();
963
964         /*
965          * Check the consistency of the self IDs we just read.  The
966          * problem we face is that a new bus reset can start while we
967          * read out the self IDs from the DMA buffer. If this happens,
968          * the DMA buffer will be overwritten with new self IDs and we
969          * will read out inconsistent data.  The OHCI specification
970          * (section 11.2) recommends a technique similar to
971          * linux/seqlock.h, where we remember the generation of the
972          * self IDs in the buffer before reading them out and compare
973          * it to the current generation after reading them out.  If
974          * the two generations match we know we have a consistent set
975          * of self IDs.
976          */
977
978         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
979         if (new_generation != generation) {
980                 fw_notify("recursive bus reset detected, "
981                           "discarding self ids\n");
982                 return;
983         }
984
985         /* FIXME: Document how the locking works. */
986         spin_lock_irqsave(&ohci->lock, flags);
987
988         ohci->generation = generation;
989         context_stop(&ohci->at_request_ctx);
990         context_stop(&ohci->at_response_ctx);
991         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
992
993         /*
994          * This next bit is unrelated to the AT context stuff but we
995          * have to do it under the spinlock also.  If a new config rom
996          * was set up before this reset, the old one is now no longer
997          * in use and we can free it. Update the config rom pointers
998          * to point to the current config rom and clear the
999          * next_config_rom pointer so a new udpate can take place.
1000          */
1001
1002         if (ohci->next_config_rom != NULL) {
1003                 if (ohci->next_config_rom != ohci->config_rom) {
1004                         free_rom      = ohci->config_rom;
1005                         free_rom_bus  = ohci->config_rom_bus;
1006                 }
1007                 ohci->config_rom      = ohci->next_config_rom;
1008                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1009                 ohci->next_config_rom = NULL;
1010
1011                 /*
1012                  * Restore config_rom image and manually update
1013                  * config_rom registers.  Writing the header quadlet
1014                  * will indicate that the config rom is ready, so we
1015                  * do that last.
1016                  */
1017                 reg_write(ohci, OHCI1394_BusOptions,
1018                           be32_to_cpu(ohci->config_rom[2]));
1019                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1020                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1021         }
1022
1023         spin_unlock_irqrestore(&ohci->lock, flags);
1024
1025         if (free_rom)
1026                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1027                                   free_rom, free_rom_bus);
1028
1029         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1030                                  self_id_count, ohci->self_id_buffer);
1031 }
1032
1033 static irqreturn_t irq_handler(int irq, void *data)
1034 {
1035         struct fw_ohci *ohci = data;
1036         u32 event, iso_event, cycle_time;
1037         int i;
1038
1039         event = reg_read(ohci, OHCI1394_IntEventClear);
1040
1041         if (!event || !~event)
1042                 return IRQ_NONE;
1043
1044         reg_write(ohci, OHCI1394_IntEventClear, event);
1045
1046         if (event & OHCI1394_selfIDComplete)
1047                 tasklet_schedule(&ohci->bus_reset_tasklet);
1048
1049         if (event & OHCI1394_RQPkt)
1050                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1051
1052         if (event & OHCI1394_RSPkt)
1053                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1054
1055         if (event & OHCI1394_reqTxComplete)
1056                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1057
1058         if (event & OHCI1394_respTxComplete)
1059                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1060
1061         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1062         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1063
1064         while (iso_event) {
1065                 i = ffs(iso_event) - 1;
1066                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1067                 iso_event &= ~(1 << i);
1068         }
1069
1070         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1071         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1072
1073         while (iso_event) {
1074                 i = ffs(iso_event) - 1;
1075                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1076                 iso_event &= ~(1 << i);
1077         }
1078
1079         if (unlikely(event & OHCI1394_postedWriteErr))
1080                 fw_error("PCI posted write error\n");
1081
1082         if (unlikely(event & OHCI1394_cycleTooLong)) {
1083                 if (printk_ratelimit())
1084                         fw_notify("isochronous cycle too long\n");
1085                 reg_write(ohci, OHCI1394_LinkControlSet,
1086                           OHCI1394_LinkControl_cycleMaster);
1087         }
1088
1089         if (event & OHCI1394_cycle64Seconds) {
1090                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1091                 if ((cycle_time & 0x80000000) == 0)
1092                         ohci->bus_seconds++;
1093         }
1094
1095         return IRQ_HANDLED;
1096 }
1097
1098 static int software_reset(struct fw_ohci *ohci)
1099 {
1100         int i;
1101
1102         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1103
1104         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1105                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1106                      OHCI1394_HCControl_softReset) == 0)
1107                         return 0;
1108                 msleep(1);
1109         }
1110
1111         return -EBUSY;
1112 }
1113
1114 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1115 {
1116         struct fw_ohci *ohci = fw_ohci(card);
1117         struct pci_dev *dev = to_pci_dev(card->device);
1118
1119         if (software_reset(ohci)) {
1120                 fw_error("Failed to reset ohci card.\n");
1121                 return -EBUSY;
1122         }
1123
1124         /*
1125          * Now enable LPS, which we need in order to start accessing
1126          * most of the registers.  In fact, on some cards (ALI M5251),
1127          * accessing registers in the SClk domain without LPS enabled
1128          * will lock up the machine.  Wait 50msec to make sure we have
1129          * full link enabled.
1130          */
1131         reg_write(ohci, OHCI1394_HCControlSet,
1132                   OHCI1394_HCControl_LPS |
1133                   OHCI1394_HCControl_postedWriteEnable);
1134         flush_writes(ohci);
1135         msleep(50);
1136
1137         reg_write(ohci, OHCI1394_HCControlClear,
1138                   OHCI1394_HCControl_noByteSwapData);
1139
1140         reg_write(ohci, OHCI1394_LinkControlSet,
1141                   OHCI1394_LinkControl_rcvSelfID |
1142                   OHCI1394_LinkControl_cycleTimerEnable |
1143                   OHCI1394_LinkControl_cycleMaster);
1144
1145         reg_write(ohci, OHCI1394_ATRetries,
1146                   OHCI1394_MAX_AT_REQ_RETRIES |
1147                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1148                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1149
1150         ar_context_run(&ohci->ar_request_ctx);
1151         ar_context_run(&ohci->ar_response_ctx);
1152
1153         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1154         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1155         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1156         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1157         reg_write(ohci, OHCI1394_IntMaskSet,
1158                   OHCI1394_selfIDComplete |
1159                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1160                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1161                   OHCI1394_isochRx | OHCI1394_isochTx |
1162                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1163                   OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1164
1165         /* Activate link_on bit and contender bit in our self ID packets.*/
1166         if (ohci_update_phy_reg(card, 4, 0,
1167                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1168                 return -EIO;
1169
1170         /*
1171          * When the link is not yet enabled, the atomic config rom
1172          * update mechanism described below in ohci_set_config_rom()
1173          * is not active.  We have to update ConfigRomHeader and
1174          * BusOptions manually, and the write to ConfigROMmap takes
1175          * effect immediately.  We tie this to the enabling of the
1176          * link, so we have a valid config rom before enabling - the
1177          * OHCI requires that ConfigROMhdr and BusOptions have valid
1178          * values before enabling.
1179          *
1180          * However, when the ConfigROMmap is written, some controllers
1181          * always read back quadlets 0 and 2 from the config rom to
1182          * the ConfigRomHeader and BusOptions registers on bus reset.
1183          * They shouldn't do that in this initial case where the link
1184          * isn't enabled.  This means we have to use the same
1185          * workaround here, setting the bus header to 0 and then write
1186          * the right values in the bus reset tasklet.
1187          */
1188
1189         if (config_rom) {
1190                 ohci->next_config_rom =
1191                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1192                                            &ohci->next_config_rom_bus,
1193                                            GFP_KERNEL);
1194                 if (ohci->next_config_rom == NULL)
1195                         return -ENOMEM;
1196
1197                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1198                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1199         } else {
1200                 /*
1201                  * In the suspend case, config_rom is NULL, which
1202                  * means that we just reuse the old config rom.
1203                  */
1204                 ohci->next_config_rom = ohci->config_rom;
1205                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1206         }
1207
1208         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1209         ohci->next_config_rom[0] = 0;
1210         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1211         reg_write(ohci, OHCI1394_BusOptions,
1212                   be32_to_cpu(ohci->next_config_rom[2]));
1213         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1214
1215         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1216
1217         if (request_irq(dev->irq, irq_handler,
1218                         IRQF_SHARED, ohci_driver_name, ohci)) {
1219                 fw_error("Failed to allocate shared interrupt %d.\n",
1220                          dev->irq);
1221                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1222                                   ohci->config_rom, ohci->config_rom_bus);
1223                 return -EIO;
1224         }
1225
1226         reg_write(ohci, OHCI1394_HCControlSet,
1227                   OHCI1394_HCControl_linkEnable |
1228                   OHCI1394_HCControl_BIBimageValid);
1229         flush_writes(ohci);
1230
1231         /*
1232          * We are ready to go, initiate bus reset to finish the
1233          * initialization.
1234          */
1235
1236         fw_core_initiate_bus_reset(&ohci->card, 1);
1237
1238         return 0;
1239 }
1240
1241 static int
1242 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1243 {
1244         struct fw_ohci *ohci;
1245         unsigned long flags;
1246         int retval = -EBUSY;
1247         __be32 *next_config_rom;
1248         dma_addr_t next_config_rom_bus;
1249
1250         ohci = fw_ohci(card);
1251
1252         /*
1253          * When the OHCI controller is enabled, the config rom update
1254          * mechanism is a bit tricky, but easy enough to use.  See
1255          * section 5.5.6 in the OHCI specification.
1256          *
1257          * The OHCI controller caches the new config rom address in a
1258          * shadow register (ConfigROMmapNext) and needs a bus reset
1259          * for the changes to take place.  When the bus reset is
1260          * detected, the controller loads the new values for the
1261          * ConfigRomHeader and BusOptions registers from the specified
1262          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1263          * shadow register. All automatically and atomically.
1264          *
1265          * Now, there's a twist to this story.  The automatic load of
1266          * ConfigRomHeader and BusOptions doesn't honor the
1267          * noByteSwapData bit, so with a be32 config rom, the
1268          * controller will load be32 values in to these registers
1269          * during the atomic update, even on litte endian
1270          * architectures.  The workaround we use is to put a 0 in the
1271          * header quadlet; 0 is endian agnostic and means that the
1272          * config rom isn't ready yet.  In the bus reset tasklet we
1273          * then set up the real values for the two registers.
1274          *
1275          * We use ohci->lock to avoid racing with the code that sets
1276          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1277          */
1278
1279         next_config_rom =
1280                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1281                                    &next_config_rom_bus, GFP_KERNEL);
1282         if (next_config_rom == NULL)
1283                 return -ENOMEM;
1284
1285         spin_lock_irqsave(&ohci->lock, flags);
1286
1287         if (ohci->next_config_rom == NULL) {
1288                 ohci->next_config_rom = next_config_rom;
1289                 ohci->next_config_rom_bus = next_config_rom_bus;
1290
1291                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1292                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1293                                   length * 4);
1294
1295                 ohci->next_header = config_rom[0];
1296                 ohci->next_config_rom[0] = 0;
1297
1298                 reg_write(ohci, OHCI1394_ConfigROMmap,
1299                           ohci->next_config_rom_bus);
1300                 retval = 0;
1301         }
1302
1303         spin_unlock_irqrestore(&ohci->lock, flags);
1304
1305         /*
1306          * Now initiate a bus reset to have the changes take
1307          * effect. We clean up the old config rom memory and DMA
1308          * mappings in the bus reset tasklet, since the OHCI
1309          * controller could need to access it before the bus reset
1310          * takes effect.
1311          */
1312         if (retval == 0)
1313                 fw_core_initiate_bus_reset(&ohci->card, 1);
1314         else
1315                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1316                                   next_config_rom, next_config_rom_bus);
1317
1318         return retval;
1319 }
1320
1321 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1322 {
1323         struct fw_ohci *ohci = fw_ohci(card);
1324
1325         at_context_transmit(&ohci->at_request_ctx, packet);
1326 }
1327
1328 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1329 {
1330         struct fw_ohci *ohci = fw_ohci(card);
1331
1332         at_context_transmit(&ohci->at_response_ctx, packet);
1333 }
1334
1335 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1336 {
1337         struct fw_ohci *ohci = fw_ohci(card);
1338         struct context *ctx = &ohci->at_request_ctx;
1339         struct driver_data *driver_data = packet->driver_data;
1340         int retval = -ENOENT;
1341
1342         tasklet_disable(&ctx->tasklet);
1343
1344         if (packet->ack != 0)
1345                 goto out;
1346
1347         driver_data->packet = NULL;
1348         packet->ack = RCODE_CANCELLED;
1349         packet->callback(packet, &ohci->card, packet->ack);
1350         retval = 0;
1351
1352  out:
1353         tasklet_enable(&ctx->tasklet);
1354
1355         return retval;
1356 }
1357
1358 static int
1359 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1360 {
1361         struct fw_ohci *ohci = fw_ohci(card);
1362         unsigned long flags;
1363         int n, retval = 0;
1364
1365         /*
1366          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1367          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1368          */
1369
1370         spin_lock_irqsave(&ohci->lock, flags);
1371
1372         if (ohci->generation != generation) {
1373                 retval = -ESTALE;
1374                 goto out;
1375         }
1376
1377         /*
1378          * Note, if the node ID contains a non-local bus ID, physical DMA is
1379          * enabled for _all_ nodes on remote buses.
1380          */
1381
1382         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1383         if (n < 32)
1384                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1385         else
1386                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1387
1388         flush_writes(ohci);
1389  out:
1390         spin_unlock_irqrestore(&ohci->lock, flags);
1391         return retval;
1392 }
1393
1394 static u64
1395 ohci_get_bus_time(struct fw_card *card)
1396 {
1397         struct fw_ohci *ohci = fw_ohci(card);
1398         u32 cycle_time;
1399         u64 bus_time;
1400
1401         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1402         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1403
1404         return bus_time;
1405 }
1406
1407 static int handle_ir_dualbuffer_packet(struct context *context,
1408                                        struct descriptor *d,
1409                                        struct descriptor *last)
1410 {
1411         struct iso_context *ctx =
1412                 container_of(context, struct iso_context, context);
1413         struct db_descriptor *db = (struct db_descriptor *) d;
1414         __le32 *ir_header;
1415         size_t header_length;
1416         void *p, *end;
1417         int i;
1418
1419         if (db->first_res_count > 0 && db->second_res_count > 0) {
1420                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1421                         /* This descriptor isn't done yet, stop iteration. */
1422                         return 0;
1423                 }
1424                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1425         }
1426
1427         header_length = le16_to_cpu(db->first_req_count) -
1428                 le16_to_cpu(db->first_res_count);
1429
1430         i = ctx->header_length;
1431         p = db + 1;
1432         end = p + header_length;
1433         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1434                 /*
1435                  * The iso header is byteswapped to little endian by
1436                  * the controller, but the remaining header quadlets
1437                  * are big endian.  We want to present all the headers
1438                  * as big endian, so we have to swap the first
1439                  * quadlet.
1440                  */
1441                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1442                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1443                 i += ctx->base.header_size;
1444                 ctx->excess_bytes +=
1445                         (le32_to_cpu(*(u32 *)(p + 4)) >> 16) & 0xffff;
1446                 p += ctx->base.header_size + 4;
1447         }
1448         ctx->header_length = i;
1449
1450         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1451                 le16_to_cpu(db->second_res_count);
1452
1453         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1454                 ir_header = (__le32 *) (db + 1);
1455                 ctx->base.callback(&ctx->base,
1456                                    le32_to_cpu(ir_header[0]) & 0xffff,
1457                                    ctx->header_length, ctx->header,
1458                                    ctx->base.callback_data);
1459                 ctx->header_length = 0;
1460         }
1461
1462         return 1;
1463 }
1464
1465 static int handle_ir_packet_per_buffer(struct context *context,
1466                                        struct descriptor *d,
1467                                        struct descriptor *last)
1468 {
1469         struct iso_context *ctx =
1470                 container_of(context, struct iso_context, context);
1471         struct descriptor *pd;
1472         __le32 *ir_header;
1473         void *p;
1474         int i;
1475
1476         for (pd = d; pd <= last; pd++) {
1477                 if (pd->transfer_status)
1478                         break;
1479         }
1480         if (pd > last)
1481                 /* Descriptor(s) not done yet, stop iteration */
1482                 return 0;
1483
1484         i   = ctx->header_length;
1485         p   = last + 1;
1486
1487         if (ctx->base.header_size > 0 &&
1488                         i + ctx->base.header_size <= PAGE_SIZE) {
1489                 /*
1490                  * The iso header is byteswapped to little endian by
1491                  * the controller, but the remaining header quadlets
1492                  * are big endian.  We want to present all the headers
1493                  * as big endian, so we have to swap the first quadlet.
1494                  */
1495                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1496                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1497                 ctx->header_length += ctx->base.header_size;
1498         }
1499
1500         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1501                 ir_header = (__le32 *) p;
1502                 ctx->base.callback(&ctx->base,
1503                                    le32_to_cpu(ir_header[0]) & 0xffff,
1504                                    ctx->header_length, ctx->header,
1505                                    ctx->base.callback_data);
1506                 ctx->header_length = 0;
1507         }
1508
1509         return 1;
1510 }
1511
1512 static int handle_it_packet(struct context *context,
1513                             struct descriptor *d,
1514                             struct descriptor *last)
1515 {
1516         struct iso_context *ctx =
1517                 container_of(context, struct iso_context, context);
1518
1519         if (last->transfer_status == 0)
1520                 /* This descriptor isn't done yet, stop iteration. */
1521                 return 0;
1522
1523         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1524                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1525                                    0, NULL, ctx->base.callback_data);
1526
1527         return 1;
1528 }
1529
1530 static struct fw_iso_context *
1531 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1532 {
1533         struct fw_ohci *ohci = fw_ohci(card);
1534         struct iso_context *ctx, *list;
1535         descriptor_callback_t callback;
1536         u32 *mask, regs;
1537         unsigned long flags;
1538         int index, retval = -ENOMEM;
1539
1540         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1541                 mask = &ohci->it_context_mask;
1542                 list = ohci->it_context_list;
1543                 callback = handle_it_packet;
1544         } else {
1545                 mask = &ohci->ir_context_mask;
1546                 list = ohci->ir_context_list;
1547                 if (ohci->version >= OHCI_VERSION_1_1)
1548                         callback = handle_ir_dualbuffer_packet;
1549                 else
1550                         callback = handle_ir_packet_per_buffer;
1551         }
1552
1553         spin_lock_irqsave(&ohci->lock, flags);
1554         index = ffs(*mask) - 1;
1555         if (index >= 0)
1556                 *mask &= ~(1 << index);
1557         spin_unlock_irqrestore(&ohci->lock, flags);
1558
1559         if (index < 0)
1560                 return ERR_PTR(-EBUSY);
1561
1562         if (type == FW_ISO_CONTEXT_TRANSMIT)
1563                 regs = OHCI1394_IsoXmitContextBase(index);
1564         else
1565                 regs = OHCI1394_IsoRcvContextBase(index);
1566
1567         ctx = &list[index];
1568         memset(ctx, 0, sizeof(*ctx));
1569         ctx->header_length = 0;
1570         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1571         if (ctx->header == NULL)
1572                 goto out;
1573
1574         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1575                               regs, callback);
1576         if (retval < 0)
1577                 goto out_with_header;
1578
1579         return &ctx->base;
1580
1581  out_with_header:
1582         free_page((unsigned long)ctx->header);
1583  out:
1584         spin_lock_irqsave(&ohci->lock, flags);
1585         *mask |= 1 << index;
1586         spin_unlock_irqrestore(&ohci->lock, flags);
1587
1588         return ERR_PTR(retval);
1589 }
1590
1591 static int ohci_start_iso(struct fw_iso_context *base,
1592                           s32 cycle, u32 sync, u32 tags)
1593 {
1594         struct iso_context *ctx = container_of(base, struct iso_context, base);
1595         struct fw_ohci *ohci = ctx->context.ohci;
1596         u32 control, match;
1597         int index;
1598
1599         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1600                 index = ctx - ohci->it_context_list;
1601                 match = 0;
1602                 if (cycle >= 0)
1603                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1604                                 (cycle & 0x7fff) << 16;
1605
1606                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1607                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1608                 context_run(&ctx->context, match);
1609         } else {
1610                 index = ctx - ohci->ir_context_list;
1611                 control = IR_CONTEXT_ISOCH_HEADER;
1612                 if (ohci->version >= OHCI_VERSION_1_1)
1613                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1614                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1615                 if (cycle >= 0) {
1616                         match |= (cycle & 0x07fff) << 12;
1617                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1618                 }
1619
1620                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1621                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1622                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1623                 context_run(&ctx->context, control);
1624         }
1625
1626         return 0;
1627 }
1628
1629 static int ohci_stop_iso(struct fw_iso_context *base)
1630 {
1631         struct fw_ohci *ohci = fw_ohci(base->card);
1632         struct iso_context *ctx = container_of(base, struct iso_context, base);
1633         int index;
1634
1635         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1636                 index = ctx - ohci->it_context_list;
1637                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1638         } else {
1639                 index = ctx - ohci->ir_context_list;
1640                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1641         }
1642         flush_writes(ohci);
1643         context_stop(&ctx->context);
1644
1645         return 0;
1646 }
1647
1648 static void ohci_free_iso_context(struct fw_iso_context *base)
1649 {
1650         struct fw_ohci *ohci = fw_ohci(base->card);
1651         struct iso_context *ctx = container_of(base, struct iso_context, base);
1652         unsigned long flags;
1653         int index;
1654
1655         ohci_stop_iso(base);
1656         context_release(&ctx->context);
1657         free_page((unsigned long)ctx->header);
1658
1659         spin_lock_irqsave(&ohci->lock, flags);
1660
1661         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1662                 index = ctx - ohci->it_context_list;
1663                 ohci->it_context_mask |= 1 << index;
1664         } else {
1665                 index = ctx - ohci->ir_context_list;
1666                 ohci->ir_context_mask |= 1 << index;
1667         }
1668
1669         spin_unlock_irqrestore(&ohci->lock, flags);
1670 }
1671
1672 static int
1673 ohci_queue_iso_transmit(struct fw_iso_context *base,
1674                         struct fw_iso_packet *packet,
1675                         struct fw_iso_buffer *buffer,
1676                         unsigned long payload)
1677 {
1678         struct iso_context *ctx = container_of(base, struct iso_context, base);
1679         struct descriptor *d, *last, *pd;
1680         struct fw_iso_packet *p;
1681         __le32 *header;
1682         dma_addr_t d_bus, page_bus;
1683         u32 z, header_z, payload_z, irq;
1684         u32 payload_index, payload_end_index, next_page_index;
1685         int page, end_page, i, length, offset;
1686
1687         /*
1688          * FIXME: Cycle lost behavior should be configurable: lose
1689          * packet, retransmit or terminate..
1690          */
1691
1692         p = packet;
1693         payload_index = payload;
1694
1695         if (p->skip)
1696                 z = 1;
1697         else
1698                 z = 2;
1699         if (p->header_length > 0)
1700                 z++;
1701
1702         /* Determine the first page the payload isn't contained in. */
1703         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1704         if (p->payload_length > 0)
1705                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1706         else
1707                 payload_z = 0;
1708
1709         z += payload_z;
1710
1711         /* Get header size in number of descriptors. */
1712         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1713
1714         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1715         if (d == NULL)
1716                 return -ENOMEM;
1717
1718         if (!p->skip) {
1719                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1720                 d[0].req_count = cpu_to_le16(8);
1721
1722                 header = (__le32 *) &d[1];
1723                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1724                                         IT_HEADER_TAG(p->tag) |
1725                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1726                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1727                                         IT_HEADER_SPEED(ctx->base.speed));
1728                 header[1] =
1729                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1730                                                           p->payload_length));
1731         }
1732
1733         if (p->header_length > 0) {
1734                 d[2].req_count    = cpu_to_le16(p->header_length);
1735                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1736                 memcpy(&d[z], p->header, p->header_length);
1737         }
1738
1739         pd = d + z - payload_z;
1740         payload_end_index = payload_index + p->payload_length;
1741         for (i = 0; i < payload_z; i++) {
1742                 page               = payload_index >> PAGE_SHIFT;
1743                 offset             = payload_index & ~PAGE_MASK;
1744                 next_page_index    = (page + 1) << PAGE_SHIFT;
1745                 length             =
1746                         min(next_page_index, payload_end_index) - payload_index;
1747                 pd[i].req_count    = cpu_to_le16(length);
1748
1749                 page_bus = page_private(buffer->pages[page]);
1750                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1751
1752                 payload_index += length;
1753         }
1754
1755         if (p->interrupt)
1756                 irq = DESCRIPTOR_IRQ_ALWAYS;
1757         else
1758                 irq = DESCRIPTOR_NO_IRQ;
1759
1760         last = z == 2 ? d : d + z - 1;
1761         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1762                                      DESCRIPTOR_STATUS |
1763                                      DESCRIPTOR_BRANCH_ALWAYS |
1764                                      irq);
1765
1766         context_append(&ctx->context, d, z, header_z);
1767
1768         return 0;
1769 }
1770
1771 static int
1772 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1773                                   struct fw_iso_packet *packet,
1774                                   struct fw_iso_buffer *buffer,
1775                                   unsigned long payload)
1776 {
1777         struct iso_context *ctx = container_of(base, struct iso_context, base);
1778         struct db_descriptor *db = NULL;
1779         struct descriptor *d;
1780         struct fw_iso_packet *p;
1781         dma_addr_t d_bus, page_bus;
1782         u32 z, header_z, length, rest;
1783         int page, offset, packet_count, header_size;
1784
1785         /*
1786          * FIXME: Cycle lost behavior should be configurable: lose
1787          * packet, retransmit or terminate..
1788          */
1789
1790         p = packet;
1791         z = 2;
1792
1793         /*
1794          * The OHCI controller puts the status word in the header
1795          * buffer too, so we need 4 extra bytes per packet.
1796          */
1797         packet_count = p->header_length / ctx->base.header_size;
1798         header_size = packet_count * (ctx->base.header_size + 4);
1799
1800         /* Get header size in number of descriptors. */
1801         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1802         page     = payload >> PAGE_SHIFT;
1803         offset   = payload & ~PAGE_MASK;
1804         rest     = p->payload_length;
1805
1806         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1807         while (rest > 0) {
1808                 d = context_get_descriptors(&ctx->context,
1809                                             z + header_z, &d_bus);
1810                 if (d == NULL)
1811                         return -ENOMEM;
1812
1813                 db = (struct db_descriptor *) d;
1814                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1815                                           DESCRIPTOR_BRANCH_ALWAYS);
1816                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1817                 if (p->skip && rest == p->payload_length) {
1818                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1819                         db->first_req_count = db->first_size;
1820                 } else {
1821                         db->first_req_count = cpu_to_le16(header_size);
1822                 }
1823                 db->first_res_count = db->first_req_count;
1824                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1825
1826                 if (p->skip && rest == p->payload_length)
1827                         length = 4;
1828                 else if (offset + rest < PAGE_SIZE)
1829                         length = rest;
1830                 else
1831                         length = PAGE_SIZE - offset;
1832
1833                 db->second_req_count = cpu_to_le16(length);
1834                 db->second_res_count = db->second_req_count;
1835                 page_bus = page_private(buffer->pages[page]);
1836                 db->second_buffer = cpu_to_le32(page_bus + offset);
1837
1838                 if (p->interrupt && length == rest)
1839                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1840
1841                 context_append(&ctx->context, d, z, header_z);
1842                 offset = (offset + length) & ~PAGE_MASK;
1843                 rest -= length;
1844                 if (offset == 0)
1845                         page++;
1846         }
1847
1848         return 0;
1849 }
1850
1851 static int
1852 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1853                                          struct fw_iso_packet *packet,
1854                                          struct fw_iso_buffer *buffer,
1855                                          unsigned long payload)
1856 {
1857         struct iso_context *ctx = container_of(base, struct iso_context, base);
1858         struct descriptor *d = NULL, *pd = NULL;
1859         struct fw_iso_packet *p = packet;
1860         dma_addr_t d_bus, page_bus;
1861         u32 z, header_z, rest;
1862         int i, j, length;
1863         int page, offset, packet_count, header_size, payload_per_buffer;
1864
1865         /*
1866          * The OHCI controller puts the status word in the
1867          * buffer too, so we need 4 extra bytes per packet.
1868          */
1869         packet_count = p->header_length / ctx->base.header_size;
1870         header_size  = ctx->base.header_size + 4;
1871
1872         /* Get header size in number of descriptors. */
1873         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1874         page     = payload >> PAGE_SHIFT;
1875         offset   = payload & ~PAGE_MASK;
1876         payload_per_buffer = p->payload_length / packet_count;
1877
1878         for (i = 0; i < packet_count; i++) {
1879                 /* d points to the header descriptor */
1880                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1881                 d = context_get_descriptors(&ctx->context,
1882                                 z + header_z, &d_bus);
1883                 if (d == NULL)
1884                         return -ENOMEM;
1885
1886                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
1887                                               DESCRIPTOR_INPUT_MORE);
1888                 if (p->skip && i == 0)
1889                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1890                 d->req_count    = cpu_to_le16(header_size);
1891                 d->res_count    = d->req_count;
1892                 d->transfer_status = 0;
1893                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1894
1895                 rest = payload_per_buffer;
1896                 for (j = 1; j < z; j++) {
1897                         pd = d + j;
1898                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1899                                                   DESCRIPTOR_INPUT_MORE);
1900
1901                         if (offset + rest < PAGE_SIZE)
1902                                 length = rest;
1903                         else
1904                                 length = PAGE_SIZE - offset;
1905                         pd->req_count = cpu_to_le16(length);
1906                         pd->res_count = pd->req_count;
1907                         pd->transfer_status = 0;
1908
1909                         page_bus = page_private(buffer->pages[page]);
1910                         pd->data_address = cpu_to_le32(page_bus + offset);
1911
1912                         offset = (offset + length) & ~PAGE_MASK;
1913                         rest -= length;
1914                         if (offset == 0)
1915                                 page++;
1916                 }
1917                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1918                                           DESCRIPTOR_INPUT_LAST |
1919                                           DESCRIPTOR_BRANCH_ALWAYS);
1920                 if (p->interrupt && i == packet_count - 1)
1921                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1922
1923                 context_append(&ctx->context, d, z, header_z);
1924         }
1925
1926         return 0;
1927 }
1928
1929 static int
1930 ohci_queue_iso(struct fw_iso_context *base,
1931                struct fw_iso_packet *packet,
1932                struct fw_iso_buffer *buffer,
1933                unsigned long payload)
1934 {
1935         struct iso_context *ctx = container_of(base, struct iso_context, base);
1936
1937         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1938                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1939         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1940                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1941                                                          buffer, payload);
1942         else
1943                 return ohci_queue_iso_receive_packet_per_buffer(base, packet,
1944                                                                 buffer,
1945                                                                 payload);
1946 }
1947
1948 static const struct fw_card_driver ohci_driver = {
1949         .name                   = ohci_driver_name,
1950         .enable                 = ohci_enable,
1951         .update_phy_reg         = ohci_update_phy_reg,
1952         .set_config_rom         = ohci_set_config_rom,
1953         .send_request           = ohci_send_request,
1954         .send_response          = ohci_send_response,
1955         .cancel_packet          = ohci_cancel_packet,
1956         .enable_phys_dma        = ohci_enable_phys_dma,
1957         .get_bus_time           = ohci_get_bus_time,
1958
1959         .allocate_iso_context   = ohci_allocate_iso_context,
1960         .free_iso_context       = ohci_free_iso_context,
1961         .queue_iso              = ohci_queue_iso,
1962         .start_iso              = ohci_start_iso,
1963         .stop_iso               = ohci_stop_iso,
1964 };
1965
1966 static int __devinit
1967 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1968 {
1969         struct fw_ohci *ohci;
1970         u32 bus_options, max_receive, link_speed;
1971         u64 guid;
1972         int err;
1973         size_t size;
1974
1975         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1976         if (ohci == NULL) {
1977                 fw_error("Could not malloc fw_ohci data.\n");
1978                 return -ENOMEM;
1979         }
1980
1981         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1982
1983         err = pci_enable_device(dev);
1984         if (err) {
1985                 fw_error("Failed to enable OHCI hardware.\n");
1986                 goto fail_put_card;
1987         }
1988
1989         pci_set_master(dev);
1990         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1991         pci_set_drvdata(dev, ohci);
1992
1993         spin_lock_init(&ohci->lock);
1994
1995         tasklet_init(&ohci->bus_reset_tasklet,
1996                      bus_reset_tasklet, (unsigned long)ohci);
1997
1998         err = pci_request_region(dev, 0, ohci_driver_name);
1999         if (err) {
2000                 fw_error("MMIO resource unavailable\n");
2001                 goto fail_disable;
2002         }
2003
2004         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2005         if (ohci->registers == NULL) {
2006                 fw_error("Failed to remap registers\n");
2007                 err = -ENXIO;
2008                 goto fail_iomem;
2009         }
2010
2011         ar_context_init(&ohci->ar_request_ctx, ohci,
2012                         OHCI1394_AsReqRcvContextControlSet);
2013
2014         ar_context_init(&ohci->ar_response_ctx, ohci,
2015                         OHCI1394_AsRspRcvContextControlSet);
2016
2017         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
2018                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2019
2020         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
2021                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2022
2023         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2024         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2025         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2026         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2027         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2028
2029         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2030         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2031         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2032         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2033         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2034
2035         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2036                 fw_error("Out of memory for it/ir contexts.\n");
2037                 err = -ENOMEM;
2038                 goto fail_registers;
2039         }
2040
2041         /* self-id dma buffer allocation */
2042         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2043                                                SELF_ID_BUF_SIZE,
2044                                                &ohci->self_id_bus,
2045                                                GFP_KERNEL);
2046         if (ohci->self_id_cpu == NULL) {
2047                 fw_error("Out of memory for self ID buffer.\n");
2048                 err = -ENOMEM;
2049                 goto fail_registers;
2050         }
2051
2052         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2053         max_receive = (bus_options >> 12) & 0xf;
2054         link_speed = bus_options & 0x7;
2055         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2056                 reg_read(ohci, OHCI1394_GUIDLo);
2057
2058         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2059         if (err < 0)
2060                 goto fail_self_id;
2061
2062         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2063         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2064                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2065         return 0;
2066
2067  fail_self_id:
2068         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2069                           ohci->self_id_cpu, ohci->self_id_bus);
2070  fail_registers:
2071         kfree(ohci->it_context_list);
2072         kfree(ohci->ir_context_list);
2073         pci_iounmap(dev, ohci->registers);
2074  fail_iomem:
2075         pci_release_region(dev, 0);
2076  fail_disable:
2077         pci_disable_device(dev);
2078  fail_put_card:
2079         fw_card_put(&ohci->card);
2080
2081         return err;
2082 }
2083
2084 static void pci_remove(struct pci_dev *dev)
2085 {
2086         struct fw_ohci *ohci;
2087
2088         ohci = pci_get_drvdata(dev);
2089         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2090         flush_writes(ohci);
2091         fw_core_remove_card(&ohci->card);
2092
2093         /*
2094          * FIXME: Fail all pending packets here, now that the upper
2095          * layers can't queue any more.
2096          */
2097
2098         software_reset(ohci);
2099         free_irq(dev->irq, ohci);
2100         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2101                           ohci->self_id_cpu, ohci->self_id_bus);
2102         kfree(ohci->it_context_list);
2103         kfree(ohci->ir_context_list);
2104         pci_iounmap(dev, ohci->registers);
2105         pci_release_region(dev, 0);
2106         pci_disable_device(dev);
2107         fw_card_put(&ohci->card);
2108
2109         fw_notify("Removed fw-ohci device.\n");
2110 }
2111
2112 #ifdef CONFIG_PM
2113 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2114 {
2115         struct fw_ohci *ohci = pci_get_drvdata(pdev);
2116         int err;
2117
2118         software_reset(ohci);
2119         free_irq(pdev->irq, ohci);
2120         err = pci_save_state(pdev);
2121         if (err) {
2122                 fw_error("pci_save_state failed\n");
2123                 return err;
2124         }
2125         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2126         if (err)
2127                 fw_error("pci_set_power_state failed with %d\n", err);
2128
2129         return 0;
2130 }
2131
2132 static int pci_resume(struct pci_dev *pdev)
2133 {
2134         struct fw_ohci *ohci = pci_get_drvdata(pdev);
2135         int err;
2136
2137         pci_set_power_state(pdev, PCI_D0);
2138         pci_restore_state(pdev);
2139         err = pci_enable_device(pdev);
2140         if (err) {
2141                 fw_error("pci_enable_device failed\n");
2142                 return err;
2143         }
2144
2145         return ohci_enable(&ohci->card, NULL, 0);
2146 }
2147 #endif
2148
2149 static struct pci_device_id pci_table[] = {
2150         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2151         { }
2152 };
2153
2154 MODULE_DEVICE_TABLE(pci, pci_table);
2155
2156 static struct pci_driver fw_ohci_pci_driver = {
2157         .name           = ohci_driver_name,
2158         .id_table       = pci_table,
2159         .probe          = pci_probe,
2160         .remove         = pci_remove,
2161 #ifdef CONFIG_PM
2162         .resume         = pci_resume,
2163         .suspend        = pci_suspend,
2164 #endif
2165 };
2166
2167 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2168 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2169 MODULE_LICENSE("GPL");
2170
2171 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2172 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2173 MODULE_ALIAS("ohci1394");
2174 #endif
2175
2176 static int __init fw_ohci_init(void)
2177 {
2178         return pci_register_driver(&fw_ohci_pci_driver);
2179 }
2180
2181 static void __exit fw_ohci_cleanup(void)
2182 {
2183         pci_unregister_driver(&fw_ohci_pci_driver);
2184 }
2185
2186 module_init(fw_ohci_init);
2187 module_exit(fw_ohci_cleanup);