firewire: fw-ohci: remove unnecessary macro
[safe/jmp/linux-2.6] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48
49 struct descriptor {
50         __le16 req_count;
51         __le16 control;
52         __le32 data_address;
53         __le32 branch_address;
54         __le16 res_count;
55         __le16 transfer_status;
56 } __attribute__((aligned(16)));
57
58 struct ar_context {
59         struct fw_ohci *ohci;
60         struct descriptor descriptor;
61         __le32 buffer[512];
62         dma_addr_t descriptor_bus;
63         dma_addr_t buffer_bus;
64
65         u32 command_ptr;
66         u32 control_set;
67         u32 control_clear;
68
69         struct tasklet_struct tasklet;
70 };
71
72 struct at_context {
73         struct fw_ohci *ohci;
74         dma_addr_t descriptor_bus;
75         dma_addr_t buffer_bus;
76
77         struct list_head list;
78
79         struct {
80                 struct descriptor more;
81                 __le32 header[4];
82                 struct descriptor last;
83         } d;
84
85         u32 command_ptr;
86         u32 control_set;
87         u32 control_clear;
88
89         struct tasklet_struct tasklet;
90 };
91
92 #define it_header_sy(v)          ((v) <<  0)
93 #define it_header_tcode(v)       ((v) <<  4)
94 #define it_header_channel(v)     ((v) <<  8)
95 #define it_header_tag(v)         ((v) << 14)
96 #define it_header_speed(v)       ((v) << 16)
97 #define it_header_data_length(v) ((v) << 16)
98
99 struct iso_context {
100         struct fw_iso_context base;
101         struct tasklet_struct tasklet;
102         u32 control_set;
103         u32 control_clear;
104         u32 command_ptr;
105         u32 context_match;
106
107         struct descriptor *buffer;
108         dma_addr_t buffer_bus;
109         struct descriptor *head_descriptor;
110         struct descriptor *tail_descriptor;
111         struct descriptor *tail_descriptor_last;
112         struct descriptor *prev_descriptor;
113 };
114
115 #define CONFIG_ROM_SIZE 1024
116
117 struct fw_ohci {
118         struct fw_card card;
119
120         __iomem char *registers;
121         dma_addr_t self_id_bus;
122         __le32 *self_id_cpu;
123         struct tasklet_struct bus_reset_tasklet;
124         int generation;
125         int request_generation;
126
127         /* Spinlock for accessing fw_ohci data.  Never call out of
128          * this driver with this lock held. */
129         spinlock_t lock;
130         u32 self_id_buffer[512];
131
132         /* Config rom buffers */
133         __be32 *config_rom;
134         dma_addr_t config_rom_bus;
135         __be32 *next_config_rom;
136         dma_addr_t next_config_rom_bus;
137         u32 next_header;
138
139         struct ar_context ar_request_ctx;
140         struct ar_context ar_response_ctx;
141         struct at_context at_request_ctx;
142         struct at_context at_response_ctx;
143
144         u32 it_context_mask;
145         struct iso_context *it_context_list;
146         u32 ir_context_mask;
147         struct iso_context *ir_context_list;
148 };
149
150 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
151 {
152         return container_of(card, struct fw_ohci, card);
153 }
154
155 #define CONTEXT_CYCLE_MATCH_ENABLE      0x80000000
156
157 #define CONTEXT_RUN     0x8000
158 #define CONTEXT_WAKE    0x1000
159 #define CONTEXT_DEAD    0x0800
160 #define CONTEXT_ACTIVE  0x0400
161
162 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
163 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
164 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
165
166 #define FW_OHCI_MAJOR                   240
167 #define OHCI1394_REGISTER_SIZE          0x800
168 #define OHCI_LOOP_COUNT                 500
169 #define OHCI1394_PCI_HCI_Control        0x40
170 #define SELF_ID_BUF_SIZE                0x800
171
172 static char ohci_driver_name[] = KBUILD_MODNAME;
173
174 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
175 {
176         writel(data, ohci->registers + offset);
177 }
178
179 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
180 {
181         return readl(ohci->registers + offset);
182 }
183
184 static inline void flush_writes(const struct fw_ohci *ohci)
185 {
186         /* Do a dummy read to flush writes. */
187         reg_read(ohci, OHCI1394_Version);
188 }
189
190 static int
191 ohci_update_phy_reg(struct fw_card *card, int addr,
192                     int clear_bits, int set_bits)
193 {
194         struct fw_ohci *ohci = fw_ohci(card);
195         u32 val, old;
196
197         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
198         msleep(2);
199         val = reg_read(ohci, OHCI1394_PhyControl);
200         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
201                 fw_error("failed to set phy reg bits.\n");
202                 return -EBUSY;
203         }
204
205         old = OHCI1394_PhyControl_ReadData(val);
206         old = (old & ~clear_bits) | set_bits;
207         reg_write(ohci, OHCI1394_PhyControl,
208                   OHCI1394_PhyControl_Write(addr, old));
209
210         return 0;
211 }
212
213 static void ar_context_run(struct ar_context *ctx)
214 {
215         reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
216         reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
217         flush_writes(ctx->ohci);
218 }
219
220 static void ar_context_tasklet(unsigned long data)
221 {
222         struct ar_context *ctx = (struct ar_context *)data;
223         struct fw_ohci *ohci = ctx->ohci;
224         u32 status;
225         int length, speed, ack, timestamp, tcode;
226
227         /* FIXME: What to do about evt_* errors? */
228         length    = le16_to_cpu(ctx->descriptor.req_count) -
229                 le16_to_cpu(ctx->descriptor.res_count) - 4;
230         status    = le32_to_cpu(ctx->buffer[length / 4]);
231         ack       = ((status >> 16) & 0x1f) - 16;
232         speed     = (status >> 21) & 0x7;
233         timestamp = status & 0xffff;
234
235         ctx->buffer[0] = le32_to_cpu(ctx->buffer[0]);
236         ctx->buffer[1] = le32_to_cpu(ctx->buffer[1]);
237         ctx->buffer[2] = le32_to_cpu(ctx->buffer[2]);
238
239         tcode = (ctx->buffer[0] >> 4) & 0x0f;
240         if (TCODE_IS_BLOCK_PACKET(tcode))
241                 ctx->buffer[3] = le32_to_cpu(ctx->buffer[3]);
242
243         /* The OHCI bus reset handler synthesizes a phy packet with
244          * the new generation number when a bus reset happens (see
245          * section 8.4.2.3).  This helps us determine when a request
246          * was received and make sure we send the response in the same
247          * generation.  We only need this for requests; for responses
248          * we use the unique tlabel for finding the matching
249          * request. */
250
251         if (ack + 16 == 0x09)
252                 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
253         else if (ctx == &ohci->ar_request_ctx)
254                 fw_core_handle_request(&ohci->card, speed, ack, timestamp,
255                                        ohci->request_generation,
256                                        length, ctx->buffer);
257         else
258                 fw_core_handle_response(&ohci->card, speed, ack, timestamp,
259                                         length, ctx->buffer);
260
261         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
262         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
263         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
264
265         dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
266                                    sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
267
268         /* FIXME: We stop and restart the ar context here, what if we
269          * stop while a receive is in progress? Maybe we could just
270          * loop the context back to itself and use it in buffer fill
271          * mode as intended... */
272
273         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
274         ar_context_run(ctx);
275 }
276
277 static int
278 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
279 {
280         ctx->descriptor_bus =
281                 dma_map_single(ohci->card.device, &ctx->descriptor,
282                                sizeof ctx->descriptor, DMA_TO_DEVICE);
283         if (ctx->descriptor_bus == 0)
284                 return -ENOMEM;
285
286         if (ctx->descriptor_bus & 0xf)
287                 fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
288                           (unsigned long)ctx->descriptor_bus);
289
290         ctx->buffer_bus =
291                 dma_map_single(ohci->card.device, ctx->buffer,
292                                sizeof ctx->buffer, DMA_FROM_DEVICE);
293
294         if (ctx->buffer_bus == 0) {
295                 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
296                                  sizeof ctx->descriptor, DMA_TO_DEVICE);
297                 return -ENOMEM;
298         }
299
300         memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
301         ctx->descriptor.control      = cpu_to_le16(descriptor_input_more |
302                                                    descriptor_status |
303                                                    descriptor_branch_always);
304         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
305         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
306         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
307
308         ctx->control_set   = control_set;
309         ctx->control_clear = control_set + 4;
310         ctx->command_ptr   = control_set + 12;
311         ctx->ohci          = ohci;
312
313         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
314
315         ar_context_run(ctx);
316
317         return 0;
318 }
319
320 static void
321 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
322 {
323         struct fw_packet *p, *next;
324
325         list_for_each_entry_safe(p, next, list, link)
326                 p->callback(p, &ohci->card, p->status);
327 }
328
329 static void
330 complete_transmission(struct fw_packet *packet,
331                       int status, struct list_head *list)
332 {
333         list_move_tail(&packet->link, list);
334         packet->status = status;
335 }
336
337 /* This function prepares the first packet in the context queue for
338  * transmission.  Must always be called with the ochi->lock held to
339  * ensure proper generation handling and locking around packet queue
340  * manipulation. */
341 static void
342 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
343 {
344         struct fw_packet *packet;
345         struct fw_ohci *ohci = ctx->ohci;
346         int z, tcode;
347
348         packet = fw_packet(ctx->list.next);
349
350         memset(&ctx->d, 0, sizeof ctx->d);
351         if (packet->payload_length > 0) {
352                 packet->payload_bus = dma_map_single(ohci->card.device,
353                                                      packet->payload,
354                                                      packet->payload_length,
355                                                      DMA_TO_DEVICE);
356                 if (packet->payload_bus == 0) {
357                         complete_transmission(packet, -ENOMEM, list);
358                         return;
359                 }
360
361                 ctx->d.more.control      =
362                         cpu_to_le16(descriptor_output_more |
363                                     descriptor_key_immediate);
364                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
365                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
366                 ctx->d.last.control      =
367                         cpu_to_le16(descriptor_output_last |
368                                     descriptor_irq_always |
369                                     descriptor_branch_always);
370                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
371                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
372                 z = 3;
373         } else {
374                 ctx->d.more.control   =
375                         cpu_to_le16(descriptor_output_last |
376                                     descriptor_key_immediate |
377                                     descriptor_irq_always |
378                                     descriptor_branch_always);
379                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
380                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
381                 z = 2;
382         }
383
384         /* The DMA format for asyncronous link packets is different
385          * from the IEEE1394 layout, so shift the fields around
386          * accordingly.  If header_length is 8, it's a PHY packet, to
387          * which we need to prepend an extra quadlet. */
388         if (packet->header_length > 8) {
389                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
390                                                (packet->speed << 16));
391                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
392                                                (packet->header[0] & 0xffff0000));
393                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
394
395                 tcode = (packet->header[0] >> 4) & 0x0f;
396                 if (TCODE_IS_BLOCK_PACKET(tcode))
397                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
398                 else
399                         ctx->d.header[3] = packet->header[3];
400         } else {
401                 ctx->d.header[0] =
402                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
403                                     (packet->speed << 16));
404                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
405                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
406                 ctx->d.more.req_count = cpu_to_le16(12);
407         }
408
409         /* FIXME: Document how the locking works. */
410         if (ohci->generation == packet->generation) {
411                 reg_write(ctx->ohci, ctx->command_ptr,
412                           ctx->descriptor_bus | z);
413                 reg_write(ctx->ohci, ctx->control_set,
414                           CONTEXT_RUN | CONTEXT_WAKE);
415         } else {
416                 /* We dont return error codes from this function; all
417                  * transmission errors are reported through the
418                  * callback. */
419                 complete_transmission(packet, -ESTALE, list);
420         }
421 }
422
423 static void at_context_stop(struct at_context *ctx)
424 {
425         u32 reg;
426
427         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
428
429         reg = reg_read(ctx->ohci, ctx->control_set);
430         if (reg & CONTEXT_ACTIVE)
431                 fw_notify("Tried to stop context, but it is still active "
432                           "(0x%08x).\n", reg);
433 }
434
435 static void at_context_tasklet(unsigned long data)
436 {
437         struct at_context *ctx = (struct at_context *)data;
438         struct fw_ohci *ohci = ctx->ohci;
439         struct fw_packet *packet;
440         LIST_HEAD(list);
441         unsigned long flags;
442         int evt;
443
444         spin_lock_irqsave(&ohci->lock, flags);
445
446         packet = fw_packet(ctx->list.next);
447
448         at_context_stop(ctx);
449
450         if (packet->payload_length > 0) {
451                 dma_unmap_single(ohci->card.device, packet->payload_bus,
452                                  packet->payload_length, DMA_TO_DEVICE);
453                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
454                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
455         }
456         else {
457                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
458                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
459         }
460
461         if (evt < 16) {
462                 switch (evt) {
463                 case OHCI1394_evt_timeout:
464                         /* Async response transmit timed out. */
465                         complete_transmission(packet, -ETIMEDOUT, &list);
466                         break;
467
468                 case OHCI1394_evt_flushed:
469                         /* The packet was flushed should give same
470                          * error as when we try to use a stale
471                          * generation count. */
472                         complete_transmission(packet, -ESTALE, &list);
473                         break;
474
475                 case OHCI1394_evt_missing_ack:
476                         /* This would be a higher level software
477                          * error, it is using a valid (current)
478                          * generation count, but the node is not on
479                          * the bus. */
480                         complete_transmission(packet, -ENODEV, &list);
481                         break;
482
483                 default:
484                         complete_transmission(packet, -EIO, &list);
485                         break;
486                 }
487         } else
488                 complete_transmission(packet, evt - 16, &list);
489
490         /* If more packets are queued, set up the next one. */
491         if (!list_empty(&ctx->list))
492                 at_context_setup_packet(ctx, &list);
493
494         spin_unlock_irqrestore(&ohci->lock, flags);
495
496         do_packet_callbacks(ohci, &list);
497 }
498
499 static int
500 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
501 {
502         INIT_LIST_HEAD(&ctx->list);
503
504         ctx->descriptor_bus =
505                 dma_map_single(ohci->card.device, &ctx->d,
506                                sizeof ctx->d, DMA_TO_DEVICE);
507         if (ctx->descriptor_bus == 0)
508                 return -ENOMEM;
509
510         ctx->control_set   = control_set;
511         ctx->control_clear = control_set + 4;
512         ctx->command_ptr   = control_set + 12;
513         ctx->ohci          = ohci;
514
515         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
516
517         return 0;
518 }
519
520 static void
521 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
522 {
523         LIST_HEAD(list);
524         unsigned long flags;
525         int was_empty;
526
527         spin_lock_irqsave(&ctx->ohci->lock, flags);
528
529         was_empty = list_empty(&ctx->list);
530         list_add_tail(&packet->link, &ctx->list);
531         if (was_empty)
532                 at_context_setup_packet(ctx, &list);
533
534         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
535
536         do_packet_callbacks(ctx->ohci, &list);
537 }
538
539 static void bus_reset_tasklet(unsigned long data)
540 {
541         struct fw_ohci *ohci = (struct fw_ohci *)data;
542         int self_id_count, i, j, reg, node_id;
543         int generation, new_generation;
544         unsigned long flags;
545
546         reg = reg_read(ohci, OHCI1394_NodeID);
547         if (!(reg & OHCI1394_NodeID_idValid)) {
548                 fw_error("node ID not valid, new bus reset in progress\n");
549                 return;
550         }
551         node_id = reg & 0xffff;
552
553         /* The count in the SelfIDCount register is the number of
554          * bytes in the self ID receive buffer.  Since we also receive
555          * the inverted quadlets and a header quadlet, we shift one
556          * bit extra to get the actual number of self IDs. */
557
558         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
559         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
560
561         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
562                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
563                         fw_error("inconsistent self IDs\n");
564                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
565         }
566
567         /* Check the consistency of the self IDs we just read.  The
568          * problem we face is that a new bus reset can start while we
569          * read out the self IDs from the DMA buffer. If this happens,
570          * the DMA buffer will be overwritten with new self IDs and we
571          * will read out inconsistent data.  The OHCI specification
572          * (section 11.2) recommends a technique similar to
573          * linux/seqlock.h, where we remember the generation of the
574          * self IDs in the buffer before reading them out and compare
575          * it to the current generation after reading them out.  If
576          * the two generations match we know we have a consistent set
577          * of self IDs. */
578
579         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
580         if (new_generation != generation) {
581                 fw_notify("recursive bus reset detected, "
582                           "discarding self ids\n");
583                 return;
584         }
585
586         /* FIXME: Document how the locking works. */
587         spin_lock_irqsave(&ohci->lock, flags);
588
589         ohci->generation = generation;
590         at_context_stop(&ohci->at_request_ctx);
591         at_context_stop(&ohci->at_response_ctx);
592         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
593
594         /* This next bit is unrelated to the AT context stuff but we
595          * have to do it under the spinlock also.  If a new config rom
596          * was set up before this reset, the old one is now no longer
597          * in use and we can free it. Update the config rom pointers
598          * to point to the current config rom and clear the
599          * next_config_rom pointer so a new udpate can take place. */
600
601         if (ohci->next_config_rom != NULL) {
602                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
603                                   ohci->config_rom, ohci->config_rom_bus);
604                 ohci->config_rom      = ohci->next_config_rom;
605                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
606                 ohci->next_config_rom = NULL;
607
608                 /* Restore config_rom image and manually update
609                  * config_rom registers.  Writing the header quadlet
610                  * will indicate that the config rom is ready, so we
611                  * do that last. */
612                 reg_write(ohci, OHCI1394_BusOptions,
613                           be32_to_cpu(ohci->config_rom[2]));
614                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
615                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
616         }
617
618         spin_unlock_irqrestore(&ohci->lock, flags);
619
620         fw_core_handle_bus_reset(&ohci->card, node_id, generation,
621                                  self_id_count, ohci->self_id_buffer);
622 }
623
624 static irqreturn_t irq_handler(int irq, void *data)
625 {
626         struct fw_ohci *ohci = data;
627         u32 event, iso_event;
628         int i;
629
630         event = reg_read(ohci, OHCI1394_IntEventClear);
631
632         if (!event)
633                 return IRQ_NONE;
634
635         reg_write(ohci, OHCI1394_IntEventClear, event);
636
637         if (event & OHCI1394_selfIDComplete)
638                 tasklet_schedule(&ohci->bus_reset_tasklet);
639
640         if (event & OHCI1394_RQPkt)
641                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
642
643         if (event & OHCI1394_RSPkt)
644                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
645
646         if (event & OHCI1394_reqTxComplete)
647                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
648
649         if (event & OHCI1394_respTxComplete)
650                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
651
652         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
653         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
654
655         while (iso_event) {
656                 i = ffs(iso_event) - 1;
657                 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
658                 iso_event &= ~(1 << i);
659         }
660
661         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
662         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
663
664         while (iso_event) {
665                 i = ffs(iso_event) - 1;
666                 tasklet_schedule(&ohci->it_context_list[i].tasklet);
667                 iso_event &= ~(1 << i);
668         }
669
670         return IRQ_HANDLED;
671 }
672
673 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
674 {
675         struct fw_ohci *ohci = fw_ohci(card);
676         struct pci_dev *dev = to_pci_dev(card->device);
677
678         /* When the link is not yet enabled, the atomic config rom
679          * update mechanism described below in ohci_set_config_rom()
680          * is not active.  We have to update ConfigRomHeader and
681          * BusOptions manually, and the write to ConfigROMmap takes
682          * effect immediately.  We tie this to the enabling of the
683          * link, so we have a valid config rom before enabling - the
684          * OHCI requires that ConfigROMhdr and BusOptions have valid
685          * values before enabling.
686          *
687          * However, when the ConfigROMmap is written, some controllers
688          * always read back quadlets 0 and 2 from the config rom to
689          * the ConfigRomHeader and BusOptions registers on bus reset.
690          * They shouldn't do that in this initial case where the link
691          * isn't enabled.  This means we have to use the same
692          * workaround here, setting the bus header to 0 and then write
693          * the right values in the bus reset tasklet.
694          */
695
696         ohci->next_config_rom =
697                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
698                                    &ohci->next_config_rom_bus, GFP_KERNEL);
699         if (ohci->next_config_rom == NULL)
700                 return -ENOMEM;
701
702         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
703         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
704
705         ohci->next_header = config_rom[0];
706         ohci->next_config_rom[0] = 0;
707         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
708         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
709         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
710
711         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
712
713         if (request_irq(dev->irq, irq_handler,
714                         SA_SHIRQ, ohci_driver_name, ohci)) {
715                 fw_error("Failed to allocate shared interrupt %d.\n",
716                          dev->irq);
717                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
718                                   ohci->config_rom, ohci->config_rom_bus);
719                 return -EIO;
720         }
721
722         reg_write(ohci, OHCI1394_HCControlSet,
723                   OHCI1394_HCControl_linkEnable |
724                   OHCI1394_HCControl_BIBimageValid);
725         flush_writes(ohci);
726
727         /* We are ready to go, initiate bus reset to finish the
728          * initialization. */
729
730         fw_core_initiate_bus_reset(&ohci->card, 1);
731
732         return 0;
733 }
734
735 static int
736 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
737 {
738         struct fw_ohci *ohci;
739         unsigned long flags;
740         int retval = 0;
741         __be32 *next_config_rom;
742         dma_addr_t next_config_rom_bus;
743
744         ohci = fw_ohci(card);
745
746         /* When the OHCI controller is enabled, the config rom update
747          * mechanism is a bit tricky, but easy enough to use.  See
748          * section 5.5.6 in the OHCI specification.
749          *
750          * The OHCI controller caches the new config rom address in a
751          * shadow register (ConfigROMmapNext) and needs a bus reset
752          * for the changes to take place.  When the bus reset is
753          * detected, the controller loads the new values for the
754          * ConfigRomHeader and BusOptions registers from the specified
755          * config rom and loads ConfigROMmap from the ConfigROMmapNext
756          * shadow register. All automatically and atomically.
757          *
758          * Now, there's a twist to this story.  The automatic load of
759          * ConfigRomHeader and BusOptions doesn't honor the
760          * noByteSwapData bit, so with a be32 config rom, the
761          * controller will load be32 values in to these registers
762          * during the atomic update, even on litte endian
763          * architectures.  The workaround we use is to put a 0 in the
764          * header quadlet; 0 is endian agnostic and means that the
765          * config rom isn't ready yet.  In the bus reset tasklet we
766          * then set up the real values for the two registers.
767          *
768          * We use ohci->lock to avoid racing with the code that sets
769          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
770          */
771
772         next_config_rom =
773                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
774                                    &next_config_rom_bus, GFP_KERNEL);
775         if (next_config_rom == NULL)
776                 return -ENOMEM;
777
778         spin_lock_irqsave(&ohci->lock, flags);
779
780         if (ohci->next_config_rom == NULL) {
781                 ohci->next_config_rom = next_config_rom;
782                 ohci->next_config_rom_bus = next_config_rom_bus;
783
784                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
785                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
786                                   length * 4);
787
788                 ohci->next_header = config_rom[0];
789                 ohci->next_config_rom[0] = 0;
790
791                 reg_write(ohci, OHCI1394_ConfigROMmap,
792                           ohci->next_config_rom_bus);
793         } else {
794                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
795                                   next_config_rom, next_config_rom_bus);
796                 retval = -EBUSY;
797         }
798
799         spin_unlock_irqrestore(&ohci->lock, flags);
800
801         /* Now initiate a bus reset to have the changes take
802          * effect. We clean up the old config rom memory and DMA
803          * mappings in the bus reset tasklet, since the OHCI
804          * controller could need to access it before the bus reset
805          * takes effect. */
806         if (retval == 0)
807                 fw_core_initiate_bus_reset(&ohci->card, 1);
808
809         return retval;
810 }
811
812 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
813 {
814         struct fw_ohci *ohci = fw_ohci(card);
815
816         at_context_transmit(&ohci->at_request_ctx, packet);
817 }
818
819 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
820 {
821         struct fw_ohci *ohci = fw_ohci(card);
822
823         at_context_transmit(&ohci->at_response_ctx, packet);
824 }
825
826 static int
827 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
828 {
829         struct fw_ohci *ohci = fw_ohci(card);
830         unsigned long flags;
831         int retval = 0;
832
833         /* FIXME: make sure this bitmask is cleared when we clear the
834          * busReset interrupt bit. */
835
836         spin_lock_irqsave(&ohci->lock, flags);
837
838         if (ohci->generation != generation) {
839                 retval = -ESTALE;
840                 goto out;
841         }
842
843         if (node_id < 32) {
844                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << node_id);
845         } else {
846                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
847                           1 << (node_id - 32));
848         }
849         flush_writes(ohci);
850  out:
851         spin_unlock_irqrestore(&ohci->lock, flags);
852         return retval;
853 }
854
855 static void ir_context_tasklet(unsigned long data)
856 {
857         struct iso_context *ctx = (struct iso_context *)data;
858
859         (void)ctx;
860 }
861
862 #define ISO_BUFFER_SIZE (64 * 1024)
863
864 static void flush_iso_context(struct iso_context *ctx)
865 {
866         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
867         struct descriptor *d, *last;
868         u32 address;
869         int z;
870
871         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
872                                 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
873
874         d    = ctx->tail_descriptor;
875         last = ctx->tail_descriptor_last;
876
877         while (last->branch_address != 0 && last->transfer_status != 0) {
878                 address = le32_to_cpu(last->branch_address);
879                 z = address & 0xf;
880                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
881
882                 if (z == 2)
883                         last = d;
884                 else
885                         last = d + z - 1;
886
887                 if (le16_to_cpu(last->control) & descriptor_irq_always)
888                         ctx->base.callback(&ctx->base,
889                                            0, le16_to_cpu(last->res_count),
890                                            ctx->base.callback_data);
891         }
892
893         ctx->tail_descriptor      = d;
894         ctx->tail_descriptor_last = last;
895 }
896
897 static void it_context_tasklet(unsigned long data)
898 {
899         struct iso_context *ctx = (struct iso_context *)data;
900
901         flush_iso_context(ctx);
902 }
903
904 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
905                                                         int type)
906 {
907         struct fw_ohci *ohci = fw_ohci(card);
908         struct iso_context *ctx, *list;
909         void (*tasklet) (unsigned long data);
910         u32 *mask;
911         unsigned long flags;
912         int index;
913
914         if (type == FW_ISO_CONTEXT_TRANSMIT) {
915                 mask = &ohci->it_context_mask;
916                 list = ohci->it_context_list;
917                 tasklet = it_context_tasklet;
918         } else {
919                 mask = &ohci->ir_context_mask;
920                 list = ohci->ir_context_list;
921                 tasklet = ir_context_tasklet;
922         }
923
924         spin_lock_irqsave(&ohci->lock, flags);
925         index = ffs(*mask) - 1;
926         if (index >= 0)
927                 *mask &= ~(1 << index);
928         spin_unlock_irqrestore(&ohci->lock, flags);
929
930         if (index < 0)
931                 return ERR_PTR(-EBUSY);
932
933         ctx = &list[index];
934         memset(ctx, 0, sizeof *ctx);
935         tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
936
937         ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
938         if (ctx->buffer == NULL) {
939                 spin_lock_irqsave(&ohci->lock, flags);
940                 *mask |= 1 << index;
941                 spin_unlock_irqrestore(&ohci->lock, flags);
942                 return ERR_PTR(-ENOMEM);
943         }
944
945         ctx->buffer_bus =
946             dma_map_single(card->device, ctx->buffer,
947                            ISO_BUFFER_SIZE, DMA_TO_DEVICE);
948
949         ctx->head_descriptor      = ctx->buffer;
950         ctx->prev_descriptor      = ctx->buffer;
951         ctx->tail_descriptor      = ctx->buffer;
952         ctx->tail_descriptor_last = ctx->buffer;
953
954         /* We put a dummy descriptor in the buffer that has a NULL
955          * branch address and looks like it's been sent.  That way we
956          * have a descriptor to append DMA programs to.  Also, the
957          * ring buffer invariant is that it always has at least one
958          * element so that head == tail means buffer full. */
959
960         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
961         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
962         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
963         ctx->head_descriptor++;
964
965         return &ctx->base;
966 }
967
968 static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
969 {
970         struct iso_context *ctx = (struct iso_context *)base;
971         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
972         u32 cycle_match = 0;
973         int index;
974
975         index = ctx - ohci->it_context_list;
976         if (cycle > 0)
977                 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
978                         (cycle & 0x7fff) << 16;
979
980         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
981         reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
982                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
983         reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
984         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
985                   CONTEXT_RUN | cycle_match);
986         flush_writes(ohci);
987
988         return 0;
989 }
990
991 static void ohci_free_iso_context(struct fw_iso_context *base)
992 {
993         struct fw_ohci *ohci = fw_ohci(base->card);
994         struct iso_context *ctx = (struct iso_context *)base;
995         unsigned long flags;
996         int index;
997
998         flush_iso_context(ctx);
999
1000         spin_lock_irqsave(&ohci->lock, flags);
1001
1002         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1003                 index = ctx - ohci->it_context_list;
1004                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1005                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1006                 ohci->it_context_mask |= 1 << index;
1007         } else {
1008                 index = ctx - ohci->ir_context_list;
1009                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1010                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1011                 ohci->ir_context_mask |= 1 << index;
1012         }
1013         flush_writes(ohci);
1014
1015         dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1016                          ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1017
1018         spin_unlock_irqrestore(&ohci->lock, flags);
1019 }
1020
1021 static int
1022 ohci_queue_iso(struct fw_iso_context *base,
1023                struct fw_iso_packet *packet, void *payload)
1024 {
1025         struct iso_context *ctx = (struct iso_context *)base;
1026         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1027         struct descriptor *d, *end, *last, *tail, *pd;
1028         struct fw_iso_packet *p;
1029         __le32 *header;
1030         dma_addr_t d_bus;
1031         u32 z, header_z, payload_z, irq;
1032         u32 payload_index, payload_end_index, next_page_index;
1033         int index, page, end_page, i, length, offset;
1034
1035         /* FIXME: Cycle lost behavior should be configurable: lose
1036          * packet, retransmit or terminate.. */
1037
1038         p = packet;
1039         payload_index = payload - ctx->base.buffer;
1040         d = ctx->head_descriptor;
1041         tail = ctx->tail_descriptor;
1042         end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1043
1044         if (p->skip)
1045                 z = 1;
1046         else
1047                 z = 2;
1048         if (p->header_length > 0)
1049                 z++;
1050
1051         /* Determine the first page the payload isn't contained in. */
1052         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1053         if (p->payload_length > 0)
1054                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1055         else
1056                 payload_z = 0;
1057
1058         z += payload_z;
1059
1060         /* Get header size in number of descriptors. */
1061         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1062
1063         if (d + z + header_z <= tail) {
1064                 goto has_space;
1065         } else if (d > tail && d + z + header_z <= end) {
1066                 goto has_space;
1067         } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1068                 d = ctx->buffer;
1069                 goto has_space;
1070         }
1071
1072         /* No space in buffer */
1073         return -1;
1074
1075  has_space:
1076         memset(d, 0, (z + header_z) * sizeof *d);
1077         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1078
1079         if (!p->skip) {
1080                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1081                 d[0].req_count = cpu_to_le16(8);
1082
1083                 header = (__le32 *) &d[1];
1084                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1085                                         it_header_tag(p->tag) |
1086                                         it_header_tcode(TCODE_STREAM_DATA) |
1087                                         it_header_channel(ctx->base.channel) |
1088                                         it_header_speed(ctx->base.speed));
1089                 header[1] =
1090                         cpu_to_le32(it_header_data_length(p->header_length +
1091                                                           p->payload_length));
1092         }
1093
1094         if (p->header_length > 0) {
1095                 d[2].req_count    = cpu_to_le16(p->header_length);
1096                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1097                 memcpy(&d[z], p->header, p->header_length);
1098         }
1099
1100         pd = d + z - payload_z;
1101         payload_end_index = payload_index + p->payload_length;
1102         for (i = 0; i < payload_z; i++) {
1103                 page               = payload_index >> PAGE_SHIFT;
1104                 offset             = payload_index & ~PAGE_MASK;
1105                 next_page_index    = (page + 1) << PAGE_SHIFT;
1106                 length             =
1107                         min(next_page_index, payload_end_index) - payload_index;
1108                 pd[i].req_count    = cpu_to_le16(length);
1109                 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1110
1111                 payload_index += length;
1112         }
1113
1114         if (z == 2)
1115                 last = d;
1116         else
1117                 last = d + z - 1;
1118
1119         if (p->interrupt)
1120                 irq = descriptor_irq_always;
1121         else
1122                 irq = descriptor_no_irq;
1123
1124         last->control = cpu_to_le16(descriptor_output_last |
1125                                     descriptor_status |
1126                                     descriptor_branch_always |
1127                                     irq);
1128
1129         dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1130                                    ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1131
1132         ctx->head_descriptor = d + z + header_z;
1133         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1134         ctx->prev_descriptor = last;
1135
1136         index = ctx - ohci->it_context_list;
1137         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1138         flush_writes(ohci);
1139
1140         return 0;
1141 }
1142
1143 static const struct fw_card_driver ohci_driver = {
1144         .name                   = ohci_driver_name,
1145         .enable                 = ohci_enable,
1146         .update_phy_reg         = ohci_update_phy_reg,
1147         .set_config_rom         = ohci_set_config_rom,
1148         .send_request           = ohci_send_request,
1149         .send_response          = ohci_send_response,
1150         .enable_phys_dma        = ohci_enable_phys_dma,
1151
1152         .allocate_iso_context   = ohci_allocate_iso_context,
1153         .free_iso_context       = ohci_free_iso_context,
1154         .queue_iso              = ohci_queue_iso,
1155         .send_iso               = ohci_send_iso,
1156 };
1157
1158 static int software_reset(struct fw_ohci *ohci)
1159 {
1160         int i;
1161
1162         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1163
1164         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1165                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1166                      OHCI1394_HCControl_softReset) == 0)
1167                         return 0;
1168                 msleep(1);
1169         }
1170
1171         return -EBUSY;
1172 }
1173
1174 /* ---------- pci subsystem interface ---------- */
1175
1176 enum {
1177         CLEANUP_SELF_ID,
1178         CLEANUP_REGISTERS,
1179         CLEANUP_IOMEM,
1180         CLEANUP_DISABLE,
1181         CLEANUP_PUT_CARD,
1182 };
1183
1184 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1185 {
1186         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1187
1188         switch (stage) {
1189         case CLEANUP_SELF_ID:
1190                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1191                                   ohci->self_id_cpu, ohci->self_id_bus);
1192         case CLEANUP_REGISTERS:
1193                 kfree(ohci->it_context_list);
1194                 kfree(ohci->ir_context_list);
1195                 pci_iounmap(dev, ohci->registers);
1196         case CLEANUP_IOMEM:
1197                 pci_release_region(dev, 0);
1198         case CLEANUP_DISABLE:
1199                 pci_disable_device(dev);
1200         case CLEANUP_PUT_CARD:
1201                 fw_card_put(&ohci->card);
1202         }
1203
1204         return code;
1205 }
1206
1207 static int __devinit
1208 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1209 {
1210         struct fw_ohci *ohci;
1211         u32 bus_options, max_receive, link_speed;
1212         u64 guid;
1213         int error_code;
1214         size_t size;
1215
1216         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1217         if (ohci == NULL) {
1218                 fw_error("Could not malloc fw_ohci data.\n");
1219                 return -ENOMEM;
1220         }
1221
1222         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1223
1224         if (pci_enable_device(dev)) {
1225                 fw_error("Failed to enable OHCI hardware.\n");
1226                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1227         }
1228
1229         pci_set_master(dev);
1230         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1231         pci_set_drvdata(dev, ohci);
1232
1233         spin_lock_init(&ohci->lock);
1234
1235         tasklet_init(&ohci->bus_reset_tasklet,
1236                      bus_reset_tasklet, (unsigned long)ohci);
1237
1238         if (pci_request_region(dev, 0, ohci_driver_name)) {
1239                 fw_error("MMIO resource unavailable\n");
1240                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1241         }
1242
1243         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1244         if (ohci->registers == NULL) {
1245                 fw_error("Failed to remap registers\n");
1246                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1247         }
1248
1249         if (software_reset(ohci)) {
1250                 fw_error("Failed to reset ohci card.\n");
1251                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1252         }
1253
1254         /* Now enable LPS, which we need in order to start accessing
1255          * most of the registers.  In fact, on some cards (ALI M5251),
1256          * accessing registers in the SClk domain without LPS enabled
1257          * will lock up the machine.  Wait 50msec to make sure we have
1258          * full link enabled.  */
1259         reg_write(ohci, OHCI1394_HCControlSet,
1260                   OHCI1394_HCControl_LPS |
1261                   OHCI1394_HCControl_postedWriteEnable);
1262         flush_writes(ohci);
1263         msleep(50);
1264
1265         reg_write(ohci, OHCI1394_HCControlClear,
1266                   OHCI1394_HCControl_noByteSwapData);
1267
1268         reg_write(ohci, OHCI1394_LinkControlSet,
1269                   OHCI1394_LinkControl_rcvSelfID |
1270                   OHCI1394_LinkControl_cycleTimerEnable |
1271                   OHCI1394_LinkControl_cycleMaster);
1272
1273         ar_context_init(&ohci->ar_request_ctx, ohci,
1274                         OHCI1394_AsReqRcvContextControlSet);
1275
1276         ar_context_init(&ohci->ar_response_ctx, ohci,
1277                         OHCI1394_AsRspRcvContextControlSet);
1278
1279         at_context_init(&ohci->at_request_ctx, ohci,
1280                         OHCI1394_AsReqTrContextControlSet);
1281
1282         at_context_init(&ohci->at_response_ctx, ohci,
1283                         OHCI1394_AsRspTrContextControlSet);
1284
1285         reg_write(ohci, OHCI1394_ATRetries,
1286                   OHCI1394_MAX_AT_REQ_RETRIES |
1287                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1288                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1289
1290         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1291         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1292         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1293         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1294         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1295
1296         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1297         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1298         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1299         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1300         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1301
1302         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1303                 fw_error("Out of memory for it/ir contexts.\n");
1304                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1305         }
1306
1307         /* self-id dma buffer allocation */
1308         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1309                                                SELF_ID_BUF_SIZE,
1310                                                &ohci->self_id_bus,
1311                                                GFP_KERNEL);
1312         if (ohci->self_id_cpu == NULL) {
1313                 fw_error("Out of memory for self ID buffer.\n");
1314                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1315         }
1316
1317         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1318         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1319         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1320         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1321         reg_write(ohci, OHCI1394_IntMaskSet,
1322                   OHCI1394_selfIDComplete |
1323                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1324                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1325                   OHCI1394_isochRx | OHCI1394_isochTx |
1326                   OHCI1394_masterIntEnable);
1327
1328         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1329         max_receive = (bus_options >> 12) & 0xf;
1330         link_speed = bus_options & 0x7;
1331         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1332                 reg_read(ohci, OHCI1394_GUIDLo);
1333
1334         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1335         if (error_code < 0)
1336                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1337
1338         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1339
1340         return 0;
1341 }
1342
1343 static void pci_remove(struct pci_dev *dev)
1344 {
1345         struct fw_ohci *ohci;
1346
1347         ohci = pci_get_drvdata(dev);
1348         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1349         fw_core_remove_card(&ohci->card);
1350
1351         /* FIXME: Fail all pending packets here, now that the upper
1352          * layers can't queue any more. */
1353
1354         software_reset(ohci);
1355         free_irq(dev->irq, ohci);
1356         cleanup(ohci, CLEANUP_SELF_ID, 0);
1357
1358         fw_notify("Removed fw-ohci device.\n");
1359 }
1360
1361 static struct pci_device_id pci_table[] = {
1362         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1363         { }
1364 };
1365
1366 MODULE_DEVICE_TABLE(pci, pci_table);
1367
1368 static struct pci_driver fw_ohci_pci_driver = {
1369         .name           = ohci_driver_name,
1370         .id_table       = pci_table,
1371         .probe          = pci_probe,
1372         .remove         = pci_remove,
1373 };
1374
1375 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1376 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1377 MODULE_LICENSE("GPL");
1378
1379 static int __init fw_ohci_init(void)
1380 {
1381         return pci_register_driver(&fw_ohci_pci_driver);
1382 }
1383
1384 static void __exit fw_ohci_cleanup(void)
1385 {
1386         pci_unregister_driver(&fw_ohci_pci_driver);
1387 }
1388
1389 module_init(fw_ohci_init);
1390 module_exit(fw_ohci_cleanup);