firewire: Use struct fw_packet for incoming packets too in controller interface.
[safe/jmp/linux-2.6] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48
49 struct descriptor {
50         __le16 req_count;
51         __le16 control;
52         __le32 data_address;
53         __le32 branch_address;
54         __le16 res_count;
55         __le16 transfer_status;
56 } __attribute__((aligned(16)));
57
58 struct ar_context {
59         struct fw_ohci *ohci;
60         struct descriptor descriptor;
61         __le32 buffer[512];
62         dma_addr_t descriptor_bus;
63         dma_addr_t buffer_bus;
64
65         u32 command_ptr;
66         u32 control_set;
67         u32 control_clear;
68
69         struct tasklet_struct tasklet;
70 };
71
72 struct at_context {
73         struct fw_ohci *ohci;
74         dma_addr_t descriptor_bus;
75         dma_addr_t buffer_bus;
76
77         struct list_head list;
78
79         struct {
80                 struct descriptor more;
81                 __le32 header[4];
82                 struct descriptor last;
83         } d;
84
85         u32 command_ptr;
86         u32 control_set;
87         u32 control_clear;
88
89         struct tasklet_struct tasklet;
90 };
91
92 #define it_header_sy(v)          ((v) <<  0)
93 #define it_header_tcode(v)       ((v) <<  4)
94 #define it_header_channel(v)     ((v) <<  8)
95 #define it_header_tag(v)         ((v) << 14)
96 #define it_header_speed(v)       ((v) << 16)
97 #define it_header_data_length(v) ((v) << 16)
98
99 struct iso_context {
100         struct fw_iso_context base;
101         struct tasklet_struct tasklet;
102         u32 control_set;
103         u32 control_clear;
104         u32 command_ptr;
105         u32 context_match;
106
107         struct descriptor *buffer;
108         dma_addr_t buffer_bus;
109         struct descriptor *head_descriptor;
110         struct descriptor *tail_descriptor;
111         struct descriptor *tail_descriptor_last;
112         struct descriptor *prev_descriptor;
113 };
114
115 #define CONFIG_ROM_SIZE 1024
116
117 struct fw_ohci {
118         struct fw_card card;
119
120         __iomem char *registers;
121         dma_addr_t self_id_bus;
122         __le32 *self_id_cpu;
123         struct tasklet_struct bus_reset_tasklet;
124         int generation;
125         int request_generation;
126
127         /* Spinlock for accessing fw_ohci data.  Never call out of
128          * this driver with this lock held. */
129         spinlock_t lock;
130         u32 self_id_buffer[512];
131
132         /* Config rom buffers */
133         __be32 *config_rom;
134         dma_addr_t config_rom_bus;
135         __be32 *next_config_rom;
136         dma_addr_t next_config_rom_bus;
137         u32 next_header;
138
139         struct ar_context ar_request_ctx;
140         struct ar_context ar_response_ctx;
141         struct at_context at_request_ctx;
142         struct at_context at_response_ctx;
143
144         u32 it_context_mask;
145         struct iso_context *it_context_list;
146         u32 ir_context_mask;
147         struct iso_context *ir_context_list;
148 };
149
150 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
151 {
152         return container_of(card, struct fw_ohci, card);
153 }
154
155 #define CONTEXT_CYCLE_MATCH_ENABLE      0x80000000
156
157 #define CONTEXT_RUN     0x8000
158 #define CONTEXT_WAKE    0x1000
159 #define CONTEXT_DEAD    0x0800
160 #define CONTEXT_ACTIVE  0x0400
161
162 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
163 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
164 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
165
166 #define FW_OHCI_MAJOR                   240
167 #define OHCI1394_REGISTER_SIZE          0x800
168 #define OHCI_LOOP_COUNT                 500
169 #define OHCI1394_PCI_HCI_Control        0x40
170 #define SELF_ID_BUF_SIZE                0x800
171
172 static char ohci_driver_name[] = KBUILD_MODNAME;
173
174 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
175 {
176         writel(data, ohci->registers + offset);
177 }
178
179 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
180 {
181         return readl(ohci->registers + offset);
182 }
183
184 static inline void flush_writes(const struct fw_ohci *ohci)
185 {
186         /* Do a dummy read to flush writes. */
187         reg_read(ohci, OHCI1394_Version);
188 }
189
190 static int
191 ohci_update_phy_reg(struct fw_card *card, int addr,
192                     int clear_bits, int set_bits)
193 {
194         struct fw_ohci *ohci = fw_ohci(card);
195         u32 val, old;
196
197         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
198         msleep(2);
199         val = reg_read(ohci, OHCI1394_PhyControl);
200         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
201                 fw_error("failed to set phy reg bits.\n");
202                 return -EBUSY;
203         }
204
205         old = OHCI1394_PhyControl_ReadData(val);
206         old = (old & ~clear_bits) | set_bits;
207         reg_write(ohci, OHCI1394_PhyControl,
208                   OHCI1394_PhyControl_Write(addr, old));
209
210         return 0;
211 }
212
213 static void ar_context_run(struct ar_context *ctx)
214 {
215         reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
216         reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
217         flush_writes(ctx->ohci);
218 }
219
220 static void ar_context_tasklet(unsigned long data)
221 {
222         struct ar_context *ctx = (struct ar_context *)data;
223         struct fw_ohci *ohci = ctx->ohci;
224         struct fw_packet p;
225         u32 status, length, tcode;
226
227         /* FIXME: What to do about evt_* errors? */
228         length    = le16_to_cpu(ctx->descriptor.req_count) -
229                 le16_to_cpu(ctx->descriptor.res_count) - 4;
230         status    = le32_to_cpu(ctx->buffer[length / 4]);
231
232         p.ack        = ((status >> 16) & 0x1f) - 16;
233         p.speed      = (status >> 21) & 0x7;
234         p.timestamp  = status & 0xffff;
235         p.generation = ohci->request_generation;
236
237         p.header[0] = le32_to_cpu(ctx->buffer[0]);
238         p.header[1] = le32_to_cpu(ctx->buffer[1]);
239         p.header[2] = le32_to_cpu(ctx->buffer[2]);
240
241         tcode = (p.header[0] >> 4) & 0x0f;
242         switch (tcode) {
243         case TCODE_WRITE_QUADLET_REQUEST:
244         case TCODE_READ_QUADLET_RESPONSE:
245                 p.header[3] = ctx->buffer[3];
246                 p.header_length = 16;
247                 break;
248
249         case TCODE_WRITE_BLOCK_REQUEST:
250         case TCODE_READ_BLOCK_REQUEST :
251         case TCODE_READ_BLOCK_RESPONSE:
252         case TCODE_LOCK_REQUEST:
253         case TCODE_LOCK_RESPONSE:
254                 p.header[3] = le32_to_cpu(ctx->buffer[3]);
255                 p.header_length = 16;
256                 break;
257
258         case TCODE_WRITE_RESPONSE:
259         case TCODE_READ_QUADLET_REQUEST:
260                 p.header_length = 12;
261                 break;
262         }
263
264         p.payload = (void *) ctx->buffer + p.header_length;
265         p.payload_length = length - p.header_length;
266
267         /* The OHCI bus reset handler synthesizes a phy packet with
268          * the new generation number when a bus reset happens (see
269          * section 8.4.2.3).  This helps us determine when a request
270          * was received and make sure we send the response in the same
271          * generation.  We only need this for requests; for responses
272          * we use the unique tlabel for finding the matching
273          * request. */
274
275         if (p.ack + 16 == 0x09)
276                 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
277         else if (ctx == &ohci->ar_request_ctx)
278                 fw_core_handle_request(&ohci->card, &p);
279         else
280                 fw_core_handle_response(&ohci->card, &p);
281
282         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
283         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
284         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
285
286         dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
287                                    sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
288
289         /* FIXME: We stop and restart the ar context here, what if we
290          * stop while a receive is in progress? Maybe we could just
291          * loop the context back to itself and use it in buffer fill
292          * mode as intended... */
293
294         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
295         ar_context_run(ctx);
296 }
297
298 static int
299 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
300 {
301         ctx->descriptor_bus =
302                 dma_map_single(ohci->card.device, &ctx->descriptor,
303                                sizeof ctx->descriptor, DMA_TO_DEVICE);
304         if (ctx->descriptor_bus == 0)
305                 return -ENOMEM;
306
307         if (ctx->descriptor_bus & 0xf)
308                 fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
309                           (unsigned long)ctx->descriptor_bus);
310
311         ctx->buffer_bus =
312                 dma_map_single(ohci->card.device, ctx->buffer,
313                                sizeof ctx->buffer, DMA_FROM_DEVICE);
314
315         if (ctx->buffer_bus == 0) {
316                 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
317                                  sizeof ctx->descriptor, DMA_TO_DEVICE);
318                 return -ENOMEM;
319         }
320
321         memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
322         ctx->descriptor.control      = cpu_to_le16(descriptor_input_more |
323                                                    descriptor_status |
324                                                    descriptor_branch_always);
325         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
326         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
327         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
328
329         ctx->control_set   = control_set;
330         ctx->control_clear = control_set + 4;
331         ctx->command_ptr   = control_set + 12;
332         ctx->ohci          = ohci;
333
334         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
335
336         ar_context_run(ctx);
337
338         return 0;
339 }
340
341 static void
342 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
343 {
344         struct fw_packet *p, *next;
345
346         list_for_each_entry_safe(p, next, list, link)
347                 p->callback(p, &ohci->card, p->ack);
348 }
349
350 static void
351 complete_transmission(struct fw_packet *packet,
352                       int ack, struct list_head *list)
353 {
354         list_move_tail(&packet->link, list);
355         packet->ack = ack;
356 }
357
358 /* This function prepares the first packet in the context queue for
359  * transmission.  Must always be called with the ochi->lock held to
360  * ensure proper generation handling and locking around packet queue
361  * manipulation. */
362 static void
363 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
364 {
365         struct fw_packet *packet;
366         struct fw_ohci *ohci = ctx->ohci;
367         int z, tcode;
368
369         packet = fw_packet(ctx->list.next);
370
371         memset(&ctx->d, 0, sizeof ctx->d);
372         if (packet->payload_length > 0) {
373                 packet->payload_bus = dma_map_single(ohci->card.device,
374                                                      packet->payload,
375                                                      packet->payload_length,
376                                                      DMA_TO_DEVICE);
377                 if (packet->payload_bus == 0) {
378                         complete_transmission(packet, -ENOMEM, list);
379                         return;
380                 }
381
382                 ctx->d.more.control      =
383                         cpu_to_le16(descriptor_output_more |
384                                     descriptor_key_immediate);
385                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
386                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
387                 ctx->d.last.control      =
388                         cpu_to_le16(descriptor_output_last |
389                                     descriptor_irq_always |
390                                     descriptor_branch_always);
391                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
392                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
393                 z = 3;
394         } else {
395                 ctx->d.more.control   =
396                         cpu_to_le16(descriptor_output_last |
397                                     descriptor_key_immediate |
398                                     descriptor_irq_always |
399                                     descriptor_branch_always);
400                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
401                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
402                 z = 2;
403         }
404
405         /* The DMA format for asyncronous link packets is different
406          * from the IEEE1394 layout, so shift the fields around
407          * accordingly.  If header_length is 8, it's a PHY packet, to
408          * which we need to prepend an extra quadlet. */
409         if (packet->header_length > 8) {
410                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
411                                                (packet->speed << 16));
412                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
413                                                (packet->header[0] & 0xffff0000));
414                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
415
416                 tcode = (packet->header[0] >> 4) & 0x0f;
417                 if (TCODE_IS_BLOCK_PACKET(tcode))
418                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
419                 else
420                         ctx->d.header[3] = packet->header[3];
421         } else {
422                 ctx->d.header[0] =
423                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
424                                     (packet->speed << 16));
425                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
426                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
427                 ctx->d.more.req_count = cpu_to_le16(12);
428         }
429
430         /* FIXME: Document how the locking works. */
431         if (ohci->generation == packet->generation) {
432                 reg_write(ctx->ohci, ctx->command_ptr,
433                           ctx->descriptor_bus | z);
434                 reg_write(ctx->ohci, ctx->control_set,
435                           CONTEXT_RUN | CONTEXT_WAKE);
436         } else {
437                 /* We dont return error codes from this function; all
438                  * transmission errors are reported through the
439                  * callback. */
440                 complete_transmission(packet, -ESTALE, list);
441         }
442 }
443
444 static void at_context_stop(struct at_context *ctx)
445 {
446         u32 reg;
447
448         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
449
450         reg = reg_read(ctx->ohci, ctx->control_set);
451         if (reg & CONTEXT_ACTIVE)
452                 fw_notify("Tried to stop context, but it is still active "
453                           "(0x%08x).\n", reg);
454 }
455
456 static void at_context_tasklet(unsigned long data)
457 {
458         struct at_context *ctx = (struct at_context *)data;
459         struct fw_ohci *ohci = ctx->ohci;
460         struct fw_packet *packet;
461         LIST_HEAD(list);
462         unsigned long flags;
463         int evt;
464
465         spin_lock_irqsave(&ohci->lock, flags);
466
467         packet = fw_packet(ctx->list.next);
468
469         at_context_stop(ctx);
470
471         if (packet->payload_length > 0) {
472                 dma_unmap_single(ohci->card.device, packet->payload_bus,
473                                  packet->payload_length, DMA_TO_DEVICE);
474                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
475                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
476         }
477         else {
478                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
479                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
480         }
481
482         if (evt < 16) {
483                 switch (evt) {
484                 case OHCI1394_evt_timeout:
485                         /* Async response transmit timed out. */
486                         complete_transmission(packet, -ETIMEDOUT, &list);
487                         break;
488
489                 case OHCI1394_evt_flushed:
490                         /* The packet was flushed should give same
491                          * error as when we try to use a stale
492                          * generation count. */
493                         complete_transmission(packet, -ESTALE, &list);
494                         break;
495
496                 case OHCI1394_evt_missing_ack:
497                         /* This would be a higher level software
498                          * error, it is using a valid (current)
499                          * generation count, but the node is not on
500                          * the bus. */
501                         complete_transmission(packet, -ENODEV, &list);
502                         break;
503
504                 default:
505                         complete_transmission(packet, -EIO, &list);
506                         break;
507                 }
508         } else
509                 complete_transmission(packet, evt - 16, &list);
510
511         /* If more packets are queued, set up the next one. */
512         if (!list_empty(&ctx->list))
513                 at_context_setup_packet(ctx, &list);
514
515         spin_unlock_irqrestore(&ohci->lock, flags);
516
517         do_packet_callbacks(ohci, &list);
518 }
519
520 static int
521 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
522 {
523         INIT_LIST_HEAD(&ctx->list);
524
525         ctx->descriptor_bus =
526                 dma_map_single(ohci->card.device, &ctx->d,
527                                sizeof ctx->d, DMA_TO_DEVICE);
528         if (ctx->descriptor_bus == 0)
529                 return -ENOMEM;
530
531         ctx->control_set   = control_set;
532         ctx->control_clear = control_set + 4;
533         ctx->command_ptr   = control_set + 12;
534         ctx->ohci          = ohci;
535
536         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
537
538         return 0;
539 }
540
541 static void
542 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
543 {
544         LIST_HEAD(list);
545         unsigned long flags;
546         int was_empty;
547
548         spin_lock_irqsave(&ctx->ohci->lock, flags);
549
550         was_empty = list_empty(&ctx->list);
551         list_add_tail(&packet->link, &ctx->list);
552         if (was_empty)
553                 at_context_setup_packet(ctx, &list);
554
555         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
556
557         do_packet_callbacks(ctx->ohci, &list);
558 }
559
560 static void bus_reset_tasklet(unsigned long data)
561 {
562         struct fw_ohci *ohci = (struct fw_ohci *)data;
563         int self_id_count, i, j, reg, node_id;
564         int generation, new_generation;
565         unsigned long flags;
566
567         reg = reg_read(ohci, OHCI1394_NodeID);
568         if (!(reg & OHCI1394_NodeID_idValid)) {
569                 fw_error("node ID not valid, new bus reset in progress\n");
570                 return;
571         }
572         node_id = reg & 0xffff;
573
574         /* The count in the SelfIDCount register is the number of
575          * bytes in the self ID receive buffer.  Since we also receive
576          * the inverted quadlets and a header quadlet, we shift one
577          * bit extra to get the actual number of self IDs. */
578
579         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
580         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
581
582         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
583                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
584                         fw_error("inconsistent self IDs\n");
585                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
586         }
587
588         /* Check the consistency of the self IDs we just read.  The
589          * problem we face is that a new bus reset can start while we
590          * read out the self IDs from the DMA buffer. If this happens,
591          * the DMA buffer will be overwritten with new self IDs and we
592          * will read out inconsistent data.  The OHCI specification
593          * (section 11.2) recommends a technique similar to
594          * linux/seqlock.h, where we remember the generation of the
595          * self IDs in the buffer before reading them out and compare
596          * it to the current generation after reading them out.  If
597          * the two generations match we know we have a consistent set
598          * of self IDs. */
599
600         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
601         if (new_generation != generation) {
602                 fw_notify("recursive bus reset detected, "
603                           "discarding self ids\n");
604                 return;
605         }
606
607         /* FIXME: Document how the locking works. */
608         spin_lock_irqsave(&ohci->lock, flags);
609
610         ohci->generation = generation;
611         at_context_stop(&ohci->at_request_ctx);
612         at_context_stop(&ohci->at_response_ctx);
613         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
614
615         /* This next bit is unrelated to the AT context stuff but we
616          * have to do it under the spinlock also.  If a new config rom
617          * was set up before this reset, the old one is now no longer
618          * in use and we can free it. Update the config rom pointers
619          * to point to the current config rom and clear the
620          * next_config_rom pointer so a new udpate can take place. */
621
622         if (ohci->next_config_rom != NULL) {
623                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
624                                   ohci->config_rom, ohci->config_rom_bus);
625                 ohci->config_rom      = ohci->next_config_rom;
626                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
627                 ohci->next_config_rom = NULL;
628
629                 /* Restore config_rom image and manually update
630                  * config_rom registers.  Writing the header quadlet
631                  * will indicate that the config rom is ready, so we
632                  * do that last. */
633                 reg_write(ohci, OHCI1394_BusOptions,
634                           be32_to_cpu(ohci->config_rom[2]));
635                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
636                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
637         }
638
639         spin_unlock_irqrestore(&ohci->lock, flags);
640
641         fw_core_handle_bus_reset(&ohci->card, node_id, generation,
642                                  self_id_count, ohci->self_id_buffer);
643 }
644
645 static irqreturn_t irq_handler(int irq, void *data)
646 {
647         struct fw_ohci *ohci = data;
648         u32 event, iso_event;
649         int i;
650
651         event = reg_read(ohci, OHCI1394_IntEventClear);
652
653         if (!event)
654                 return IRQ_NONE;
655
656         reg_write(ohci, OHCI1394_IntEventClear, event);
657
658         if (event & OHCI1394_selfIDComplete)
659                 tasklet_schedule(&ohci->bus_reset_tasklet);
660
661         if (event & OHCI1394_RQPkt)
662                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
663
664         if (event & OHCI1394_RSPkt)
665                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
666
667         if (event & OHCI1394_reqTxComplete)
668                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
669
670         if (event & OHCI1394_respTxComplete)
671                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
672
673         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
674         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
675
676         while (iso_event) {
677                 i = ffs(iso_event) - 1;
678                 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
679                 iso_event &= ~(1 << i);
680         }
681
682         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
683         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
684
685         while (iso_event) {
686                 i = ffs(iso_event) - 1;
687                 tasklet_schedule(&ohci->it_context_list[i].tasklet);
688                 iso_event &= ~(1 << i);
689         }
690
691         return IRQ_HANDLED;
692 }
693
694 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
695 {
696         struct fw_ohci *ohci = fw_ohci(card);
697         struct pci_dev *dev = to_pci_dev(card->device);
698
699         /* When the link is not yet enabled, the atomic config rom
700          * update mechanism described below in ohci_set_config_rom()
701          * is not active.  We have to update ConfigRomHeader and
702          * BusOptions manually, and the write to ConfigROMmap takes
703          * effect immediately.  We tie this to the enabling of the
704          * link, so we have a valid config rom before enabling - the
705          * OHCI requires that ConfigROMhdr and BusOptions have valid
706          * values before enabling.
707          *
708          * However, when the ConfigROMmap is written, some controllers
709          * always read back quadlets 0 and 2 from the config rom to
710          * the ConfigRomHeader and BusOptions registers on bus reset.
711          * They shouldn't do that in this initial case where the link
712          * isn't enabled.  This means we have to use the same
713          * workaround here, setting the bus header to 0 and then write
714          * the right values in the bus reset tasklet.
715          */
716
717         ohci->next_config_rom =
718                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
719                                    &ohci->next_config_rom_bus, GFP_KERNEL);
720         if (ohci->next_config_rom == NULL)
721                 return -ENOMEM;
722
723         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
724         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
725
726         ohci->next_header = config_rom[0];
727         ohci->next_config_rom[0] = 0;
728         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
729         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
730         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
731
732         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
733
734         if (request_irq(dev->irq, irq_handler,
735                         SA_SHIRQ, ohci_driver_name, ohci)) {
736                 fw_error("Failed to allocate shared interrupt %d.\n",
737                          dev->irq);
738                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
739                                   ohci->config_rom, ohci->config_rom_bus);
740                 return -EIO;
741         }
742
743         reg_write(ohci, OHCI1394_HCControlSet,
744                   OHCI1394_HCControl_linkEnable |
745                   OHCI1394_HCControl_BIBimageValid);
746         flush_writes(ohci);
747
748         /* We are ready to go, initiate bus reset to finish the
749          * initialization. */
750
751         fw_core_initiate_bus_reset(&ohci->card, 1);
752
753         return 0;
754 }
755
756 static int
757 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
758 {
759         struct fw_ohci *ohci;
760         unsigned long flags;
761         int retval = 0;
762         __be32 *next_config_rom;
763         dma_addr_t next_config_rom_bus;
764
765         ohci = fw_ohci(card);
766
767         /* When the OHCI controller is enabled, the config rom update
768          * mechanism is a bit tricky, but easy enough to use.  See
769          * section 5.5.6 in the OHCI specification.
770          *
771          * The OHCI controller caches the new config rom address in a
772          * shadow register (ConfigROMmapNext) and needs a bus reset
773          * for the changes to take place.  When the bus reset is
774          * detected, the controller loads the new values for the
775          * ConfigRomHeader and BusOptions registers from the specified
776          * config rom and loads ConfigROMmap from the ConfigROMmapNext
777          * shadow register. All automatically and atomically.
778          *
779          * Now, there's a twist to this story.  The automatic load of
780          * ConfigRomHeader and BusOptions doesn't honor the
781          * noByteSwapData bit, so with a be32 config rom, the
782          * controller will load be32 values in to these registers
783          * during the atomic update, even on litte endian
784          * architectures.  The workaround we use is to put a 0 in the
785          * header quadlet; 0 is endian agnostic and means that the
786          * config rom isn't ready yet.  In the bus reset tasklet we
787          * then set up the real values for the two registers.
788          *
789          * We use ohci->lock to avoid racing with the code that sets
790          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
791          */
792
793         next_config_rom =
794                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
795                                    &next_config_rom_bus, GFP_KERNEL);
796         if (next_config_rom == NULL)
797                 return -ENOMEM;
798
799         spin_lock_irqsave(&ohci->lock, flags);
800
801         if (ohci->next_config_rom == NULL) {
802                 ohci->next_config_rom = next_config_rom;
803                 ohci->next_config_rom_bus = next_config_rom_bus;
804
805                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
806                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
807                                   length * 4);
808
809                 ohci->next_header = config_rom[0];
810                 ohci->next_config_rom[0] = 0;
811
812                 reg_write(ohci, OHCI1394_ConfigROMmap,
813                           ohci->next_config_rom_bus);
814         } else {
815                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
816                                   next_config_rom, next_config_rom_bus);
817                 retval = -EBUSY;
818         }
819
820         spin_unlock_irqrestore(&ohci->lock, flags);
821
822         /* Now initiate a bus reset to have the changes take
823          * effect. We clean up the old config rom memory and DMA
824          * mappings in the bus reset tasklet, since the OHCI
825          * controller could need to access it before the bus reset
826          * takes effect. */
827         if (retval == 0)
828                 fw_core_initiate_bus_reset(&ohci->card, 1);
829
830         return retval;
831 }
832
833 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
834 {
835         struct fw_ohci *ohci = fw_ohci(card);
836
837         at_context_transmit(&ohci->at_request_ctx, packet);
838 }
839
840 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
841 {
842         struct fw_ohci *ohci = fw_ohci(card);
843
844         at_context_transmit(&ohci->at_response_ctx, packet);
845 }
846
847 static int
848 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
849 {
850         struct fw_ohci *ohci = fw_ohci(card);
851         unsigned long flags;
852         int n, retval = 0;
853
854         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
855          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
856
857         spin_lock_irqsave(&ohci->lock, flags);
858
859         if (ohci->generation != generation) {
860                 retval = -ESTALE;
861                 goto out;
862         }
863
864         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
865          * enabled for _all_ nodes on remote buses. */
866
867         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
868         if (n < 32)
869                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
870         else
871                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
872
873         flush_writes(ohci);
874  out:
875         spin_unlock_irqrestore(&ohci->lock, flags);
876         return retval;
877 }
878
879 static void ir_context_tasklet(unsigned long data)
880 {
881         struct iso_context *ctx = (struct iso_context *)data;
882
883         (void)ctx;
884 }
885
886 #define ISO_BUFFER_SIZE (64 * 1024)
887
888 static void flush_iso_context(struct iso_context *ctx)
889 {
890         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
891         struct descriptor *d, *last;
892         u32 address;
893         int z;
894
895         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
896                                 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
897
898         d    = ctx->tail_descriptor;
899         last = ctx->tail_descriptor_last;
900
901         while (last->branch_address != 0 && last->transfer_status != 0) {
902                 address = le32_to_cpu(last->branch_address);
903                 z = address & 0xf;
904                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
905
906                 if (z == 2)
907                         last = d;
908                 else
909                         last = d + z - 1;
910
911                 if (le16_to_cpu(last->control) & descriptor_irq_always)
912                         ctx->base.callback(&ctx->base,
913                                            0, le16_to_cpu(last->res_count),
914                                            ctx->base.callback_data);
915         }
916
917         ctx->tail_descriptor      = d;
918         ctx->tail_descriptor_last = last;
919 }
920
921 static void it_context_tasklet(unsigned long data)
922 {
923         struct iso_context *ctx = (struct iso_context *)data;
924
925         flush_iso_context(ctx);
926 }
927
928 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
929                                                         int type)
930 {
931         struct fw_ohci *ohci = fw_ohci(card);
932         struct iso_context *ctx, *list;
933         void (*tasklet) (unsigned long data);
934         u32 *mask;
935         unsigned long flags;
936         int index;
937
938         if (type == FW_ISO_CONTEXT_TRANSMIT) {
939                 mask = &ohci->it_context_mask;
940                 list = ohci->it_context_list;
941                 tasklet = it_context_tasklet;
942         } else {
943                 mask = &ohci->ir_context_mask;
944                 list = ohci->ir_context_list;
945                 tasklet = ir_context_tasklet;
946         }
947
948         spin_lock_irqsave(&ohci->lock, flags);
949         index = ffs(*mask) - 1;
950         if (index >= 0)
951                 *mask &= ~(1 << index);
952         spin_unlock_irqrestore(&ohci->lock, flags);
953
954         if (index < 0)
955                 return ERR_PTR(-EBUSY);
956
957         ctx = &list[index];
958         memset(ctx, 0, sizeof *ctx);
959         tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
960
961         ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
962         if (ctx->buffer == NULL) {
963                 spin_lock_irqsave(&ohci->lock, flags);
964                 *mask |= 1 << index;
965                 spin_unlock_irqrestore(&ohci->lock, flags);
966                 return ERR_PTR(-ENOMEM);
967         }
968
969         ctx->buffer_bus =
970             dma_map_single(card->device, ctx->buffer,
971                            ISO_BUFFER_SIZE, DMA_TO_DEVICE);
972
973         ctx->head_descriptor      = ctx->buffer;
974         ctx->prev_descriptor      = ctx->buffer;
975         ctx->tail_descriptor      = ctx->buffer;
976         ctx->tail_descriptor_last = ctx->buffer;
977
978         /* We put a dummy descriptor in the buffer that has a NULL
979          * branch address and looks like it's been sent.  That way we
980          * have a descriptor to append DMA programs to.  Also, the
981          * ring buffer invariant is that it always has at least one
982          * element so that head == tail means buffer full. */
983
984         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
985         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
986         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
987         ctx->head_descriptor++;
988
989         return &ctx->base;
990 }
991
992 static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
993 {
994         struct iso_context *ctx = (struct iso_context *)base;
995         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
996         u32 cycle_match = 0;
997         int index;
998
999         index = ctx - ohci->it_context_list;
1000         if (cycle > 0)
1001                 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1002                         (cycle & 0x7fff) << 16;
1003
1004         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1005         reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
1006                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
1007         reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1008         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
1009                   CONTEXT_RUN | cycle_match);
1010         flush_writes(ohci);
1011
1012         return 0;
1013 }
1014
1015 static void ohci_free_iso_context(struct fw_iso_context *base)
1016 {
1017         struct fw_ohci *ohci = fw_ohci(base->card);
1018         struct iso_context *ctx = (struct iso_context *)base;
1019         unsigned long flags;
1020         int index;
1021
1022         flush_iso_context(ctx);
1023
1024         spin_lock_irqsave(&ohci->lock, flags);
1025
1026         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1027                 index = ctx - ohci->it_context_list;
1028                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1029                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1030                 ohci->it_context_mask |= 1 << index;
1031         } else {
1032                 index = ctx - ohci->ir_context_list;
1033                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1034                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1035                 ohci->ir_context_mask |= 1 << index;
1036         }
1037         flush_writes(ohci);
1038
1039         dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1040                          ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1041
1042         spin_unlock_irqrestore(&ohci->lock, flags);
1043 }
1044
1045 static int
1046 ohci_queue_iso(struct fw_iso_context *base,
1047                struct fw_iso_packet *packet, void *payload)
1048 {
1049         struct iso_context *ctx = (struct iso_context *)base;
1050         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1051         struct descriptor *d, *end, *last, *tail, *pd;
1052         struct fw_iso_packet *p;
1053         __le32 *header;
1054         dma_addr_t d_bus;
1055         u32 z, header_z, payload_z, irq;
1056         u32 payload_index, payload_end_index, next_page_index;
1057         int index, page, end_page, i, length, offset;
1058
1059         /* FIXME: Cycle lost behavior should be configurable: lose
1060          * packet, retransmit or terminate.. */
1061
1062         p = packet;
1063         payload_index = payload - ctx->base.buffer;
1064         d = ctx->head_descriptor;
1065         tail = ctx->tail_descriptor;
1066         end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1067
1068         if (p->skip)
1069                 z = 1;
1070         else
1071                 z = 2;
1072         if (p->header_length > 0)
1073                 z++;
1074
1075         /* Determine the first page the payload isn't contained in. */
1076         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1077         if (p->payload_length > 0)
1078                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1079         else
1080                 payload_z = 0;
1081
1082         z += payload_z;
1083
1084         /* Get header size in number of descriptors. */
1085         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1086
1087         if (d + z + header_z <= tail) {
1088                 goto has_space;
1089         } else if (d > tail && d + z + header_z <= end) {
1090                 goto has_space;
1091         } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1092                 d = ctx->buffer;
1093                 goto has_space;
1094         }
1095
1096         /* No space in buffer */
1097         return -1;
1098
1099  has_space:
1100         memset(d, 0, (z + header_z) * sizeof *d);
1101         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1102
1103         if (!p->skip) {
1104                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1105                 d[0].req_count = cpu_to_le16(8);
1106
1107                 header = (__le32 *) &d[1];
1108                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1109                                         it_header_tag(p->tag) |
1110                                         it_header_tcode(TCODE_STREAM_DATA) |
1111                                         it_header_channel(ctx->base.channel) |
1112                                         it_header_speed(ctx->base.speed));
1113                 header[1] =
1114                         cpu_to_le32(it_header_data_length(p->header_length +
1115                                                           p->payload_length));
1116         }
1117
1118         if (p->header_length > 0) {
1119                 d[2].req_count    = cpu_to_le16(p->header_length);
1120                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1121                 memcpy(&d[z], p->header, p->header_length);
1122         }
1123
1124         pd = d + z - payload_z;
1125         payload_end_index = payload_index + p->payload_length;
1126         for (i = 0; i < payload_z; i++) {
1127                 page               = payload_index >> PAGE_SHIFT;
1128                 offset             = payload_index & ~PAGE_MASK;
1129                 next_page_index    = (page + 1) << PAGE_SHIFT;
1130                 length             =
1131                         min(next_page_index, payload_end_index) - payload_index;
1132                 pd[i].req_count    = cpu_to_le16(length);
1133                 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1134
1135                 payload_index += length;
1136         }
1137
1138         if (z == 2)
1139                 last = d;
1140         else
1141                 last = d + z - 1;
1142
1143         if (p->interrupt)
1144                 irq = descriptor_irq_always;
1145         else
1146                 irq = descriptor_no_irq;
1147
1148         last->control = cpu_to_le16(descriptor_output_last |
1149                                     descriptor_status |
1150                                     descriptor_branch_always |
1151                                     irq);
1152
1153         dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1154                                    ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1155
1156         ctx->head_descriptor = d + z + header_z;
1157         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1158         ctx->prev_descriptor = last;
1159
1160         index = ctx - ohci->it_context_list;
1161         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1162         flush_writes(ohci);
1163
1164         return 0;
1165 }
1166
1167 static const struct fw_card_driver ohci_driver = {
1168         .name                   = ohci_driver_name,
1169         .enable                 = ohci_enable,
1170         .update_phy_reg         = ohci_update_phy_reg,
1171         .set_config_rom         = ohci_set_config_rom,
1172         .send_request           = ohci_send_request,
1173         .send_response          = ohci_send_response,
1174         .enable_phys_dma        = ohci_enable_phys_dma,
1175
1176         .allocate_iso_context   = ohci_allocate_iso_context,
1177         .free_iso_context       = ohci_free_iso_context,
1178         .queue_iso              = ohci_queue_iso,
1179         .send_iso               = ohci_send_iso,
1180 };
1181
1182 static int software_reset(struct fw_ohci *ohci)
1183 {
1184         int i;
1185
1186         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1187
1188         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1189                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1190                      OHCI1394_HCControl_softReset) == 0)
1191                         return 0;
1192                 msleep(1);
1193         }
1194
1195         return -EBUSY;
1196 }
1197
1198 /* ---------- pci subsystem interface ---------- */
1199
1200 enum {
1201         CLEANUP_SELF_ID,
1202         CLEANUP_REGISTERS,
1203         CLEANUP_IOMEM,
1204         CLEANUP_DISABLE,
1205         CLEANUP_PUT_CARD,
1206 };
1207
1208 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1209 {
1210         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1211
1212         switch (stage) {
1213         case CLEANUP_SELF_ID:
1214                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1215                                   ohci->self_id_cpu, ohci->self_id_bus);
1216         case CLEANUP_REGISTERS:
1217                 kfree(ohci->it_context_list);
1218                 kfree(ohci->ir_context_list);
1219                 pci_iounmap(dev, ohci->registers);
1220         case CLEANUP_IOMEM:
1221                 pci_release_region(dev, 0);
1222         case CLEANUP_DISABLE:
1223                 pci_disable_device(dev);
1224         case CLEANUP_PUT_CARD:
1225                 fw_card_put(&ohci->card);
1226         }
1227
1228         return code;
1229 }
1230
1231 static int __devinit
1232 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1233 {
1234         struct fw_ohci *ohci;
1235         u32 bus_options, max_receive, link_speed;
1236         u64 guid;
1237         int error_code;
1238         size_t size;
1239
1240         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1241         if (ohci == NULL) {
1242                 fw_error("Could not malloc fw_ohci data.\n");
1243                 return -ENOMEM;
1244         }
1245
1246         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1247
1248         if (pci_enable_device(dev)) {
1249                 fw_error("Failed to enable OHCI hardware.\n");
1250                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1251         }
1252
1253         pci_set_master(dev);
1254         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1255         pci_set_drvdata(dev, ohci);
1256
1257         spin_lock_init(&ohci->lock);
1258
1259         tasklet_init(&ohci->bus_reset_tasklet,
1260                      bus_reset_tasklet, (unsigned long)ohci);
1261
1262         if (pci_request_region(dev, 0, ohci_driver_name)) {
1263                 fw_error("MMIO resource unavailable\n");
1264                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1265         }
1266
1267         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1268         if (ohci->registers == NULL) {
1269                 fw_error("Failed to remap registers\n");
1270                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1271         }
1272
1273         if (software_reset(ohci)) {
1274                 fw_error("Failed to reset ohci card.\n");
1275                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1276         }
1277
1278         /* Now enable LPS, which we need in order to start accessing
1279          * most of the registers.  In fact, on some cards (ALI M5251),
1280          * accessing registers in the SClk domain without LPS enabled
1281          * will lock up the machine.  Wait 50msec to make sure we have
1282          * full link enabled.  */
1283         reg_write(ohci, OHCI1394_HCControlSet,
1284                   OHCI1394_HCControl_LPS |
1285                   OHCI1394_HCControl_postedWriteEnable);
1286         flush_writes(ohci);
1287         msleep(50);
1288
1289         reg_write(ohci, OHCI1394_HCControlClear,
1290                   OHCI1394_HCControl_noByteSwapData);
1291
1292         reg_write(ohci, OHCI1394_LinkControlSet,
1293                   OHCI1394_LinkControl_rcvSelfID |
1294                   OHCI1394_LinkControl_cycleTimerEnable |
1295                   OHCI1394_LinkControl_cycleMaster);
1296
1297         ar_context_init(&ohci->ar_request_ctx, ohci,
1298                         OHCI1394_AsReqRcvContextControlSet);
1299
1300         ar_context_init(&ohci->ar_response_ctx, ohci,
1301                         OHCI1394_AsRspRcvContextControlSet);
1302
1303         at_context_init(&ohci->at_request_ctx, ohci,
1304                         OHCI1394_AsReqTrContextControlSet);
1305
1306         at_context_init(&ohci->at_response_ctx, ohci,
1307                         OHCI1394_AsRspTrContextControlSet);
1308
1309         reg_write(ohci, OHCI1394_ATRetries,
1310                   OHCI1394_MAX_AT_REQ_RETRIES |
1311                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1312                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1313
1314         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1315         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1316         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1317         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1318         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1319
1320         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1321         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1322         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1323         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1324         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1325
1326         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1327                 fw_error("Out of memory for it/ir contexts.\n");
1328                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1329         }
1330
1331         /* self-id dma buffer allocation */
1332         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1333                                                SELF_ID_BUF_SIZE,
1334                                                &ohci->self_id_bus,
1335                                                GFP_KERNEL);
1336         if (ohci->self_id_cpu == NULL) {
1337                 fw_error("Out of memory for self ID buffer.\n");
1338                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1339         }
1340
1341         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1342         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1343         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1344         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1345         reg_write(ohci, OHCI1394_IntMaskSet,
1346                   OHCI1394_selfIDComplete |
1347                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1348                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1349                   OHCI1394_isochRx | OHCI1394_isochTx |
1350                   OHCI1394_masterIntEnable);
1351
1352         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1353         max_receive = (bus_options >> 12) & 0xf;
1354         link_speed = bus_options & 0x7;
1355         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1356                 reg_read(ohci, OHCI1394_GUIDLo);
1357
1358         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1359         if (error_code < 0)
1360                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1361
1362         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1363
1364         return 0;
1365 }
1366
1367 static void pci_remove(struct pci_dev *dev)
1368 {
1369         struct fw_ohci *ohci;
1370
1371         ohci = pci_get_drvdata(dev);
1372         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1373         fw_core_remove_card(&ohci->card);
1374
1375         /* FIXME: Fail all pending packets here, now that the upper
1376          * layers can't queue any more. */
1377
1378         software_reset(ohci);
1379         free_irq(dev->irq, ohci);
1380         cleanup(ohci, CLEANUP_SELF_ID, 0);
1381
1382         fw_notify("Removed fw-ohci device.\n");
1383 }
1384
1385 static struct pci_device_id pci_table[] = {
1386         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1387         { }
1388 };
1389
1390 MODULE_DEVICE_TABLE(pci, pci_table);
1391
1392 static struct pci_driver fw_ohci_pci_driver = {
1393         .name           = ohci_driver_name,
1394         .id_table       = pci_table,
1395         .probe          = pci_probe,
1396         .remove         = pci_remove,
1397 };
1398
1399 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1400 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1401 MODULE_LICENSE("GPL");
1402
1403 static int __init fw_ohci_init(void)
1404 {
1405         return pci_register_driver(&fw_ohci_pci_driver);
1406 }
1407
1408 static void __exit fw_ohci_cleanup(void)
1409 {
1410         pci_unregister_driver(&fw_ohci_pci_driver);
1411 }
1412
1413 module_init(fw_ohci_init);
1414 module_exit(fw_ohci_cleanup);