firewire: Check for CONTEXT_RUN not CONTEXT_ACTIVE when starting AT DMA context.
[safe/jmp/linux-2.6] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48 #define descriptor_wait                 (3 << 0)
49
50 struct descriptor {
51         __le16 req_count;
52         __le16 control;
53         __le32 data_address;
54         __le32 branch_address;
55         __le16 res_count;
56         __le16 transfer_status;
57 } __attribute__((aligned(16)));
58
59 struct db_descriptor {
60         __le16 first_size;
61         __le16 control;
62         __le16 second_req_count;
63         __le16 first_req_count;
64         __le32 branch_address;
65         __le16 second_res_count;
66         __le16 first_res_count;
67         __le32 reserved0;
68         __le32 first_buffer;
69         __le32 second_buffer;
70         __le32 reserved1;
71 } __attribute__((aligned(16)));
72
73 #define control_set(regs)       (regs)
74 #define control_clear(regs)     ((regs) + 4)
75 #define command_ptr(regs)       ((regs) + 12)
76 #define context_match(regs)     ((regs) + 16)
77
78 struct ar_buffer {
79         struct descriptor descriptor;
80         struct ar_buffer *next;
81         __le32 data[0];
82 };
83
84 struct ar_context {
85         struct fw_ohci *ohci;
86         struct ar_buffer *current_buffer;
87         struct ar_buffer *last_buffer;
88         void *pointer;
89         u32 regs;
90         struct tasklet_struct tasklet;
91 };
92
93 struct context;
94
95 typedef int (*descriptor_callback_t)(struct context *ctx,
96                                      struct descriptor *d,
97                                      struct descriptor *last);
98 struct context {
99         struct fw_ohci *ohci;
100         u32 regs;
101
102         struct descriptor *buffer;
103         dma_addr_t buffer_bus;
104         size_t buffer_size;
105         struct descriptor *head_descriptor;
106         struct descriptor *tail_descriptor;
107         struct descriptor *tail_descriptor_last;
108         struct descriptor *prev_descriptor;
109
110         descriptor_callback_t callback;
111
112         struct tasklet_struct tasklet;
113 };
114
115 #define it_header_sy(v)          ((v) <<  0)
116 #define it_header_tcode(v)       ((v) <<  4)
117 #define it_header_channel(v)     ((v) <<  8)
118 #define it_header_tag(v)         ((v) << 14)
119 #define it_header_speed(v)       ((v) << 16)
120 #define it_header_data_length(v) ((v) << 16)
121
122 struct iso_context {
123         struct fw_iso_context base;
124         struct context context;
125         void *header;
126         size_t header_length;
127 };
128
129 #define CONFIG_ROM_SIZE 1024
130
131 struct fw_ohci {
132         struct fw_card card;
133
134         u32 version;
135         __iomem char *registers;
136         dma_addr_t self_id_bus;
137         __le32 *self_id_cpu;
138         struct tasklet_struct bus_reset_tasklet;
139         int node_id;
140         int generation;
141         int request_generation;
142         u32 bus_seconds;
143
144         /* Spinlock for accessing fw_ohci data.  Never call out of
145          * this driver with this lock held. */
146         spinlock_t lock;
147         u32 self_id_buffer[512];
148
149         /* Config rom buffers */
150         __be32 *config_rom;
151         dma_addr_t config_rom_bus;
152         __be32 *next_config_rom;
153         dma_addr_t next_config_rom_bus;
154         u32 next_header;
155
156         struct ar_context ar_request_ctx;
157         struct ar_context ar_response_ctx;
158         struct context at_request_ctx;
159         struct context at_response_ctx;
160
161         u32 it_context_mask;
162         struct iso_context *it_context_list;
163         u32 ir_context_mask;
164         struct iso_context *ir_context_list;
165 };
166
167 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
168 {
169         return container_of(card, struct fw_ohci, card);
170 }
171
172 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
173 #define IR_CONTEXT_BUFFER_FILL          0x80000000
174 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
175 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
176 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
177 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
178
179 #define CONTEXT_RUN     0x8000
180 #define CONTEXT_WAKE    0x1000
181 #define CONTEXT_DEAD    0x0800
182 #define CONTEXT_ACTIVE  0x0400
183
184 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
185 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
186 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
187
188 #define FW_OHCI_MAJOR                   240
189 #define OHCI1394_REGISTER_SIZE          0x800
190 #define OHCI_LOOP_COUNT                 500
191 #define OHCI1394_PCI_HCI_Control        0x40
192 #define SELF_ID_BUF_SIZE                0x800
193 #define OHCI_TCODE_PHY_PACKET           0x0e
194 #define OHCI_VERSION_1_1                0x010010
195 #define ISO_BUFFER_SIZE                 (64 * 1024)
196 #define AT_BUFFER_SIZE                  4096
197
198 static char ohci_driver_name[] = KBUILD_MODNAME;
199
200 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
201 {
202         writel(data, ohci->registers + offset);
203 }
204
205 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
206 {
207         return readl(ohci->registers + offset);
208 }
209
210 static inline void flush_writes(const struct fw_ohci *ohci)
211 {
212         /* Do a dummy read to flush writes. */
213         reg_read(ohci, OHCI1394_Version);
214 }
215
216 static int
217 ohci_update_phy_reg(struct fw_card *card, int addr,
218                     int clear_bits, int set_bits)
219 {
220         struct fw_ohci *ohci = fw_ohci(card);
221         u32 val, old;
222
223         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
224         msleep(2);
225         val = reg_read(ohci, OHCI1394_PhyControl);
226         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
227                 fw_error("failed to set phy reg bits.\n");
228                 return -EBUSY;
229         }
230
231         old = OHCI1394_PhyControl_ReadData(val);
232         old = (old & ~clear_bits) | set_bits;
233         reg_write(ohci, OHCI1394_PhyControl,
234                   OHCI1394_PhyControl_Write(addr, old));
235
236         return 0;
237 }
238
239 static int ar_context_add_page(struct ar_context *ctx)
240 {
241         struct device *dev = ctx->ohci->card.device;
242         struct ar_buffer *ab;
243         dma_addr_t ab_bus;
244         size_t offset;
245
246         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
247         if (ab == NULL)
248                 return -ENOMEM;
249
250         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
251         if (dma_mapping_error(ab_bus)) {
252                 free_page((unsigned long) ab);
253                 return -ENOMEM;
254         }
255
256         memset(&ab->descriptor, 0, sizeof ab->descriptor);
257         ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
258                                                     descriptor_status |
259                                                     descriptor_branch_always);
260         offset = offsetof(struct ar_buffer, data);
261         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
262         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
263         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
264         ab->descriptor.branch_address = 0;
265
266         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
267
268         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
269         ctx->last_buffer->next = ab;
270         ctx->last_buffer = ab;
271
272         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
273         flush_writes(ctx->ohci);
274
275         return 0;
276 }
277
278 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
279 {
280         struct fw_ohci *ohci = ctx->ohci;
281         struct fw_packet p;
282         u32 status, length, tcode;
283
284         p.header[0] = le32_to_cpu(buffer[0]);
285         p.header[1] = le32_to_cpu(buffer[1]);
286         p.header[2] = le32_to_cpu(buffer[2]);
287
288         tcode = (p.header[0] >> 4) & 0x0f;
289         switch (tcode) {
290         case TCODE_WRITE_QUADLET_REQUEST:
291         case TCODE_READ_QUADLET_RESPONSE:
292                 p.header[3] = (__force __u32) buffer[3];
293                 p.header_length = 16;
294                 p.payload_length = 0;
295                 break;
296
297         case TCODE_READ_BLOCK_REQUEST :
298                 p.header[3] = le32_to_cpu(buffer[3]);
299                 p.header_length = 16;
300                 p.payload_length = 0;
301                 break;
302
303         case TCODE_WRITE_BLOCK_REQUEST:
304         case TCODE_READ_BLOCK_RESPONSE:
305         case TCODE_LOCK_REQUEST:
306         case TCODE_LOCK_RESPONSE:
307                 p.header[3] = le32_to_cpu(buffer[3]);
308                 p.header_length = 16;
309                 p.payload_length = p.header[3] >> 16;
310                 break;
311
312         case TCODE_WRITE_RESPONSE:
313         case TCODE_READ_QUADLET_REQUEST:
314         case OHCI_TCODE_PHY_PACKET:
315                 p.header_length = 12;
316                 p.payload_length = 0;
317                 break;
318         }
319
320         p.payload = (void *) buffer + p.header_length;
321
322         /* FIXME: What to do about evt_* errors? */
323         length = (p.header_length + p.payload_length + 3) / 4;
324         status = le32_to_cpu(buffer[length]);
325
326         p.ack        = ((status >> 16) & 0x1f) - 16;
327         p.speed      = (status >> 21) & 0x7;
328         p.timestamp  = status & 0xffff;
329         p.generation = ohci->request_generation;
330
331         /* The OHCI bus reset handler synthesizes a phy packet with
332          * the new generation number when a bus reset happens (see
333          * section 8.4.2.3).  This helps us determine when a request
334          * was received and make sure we send the response in the same
335          * generation.  We only need this for requests; for responses
336          * we use the unique tlabel for finding the matching
337          * request. */
338
339         if (p.ack + 16 == 0x09)
340                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
341         else if (ctx == &ohci->ar_request_ctx)
342                 fw_core_handle_request(&ohci->card, &p);
343         else
344                 fw_core_handle_response(&ohci->card, &p);
345
346         return buffer + length + 1;
347 }
348
349 static void ar_context_tasklet(unsigned long data)
350 {
351         struct ar_context *ctx = (struct ar_context *)data;
352         struct fw_ohci *ohci = ctx->ohci;
353         struct ar_buffer *ab;
354         struct descriptor *d;
355         void *buffer, *end;
356
357         ab = ctx->current_buffer;
358         d = &ab->descriptor;
359
360         if (d->res_count == 0) {
361                 size_t size, rest, offset;
362
363                 /* This descriptor is finished and we may have a
364                  * packet split across this and the next buffer. We
365                  * reuse the page for reassembling the split packet. */
366
367                 offset = offsetof(struct ar_buffer, data);
368                 dma_unmap_single(ohci->card.device,
369                                  ab->descriptor.data_address - offset,
370                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
371
372                 buffer = ab;
373                 ab = ab->next;
374                 d = &ab->descriptor;
375                 size = buffer + PAGE_SIZE - ctx->pointer;
376                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
377                 memmove(buffer, ctx->pointer, size);
378                 memcpy(buffer + size, ab->data, rest);
379                 ctx->current_buffer = ab;
380                 ctx->pointer = (void *) ab->data + rest;
381                 end = buffer + size + rest;
382
383                 while (buffer < end)
384                         buffer = handle_ar_packet(ctx, buffer);
385
386                 free_page((unsigned long)buffer);
387                 ar_context_add_page(ctx);
388         } else {
389                 buffer = ctx->pointer;
390                 ctx->pointer = end =
391                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
392
393                 while (buffer < end)
394                         buffer = handle_ar_packet(ctx, buffer);
395         }
396 }
397
398 static int
399 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
400 {
401         struct ar_buffer ab;
402
403         ctx->regs        = regs;
404         ctx->ohci        = ohci;
405         ctx->last_buffer = &ab;
406         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
407
408         ar_context_add_page(ctx);
409         ar_context_add_page(ctx);
410         ctx->current_buffer = ab.next;
411         ctx->pointer = ctx->current_buffer->data;
412
413         reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
414         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
415         flush_writes(ctx->ohci);
416
417         return 0;
418 }
419
420 static void context_tasklet(unsigned long data)
421 {
422         struct context *ctx = (struct context *) data;
423         struct fw_ohci *ohci = ctx->ohci;
424         struct descriptor *d, *last;
425         u32 address;
426         int z;
427
428         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
429                                 ctx->buffer_size, DMA_TO_DEVICE);
430
431         d    = ctx->tail_descriptor;
432         last = ctx->tail_descriptor_last;
433
434         while (last->branch_address != 0) {
435                 address = le32_to_cpu(last->branch_address);
436                 z = address & 0xf;
437                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
438                 last = (z == 2) ? d : d + z - 1;
439
440                 if (!ctx->callback(ctx, d, last))
441                         break;
442
443                 ctx->tail_descriptor      = d;
444                 ctx->tail_descriptor_last = last;
445         }
446 }
447
448 static int
449 context_init(struct context *ctx, struct fw_ohci *ohci,
450              size_t buffer_size, u32 regs,
451              descriptor_callback_t callback)
452 {
453         ctx->ohci = ohci;
454         ctx->regs = regs;
455         ctx->buffer_size = buffer_size;
456         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
457         if (ctx->buffer == NULL)
458                 return -ENOMEM;
459
460         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
461         ctx->callback = callback;
462
463         ctx->buffer_bus =
464                 dma_map_single(ohci->card.device, ctx->buffer,
465                                buffer_size, DMA_TO_DEVICE);
466         if (dma_mapping_error(ctx->buffer_bus)) {
467                 kfree(ctx->buffer);
468                 return -ENOMEM;
469         }
470
471         ctx->head_descriptor      = ctx->buffer;
472         ctx->prev_descriptor      = ctx->buffer;
473         ctx->tail_descriptor      = ctx->buffer;
474         ctx->tail_descriptor_last = ctx->buffer;
475
476         /* We put a dummy descriptor in the buffer that has a NULL
477          * branch address and looks like it's been sent.  That way we
478          * have a descriptor to append DMA programs to.  Also, the
479          * ring buffer invariant is that it always has at least one
480          * element so that head == tail means buffer full. */
481
482         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
483         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
484         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
485         ctx->head_descriptor++;
486
487         return 0;
488 }
489
490 static void
491 context_release(struct context *ctx)
492 {
493         struct fw_card *card = &ctx->ohci->card;
494
495         dma_unmap_single(card->device, ctx->buffer_bus,
496                          ctx->buffer_size, DMA_TO_DEVICE);
497         kfree(ctx->buffer);
498 }
499
500 static struct descriptor *
501 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
502 {
503         struct descriptor *d, *tail, *end;
504
505         d = ctx->head_descriptor;
506         tail = ctx->tail_descriptor;
507         end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
508
509         if (d + z <= tail) {
510                 goto has_space;
511         } else if (d > tail && d + z <= end) {
512                 goto has_space;
513         } else if (d > tail && ctx->buffer + z <= tail) {
514                 d = ctx->buffer;
515                 goto has_space;
516         }
517
518         return NULL;
519
520  has_space:
521         memset(d, 0, z * sizeof *d);
522         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
523
524         return d;
525 }
526
527 static void context_run(struct context *ctx, u32 extra)
528 {
529         struct fw_ohci *ohci = ctx->ohci;
530
531         reg_write(ohci, command_ptr(ctx->regs),
532                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
533         reg_write(ohci, control_clear(ctx->regs), ~0);
534         reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
535         flush_writes(ohci);
536 }
537
538 static void context_append(struct context *ctx,
539                            struct descriptor *d, int z, int extra)
540 {
541         dma_addr_t d_bus;
542
543         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
544
545         ctx->head_descriptor = d + z + extra;
546         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
547         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
548
549         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
550                                    ctx->buffer_size, DMA_TO_DEVICE);
551
552         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
553         flush_writes(ctx->ohci);
554 }
555
556 static void context_stop(struct context *ctx)
557 {
558         u32 reg;
559         int i;
560
561         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
562         flush_writes(ctx->ohci);
563
564         for (i = 0; i < 10; i++) {
565                 reg = reg_read(ctx->ohci, control_set(ctx->regs));
566                 if ((reg & CONTEXT_ACTIVE) == 0)
567                         break;
568
569                 fw_notify("context_stop: still active (0x%08x)\n", reg);
570                 msleep(1);
571         }
572 }
573
574 struct driver_data {
575         struct fw_packet *packet;
576 };
577
578 /* This function apppends a packet to the DMA queue for transmission.
579  * Must always be called with the ochi->lock held to ensure proper
580  * generation handling and locking around packet queue manipulation. */
581 static int
582 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
583 {
584         struct fw_ohci *ohci = ctx->ohci;
585         dma_addr_t d_bus, payload_bus;
586         struct driver_data *driver_data;
587         struct descriptor *d, *last;
588         __le32 *header;
589         int z, tcode;
590         u32 reg;
591
592         d = context_get_descriptors(ctx, 4, &d_bus);
593         if (d == NULL) {
594                 packet->ack = RCODE_SEND_ERROR;
595                 return -1;
596         }
597
598         d[0].control   = cpu_to_le16(descriptor_key_immediate);
599         d[0].res_count = cpu_to_le16(packet->timestamp);
600
601         /* The DMA format for asyncronous link packets is different
602          * from the IEEE1394 layout, so shift the fields around
603          * accordingly.  If header_length is 8, it's a PHY packet, to
604          * which we need to prepend an extra quadlet. */
605
606         header = (__le32 *) &d[1];
607         if (packet->header_length > 8) {
608                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
609                                         (packet->speed << 16));
610                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
611                                         (packet->header[0] & 0xffff0000));
612                 header[2] = cpu_to_le32(packet->header[2]);
613
614                 tcode = (packet->header[0] >> 4) & 0x0f;
615                 if (TCODE_IS_BLOCK_PACKET(tcode))
616                         header[3] = cpu_to_le32(packet->header[3]);
617                 else
618                         header[3] = (__force __le32) packet->header[3];
619
620                 d[0].req_count = cpu_to_le16(packet->header_length);
621         } else {
622                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
623                                         (packet->speed << 16));
624                 header[1] = cpu_to_le32(packet->header[0]);
625                 header[2] = cpu_to_le32(packet->header[1]);
626                 d[0].req_count = cpu_to_le16(12);
627         }
628
629         driver_data = (struct driver_data *) &d[3];
630         driver_data->packet = packet;
631         packet->driver_data = driver_data;
632         
633         if (packet->payload_length > 0) {
634                 payload_bus =
635                         dma_map_single(ohci->card.device, packet->payload,
636                                        packet->payload_length, DMA_TO_DEVICE);
637                 if (dma_mapping_error(payload_bus)) {
638                         packet->ack = RCODE_SEND_ERROR;
639                         return -1;
640                 }
641
642                 d[2].req_count    = cpu_to_le16(packet->payload_length);
643                 d[2].data_address = cpu_to_le32(payload_bus);
644                 last = &d[2];
645                 z = 3;
646         } else {
647                 last = &d[0];
648                 z = 2;
649         }
650
651         last->control |= cpu_to_le16(descriptor_output_last |
652                                      descriptor_irq_always |
653                                      descriptor_branch_always);
654
655         /* FIXME: Document how the locking works. */
656         if (ohci->generation != packet->generation) {
657                 packet->ack = RCODE_GENERATION;
658                 return -1;
659         }
660
661         context_append(ctx, d, z, 4 - z);
662
663         /* If the context isn't already running, start it up. */
664         reg = reg_read(ctx->ohci, control_set(ctx->regs));
665         if ((reg & CONTEXT_RUN) == 0)
666                 context_run(ctx, 0);
667
668         return 0;
669 }
670
671 static int handle_at_packet(struct context *context,
672                             struct descriptor *d,
673                             struct descriptor *last)
674 {
675         struct driver_data *driver_data;
676         struct fw_packet *packet;
677         struct fw_ohci *ohci = context->ohci;
678         dma_addr_t payload_bus;
679         int evt;
680
681         if (last->transfer_status == 0)
682                 /* This descriptor isn't done yet, stop iteration. */
683                 return 0;
684
685         driver_data = (struct driver_data *) &d[3];
686         packet = driver_data->packet;
687         if (packet == NULL)
688                 /* This packet was cancelled, just continue. */
689                 return 1;
690
691         payload_bus = le32_to_cpu(last->data_address);
692         if (payload_bus != 0)
693                 dma_unmap_single(ohci->card.device, payload_bus,
694                                  packet->payload_length, DMA_TO_DEVICE);
695
696         evt = le16_to_cpu(last->transfer_status) & 0x1f;
697         packet->timestamp = le16_to_cpu(last->res_count);
698
699         switch (evt) {
700         case OHCI1394_evt_timeout:
701                 /* Async response transmit timed out. */
702                 packet->ack = RCODE_CANCELLED;
703                 break;
704
705         case OHCI1394_evt_flushed:
706                 /* The packet was flushed should give same error as
707                  * when we try to use a stale generation count. */
708                 packet->ack = RCODE_GENERATION;
709                 break;
710
711         case OHCI1394_evt_missing_ack:
712                 /* Using a valid (current) generation count, but the
713                  * node is not on the bus or not sending acks. */
714                 packet->ack = RCODE_NO_ACK;
715                 break;
716
717         case ACK_COMPLETE + 0x10:
718         case ACK_PENDING + 0x10:
719         case ACK_BUSY_X + 0x10:
720         case ACK_BUSY_A + 0x10:
721         case ACK_BUSY_B + 0x10:
722         case ACK_DATA_ERROR + 0x10:
723         case ACK_TYPE_ERROR + 0x10:
724                 packet->ack = evt - 0x10;
725                 break;
726
727         default:
728                 packet->ack = RCODE_SEND_ERROR;
729                 break;
730         }
731
732         packet->callback(packet, &ohci->card, packet->ack);
733
734         return 1;
735 }
736
737 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
738 #define header_get_tcode(q)             (((q) >> 4) & 0x0f)
739 #define header_get_offset_high(q)       (((q) >> 0) & 0xffff)
740 #define header_get_data_length(q)       (((q) >> 16) & 0xffff)
741 #define header_get_extended_tcode(q)    (((q) >> 0) & 0xffff)
742
743 static void
744 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
745 {
746         struct fw_packet response;
747         int tcode, length, i;
748
749         tcode = header_get_tcode(packet->header[0]);
750         if (TCODE_IS_BLOCK_PACKET(tcode))
751                 length = header_get_data_length(packet->header[3]);
752         else
753                 length = 4;
754
755         i = csr - CSR_CONFIG_ROM;
756         if (i + length > CONFIG_ROM_SIZE) {
757                 fw_fill_response(&response, packet->header,
758                                  RCODE_ADDRESS_ERROR, NULL, 0);
759         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
760                 fw_fill_response(&response, packet->header,
761                                  RCODE_TYPE_ERROR, NULL, 0);
762         } else {
763                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
764                                  (void *) ohci->config_rom + i, length);
765         }
766
767         fw_core_handle_response(&ohci->card, &response);
768 }
769
770 static void
771 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
772 {
773         struct fw_packet response;
774         int tcode, length, ext_tcode, sel;
775         __be32 *payload, lock_old;
776         u32 lock_arg, lock_data;
777
778         tcode = header_get_tcode(packet->header[0]);
779         length = header_get_data_length(packet->header[3]);
780         payload = packet->payload;
781         ext_tcode = header_get_extended_tcode(packet->header[3]);
782
783         if (tcode == TCODE_LOCK_REQUEST &&
784             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
785                 lock_arg = be32_to_cpu(payload[0]);
786                 lock_data = be32_to_cpu(payload[1]);
787         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
788                 lock_arg = 0;
789                 lock_data = 0;
790         } else {
791                 fw_fill_response(&response, packet->header,
792                                  RCODE_TYPE_ERROR, NULL, 0);
793                 goto out;
794         }
795
796         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
797         reg_write(ohci, OHCI1394_CSRData, lock_data);
798         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
799         reg_write(ohci, OHCI1394_CSRControl, sel);
800
801         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
802                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
803         else
804                 fw_notify("swap not done yet\n");
805
806         fw_fill_response(&response, packet->header,
807                          RCODE_COMPLETE, &lock_old, sizeof lock_old);
808  out:
809         fw_core_handle_response(&ohci->card, &response);
810 }
811
812 static void
813 handle_local_request(struct context *ctx, struct fw_packet *packet)
814 {
815         u64 offset;
816         u32 csr;
817
818         if (ctx == &ctx->ohci->at_request_ctx) {
819                 packet->ack = ACK_PENDING;
820                 packet->callback(packet, &ctx->ohci->card, packet->ack);
821         }
822
823         offset =
824                 ((unsigned long long)
825                  header_get_offset_high(packet->header[1]) << 32) |
826                 packet->header[2];
827         csr = offset - CSR_REGISTER_BASE;
828
829         /* Handle config rom reads. */
830         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
831                 handle_local_rom(ctx->ohci, packet, csr);
832         else switch (csr) {
833         case CSR_BUS_MANAGER_ID:
834         case CSR_BANDWIDTH_AVAILABLE:
835         case CSR_CHANNELS_AVAILABLE_HI:
836         case CSR_CHANNELS_AVAILABLE_LO:
837                 handle_local_lock(ctx->ohci, packet, csr);
838                 break;
839         default:
840                 if (ctx == &ctx->ohci->at_request_ctx)
841                         fw_core_handle_request(&ctx->ohci->card, packet);
842                 else
843                         fw_core_handle_response(&ctx->ohci->card, packet);
844                 break;
845         }
846
847         if (ctx == &ctx->ohci->at_response_ctx) {
848                 packet->ack = ACK_COMPLETE;
849                 packet->callback(packet, &ctx->ohci->card, packet->ack);
850         }
851 }
852
853 static void
854 at_context_transmit(struct context *ctx, struct fw_packet *packet)
855 {
856         unsigned long flags;
857         int retval;
858
859         spin_lock_irqsave(&ctx->ohci->lock, flags);
860
861         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
862             ctx->ohci->generation == packet->generation) {
863                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
864                 handle_local_request(ctx, packet);
865                 return;
866         }
867
868         retval = at_context_queue_packet(ctx, packet);
869         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
870
871         if (retval < 0)
872                 packet->callback(packet, &ctx->ohci->card, packet->ack);
873         
874 }
875
876 static void bus_reset_tasklet(unsigned long data)
877 {
878         struct fw_ohci *ohci = (struct fw_ohci *)data;
879         int self_id_count, i, j, reg;
880         int generation, new_generation;
881         unsigned long flags;
882
883         reg = reg_read(ohci, OHCI1394_NodeID);
884         if (!(reg & OHCI1394_NodeID_idValid)) {
885                 fw_error("node ID not valid, new bus reset in progress\n");
886                 return;
887         }
888         ohci->node_id = reg & 0xffff;
889
890         /* The count in the SelfIDCount register is the number of
891          * bytes in the self ID receive buffer.  Since we also receive
892          * the inverted quadlets and a header quadlet, we shift one
893          * bit extra to get the actual number of self IDs. */
894
895         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
896         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
897
898         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
899                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
900                         fw_error("inconsistent self IDs\n");
901                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
902         }
903
904         /* Check the consistency of the self IDs we just read.  The
905          * problem we face is that a new bus reset can start while we
906          * read out the self IDs from the DMA buffer. If this happens,
907          * the DMA buffer will be overwritten with new self IDs and we
908          * will read out inconsistent data.  The OHCI specification
909          * (section 11.2) recommends a technique similar to
910          * linux/seqlock.h, where we remember the generation of the
911          * self IDs in the buffer before reading them out and compare
912          * it to the current generation after reading them out.  If
913          * the two generations match we know we have a consistent set
914          * of self IDs. */
915
916         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
917         if (new_generation != generation) {
918                 fw_notify("recursive bus reset detected, "
919                           "discarding self ids\n");
920                 return;
921         }
922
923         /* FIXME: Document how the locking works. */
924         spin_lock_irqsave(&ohci->lock, flags);
925
926         ohci->generation = generation;
927         context_stop(&ohci->at_request_ctx);
928         context_stop(&ohci->at_response_ctx);
929         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
930
931         /* This next bit is unrelated to the AT context stuff but we
932          * have to do it under the spinlock also.  If a new config rom
933          * was set up before this reset, the old one is now no longer
934          * in use and we can free it. Update the config rom pointers
935          * to point to the current config rom and clear the
936          * next_config_rom pointer so a new udpate can take place. */
937
938         if (ohci->next_config_rom != NULL) {
939                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
940                                   ohci->config_rom, ohci->config_rom_bus);
941                 ohci->config_rom      = ohci->next_config_rom;
942                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
943                 ohci->next_config_rom = NULL;
944
945                 /* Restore config_rom image and manually update
946                  * config_rom registers.  Writing the header quadlet
947                  * will indicate that the config rom is ready, so we
948                  * do that last. */
949                 reg_write(ohci, OHCI1394_BusOptions,
950                           be32_to_cpu(ohci->config_rom[2]));
951                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
952                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
953         }
954
955         spin_unlock_irqrestore(&ohci->lock, flags);
956
957         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
958                                  self_id_count, ohci->self_id_buffer);
959 }
960
961 static irqreturn_t irq_handler(int irq, void *data)
962 {
963         struct fw_ohci *ohci = data;
964         u32 event, iso_event, cycle_time;
965         int i;
966
967         event = reg_read(ohci, OHCI1394_IntEventClear);
968
969         if (!event)
970                 return IRQ_NONE;
971
972         reg_write(ohci, OHCI1394_IntEventClear, event);
973
974         if (event & OHCI1394_selfIDComplete)
975                 tasklet_schedule(&ohci->bus_reset_tasklet);
976
977         if (event & OHCI1394_RQPkt)
978                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
979
980         if (event & OHCI1394_RSPkt)
981                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
982
983         if (event & OHCI1394_reqTxComplete)
984                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
985
986         if (event & OHCI1394_respTxComplete)
987                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
988
989         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
990         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
991
992         while (iso_event) {
993                 i = ffs(iso_event) - 1;
994                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
995                 iso_event &= ~(1 << i);
996         }
997
998         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
999         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1000
1001         while (iso_event) {
1002                 i = ffs(iso_event) - 1;
1003                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1004                 iso_event &= ~(1 << i);
1005         }
1006
1007         if (event & OHCI1394_cycle64Seconds) {
1008                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1009                 if ((cycle_time & 0x80000000) == 0)
1010                         ohci->bus_seconds++;
1011         }
1012
1013         return IRQ_HANDLED;
1014 }
1015
1016 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1017 {
1018         struct fw_ohci *ohci = fw_ohci(card);
1019         struct pci_dev *dev = to_pci_dev(card->device);
1020
1021         /* When the link is not yet enabled, the atomic config rom
1022          * update mechanism described below in ohci_set_config_rom()
1023          * is not active.  We have to update ConfigRomHeader and
1024          * BusOptions manually, and the write to ConfigROMmap takes
1025          * effect immediately.  We tie this to the enabling of the
1026          * link, so we have a valid config rom before enabling - the
1027          * OHCI requires that ConfigROMhdr and BusOptions have valid
1028          * values before enabling.
1029          *
1030          * However, when the ConfigROMmap is written, some controllers
1031          * always read back quadlets 0 and 2 from the config rom to
1032          * the ConfigRomHeader and BusOptions registers on bus reset.
1033          * They shouldn't do that in this initial case where the link
1034          * isn't enabled.  This means we have to use the same
1035          * workaround here, setting the bus header to 0 and then write
1036          * the right values in the bus reset tasklet.
1037          */
1038
1039         ohci->next_config_rom =
1040                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1041                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1042         if (ohci->next_config_rom == NULL)
1043                 return -ENOMEM;
1044
1045         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1046         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1047
1048         ohci->next_header = config_rom[0];
1049         ohci->next_config_rom[0] = 0;
1050         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1051         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1052         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1053
1054         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1055
1056         if (request_irq(dev->irq, irq_handler,
1057                         IRQF_SHARED, ohci_driver_name, ohci)) {
1058                 fw_error("Failed to allocate shared interrupt %d.\n",
1059                          dev->irq);
1060                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1061                                   ohci->config_rom, ohci->config_rom_bus);
1062                 return -EIO;
1063         }
1064
1065         reg_write(ohci, OHCI1394_HCControlSet,
1066                   OHCI1394_HCControl_linkEnable |
1067                   OHCI1394_HCControl_BIBimageValid);
1068         flush_writes(ohci);
1069
1070         /* We are ready to go, initiate bus reset to finish the
1071          * initialization. */
1072
1073         fw_core_initiate_bus_reset(&ohci->card, 1);
1074
1075         return 0;
1076 }
1077
1078 static int
1079 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1080 {
1081         struct fw_ohci *ohci;
1082         unsigned long flags;
1083         int retval = 0;
1084         __be32 *next_config_rom;
1085         dma_addr_t next_config_rom_bus;
1086
1087         ohci = fw_ohci(card);
1088
1089         /* When the OHCI controller is enabled, the config rom update
1090          * mechanism is a bit tricky, but easy enough to use.  See
1091          * section 5.5.6 in the OHCI specification.
1092          *
1093          * The OHCI controller caches the new config rom address in a
1094          * shadow register (ConfigROMmapNext) and needs a bus reset
1095          * for the changes to take place.  When the bus reset is
1096          * detected, the controller loads the new values for the
1097          * ConfigRomHeader and BusOptions registers from the specified
1098          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1099          * shadow register. All automatically and atomically.
1100          *
1101          * Now, there's a twist to this story.  The automatic load of
1102          * ConfigRomHeader and BusOptions doesn't honor the
1103          * noByteSwapData bit, so with a be32 config rom, the
1104          * controller will load be32 values in to these registers
1105          * during the atomic update, even on litte endian
1106          * architectures.  The workaround we use is to put a 0 in the
1107          * header quadlet; 0 is endian agnostic and means that the
1108          * config rom isn't ready yet.  In the bus reset tasklet we
1109          * then set up the real values for the two registers.
1110          *
1111          * We use ohci->lock to avoid racing with the code that sets
1112          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1113          */
1114
1115         next_config_rom =
1116                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1117                                    &next_config_rom_bus, GFP_KERNEL);
1118         if (next_config_rom == NULL)
1119                 return -ENOMEM;
1120
1121         spin_lock_irqsave(&ohci->lock, flags);
1122
1123         if (ohci->next_config_rom == NULL) {
1124                 ohci->next_config_rom = next_config_rom;
1125                 ohci->next_config_rom_bus = next_config_rom_bus;
1126
1127                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1128                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1129                                   length * 4);
1130
1131                 ohci->next_header = config_rom[0];
1132                 ohci->next_config_rom[0] = 0;
1133
1134                 reg_write(ohci, OHCI1394_ConfigROMmap,
1135                           ohci->next_config_rom_bus);
1136         } else {
1137                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1138                                   next_config_rom, next_config_rom_bus);
1139                 retval = -EBUSY;
1140         }
1141
1142         spin_unlock_irqrestore(&ohci->lock, flags);
1143
1144         /* Now initiate a bus reset to have the changes take
1145          * effect. We clean up the old config rom memory and DMA
1146          * mappings in the bus reset tasklet, since the OHCI
1147          * controller could need to access it before the bus reset
1148          * takes effect. */
1149         if (retval == 0)
1150                 fw_core_initiate_bus_reset(&ohci->card, 1);
1151
1152         return retval;
1153 }
1154
1155 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1156 {
1157         struct fw_ohci *ohci = fw_ohci(card);
1158
1159         at_context_transmit(&ohci->at_request_ctx, packet);
1160 }
1161
1162 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1163 {
1164         struct fw_ohci *ohci = fw_ohci(card);
1165
1166         at_context_transmit(&ohci->at_response_ctx, packet);
1167 }
1168
1169 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1170 {
1171         struct fw_ohci *ohci = fw_ohci(card);
1172         struct context *ctx = &ohci->at_request_ctx;
1173         struct driver_data *driver_data = packet->driver_data;
1174         int retval = -ENOENT;
1175
1176         tasklet_disable(&ctx->tasklet);
1177
1178         if (packet->ack != 0)
1179                 goto out;
1180
1181         driver_data->packet = NULL;
1182         packet->ack = RCODE_CANCELLED;
1183         packet->callback(packet, &ohci->card, packet->ack);
1184         retval = 0;
1185
1186  out:
1187         tasklet_enable(&ctx->tasklet);
1188
1189         return retval;
1190 }
1191
1192 static int
1193 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1194 {
1195         struct fw_ohci *ohci = fw_ohci(card);
1196         unsigned long flags;
1197         int n, retval = 0;
1198
1199         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
1200          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1201
1202         spin_lock_irqsave(&ohci->lock, flags);
1203
1204         if (ohci->generation != generation) {
1205                 retval = -ESTALE;
1206                 goto out;
1207         }
1208
1209         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1210          * enabled for _all_ nodes on remote buses. */
1211
1212         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1213         if (n < 32)
1214                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1215         else
1216                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1217
1218         flush_writes(ohci);
1219  out:
1220         spin_unlock_irqrestore(&ohci->lock, flags);
1221         return retval;
1222 }
1223
1224 static u64
1225 ohci_get_bus_time(struct fw_card *card)
1226 {
1227         struct fw_ohci *ohci = fw_ohci(card);
1228         u32 cycle_time;
1229         u64 bus_time;
1230
1231         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1232         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1233
1234         return bus_time;
1235 }
1236
1237 static int handle_ir_dualbuffer_packet(struct context *context,
1238                                        struct descriptor *d,
1239                                        struct descriptor *last)
1240 {
1241         struct iso_context *ctx =
1242                 container_of(context, struct iso_context, context);
1243         struct db_descriptor *db = (struct db_descriptor *) d;
1244         __le32 *ir_header;
1245         size_t header_length;
1246         void *p, *end;
1247         int i;
1248
1249         if (db->first_res_count > 0 && db->second_res_count > 0)
1250                 /* This descriptor isn't done yet, stop iteration. */
1251                 return 0;
1252
1253         header_length = le16_to_cpu(db->first_req_count) -
1254                 le16_to_cpu(db->first_res_count);
1255
1256         i = ctx->header_length;
1257         p = db + 1;
1258         end = p + header_length;
1259         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1260                 /* The iso header is byteswapped to little endian by
1261                  * the controller, but the remaining header quadlets
1262                  * are big endian.  We want to present all the headers
1263                  * as big endian, so we have to swap the first
1264                  * quadlet. */
1265                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1266                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1267                 i += ctx->base.header_size;
1268                 p += ctx->base.header_size + 4;
1269         }
1270
1271         ctx->header_length = i;
1272
1273         if (le16_to_cpu(db->control) & descriptor_irq_always) {
1274                 ir_header = (__le32 *) (db + 1);
1275                 ctx->base.callback(&ctx->base,
1276                                    le32_to_cpu(ir_header[0]) & 0xffff,
1277                                    ctx->header_length, ctx->header,
1278                                    ctx->base.callback_data);
1279                 ctx->header_length = 0;
1280         }
1281
1282         return 1;
1283 }
1284
1285 static int handle_it_packet(struct context *context,
1286                             struct descriptor *d,
1287                             struct descriptor *last)
1288 {
1289         struct iso_context *ctx =
1290                 container_of(context, struct iso_context, context);
1291
1292         if (last->transfer_status == 0)
1293                 /* This descriptor isn't done yet, stop iteration. */
1294                 return 0;
1295
1296         if (le16_to_cpu(last->control) & descriptor_irq_always)
1297                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1298                                    0, NULL, ctx->base.callback_data);
1299
1300         return 1;
1301 }
1302
1303 static struct fw_iso_context *
1304 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1305 {
1306         struct fw_ohci *ohci = fw_ohci(card);
1307         struct iso_context *ctx, *list;
1308         descriptor_callback_t callback;
1309         u32 *mask, regs;
1310         unsigned long flags;
1311         int index, retval = -ENOMEM;
1312
1313         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1314                 mask = &ohci->it_context_mask;
1315                 list = ohci->it_context_list;
1316                 callback = handle_it_packet;
1317         } else {
1318                 mask = &ohci->ir_context_mask;
1319                 list = ohci->ir_context_list;
1320                 callback = handle_ir_dualbuffer_packet;
1321         }
1322
1323         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1324         if (callback == handle_ir_dualbuffer_packet &&
1325             ohci->version < OHCI_VERSION_1_1)
1326                 return ERR_PTR(-EINVAL);
1327
1328         spin_lock_irqsave(&ohci->lock, flags);
1329         index = ffs(*mask) - 1;
1330         if (index >= 0)
1331                 *mask &= ~(1 << index);
1332         spin_unlock_irqrestore(&ohci->lock, flags);
1333
1334         if (index < 0)
1335                 return ERR_PTR(-EBUSY);
1336
1337         if (type == FW_ISO_CONTEXT_TRANSMIT)
1338                 regs = OHCI1394_IsoXmitContextBase(index);
1339         else
1340                 regs = OHCI1394_IsoRcvContextBase(index);
1341
1342         ctx = &list[index];
1343         memset(ctx, 0, sizeof *ctx);
1344         ctx->header_length = 0;
1345         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1346         if (ctx->header == NULL)
1347                 goto out;
1348
1349         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1350                               regs, callback);
1351         if (retval < 0)
1352                 goto out_with_header;
1353
1354         return &ctx->base;
1355
1356  out_with_header:
1357         free_page((unsigned long)ctx->header);
1358  out:
1359         spin_lock_irqsave(&ohci->lock, flags);
1360         *mask |= 1 << index;
1361         spin_unlock_irqrestore(&ohci->lock, flags);
1362
1363         return ERR_PTR(retval);
1364 }
1365
1366 static int ohci_start_iso(struct fw_iso_context *base,
1367                           s32 cycle, u32 sync, u32 tags)
1368 {
1369         struct iso_context *ctx = container_of(base, struct iso_context, base);
1370         struct fw_ohci *ohci = ctx->context.ohci;
1371         u32 control, match;
1372         int index;
1373
1374         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1375                 index = ctx - ohci->it_context_list;
1376                 match = 0;
1377                 if (cycle >= 0)
1378                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1379                                 (cycle & 0x7fff) << 16;
1380
1381                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1382                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1383                 context_run(&ctx->context, match);
1384         } else {
1385                 index = ctx - ohci->ir_context_list;
1386                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1387                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1388                 if (cycle >= 0) {
1389                         match |= (cycle & 0x07fff) << 12;
1390                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1391                 }
1392
1393                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1394                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1395                 reg_write(ohci, context_match(ctx->context.regs), match);
1396                 context_run(&ctx->context, control);
1397         }
1398
1399         return 0;
1400 }
1401
1402 static int ohci_stop_iso(struct fw_iso_context *base)
1403 {
1404         struct fw_ohci *ohci = fw_ohci(base->card);
1405         struct iso_context *ctx = container_of(base, struct iso_context, base);
1406         int index;
1407
1408         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1409                 index = ctx - ohci->it_context_list;
1410                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1411         } else {
1412                 index = ctx - ohci->ir_context_list;
1413                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1414         }
1415         flush_writes(ohci);
1416         context_stop(&ctx->context);
1417
1418         return 0;
1419 }
1420
1421 static void ohci_free_iso_context(struct fw_iso_context *base)
1422 {
1423         struct fw_ohci *ohci = fw_ohci(base->card);
1424         struct iso_context *ctx = container_of(base, struct iso_context, base);
1425         unsigned long flags;
1426         int index;
1427
1428         ohci_stop_iso(base);
1429         context_release(&ctx->context);
1430         free_page((unsigned long)ctx->header);
1431
1432         spin_lock_irqsave(&ohci->lock, flags);
1433
1434         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1435                 index = ctx - ohci->it_context_list;
1436                 ohci->it_context_mask |= 1 << index;
1437         } else {
1438                 index = ctx - ohci->ir_context_list;
1439                 ohci->ir_context_mask |= 1 << index;
1440         }
1441
1442         spin_unlock_irqrestore(&ohci->lock, flags);
1443 }
1444
1445 static int
1446 ohci_queue_iso_transmit(struct fw_iso_context *base,
1447                         struct fw_iso_packet *packet,
1448                         struct fw_iso_buffer *buffer,
1449                         unsigned long payload)
1450 {
1451         struct iso_context *ctx = container_of(base, struct iso_context, base);
1452         struct descriptor *d, *last, *pd;
1453         struct fw_iso_packet *p;
1454         __le32 *header;
1455         dma_addr_t d_bus, page_bus;
1456         u32 z, header_z, payload_z, irq;
1457         u32 payload_index, payload_end_index, next_page_index;
1458         int page, end_page, i, length, offset;
1459
1460         /* FIXME: Cycle lost behavior should be configurable: lose
1461          * packet, retransmit or terminate.. */
1462
1463         p = packet;
1464         payload_index = payload;
1465
1466         if (p->skip)
1467                 z = 1;
1468         else
1469                 z = 2;
1470         if (p->header_length > 0)
1471                 z++;
1472
1473         /* Determine the first page the payload isn't contained in. */
1474         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1475         if (p->payload_length > 0)
1476                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1477         else
1478                 payload_z = 0;
1479
1480         z += payload_z;
1481
1482         /* Get header size in number of descriptors. */
1483         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1484
1485         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1486         if (d == NULL)
1487                 return -ENOMEM;
1488
1489         if (!p->skip) {
1490                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1491                 d[0].req_count = cpu_to_le16(8);
1492
1493                 header = (__le32 *) &d[1];
1494                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1495                                         it_header_tag(p->tag) |
1496                                         it_header_tcode(TCODE_STREAM_DATA) |
1497                                         it_header_channel(ctx->base.channel) |
1498                                         it_header_speed(ctx->base.speed));
1499                 header[1] =
1500                         cpu_to_le32(it_header_data_length(p->header_length +
1501                                                           p->payload_length));
1502         }
1503
1504         if (p->header_length > 0) {
1505                 d[2].req_count    = cpu_to_le16(p->header_length);
1506                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1507                 memcpy(&d[z], p->header, p->header_length);
1508         }
1509
1510         pd = d + z - payload_z;
1511         payload_end_index = payload_index + p->payload_length;
1512         for (i = 0; i < payload_z; i++) {
1513                 page               = payload_index >> PAGE_SHIFT;
1514                 offset             = payload_index & ~PAGE_MASK;
1515                 next_page_index    = (page + 1) << PAGE_SHIFT;
1516                 length             =
1517                         min(next_page_index, payload_end_index) - payload_index;
1518                 pd[i].req_count    = cpu_to_le16(length);
1519
1520                 page_bus = page_private(buffer->pages[page]);
1521                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1522
1523                 payload_index += length;
1524         }
1525
1526         if (p->interrupt)
1527                 irq = descriptor_irq_always;
1528         else
1529                 irq = descriptor_no_irq;
1530
1531         last = z == 2 ? d : d + z - 1;
1532         last->control |= cpu_to_le16(descriptor_output_last |
1533                                      descriptor_status |
1534                                      descriptor_branch_always |
1535                                      irq);
1536
1537         context_append(&ctx->context, d, z, header_z);
1538
1539         return 0;
1540 }
1541
1542 static int
1543 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1544                                   struct fw_iso_packet *packet,
1545                                   struct fw_iso_buffer *buffer,
1546                                   unsigned long payload)
1547 {
1548         struct iso_context *ctx = container_of(base, struct iso_context, base);
1549         struct db_descriptor *db = NULL;
1550         struct descriptor *d;
1551         struct fw_iso_packet *p;
1552         dma_addr_t d_bus, page_bus;
1553         u32 z, header_z, length, rest;
1554         int page, offset, packet_count, header_size;
1555
1556         /* FIXME: Cycle lost behavior should be configurable: lose
1557          * packet, retransmit or terminate.. */
1558
1559         if (packet->skip) {
1560                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1561                 if (d == NULL)
1562                         return -ENOMEM;
1563
1564                 db = (struct db_descriptor *) d;
1565                 db->control = cpu_to_le16(descriptor_status |
1566                                           descriptor_branch_always |
1567                                           descriptor_wait);
1568                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1569                 context_append(&ctx->context, d, 2, 0);
1570         }
1571
1572         p = packet;
1573         z = 2;
1574
1575         /* The OHCI controller puts the status word in the header
1576          * buffer too, so we need 4 extra bytes per packet. */
1577         packet_count = p->header_length / ctx->base.header_size;
1578         header_size = packet_count * (ctx->base.header_size + 4);
1579
1580         /* Get header size in number of descriptors. */
1581         header_z = DIV_ROUND_UP(header_size, sizeof *d);
1582         page     = payload >> PAGE_SHIFT;
1583         offset   = payload & ~PAGE_MASK;
1584         rest     = p->payload_length;
1585
1586         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1587         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1588         while (rest > 0) {
1589                 d = context_get_descriptors(&ctx->context,
1590                                             z + header_z, &d_bus);
1591                 if (d == NULL)
1592                         return -ENOMEM;
1593
1594                 db = (struct db_descriptor *) d;
1595                 db->control = cpu_to_le16(descriptor_status |
1596                                           descriptor_branch_always);
1597                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1598                 db->first_req_count = cpu_to_le16(header_size);
1599                 db->first_res_count = db->first_req_count;
1600                 db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
1601
1602                 if (offset + rest < PAGE_SIZE)
1603                         length = rest;
1604                 else
1605                         length = PAGE_SIZE - offset;
1606
1607                 db->second_req_count = cpu_to_le16(length);
1608                 db->second_res_count = db->second_req_count;
1609                 page_bus = page_private(buffer->pages[page]);
1610                 db->second_buffer = cpu_to_le32(page_bus + offset);
1611
1612                 if (p->interrupt && length == rest)
1613                         db->control |= cpu_to_le16(descriptor_irq_always);
1614
1615                 context_append(&ctx->context, d, z, header_z);
1616                 offset = (offset + length) & ~PAGE_MASK;
1617                 rest -= length;
1618                 page++;
1619         }
1620
1621         return 0;
1622 }
1623
1624 static int
1625 ohci_queue_iso(struct fw_iso_context *base,
1626                struct fw_iso_packet *packet,
1627                struct fw_iso_buffer *buffer,
1628                unsigned long payload)
1629 {
1630         struct iso_context *ctx = container_of(base, struct iso_context, base);
1631
1632         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1633                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1634         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1635                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1636                                                          buffer, payload);
1637         else
1638                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1639                 return -EINVAL;
1640 }
1641
1642 static const struct fw_card_driver ohci_driver = {
1643         .name                   = ohci_driver_name,
1644         .enable                 = ohci_enable,
1645         .update_phy_reg         = ohci_update_phy_reg,
1646         .set_config_rom         = ohci_set_config_rom,
1647         .send_request           = ohci_send_request,
1648         .send_response          = ohci_send_response,
1649         .cancel_packet          = ohci_cancel_packet,
1650         .enable_phys_dma        = ohci_enable_phys_dma,
1651         .get_bus_time           = ohci_get_bus_time,
1652
1653         .allocate_iso_context   = ohci_allocate_iso_context,
1654         .free_iso_context       = ohci_free_iso_context,
1655         .queue_iso              = ohci_queue_iso,
1656         .start_iso              = ohci_start_iso,
1657         .stop_iso               = ohci_stop_iso,
1658 };
1659
1660 static int software_reset(struct fw_ohci *ohci)
1661 {
1662         int i;
1663
1664         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1665
1666         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1667                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1668                      OHCI1394_HCControl_softReset) == 0)
1669                         return 0;
1670                 msleep(1);
1671         }
1672
1673         return -EBUSY;
1674 }
1675
1676 /* ---------- pci subsystem interface ---------- */
1677
1678 enum {
1679         CLEANUP_SELF_ID,
1680         CLEANUP_REGISTERS,
1681         CLEANUP_IOMEM,
1682         CLEANUP_DISABLE,
1683         CLEANUP_PUT_CARD,
1684 };
1685
1686 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1687 {
1688         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1689
1690         switch (stage) {
1691         case CLEANUP_SELF_ID:
1692                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1693                                   ohci->self_id_cpu, ohci->self_id_bus);
1694         case CLEANUP_REGISTERS:
1695                 kfree(ohci->it_context_list);
1696                 kfree(ohci->ir_context_list);
1697                 pci_iounmap(dev, ohci->registers);
1698         case CLEANUP_IOMEM:
1699                 pci_release_region(dev, 0);
1700         case CLEANUP_DISABLE:
1701                 pci_disable_device(dev);
1702         case CLEANUP_PUT_CARD:
1703                 fw_card_put(&ohci->card);
1704         }
1705
1706         return code;
1707 }
1708
1709 static int __devinit
1710 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1711 {
1712         struct fw_ohci *ohci;
1713         u32 bus_options, max_receive, link_speed;
1714         u64 guid;
1715         int error_code;
1716         size_t size;
1717
1718         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1719         if (ohci == NULL) {
1720                 fw_error("Could not malloc fw_ohci data.\n");
1721                 return -ENOMEM;
1722         }
1723
1724         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1725
1726         if (pci_enable_device(dev)) {
1727                 fw_error("Failed to enable OHCI hardware.\n");
1728                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1729         }
1730
1731         pci_set_master(dev);
1732         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1733         pci_set_drvdata(dev, ohci);
1734
1735         spin_lock_init(&ohci->lock);
1736
1737         tasklet_init(&ohci->bus_reset_tasklet,
1738                      bus_reset_tasklet, (unsigned long)ohci);
1739
1740         if (pci_request_region(dev, 0, ohci_driver_name)) {
1741                 fw_error("MMIO resource unavailable\n");
1742                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1743         }
1744
1745         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1746         if (ohci->registers == NULL) {
1747                 fw_error("Failed to remap registers\n");
1748                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1749         }
1750
1751         if (software_reset(ohci)) {
1752                 fw_error("Failed to reset ohci card.\n");
1753                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1754         }
1755
1756         /* Now enable LPS, which we need in order to start accessing
1757          * most of the registers.  In fact, on some cards (ALI M5251),
1758          * accessing registers in the SClk domain without LPS enabled
1759          * will lock up the machine.  Wait 50msec to make sure we have
1760          * full link enabled.  */
1761         reg_write(ohci, OHCI1394_HCControlSet,
1762                   OHCI1394_HCControl_LPS |
1763                   OHCI1394_HCControl_postedWriteEnable);
1764         flush_writes(ohci);
1765         msleep(50);
1766
1767         reg_write(ohci, OHCI1394_HCControlClear,
1768                   OHCI1394_HCControl_noByteSwapData);
1769
1770         reg_write(ohci, OHCI1394_LinkControlSet,
1771                   OHCI1394_LinkControl_rcvSelfID |
1772                   OHCI1394_LinkControl_cycleTimerEnable |
1773                   OHCI1394_LinkControl_cycleMaster);
1774
1775         ar_context_init(&ohci->ar_request_ctx, ohci,
1776                         OHCI1394_AsReqRcvContextControlSet);
1777
1778         ar_context_init(&ohci->ar_response_ctx, ohci,
1779                         OHCI1394_AsRspRcvContextControlSet);
1780
1781         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1782                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1783
1784         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1785                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1786
1787         reg_write(ohci, OHCI1394_ATRetries,
1788                   OHCI1394_MAX_AT_REQ_RETRIES |
1789                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1790                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1791
1792         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1793         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1794         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1795         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1796         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1797
1798         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1799         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1800         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1801         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1802         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1803
1804         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1805                 fw_error("Out of memory for it/ir contexts.\n");
1806                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1807         }
1808
1809         /* self-id dma buffer allocation */
1810         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1811                                                SELF_ID_BUF_SIZE,
1812                                                &ohci->self_id_bus,
1813                                                GFP_KERNEL);
1814         if (ohci->self_id_cpu == NULL) {
1815                 fw_error("Out of memory for self ID buffer.\n");
1816                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1817         }
1818
1819         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1820         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1821         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1822         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1823         reg_write(ohci, OHCI1394_IntMaskSet,
1824                   OHCI1394_selfIDComplete |
1825                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1826                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1827                   OHCI1394_isochRx | OHCI1394_isochTx |
1828                   OHCI1394_masterIntEnable |
1829                   OHCI1394_cycle64Seconds);
1830
1831         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1832         max_receive = (bus_options >> 12) & 0xf;
1833         link_speed = bus_options & 0x7;
1834         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1835                 reg_read(ohci, OHCI1394_GUIDLo);
1836
1837         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1838         if (error_code < 0)
1839                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1840
1841         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1842         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1843                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1844
1845         return 0;
1846 }
1847
1848 static void pci_remove(struct pci_dev *dev)
1849 {
1850         struct fw_ohci *ohci;
1851
1852         ohci = pci_get_drvdata(dev);
1853         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1854         flush_writes(ohci);
1855         fw_core_remove_card(&ohci->card);
1856
1857         /* FIXME: Fail all pending packets here, now that the upper
1858          * layers can't queue any more. */
1859
1860         software_reset(ohci);
1861         free_irq(dev->irq, ohci);
1862         cleanup(ohci, CLEANUP_SELF_ID, 0);
1863
1864         fw_notify("Removed fw-ohci device.\n");
1865 }
1866
1867 static struct pci_device_id pci_table[] = {
1868         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1869         { }
1870 };
1871
1872 MODULE_DEVICE_TABLE(pci, pci_table);
1873
1874 static struct pci_driver fw_ohci_pci_driver = {
1875         .name           = ohci_driver_name,
1876         .id_table       = pci_table,
1877         .probe          = pci_probe,
1878         .remove         = pci_remove,
1879 };
1880
1881 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1882 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1883 MODULE_LICENSE("GPL");
1884
1885 static int __init fw_ohci_init(void)
1886 {
1887         return pci_register_driver(&fw_ohci_pci_driver);
1888 }
1889
1890 static void __exit fw_ohci_cleanup(void)
1891 {
1892         pci_unregister_driver(&fw_ohci_pci_driver);
1893 }
1894
1895 module_init(fw_ohci_init);
1896 module_exit(fw_ohci_cleanup);