firewire: Generalize the iso transmit descriptor buffer logic.
[safe/jmp/linux-2.6] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48
49 struct descriptor {
50         __le16 req_count;
51         __le16 control;
52         __le32 data_address;
53         __le32 branch_address;
54         __le16 res_count;
55         __le16 transfer_status;
56 } __attribute__((aligned(16)));
57
58 #define control_set(regs)       (regs)
59 #define control_clear(regs)     ((regs) + 4)
60 #define command_ptr(regs)       ((regs) + 12)
61 #define context_match(regs)     ((regs) + 16)
62
63 struct ar_buffer {
64         struct descriptor descriptor;
65         struct ar_buffer *next;
66         __le32 data[0];
67 };
68
69 struct ar_context {
70         struct fw_ohci *ohci;
71         struct ar_buffer *current_buffer;
72         struct ar_buffer *last_buffer;
73         void *pointer;
74         u32 regs;
75         struct tasklet_struct tasklet;
76 };
77
78 struct context;
79
80 typedef int (*descriptor_callback_t)(struct context *ctx,
81                                      struct descriptor *d,
82                                      struct descriptor *last);
83 struct context {
84         struct fw_ohci *ohci;
85         u32 regs;
86  
87         struct descriptor *buffer;
88         dma_addr_t buffer_bus;
89         size_t buffer_size;
90         struct descriptor *head_descriptor;
91         struct descriptor *tail_descriptor;
92         struct descriptor *tail_descriptor_last;
93         struct descriptor *prev_descriptor;
94
95         descriptor_callback_t callback;
96
97         struct tasklet_struct tasklet;
98 };
99  
100
101
102 struct at_context {
103         struct fw_ohci *ohci;
104         dma_addr_t descriptor_bus;
105         dma_addr_t buffer_bus;
106         struct fw_packet *current_packet;
107
108         struct list_head list;
109
110         struct {
111                 struct descriptor more;
112                 __le32 header[4];
113                 struct descriptor last;
114         } d;
115
116         u32 regs;
117
118         struct tasklet_struct tasklet;
119 };
120
121 #define it_header_sy(v)          ((v) <<  0)
122 #define it_header_tcode(v)       ((v) <<  4)
123 #define it_header_channel(v)     ((v) <<  8)
124 #define it_header_tag(v)         ((v) << 14)
125 #define it_header_speed(v)       ((v) << 16)
126 #define it_header_data_length(v) ((v) << 16)
127
128 struct iso_context {
129         struct fw_iso_context base;
130         struct context context;
131 };
132
133 #define CONFIG_ROM_SIZE 1024
134
135 struct fw_ohci {
136         struct fw_card card;
137
138         __iomem char *registers;
139         dma_addr_t self_id_bus;
140         __le32 *self_id_cpu;
141         struct tasklet_struct bus_reset_tasklet;
142         int node_id;
143         int generation;
144         int request_generation;
145
146         /* Spinlock for accessing fw_ohci data.  Never call out of
147          * this driver with this lock held. */
148         spinlock_t lock;
149         u32 self_id_buffer[512];
150
151         /* Config rom buffers */
152         __be32 *config_rom;
153         dma_addr_t config_rom_bus;
154         __be32 *next_config_rom;
155         dma_addr_t next_config_rom_bus;
156         u32 next_header;
157
158         struct ar_context ar_request_ctx;
159         struct ar_context ar_response_ctx;
160         struct at_context at_request_ctx;
161         struct at_context at_response_ctx;
162
163         u32 it_context_mask;
164         struct iso_context *it_context_list;
165         u32 ir_context_mask;
166         struct iso_context *ir_context_list;
167 };
168
169 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
170 {
171         return container_of(card, struct fw_ohci, card);
172 }
173
174 #define CONTEXT_CYCLE_MATCH_ENABLE      0x80000000
175
176 #define CONTEXT_RUN     0x8000
177 #define CONTEXT_WAKE    0x1000
178 #define CONTEXT_DEAD    0x0800
179 #define CONTEXT_ACTIVE  0x0400
180
181 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
182 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
183 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
184
185 #define FW_OHCI_MAJOR                   240
186 #define OHCI1394_REGISTER_SIZE          0x800
187 #define OHCI_LOOP_COUNT                 500
188 #define OHCI1394_PCI_HCI_Control        0x40
189 #define SELF_ID_BUF_SIZE                0x800
190 #define OHCI_TCODE_PHY_PACKET           0x0e
191
192 static char ohci_driver_name[] = KBUILD_MODNAME;
193
194 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
195 {
196         writel(data, ohci->registers + offset);
197 }
198
199 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
200 {
201         return readl(ohci->registers + offset);
202 }
203
204 static inline void flush_writes(const struct fw_ohci *ohci)
205 {
206         /* Do a dummy read to flush writes. */
207         reg_read(ohci, OHCI1394_Version);
208 }
209
210 static int
211 ohci_update_phy_reg(struct fw_card *card, int addr,
212                     int clear_bits, int set_bits)
213 {
214         struct fw_ohci *ohci = fw_ohci(card);
215         u32 val, old;
216
217         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
218         msleep(2);
219         val = reg_read(ohci, OHCI1394_PhyControl);
220         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
221                 fw_error("failed to set phy reg bits.\n");
222                 return -EBUSY;
223         }
224
225         old = OHCI1394_PhyControl_ReadData(val);
226         old = (old & ~clear_bits) | set_bits;
227         reg_write(ohci, OHCI1394_PhyControl,
228                   OHCI1394_PhyControl_Write(addr, old));
229
230         return 0;
231 }
232
233 static int ar_context_add_page(struct ar_context *ctx)
234 {
235         struct device *dev = ctx->ohci->card.device;
236         struct ar_buffer *ab;
237         dma_addr_t ab_bus;
238         size_t offset;
239
240         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
241         if (ab == NULL)
242                 return -ENOMEM;
243
244         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
245         if (dma_mapping_error(ab_bus)) {
246                 free_page((unsigned long) ab);
247                 return -ENOMEM;
248         }
249
250         memset(&ab->descriptor, 0, sizeof ab->descriptor);
251         ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
252                                                     descriptor_status |
253                                                     descriptor_branch_always);
254         offset = offsetof(struct ar_buffer, data);
255         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
256         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
257         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
258         ab->descriptor.branch_address = 0;
259
260         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
261
262         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
263         ctx->last_buffer->next = ab;
264         ctx->last_buffer = ab;
265
266         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
267         flush_writes(ctx->ohci);
268
269         return 0;
270 }
271
272 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
273 {
274         struct fw_ohci *ohci = ctx->ohci;
275         struct fw_packet p;
276         u32 status, length, tcode;
277
278         p.header[0] = le32_to_cpu(buffer[0]);
279         p.header[1] = le32_to_cpu(buffer[1]);
280         p.header[2] = le32_to_cpu(buffer[2]);
281
282         tcode = (p.header[0] >> 4) & 0x0f;
283         switch (tcode) {
284         case TCODE_WRITE_QUADLET_REQUEST:
285         case TCODE_READ_QUADLET_RESPONSE:
286                 p.header[3] = (__force __u32) buffer[3];
287                 p.header_length = 16;
288                 p.payload_length = 0;
289                 break;
290
291         case TCODE_READ_BLOCK_REQUEST :
292                 p.header[3] = le32_to_cpu(buffer[3]);
293                 p.header_length = 16;
294                 p.payload_length = 0;
295                 break;
296
297         case TCODE_WRITE_BLOCK_REQUEST:
298         case TCODE_READ_BLOCK_RESPONSE:
299         case TCODE_LOCK_REQUEST:
300         case TCODE_LOCK_RESPONSE:
301                 p.header[3] = le32_to_cpu(buffer[3]);
302                 p.header_length = 16;
303                 p.payload_length = p.header[3] >> 16;
304                 break;
305
306         case TCODE_WRITE_RESPONSE:
307         case TCODE_READ_QUADLET_REQUEST:
308         case OHCI_TCODE_PHY_PACKET:
309                 p.header_length = 12;
310                 p.payload_length = 0;
311                 break;
312         }
313
314         p.payload = (void *) buffer + p.header_length;
315
316         /* FIXME: What to do about evt_* errors? */
317         length = (p.header_length + p.payload_length + 3) / 4;
318         status = le32_to_cpu(buffer[length]);
319
320         p.ack        = ((status >> 16) & 0x1f) - 16;
321         p.speed      = (status >> 21) & 0x7;
322         p.timestamp  = status & 0xffff;
323         p.generation = ohci->request_generation;
324
325         /* The OHCI bus reset handler synthesizes a phy packet with
326          * the new generation number when a bus reset happens (see
327          * section 8.4.2.3).  This helps us determine when a request
328          * was received and make sure we send the response in the same
329          * generation.  We only need this for requests; for responses
330          * we use the unique tlabel for finding the matching
331          * request. */
332
333         if (p.ack + 16 == 0x09)
334                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
335         else if (ctx == &ohci->ar_request_ctx)
336                 fw_core_handle_request(&ohci->card, &p);
337         else
338                 fw_core_handle_response(&ohci->card, &p);
339
340         return buffer + length + 1;
341 }
342
343 static void ar_context_tasklet(unsigned long data)
344 {
345         struct ar_context *ctx = (struct ar_context *)data;
346         struct fw_ohci *ohci = ctx->ohci;
347         struct ar_buffer *ab;
348         struct descriptor *d;
349         void *buffer, *end;
350
351         ab = ctx->current_buffer;
352         d = &ab->descriptor;
353
354         if (d->res_count == 0) {
355                 size_t size, rest, offset;
356
357                 /* This descriptor is finished and we may have a
358                  * packet split across this and the next buffer. We
359                  * reuse the page for reassembling the split packet. */
360
361                 offset = offsetof(struct ar_buffer, data);
362                 dma_unmap_single(ohci->card.device,
363                                  ab->descriptor.data_address - offset,
364                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
365
366                 buffer = ab;
367                 ab = ab->next;
368                 d = &ab->descriptor;
369                 size = buffer + PAGE_SIZE - ctx->pointer;
370                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
371                 memmove(buffer, ctx->pointer, size);
372                 memcpy(buffer + size, ab->data, rest);
373                 ctx->current_buffer = ab;
374                 ctx->pointer = (void *) ab->data + rest;
375                 end = buffer + size + rest;
376
377                 while (buffer < end)
378                         buffer = handle_ar_packet(ctx, buffer);
379
380                 free_page((unsigned long)buffer);
381                 ar_context_add_page(ctx);
382         } else {
383                 buffer = ctx->pointer;
384                 ctx->pointer = end =
385                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
386
387                 while (buffer < end)
388                         buffer = handle_ar_packet(ctx, buffer);
389         }
390 }
391
392 static int
393 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
394 {
395         struct ar_buffer ab;
396
397         ctx->regs        = regs;
398         ctx->ohci        = ohci;
399         ctx->last_buffer = &ab;
400         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
401
402         ar_context_add_page(ctx);
403         ar_context_add_page(ctx);
404         ctx->current_buffer = ab.next;
405         ctx->pointer = ctx->current_buffer->data;
406
407         reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
408         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
409         flush_writes(ctx->ohci);
410
411         return 0;
412 }
413  
414 static void context_tasklet(unsigned long data)
415 {
416         struct context *ctx = (struct context *) data;
417         struct fw_ohci *ohci = ctx->ohci;
418         struct descriptor *d, *last;
419         u32 address;
420         int z;
421
422         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
423                                 ctx->buffer_size, DMA_TO_DEVICE);
424
425         d    = ctx->tail_descriptor;
426         last = ctx->tail_descriptor_last;
427
428         while (last->branch_address != 0) {
429                 address = le32_to_cpu(last->branch_address);
430                 z = address & 0xf;
431                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
432                 last = (z == 2) ? d : d + z - 1;
433
434                 if (!ctx->callback(ctx, d, last))
435                         break;
436
437                 ctx->tail_descriptor      = d;
438                 ctx->tail_descriptor_last = last;
439         }
440 }
441
442 static int
443 context_init(struct context *ctx, struct fw_ohci *ohci,
444              size_t buffer_size, u32 regs,
445              descriptor_callback_t callback)
446 {
447         ctx->ohci = ohci;
448         ctx->regs = regs;
449         ctx->buffer_size = buffer_size;
450         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
451         if (ctx->buffer == NULL)
452                 return -ENOMEM;
453
454         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
455         ctx->callback = callback;
456
457         ctx->buffer_bus =
458                 dma_map_single(ohci->card.device, ctx->buffer,
459                                buffer_size, DMA_TO_DEVICE);
460         if (dma_mapping_error(ctx->buffer_bus)) {
461                 kfree(ctx->buffer);
462                 return -ENOMEM;
463         }
464
465         ctx->head_descriptor      = ctx->buffer;
466         ctx->prev_descriptor      = ctx->buffer;
467         ctx->tail_descriptor      = ctx->buffer;
468         ctx->tail_descriptor_last = ctx->buffer;
469
470         /* We put a dummy descriptor in the buffer that has a NULL
471          * branch address and looks like it's been sent.  That way we
472          * have a descriptor to append DMA programs to.  Also, the
473          * ring buffer invariant is that it always has at least one
474          * element so that head == tail means buffer full. */
475
476         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
477         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
478         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
479         ctx->head_descriptor++;
480
481         return 0;
482 }
483
484  static void
485 context_release(struct context *ctx)
486 {
487         struct fw_card *card = &ctx->ohci->card;
488
489         dma_unmap_single(card->device, ctx->buffer_bus,
490                          ctx->buffer_size, DMA_TO_DEVICE);
491         kfree(ctx->buffer);
492 }
493
494 static struct descriptor *
495 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
496 {
497         struct descriptor *d, *tail, *end;
498
499         d = ctx->head_descriptor;
500         tail = ctx->tail_descriptor;
501         end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
502
503         if (d + z <= tail) {
504                 goto has_space;
505         } else if (d > tail && d + z <= end) {
506                 goto has_space;
507         } else if (d > tail && ctx->buffer + z <= tail) {
508                 d = ctx->buffer;
509                 goto has_space;
510         }
511
512         return NULL;
513
514  has_space:
515         memset(d, 0, z * sizeof *d);
516         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
517
518         return d;
519 }
520
521 static void context_run(struct context *ctx, u32 cycle_match)
522 {
523         struct fw_ohci *ohci = ctx->ohci;
524
525         reg_write(ohci, command_ptr(ctx->regs),
526                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
527         reg_write(ohci, control_clear(ctx->regs), ~0);
528         reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | cycle_match);
529         flush_writes(ohci);
530 }
531
532 static void context_append(struct context *ctx,
533                            struct descriptor *d, int z, int extra)
534 {
535         dma_addr_t d_bus;
536
537         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
538
539         ctx->head_descriptor = d + z + extra;
540         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
541         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
542
543         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
544                                    ctx->buffer_size, DMA_TO_DEVICE);
545
546         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
547         flush_writes(ctx->ohci);
548 }
549
550 static void context_stop(struct context *ctx)
551 {
552         u32 reg;
553
554         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
555
556         reg = reg_read(ctx->ohci, control_set(ctx->regs));
557         if (reg & CONTEXT_ACTIVE)
558                 fw_notify("Tried to stop context, but it is still active "
559                           "(0x%08x).\n", reg);
560 }
561
562 static void
563 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
564 {
565         struct fw_packet *p, *next;
566
567         list_for_each_entry_safe(p, next, list, link)
568                 p->callback(p, &ohci->card, p->ack);
569 }
570
571 static void
572 complete_transmission(struct fw_packet *packet,
573                       int ack, struct list_head *list)
574 {
575         list_move_tail(&packet->link, list);
576         packet->ack = ack;
577 }
578
579 /* This function prepares the first packet in the context queue for
580  * transmission.  Must always be called with the ochi->lock held to
581  * ensure proper generation handling and locking around packet queue
582  * manipulation. */
583 static void
584 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
585 {
586         struct fw_packet *packet;
587         struct fw_ohci *ohci = ctx->ohci;
588         int z, tcode;
589
590         packet = fw_packet(ctx->list.next);
591
592         memset(&ctx->d, 0, sizeof ctx->d);
593         if (packet->payload_length > 0) {
594                 packet->payload_bus = dma_map_single(ohci->card.device,
595                                                      packet->payload,
596                                                      packet->payload_length,
597                                                      DMA_TO_DEVICE);
598                 if (dma_mapping_error(packet->payload_bus)) {
599                         complete_transmission(packet, RCODE_SEND_ERROR, list);
600                         return;
601                 }
602
603                 ctx->d.more.control      =
604                         cpu_to_le16(descriptor_output_more |
605                                     descriptor_key_immediate);
606                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
607                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
608                 ctx->d.last.control      =
609                         cpu_to_le16(descriptor_output_last |
610                                     descriptor_irq_always |
611                                     descriptor_branch_always);
612                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
613                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
614                 z = 3;
615         } else {
616                 ctx->d.more.control   =
617                         cpu_to_le16(descriptor_output_last |
618                                     descriptor_key_immediate |
619                                     descriptor_irq_always |
620                                     descriptor_branch_always);
621                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
622                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
623                 z = 2;
624         }
625
626         /* The DMA format for asyncronous link packets is different
627          * from the IEEE1394 layout, so shift the fields around
628          * accordingly.  If header_length is 8, it's a PHY packet, to
629          * which we need to prepend an extra quadlet. */
630         if (packet->header_length > 8) {
631                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
632                                                (packet->speed << 16));
633                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
634                                                (packet->header[0] & 0xffff0000));
635                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
636
637                 tcode = (packet->header[0] >> 4) & 0x0f;
638                 if (TCODE_IS_BLOCK_PACKET(tcode))
639                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
640                 else
641                         ctx->d.header[3] = packet->header[3];
642         } else {
643                 ctx->d.header[0] =
644                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
645                                     (packet->speed << 16));
646                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
647                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
648                 ctx->d.more.req_count = cpu_to_le16(12);
649         }
650
651         /* FIXME: Document how the locking works. */
652         if (ohci->generation == packet->generation) {
653                 reg_write(ctx->ohci, command_ptr(ctx->regs),
654                           ctx->descriptor_bus | z);
655                 reg_write(ctx->ohci, control_set(ctx->regs),
656                           CONTEXT_RUN | CONTEXT_WAKE);
657                 ctx->current_packet = packet;
658         } else {
659                 /* We dont return error codes from this function; all
660                  * transmission errors are reported through the
661                  * callback. */
662                 complete_transmission(packet, RCODE_GENERATION, list);
663         }
664 }
665
666 static void at_context_stop(struct at_context *ctx)
667 {
668         u32 reg;
669
670         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
671
672         reg = reg_read(ctx->ohci, control_set(ctx->regs));
673         if (reg & CONTEXT_ACTIVE)
674                 fw_notify("Tried to stop context, but it is still active "
675                           "(0x%08x).\n", reg);
676 }
677
678 static void at_context_tasklet(unsigned long data)
679 {
680         struct at_context *ctx = (struct at_context *)data;
681         struct fw_ohci *ohci = ctx->ohci;
682         struct fw_packet *packet;
683         LIST_HEAD(list);
684         unsigned long flags;
685         int evt;
686
687         spin_lock_irqsave(&ohci->lock, flags);
688
689         packet = fw_packet(ctx->list.next);
690
691         at_context_stop(ctx);
692
693         /* If the head of the list isn't the packet that just got
694          * transmitted, the packet got cancelled before we finished
695          * transmitting it. */
696         if (ctx->current_packet != packet)
697                 goto skip_to_next;
698
699         if (packet->payload_length > 0) {
700                 dma_unmap_single(ohci->card.device, packet->payload_bus,
701                                  packet->payload_length, DMA_TO_DEVICE);
702                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
703                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
704         }
705         else {
706                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
707                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
708         }
709
710         if (evt < 16) {
711                 switch (evt) {
712                 case OHCI1394_evt_timeout:
713                         /* Async response transmit timed out. */
714                         complete_transmission(packet, RCODE_CANCELLED, &list);
715                         break;
716
717                 case OHCI1394_evt_flushed:
718                         /* The packet was flushed should give same
719                          * error as when we try to use a stale
720                          * generation count. */
721                         complete_transmission(packet,
722                                               RCODE_GENERATION, &list);
723                         break;
724
725                 case OHCI1394_evt_missing_ack:
726                         /* Using a valid (current) generation count,
727                          * but the node is not on the bus or not
728                          * sending acks. */
729                         complete_transmission(packet, RCODE_NO_ACK, &list);
730                         break;
731
732                 default:
733                         complete_transmission(packet, RCODE_SEND_ERROR, &list);
734                         break;
735                 }
736         } else
737                 complete_transmission(packet, evt - 16, &list);
738
739  skip_to_next:
740         /* If more packets are queued, set up the next one. */
741         if (!list_empty(&ctx->list))
742                 at_context_setup_packet(ctx, &list);
743
744         spin_unlock_irqrestore(&ohci->lock, flags);
745
746         do_packet_callbacks(ohci, &list);
747 }
748
749 static int
750 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
751 {
752         INIT_LIST_HEAD(&ctx->list);
753
754         ctx->descriptor_bus =
755                 dma_map_single(ohci->card.device, &ctx->d,
756                                sizeof ctx->d, DMA_TO_DEVICE);
757         if (dma_mapping_error(ctx->descriptor_bus))
758                 return -ENOMEM;
759
760         ctx->regs = regs;
761         ctx->ohci = ohci;
762
763         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
764
765         return 0;
766 }
767
768 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
769 #define header_get_tcode(q)             (((q) >> 4) & 0x0f)
770 #define header_get_offset_high(q)       (((q) >> 0) & 0xffff)
771 #define header_get_data_length(q)       (((q) >> 16) & 0xffff)
772 #define header_get_extended_tcode(q)    (((q) >> 0) & 0xffff)
773
774 static void
775 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
776 {
777         struct fw_packet response;
778         int tcode, length, i;
779
780         tcode = header_get_tcode(packet->header[0]);
781         if (TCODE_IS_BLOCK_PACKET(tcode))
782                 length = header_get_data_length(packet->header[3]);
783         else
784                 length = 4;
785
786         i = csr - CSR_CONFIG_ROM;
787         if (i + length > CONFIG_ROM_SIZE) {
788                 fw_fill_response(&response, packet->header,
789                                  RCODE_ADDRESS_ERROR, NULL, 0);
790         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
791                 fw_fill_response(&response, packet->header,
792                                  RCODE_TYPE_ERROR, NULL, 0);
793         } else {
794                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
795                                  (void *) ohci->config_rom + i, length);
796         }
797
798         fw_core_handle_response(&ohci->card, &response);
799 }
800
801 static void
802 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
803 {
804         struct fw_packet response;
805         int tcode, length, ext_tcode, sel;
806         __be32 *payload, lock_old;
807         u32 lock_arg, lock_data;
808
809         tcode = header_get_tcode(packet->header[0]);
810         length = header_get_data_length(packet->header[3]);
811         payload = packet->payload;
812         ext_tcode = header_get_extended_tcode(packet->header[3]);
813
814         if (tcode == TCODE_LOCK_REQUEST &&
815             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
816                 lock_arg = be32_to_cpu(payload[0]);
817                 lock_data = be32_to_cpu(payload[1]);
818         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
819                 lock_arg = 0;
820                 lock_data = 0;
821         } else {
822                 fw_fill_response(&response, packet->header,
823                                  RCODE_TYPE_ERROR, NULL, 0);
824                 goto out;
825         }
826
827         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
828         reg_write(ohci, OHCI1394_CSRData, lock_data);
829         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
830         reg_write(ohci, OHCI1394_CSRControl, sel);
831
832         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
833                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
834         else
835                 fw_notify("swap not done yet\n");
836
837         fw_fill_response(&response, packet->header,
838                          RCODE_COMPLETE, &lock_old, sizeof lock_old);
839  out:
840         fw_core_handle_response(&ohci->card, &response);
841 }
842
843 static void
844 handle_local_request(struct at_context *ctx, struct fw_packet *packet)
845 {
846         u64 offset;
847         u32 csr;
848
849         packet->ack = ACK_PENDING;
850         packet->callback(packet, &ctx->ohci->card, packet->ack);
851
852         offset =
853                 ((unsigned long long)
854                  header_get_offset_high(packet->header[1]) << 32) |
855                 packet->header[2];
856         csr = offset - CSR_REGISTER_BASE;
857
858         /* Handle config rom reads. */
859         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
860                 handle_local_rom(ctx->ohci, packet, csr);
861         else switch (csr) {
862         case CSR_BUS_MANAGER_ID:
863         case CSR_BANDWIDTH_AVAILABLE:
864         case CSR_CHANNELS_AVAILABLE_HI:
865         case CSR_CHANNELS_AVAILABLE_LO:
866                 handle_local_lock(ctx->ohci, packet, csr);
867                 break;
868         default:
869                 if (ctx == &ctx->ohci->at_request_ctx)
870                         fw_core_handle_request(&ctx->ohci->card, packet);
871                 else
872                         fw_core_handle_response(&ctx->ohci->card, packet);
873                 break;
874         }
875 }
876
877 static void
878 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
879 {
880         LIST_HEAD(list);
881         unsigned long flags;
882
883         spin_lock_irqsave(&ctx->ohci->lock, flags);
884
885         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
886             ctx->ohci->generation == packet->generation) {
887                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
888                 handle_local_request(ctx, packet);
889                 return;
890         }
891
892         list_add_tail(&packet->link, &ctx->list);
893         if (ctx->list.next == &packet->link)
894                 at_context_setup_packet(ctx, &list);
895
896         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
897
898         do_packet_callbacks(ctx->ohci, &list);
899 }
900
901 static void bus_reset_tasklet(unsigned long data)
902 {
903         struct fw_ohci *ohci = (struct fw_ohci *)data;
904         int self_id_count, i, j, reg;
905         int generation, new_generation;
906         unsigned long flags;
907
908         reg = reg_read(ohci, OHCI1394_NodeID);
909         if (!(reg & OHCI1394_NodeID_idValid)) {
910                 fw_error("node ID not valid, new bus reset in progress\n");
911                 return;
912         }
913         ohci->node_id = reg & 0xffff;
914
915         /* The count in the SelfIDCount register is the number of
916          * bytes in the self ID receive buffer.  Since we also receive
917          * the inverted quadlets and a header quadlet, we shift one
918          * bit extra to get the actual number of self IDs. */
919
920         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
921         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
922
923         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
924                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
925                         fw_error("inconsistent self IDs\n");
926                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
927         }
928
929         /* Check the consistency of the self IDs we just read.  The
930          * problem we face is that a new bus reset can start while we
931          * read out the self IDs from the DMA buffer. If this happens,
932          * the DMA buffer will be overwritten with new self IDs and we
933          * will read out inconsistent data.  The OHCI specification
934          * (section 11.2) recommends a technique similar to
935          * linux/seqlock.h, where we remember the generation of the
936          * self IDs in the buffer before reading them out and compare
937          * it to the current generation after reading them out.  If
938          * the two generations match we know we have a consistent set
939          * of self IDs. */
940
941         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
942         if (new_generation != generation) {
943                 fw_notify("recursive bus reset detected, "
944                           "discarding self ids\n");
945                 return;
946         }
947
948         /* FIXME: Document how the locking works. */
949         spin_lock_irqsave(&ohci->lock, flags);
950
951         ohci->generation = generation;
952         at_context_stop(&ohci->at_request_ctx);
953         at_context_stop(&ohci->at_response_ctx);
954         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
955
956         /* This next bit is unrelated to the AT context stuff but we
957          * have to do it under the spinlock also.  If a new config rom
958          * was set up before this reset, the old one is now no longer
959          * in use and we can free it. Update the config rom pointers
960          * to point to the current config rom and clear the
961          * next_config_rom pointer so a new udpate can take place. */
962
963         if (ohci->next_config_rom != NULL) {
964                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
965                                   ohci->config_rom, ohci->config_rom_bus);
966                 ohci->config_rom      = ohci->next_config_rom;
967                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
968                 ohci->next_config_rom = NULL;
969
970                 /* Restore config_rom image and manually update
971                  * config_rom registers.  Writing the header quadlet
972                  * will indicate that the config rom is ready, so we
973                  * do that last. */
974                 reg_write(ohci, OHCI1394_BusOptions,
975                           be32_to_cpu(ohci->config_rom[2]));
976                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
977                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
978         }
979
980         spin_unlock_irqrestore(&ohci->lock, flags);
981
982         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
983                                  self_id_count, ohci->self_id_buffer);
984 }
985
986 static irqreturn_t irq_handler(int irq, void *data)
987 {
988         struct fw_ohci *ohci = data;
989         u32 event, iso_event;
990         int i;
991
992         event = reg_read(ohci, OHCI1394_IntEventClear);
993
994         if (!event)
995                 return IRQ_NONE;
996
997         reg_write(ohci, OHCI1394_IntEventClear, event);
998
999         if (event & OHCI1394_selfIDComplete)
1000                 tasklet_schedule(&ohci->bus_reset_tasklet);
1001
1002         if (event & OHCI1394_RQPkt)
1003                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1004
1005         if (event & OHCI1394_RSPkt)
1006                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1007
1008         if (event & OHCI1394_reqTxComplete)
1009                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1010
1011         if (event & OHCI1394_respTxComplete)
1012                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1013
1014         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1015         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1016
1017         while (iso_event) {
1018                 i = ffs(iso_event) - 1;
1019                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1020                 iso_event &= ~(1 << i);
1021         }
1022
1023         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1024         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1025
1026         while (iso_event) {
1027                 i = ffs(iso_event) - 1;
1028                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1029                 iso_event &= ~(1 << i);
1030         }
1031
1032         return IRQ_HANDLED;
1033 }
1034
1035 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1036 {
1037         struct fw_ohci *ohci = fw_ohci(card);
1038         struct pci_dev *dev = to_pci_dev(card->device);
1039
1040         /* When the link is not yet enabled, the atomic config rom
1041          * update mechanism described below in ohci_set_config_rom()
1042          * is not active.  We have to update ConfigRomHeader and
1043          * BusOptions manually, and the write to ConfigROMmap takes
1044          * effect immediately.  We tie this to the enabling of the
1045          * link, so we have a valid config rom before enabling - the
1046          * OHCI requires that ConfigROMhdr and BusOptions have valid
1047          * values before enabling.
1048          *
1049          * However, when the ConfigROMmap is written, some controllers
1050          * always read back quadlets 0 and 2 from the config rom to
1051          * the ConfigRomHeader and BusOptions registers on bus reset.
1052          * They shouldn't do that in this initial case where the link
1053          * isn't enabled.  This means we have to use the same
1054          * workaround here, setting the bus header to 0 and then write
1055          * the right values in the bus reset tasklet.
1056          */
1057
1058         ohci->next_config_rom =
1059                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1060                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1061         if (ohci->next_config_rom == NULL)
1062                 return -ENOMEM;
1063
1064         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1065         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1066
1067         ohci->next_header = config_rom[0];
1068         ohci->next_config_rom[0] = 0;
1069         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1070         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1071         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1072
1073         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1074
1075         if (request_irq(dev->irq, irq_handler,
1076                         SA_SHIRQ, ohci_driver_name, ohci)) {
1077                 fw_error("Failed to allocate shared interrupt %d.\n",
1078                          dev->irq);
1079                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1080                                   ohci->config_rom, ohci->config_rom_bus);
1081                 return -EIO;
1082         }
1083
1084         reg_write(ohci, OHCI1394_HCControlSet,
1085                   OHCI1394_HCControl_linkEnable |
1086                   OHCI1394_HCControl_BIBimageValid);
1087         flush_writes(ohci);
1088
1089         /* We are ready to go, initiate bus reset to finish the
1090          * initialization. */
1091
1092         fw_core_initiate_bus_reset(&ohci->card, 1);
1093
1094         return 0;
1095 }
1096
1097 static int
1098 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1099 {
1100         struct fw_ohci *ohci;
1101         unsigned long flags;
1102         int retval = 0;
1103         __be32 *next_config_rom;
1104         dma_addr_t next_config_rom_bus;
1105
1106         ohci = fw_ohci(card);
1107
1108         /* When the OHCI controller is enabled, the config rom update
1109          * mechanism is a bit tricky, but easy enough to use.  See
1110          * section 5.5.6 in the OHCI specification.
1111          *
1112          * The OHCI controller caches the new config rom address in a
1113          * shadow register (ConfigROMmapNext) and needs a bus reset
1114          * for the changes to take place.  When the bus reset is
1115          * detected, the controller loads the new values for the
1116          * ConfigRomHeader and BusOptions registers from the specified
1117          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1118          * shadow register. All automatically and atomically.
1119          *
1120          * Now, there's a twist to this story.  The automatic load of
1121          * ConfigRomHeader and BusOptions doesn't honor the
1122          * noByteSwapData bit, so with a be32 config rom, the
1123          * controller will load be32 values in to these registers
1124          * during the atomic update, even on litte endian
1125          * architectures.  The workaround we use is to put a 0 in the
1126          * header quadlet; 0 is endian agnostic and means that the
1127          * config rom isn't ready yet.  In the bus reset tasklet we
1128          * then set up the real values for the two registers.
1129          *
1130          * We use ohci->lock to avoid racing with the code that sets
1131          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1132          */
1133
1134         next_config_rom =
1135                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1136                                    &next_config_rom_bus, GFP_KERNEL);
1137         if (next_config_rom == NULL)
1138                 return -ENOMEM;
1139
1140         spin_lock_irqsave(&ohci->lock, flags);
1141
1142         if (ohci->next_config_rom == NULL) {
1143                 ohci->next_config_rom = next_config_rom;
1144                 ohci->next_config_rom_bus = next_config_rom_bus;
1145
1146                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1147                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1148                                   length * 4);
1149
1150                 ohci->next_header = config_rom[0];
1151                 ohci->next_config_rom[0] = 0;
1152
1153                 reg_write(ohci, OHCI1394_ConfigROMmap,
1154                           ohci->next_config_rom_bus);
1155         } else {
1156                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1157                                   next_config_rom, next_config_rom_bus);
1158                 retval = -EBUSY;
1159         }
1160
1161         spin_unlock_irqrestore(&ohci->lock, flags);
1162
1163         /* Now initiate a bus reset to have the changes take
1164          * effect. We clean up the old config rom memory and DMA
1165          * mappings in the bus reset tasklet, since the OHCI
1166          * controller could need to access it before the bus reset
1167          * takes effect. */
1168         if (retval == 0)
1169                 fw_core_initiate_bus_reset(&ohci->card, 1);
1170
1171         return retval;
1172 }
1173
1174 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1175 {
1176         struct fw_ohci *ohci = fw_ohci(card);
1177
1178         at_context_transmit(&ohci->at_request_ctx, packet);
1179 }
1180
1181 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1182 {
1183         struct fw_ohci *ohci = fw_ohci(card);
1184
1185         at_context_transmit(&ohci->at_response_ctx, packet);
1186 }
1187
1188 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1189 {
1190         struct fw_ohci *ohci = fw_ohci(card);
1191         LIST_HEAD(list);
1192         unsigned long flags;
1193
1194         spin_lock_irqsave(&ohci->lock, flags);
1195
1196         if (packet->ack == 0) {
1197                 fw_notify("cancelling packet %p (header[0]=%08x)\n",
1198                           packet, packet->header[0]);
1199
1200                 complete_transmission(packet, RCODE_CANCELLED, &list);
1201         }
1202
1203         spin_unlock_irqrestore(&ohci->lock, flags);
1204
1205         do_packet_callbacks(ohci, &list);
1206
1207         /* Return success if we actually cancelled something. */
1208         return list_empty(&list) ? -ENOENT : 0;
1209 }
1210
1211 static int
1212 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1213 {
1214         struct fw_ohci *ohci = fw_ohci(card);
1215         unsigned long flags;
1216         int n, retval = 0;
1217
1218         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
1219          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1220
1221         spin_lock_irqsave(&ohci->lock, flags);
1222
1223         if (ohci->generation != generation) {
1224                 retval = -ESTALE;
1225                 goto out;
1226         }
1227
1228         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1229          * enabled for _all_ nodes on remote buses. */
1230
1231         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1232         if (n < 32)
1233                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1234         else
1235                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1236
1237         flush_writes(ohci);
1238  out:
1239         spin_unlock_irqrestore(&ohci->lock, flags);
1240         return retval;
1241 }
1242
1243 static void ir_context_tasklet(unsigned long data)
1244 {
1245         struct iso_context *ctx = (struct iso_context *)data;
1246
1247         (void)ctx;
1248 }
1249
1250 #define ISO_BUFFER_SIZE (64 * 1024)
1251
1252 static int handle_it_packet(struct context *context,
1253                             struct descriptor *d,
1254                             struct descriptor *last)
1255 {
1256         struct iso_context *ctx =
1257                 container_of(context, struct iso_context, context);
1258  
1259         if (last->transfer_status == 0)
1260                 /* This descriptor isn't done yet, stop iteration. */
1261                 return 0;
1262
1263         if (le16_to_cpu(last->control) & descriptor_irq_always)
1264                 ctx->base.callback(&ctx->base,
1265                                    0, le16_to_cpu(last->res_count),
1266                                    ctx->base.callback_data);
1267
1268         return 1;
1269 }
1270
1271 static struct fw_iso_context *
1272 ohci_allocate_iso_context(struct fw_card *card, int type)
1273 {
1274         struct fw_ohci *ohci = fw_ohci(card);
1275         struct iso_context *ctx, *list;
1276         descriptor_callback_t callback;
1277         u32 *mask;
1278         unsigned long flags;
1279         int index, retval;
1280
1281         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1282                 mask = &ohci->it_context_mask;
1283                 list = ohci->it_context_list;
1284                 callback = handle_it_packet;
1285         } else {
1286                 return ERR_PTR(-EINVAL);
1287         }
1288
1289         spin_lock_irqsave(&ohci->lock, flags);
1290         index = ffs(*mask) - 1;
1291         if (index >= 0)
1292                 *mask &= ~(1 << index);
1293         spin_unlock_irqrestore(&ohci->lock, flags);
1294
1295         if (index < 0)
1296                 return ERR_PTR(-EBUSY);
1297
1298         ctx = &list[index];
1299         memset(ctx, 0, sizeof *ctx);
1300         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1301                               OHCI1394_IsoXmitContextBase(index), callback);
1302         if (retval < 0) {
1303                 spin_lock_irqsave(&ohci->lock, flags);
1304                 *mask |= 1 << index;
1305                 spin_unlock_irqrestore(&ohci->lock, flags);
1306                 return ERR_PTR(retval);
1307         }
1308
1309         return &ctx->base;
1310 }
1311
1312 static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
1313 {
1314         struct iso_context *ctx = container_of(base, struct iso_context, base);
1315         struct fw_ohci *ohci = ctx->context.ohci;
1316         u32 cycle_match = 0;
1317         int index;
1318
1319         index = ctx - ohci->it_context_list;
1320         if (cycle > 0)
1321                 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1322                         (cycle & 0x7fff) << 16;
1323
1324         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1325         context_run(&ctx->context, cycle_match);
1326
1327         return 0;
1328 }
1329
1330 static void ohci_free_iso_context(struct fw_iso_context *base)
1331 {
1332         struct fw_ohci *ohci = fw_ohci(base->card);
1333         struct iso_context *ctx = container_of(base, struct iso_context, base);
1334         unsigned long flags;
1335         int index;
1336
1337         spin_lock_irqsave(&ohci->lock, flags);
1338
1339         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1340                 index = ctx - ohci->it_context_list;
1341                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1342                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1343                 ohci->it_context_mask |= 1 << index;
1344         } else {
1345                 index = ctx - ohci->ir_context_list;
1346                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1347                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1348                 ohci->ir_context_mask |= 1 << index;
1349         }
1350         flush_writes(ohci);
1351
1352         context_release(&ctx->context);
1353
1354         spin_unlock_irqrestore(&ohci->lock, flags);
1355 }
1356
1357 static int
1358 ohci_queue_iso(struct fw_iso_context *base,
1359                struct fw_iso_packet *packet,
1360                struct fw_iso_buffer *buffer,
1361                unsigned long payload)
1362 {
1363         struct iso_context *ctx = container_of(base, struct iso_context, base);
1364         struct descriptor *d, *last, *pd;
1365         struct fw_iso_packet *p;
1366         __le32 *header;
1367         dma_addr_t d_bus, page_bus;
1368         u32 z, header_z, payload_z, irq;
1369         u32 payload_index, payload_end_index, next_page_index;
1370         int page, end_page, i, length, offset;
1371
1372         /* FIXME: Cycle lost behavior should be configurable: lose
1373          * packet, retransmit or terminate.. */
1374
1375         p = packet;
1376         payload_index = payload;
1377
1378         if (p->skip)
1379                 z = 1;
1380         else
1381                 z = 2;
1382         if (p->header_length > 0)
1383                 z++;
1384
1385         /* Determine the first page the payload isn't contained in. */
1386         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1387         if (p->payload_length > 0)
1388                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1389         else
1390                 payload_z = 0;
1391
1392         z += payload_z;
1393
1394         /* Get header size in number of descriptors. */
1395         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1396
1397         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1398         if (d == NULL)
1399                 return -ENOMEM;
1400
1401         if (!p->skip) {
1402                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1403                 d[0].req_count = cpu_to_le16(8);
1404
1405                 header = (__le32 *) &d[1];
1406                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1407                                         it_header_tag(p->tag) |
1408                                         it_header_tcode(TCODE_STREAM_DATA) |
1409                                         it_header_channel(ctx->base.channel) |
1410                                         it_header_speed(ctx->base.speed));
1411                 header[1] =
1412                         cpu_to_le32(it_header_data_length(p->header_length +
1413                                                           p->payload_length));
1414         }
1415
1416         if (p->header_length > 0) {
1417                 d[2].req_count    = cpu_to_le16(p->header_length);
1418                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1419                 memcpy(&d[z], p->header, p->header_length);
1420         }
1421
1422         pd = d + z - payload_z;
1423         payload_end_index = payload_index + p->payload_length;
1424         for (i = 0; i < payload_z; i++) {
1425                 page               = payload_index >> PAGE_SHIFT;
1426                 offset             = payload_index & ~PAGE_MASK;
1427                 next_page_index    = (page + 1) << PAGE_SHIFT;
1428                 length             =
1429                         min(next_page_index, payload_end_index) - payload_index;
1430                 pd[i].req_count    = cpu_to_le16(length);
1431
1432                 page_bus = page_private(buffer->pages[page]);
1433                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1434
1435                 payload_index += length;
1436         }
1437
1438         if (p->interrupt)
1439                 irq = descriptor_irq_always;
1440         else
1441                 irq = descriptor_no_irq;
1442
1443         last = z == 2 ? d : d + z - 1;
1444         last->control |= cpu_to_le16(descriptor_output_last |
1445                                      descriptor_status |
1446                                      descriptor_branch_always |
1447                                      irq);
1448
1449         context_append(&ctx->context, d, z, header_z);
1450
1451         return 0;
1452 }
1453
1454 static const struct fw_card_driver ohci_driver = {
1455         .name                   = ohci_driver_name,
1456         .enable                 = ohci_enable,
1457         .update_phy_reg         = ohci_update_phy_reg,
1458         .set_config_rom         = ohci_set_config_rom,
1459         .send_request           = ohci_send_request,
1460         .send_response          = ohci_send_response,
1461         .cancel_packet          = ohci_cancel_packet,
1462         .enable_phys_dma        = ohci_enable_phys_dma,
1463
1464         .allocate_iso_context   = ohci_allocate_iso_context,
1465         .free_iso_context       = ohci_free_iso_context,
1466         .queue_iso              = ohci_queue_iso,
1467         .send_iso               = ohci_send_iso,
1468 };
1469
1470 static int software_reset(struct fw_ohci *ohci)
1471 {
1472         int i;
1473
1474         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1475
1476         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1477                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1478                      OHCI1394_HCControl_softReset) == 0)
1479                         return 0;
1480                 msleep(1);
1481         }
1482
1483         return -EBUSY;
1484 }
1485
1486 /* ---------- pci subsystem interface ---------- */
1487
1488 enum {
1489         CLEANUP_SELF_ID,
1490         CLEANUP_REGISTERS,
1491         CLEANUP_IOMEM,
1492         CLEANUP_DISABLE,
1493         CLEANUP_PUT_CARD,
1494 };
1495
1496 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1497 {
1498         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1499
1500         switch (stage) {
1501         case CLEANUP_SELF_ID:
1502                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1503                                   ohci->self_id_cpu, ohci->self_id_bus);
1504         case CLEANUP_REGISTERS:
1505                 kfree(ohci->it_context_list);
1506                 kfree(ohci->ir_context_list);
1507                 pci_iounmap(dev, ohci->registers);
1508         case CLEANUP_IOMEM:
1509                 pci_release_region(dev, 0);
1510         case CLEANUP_DISABLE:
1511                 pci_disable_device(dev);
1512         case CLEANUP_PUT_CARD:
1513                 fw_card_put(&ohci->card);
1514         }
1515
1516         return code;
1517 }
1518
1519 static int __devinit
1520 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1521 {
1522         struct fw_ohci *ohci;
1523         u32 bus_options, max_receive, link_speed;
1524         u64 guid;
1525         int error_code;
1526         size_t size;
1527
1528         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1529         if (ohci == NULL) {
1530                 fw_error("Could not malloc fw_ohci data.\n");
1531                 return -ENOMEM;
1532         }
1533
1534         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1535
1536         if (pci_enable_device(dev)) {
1537                 fw_error("Failed to enable OHCI hardware.\n");
1538                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1539         }
1540
1541         pci_set_master(dev);
1542         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1543         pci_set_drvdata(dev, ohci);
1544
1545         spin_lock_init(&ohci->lock);
1546
1547         tasklet_init(&ohci->bus_reset_tasklet,
1548                      bus_reset_tasklet, (unsigned long)ohci);
1549
1550         if (pci_request_region(dev, 0, ohci_driver_name)) {
1551                 fw_error("MMIO resource unavailable\n");
1552                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1553         }
1554
1555         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1556         if (ohci->registers == NULL) {
1557                 fw_error("Failed to remap registers\n");
1558                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1559         }
1560
1561         if (software_reset(ohci)) {
1562                 fw_error("Failed to reset ohci card.\n");
1563                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1564         }
1565
1566         /* Now enable LPS, which we need in order to start accessing
1567          * most of the registers.  In fact, on some cards (ALI M5251),
1568          * accessing registers in the SClk domain without LPS enabled
1569          * will lock up the machine.  Wait 50msec to make sure we have
1570          * full link enabled.  */
1571         reg_write(ohci, OHCI1394_HCControlSet,
1572                   OHCI1394_HCControl_LPS |
1573                   OHCI1394_HCControl_postedWriteEnable);
1574         flush_writes(ohci);
1575         msleep(50);
1576
1577         reg_write(ohci, OHCI1394_HCControlClear,
1578                   OHCI1394_HCControl_noByteSwapData);
1579
1580         reg_write(ohci, OHCI1394_LinkControlSet,
1581                   OHCI1394_LinkControl_rcvSelfID |
1582                   OHCI1394_LinkControl_cycleTimerEnable |
1583                   OHCI1394_LinkControl_cycleMaster);
1584
1585         ar_context_init(&ohci->ar_request_ctx, ohci,
1586                         OHCI1394_AsReqRcvContextControlSet);
1587
1588         ar_context_init(&ohci->ar_response_ctx, ohci,
1589                         OHCI1394_AsRspRcvContextControlSet);
1590
1591         at_context_init(&ohci->at_request_ctx, ohci,
1592                         OHCI1394_AsReqTrContextControlSet);
1593
1594         at_context_init(&ohci->at_response_ctx, ohci,
1595                         OHCI1394_AsRspTrContextControlSet);
1596
1597         reg_write(ohci, OHCI1394_ATRetries,
1598                   OHCI1394_MAX_AT_REQ_RETRIES |
1599                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1600                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1601
1602         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1603         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1604         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1605         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1606         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1607
1608         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1609         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1610         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1611         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1612         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1613
1614         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1615                 fw_error("Out of memory for it/ir contexts.\n");
1616                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1617         }
1618
1619         /* self-id dma buffer allocation */
1620         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1621                                                SELF_ID_BUF_SIZE,
1622                                                &ohci->self_id_bus,
1623                                                GFP_KERNEL);
1624         if (ohci->self_id_cpu == NULL) {
1625                 fw_error("Out of memory for self ID buffer.\n");
1626                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1627         }
1628
1629         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1630         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1631         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1632         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1633         reg_write(ohci, OHCI1394_IntMaskSet,
1634                   OHCI1394_selfIDComplete |
1635                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1636                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1637                   OHCI1394_isochRx | OHCI1394_isochTx |
1638                   OHCI1394_masterIntEnable);
1639
1640         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1641         max_receive = (bus_options >> 12) & 0xf;
1642         link_speed = bus_options & 0x7;
1643         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1644                 reg_read(ohci, OHCI1394_GUIDLo);
1645
1646         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1647         if (error_code < 0)
1648                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1649
1650         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1651
1652         return 0;
1653 }
1654
1655 static void pci_remove(struct pci_dev *dev)
1656 {
1657         struct fw_ohci *ohci;
1658
1659         ohci = pci_get_drvdata(dev);
1660         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1661         fw_core_remove_card(&ohci->card);
1662
1663         /* FIXME: Fail all pending packets here, now that the upper
1664          * layers can't queue any more. */
1665
1666         software_reset(ohci);
1667         free_irq(dev->irq, ohci);
1668         cleanup(ohci, CLEANUP_SELF_ID, 0);
1669
1670         fw_notify("Removed fw-ohci device.\n");
1671 }
1672
1673 static struct pci_device_id pci_table[] = {
1674         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1675         { }
1676 };
1677
1678 MODULE_DEVICE_TABLE(pci, pci_table);
1679
1680 static struct pci_driver fw_ohci_pci_driver = {
1681         .name           = ohci_driver_name,
1682         .id_table       = pci_table,
1683         .probe          = pci_probe,
1684         .remove         = pci_remove,
1685 };
1686
1687 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1688 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1689 MODULE_LICENSE("GPL");
1690
1691 static int __init fw_ohci_init(void)
1692 {
1693         return pci_register_driver(&fw_ohci_pci_driver);
1694 }
1695
1696 static void __exit fw_ohci_cleanup(void)
1697 {
1698         pci_unregister_driver(&fw_ohci_pci_driver);
1699 }
1700
1701 module_init(fw_ohci_init);
1702 module_exit(fw_ohci_cleanup);