firewire: qualify config ROM cache pointers as const pointers
[safe/jmp/linux-2.6] / drivers / firewire / core-device.c
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/idr.h>
28 #include <linux/jiffies.h>
29 #include <linux/kobject.h>
30 #include <linux/list.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/rwsem.h>
35 #include <linux/semaphore.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/workqueue.h>
39
40 #include <asm/atomic.h>
41 #include <asm/byteorder.h>
42 #include <asm/system.h>
43
44 #include "core.h"
45
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48         ci->p = p + 1;
49         ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55         *key = *ci->p >> 24;
56         *value = *ci->p & 0xffffff;
57
58         return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64         struct fw_csr_iterator ci;
65         int last_key = 0, key, value;
66
67         fw_csr_iterator_init(&ci, directory);
68         while (fw_csr_iterator_next(&ci, &key, &value)) {
69                 if (last_key == search_key &&
70                     key == (CSR_DESCRIPTOR | CSR_LEAF))
71                         return ci.p - 1 + value;
72
73                 last_key = key;
74         }
75
76         return NULL;
77 }
78
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81         unsigned int quadlets, i;
82         char c;
83
84         if (!size || !buf)
85                 return -EINVAL;
86
87         quadlets = min(block[0] >> 16, 256U);
88         if (quadlets < 2)
89                 return -ENODATA;
90
91         if (block[1] != 0 || block[2] != 0)
92                 /* unknown language/character set */
93                 return -ENODATA;
94
95         block += 3;
96         quadlets -= 2;
97         for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98                 c = block[i / 4] >> (24 - 8 * (i % 4));
99                 if (c == '\0')
100                         break;
101                 buf[i] = c;
102         }
103         buf[i] = '\0';
104
105         return i;
106 }
107
108 /**
109  * fw_csr_string - reads a string from the configuration ROM
110  * @directory: e.g. root directory or unit directory
111  * @key: the key of the preceding directory entry
112  * @buf: where to put the string
113  * @size: size of @buf, in bytes
114  *
115  * The string is taken from a minimal ASCII text descriptor leaf after
116  * the immediate entry with @key.  The string is zero-terminated.
117  * Returns strlen(buf) or a negative error code.
118  */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121         const u32 *leaf = search_leaf(directory, key);
122         if (!leaf)
123                 return -ENOENT;
124
125         return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128
129 static bool is_fw_unit(struct device *dev);
130
131 static int match_unit_directory(const u32 *directory, u32 match_flags,
132                                 const struct ieee1394_device_id *id)
133 {
134         struct fw_csr_iterator ci;
135         int key, value, match;
136
137         match = 0;
138         fw_csr_iterator_init(&ci, directory);
139         while (fw_csr_iterator_next(&ci, &key, &value)) {
140                 if (key == CSR_VENDOR && value == id->vendor_id)
141                         match |= IEEE1394_MATCH_VENDOR_ID;
142                 if (key == CSR_MODEL && value == id->model_id)
143                         match |= IEEE1394_MATCH_MODEL_ID;
144                 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
145                         match |= IEEE1394_MATCH_SPECIFIER_ID;
146                 if (key == CSR_VERSION && value == id->version)
147                         match |= IEEE1394_MATCH_VERSION;
148         }
149
150         return (match & match_flags) == match_flags;
151 }
152
153 static int fw_unit_match(struct device *dev, struct device_driver *drv)
154 {
155         struct fw_unit *unit = fw_unit(dev);
156         struct fw_device *device;
157         const struct ieee1394_device_id *id;
158
159         /* We only allow binding to fw_units. */
160         if (!is_fw_unit(dev))
161                 return 0;
162
163         device = fw_parent_device(unit);
164         id = container_of(drv, struct fw_driver, driver)->id_table;
165
166         for (; id->match_flags != 0; id++) {
167                 if (match_unit_directory(unit->directory, id->match_flags, id))
168                         return 1;
169
170                 /* Also check vendor ID in the root directory. */
171                 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
172                     match_unit_directory(&device->config_rom[5],
173                                 IEEE1394_MATCH_VENDOR_ID, id) &&
174                     match_unit_directory(unit->directory, id->match_flags
175                                 & ~IEEE1394_MATCH_VENDOR_ID, id))
176                         return 1;
177         }
178
179         return 0;
180 }
181
182 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
183 {
184         struct fw_device *device = fw_parent_device(unit);
185         struct fw_csr_iterator ci;
186
187         int key, value;
188         int vendor = 0;
189         int model = 0;
190         int specifier_id = 0;
191         int version = 0;
192
193         fw_csr_iterator_init(&ci, &device->config_rom[5]);
194         while (fw_csr_iterator_next(&ci, &key, &value)) {
195                 switch (key) {
196                 case CSR_VENDOR:
197                         vendor = value;
198                         break;
199                 case CSR_MODEL:
200                         model = value;
201                         break;
202                 }
203         }
204
205         fw_csr_iterator_init(&ci, unit->directory);
206         while (fw_csr_iterator_next(&ci, &key, &value)) {
207                 switch (key) {
208                 case CSR_SPECIFIER_ID:
209                         specifier_id = value;
210                         break;
211                 case CSR_VERSION:
212                         version = value;
213                         break;
214                 }
215         }
216
217         return snprintf(buffer, buffer_size,
218                         "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
219                         vendor, model, specifier_id, version);
220 }
221
222 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
223 {
224         struct fw_unit *unit = fw_unit(dev);
225         char modalias[64];
226
227         get_modalias(unit, modalias, sizeof(modalias));
228
229         if (add_uevent_var(env, "MODALIAS=%s", modalias))
230                 return -ENOMEM;
231
232         return 0;
233 }
234
235 struct bus_type fw_bus_type = {
236         .name = "firewire",
237         .match = fw_unit_match,
238 };
239 EXPORT_SYMBOL(fw_bus_type);
240
241 int fw_device_enable_phys_dma(struct fw_device *device)
242 {
243         int generation = device->generation;
244
245         /* device->node_id, accessed below, must not be older than generation */
246         smp_rmb();
247
248         return device->card->driver->enable_phys_dma(device->card,
249                                                      device->node_id,
250                                                      generation);
251 }
252 EXPORT_SYMBOL(fw_device_enable_phys_dma);
253
254 struct config_rom_attribute {
255         struct device_attribute attr;
256         u32 key;
257 };
258
259 static ssize_t show_immediate(struct device *dev,
260                               struct device_attribute *dattr, char *buf)
261 {
262         struct config_rom_attribute *attr =
263                 container_of(dattr, struct config_rom_attribute, attr);
264         struct fw_csr_iterator ci;
265         const u32 *dir;
266         int key, value, ret = -ENOENT;
267
268         down_read(&fw_device_rwsem);
269
270         if (is_fw_unit(dev))
271                 dir = fw_unit(dev)->directory;
272         else
273                 dir = fw_device(dev)->config_rom + 5;
274
275         fw_csr_iterator_init(&ci, dir);
276         while (fw_csr_iterator_next(&ci, &key, &value))
277                 if (attr->key == key) {
278                         ret = snprintf(buf, buf ? PAGE_SIZE : 0,
279                                        "0x%06x\n", value);
280                         break;
281                 }
282
283         up_read(&fw_device_rwsem);
284
285         return ret;
286 }
287
288 #define IMMEDIATE_ATTR(name, key)                               \
289         { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
290
291 static ssize_t show_text_leaf(struct device *dev,
292                               struct device_attribute *dattr, char *buf)
293 {
294         struct config_rom_attribute *attr =
295                 container_of(dattr, struct config_rom_attribute, attr);
296         const u32 *dir;
297         size_t bufsize;
298         char dummy_buf[2];
299         int ret;
300
301         down_read(&fw_device_rwsem);
302
303         if (is_fw_unit(dev))
304                 dir = fw_unit(dev)->directory;
305         else
306                 dir = fw_device(dev)->config_rom + 5;
307
308         if (buf) {
309                 bufsize = PAGE_SIZE - 1;
310         } else {
311                 buf = dummy_buf;
312                 bufsize = 1;
313         }
314
315         ret = fw_csr_string(dir, attr->key, buf, bufsize);
316
317         if (ret >= 0) {
318                 /* Strip trailing whitespace and add newline. */
319                 while (ret > 0 && isspace(buf[ret - 1]))
320                         ret--;
321                 strcpy(buf + ret, "\n");
322                 ret++;
323         }
324
325         up_read(&fw_device_rwsem);
326
327         return ret;
328 }
329
330 #define TEXT_LEAF_ATTR(name, key)                               \
331         { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
332
333 static struct config_rom_attribute config_rom_attributes[] = {
334         IMMEDIATE_ATTR(vendor, CSR_VENDOR),
335         IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
336         IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
337         IMMEDIATE_ATTR(version, CSR_VERSION),
338         IMMEDIATE_ATTR(model, CSR_MODEL),
339         TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
340         TEXT_LEAF_ATTR(model_name, CSR_MODEL),
341         TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
342 };
343
344 static void init_fw_attribute_group(struct device *dev,
345                                     struct device_attribute *attrs,
346                                     struct fw_attribute_group *group)
347 {
348         struct device_attribute *attr;
349         int i, j;
350
351         for (j = 0; attrs[j].attr.name != NULL; j++)
352                 group->attrs[j] = &attrs[j].attr;
353
354         for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
355                 attr = &config_rom_attributes[i].attr;
356                 if (attr->show(dev, attr, NULL) < 0)
357                         continue;
358                 group->attrs[j++] = &attr->attr;
359         }
360
361         group->attrs[j] = NULL;
362         group->groups[0] = &group->group;
363         group->groups[1] = NULL;
364         group->group.attrs = group->attrs;
365         dev->groups = (const struct attribute_group **) group->groups;
366 }
367
368 static ssize_t modalias_show(struct device *dev,
369                              struct device_attribute *attr, char *buf)
370 {
371         struct fw_unit *unit = fw_unit(dev);
372         int length;
373
374         length = get_modalias(unit, buf, PAGE_SIZE);
375         strcpy(buf + length, "\n");
376
377         return length + 1;
378 }
379
380 static ssize_t rom_index_show(struct device *dev,
381                               struct device_attribute *attr, char *buf)
382 {
383         struct fw_device *device = fw_device(dev->parent);
384         struct fw_unit *unit = fw_unit(dev);
385
386         return snprintf(buf, PAGE_SIZE, "%d\n",
387                         (int)(unit->directory - device->config_rom));
388 }
389
390 static struct device_attribute fw_unit_attributes[] = {
391         __ATTR_RO(modalias),
392         __ATTR_RO(rom_index),
393         __ATTR_NULL,
394 };
395
396 static ssize_t config_rom_show(struct device *dev,
397                                struct device_attribute *attr, char *buf)
398 {
399         struct fw_device *device = fw_device(dev);
400         size_t length;
401
402         down_read(&fw_device_rwsem);
403         length = device->config_rom_length * 4;
404         memcpy(buf, device->config_rom, length);
405         up_read(&fw_device_rwsem);
406
407         return length;
408 }
409
410 static ssize_t guid_show(struct device *dev,
411                          struct device_attribute *attr, char *buf)
412 {
413         struct fw_device *device = fw_device(dev);
414         int ret;
415
416         down_read(&fw_device_rwsem);
417         ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
418                        device->config_rom[3], device->config_rom[4]);
419         up_read(&fw_device_rwsem);
420
421         return ret;
422 }
423
424 static int units_sprintf(char *buf, const u32 *directory)
425 {
426         struct fw_csr_iterator ci;
427         int key, value;
428         int specifier_id = 0;
429         int version = 0;
430
431         fw_csr_iterator_init(&ci, directory);
432         while (fw_csr_iterator_next(&ci, &key, &value)) {
433                 switch (key) {
434                 case CSR_SPECIFIER_ID:
435                         specifier_id = value;
436                         break;
437                 case CSR_VERSION:
438                         version = value;
439                         break;
440                 }
441         }
442
443         return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
444 }
445
446 static ssize_t units_show(struct device *dev,
447                           struct device_attribute *attr, char *buf)
448 {
449         struct fw_device *device = fw_device(dev);
450         struct fw_csr_iterator ci;
451         int key, value, i = 0;
452
453         down_read(&fw_device_rwsem);
454         fw_csr_iterator_init(&ci, &device->config_rom[5]);
455         while (fw_csr_iterator_next(&ci, &key, &value)) {
456                 if (key != (CSR_UNIT | CSR_DIRECTORY))
457                         continue;
458                 i += units_sprintf(&buf[i], ci.p + value - 1);
459                 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
460                         break;
461         }
462         up_read(&fw_device_rwsem);
463
464         if (i)
465                 buf[i - 1] = '\n';
466
467         return i;
468 }
469
470 static struct device_attribute fw_device_attributes[] = {
471         __ATTR_RO(config_rom),
472         __ATTR_RO(guid),
473         __ATTR_RO(units),
474         __ATTR_NULL,
475 };
476
477 static int read_rom(struct fw_device *device,
478                     int generation, int index, u32 *data)
479 {
480         int rcode;
481
482         /* device->node_id, accessed below, must not be older than generation */
483         smp_rmb();
484
485         rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
486                         device->node_id, generation, device->max_speed,
487                         (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
488                         data, 4);
489         be32_to_cpus(data);
490
491         return rcode;
492 }
493
494 #define READ_BIB_ROM_SIZE       256
495 #define READ_BIB_STACK_SIZE     16
496
497 /*
498  * Read the bus info block, perform a speed probe, and read all of the rest of
499  * the config ROM.  We do all this with a cached bus generation.  If the bus
500  * generation changes under us, read_bus_info_block will fail and get retried.
501  * It's better to start all over in this case because the node from which we
502  * are reading the ROM may have changed the ROM during the reset.
503  */
504 static int read_bus_info_block(struct fw_device *device, int generation)
505 {
506         const u32 *old_rom, *new_rom;
507         u32 *rom, *stack;
508         u32 sp, key;
509         int i, end, length, ret = -1;
510
511         rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
512                       sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
513         if (rom == NULL)
514                 return -ENOMEM;
515
516         stack = &rom[READ_BIB_ROM_SIZE];
517
518         device->max_speed = SCODE_100;
519
520         /* First read the bus info block. */
521         for (i = 0; i < 5; i++) {
522                 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
523                         goto out;
524                 /*
525                  * As per IEEE1212 7.2, during power-up, devices can
526                  * reply with a 0 for the first quadlet of the config
527                  * rom to indicate that they are booting (for example,
528                  * if the firmware is on the disk of a external
529                  * harddisk).  In that case we just fail, and the
530                  * retry mechanism will try again later.
531                  */
532                 if (i == 0 && rom[i] == 0)
533                         goto out;
534         }
535
536         device->max_speed = device->node->max_speed;
537
538         /*
539          * Determine the speed of
540          *   - devices with link speed less than PHY speed,
541          *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
542          *   - all devices if there are 1394b repeaters.
543          * Note, we cannot use the bus info block's link_spd as starting point
544          * because some buggy firmwares set it lower than necessary and because
545          * 1394-1995 nodes do not have the field.
546          */
547         if ((rom[2] & 0x7) < device->max_speed ||
548             device->max_speed == SCODE_BETA ||
549             device->card->beta_repeaters_present) {
550                 u32 dummy;
551
552                 /* for S1600 and S3200 */
553                 if (device->max_speed == SCODE_BETA)
554                         device->max_speed = device->card->link_speed;
555
556                 while (device->max_speed > SCODE_100) {
557                         if (read_rom(device, generation, 0, &dummy) ==
558                             RCODE_COMPLETE)
559                                 break;
560                         device->max_speed--;
561                 }
562         }
563
564         /*
565          * Now parse the config rom.  The config rom is a recursive
566          * directory structure so we parse it using a stack of
567          * references to the blocks that make up the structure.  We
568          * push a reference to the root directory on the stack to
569          * start things off.
570          */
571         length = i;
572         sp = 0;
573         stack[sp++] = 0xc0000005;
574         while (sp > 0) {
575                 /*
576                  * Pop the next block reference of the stack.  The
577                  * lower 24 bits is the offset into the config rom,
578                  * the upper 8 bits are the type of the reference the
579                  * block.
580                  */
581                 key = stack[--sp];
582                 i = key & 0xffffff;
583                 if (i >= READ_BIB_ROM_SIZE)
584                         /*
585                          * The reference points outside the standard
586                          * config rom area, something's fishy.
587                          */
588                         goto out;
589
590                 /* Read header quadlet for the block to get the length. */
591                 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
592                         goto out;
593                 end = i + (rom[i] >> 16) + 1;
594                 i++;
595                 if (end > READ_BIB_ROM_SIZE)
596                         /*
597                          * This block extends outside standard config
598                          * area (and the array we're reading it
599                          * into).  That's broken, so ignore this
600                          * device.
601                          */
602                         goto out;
603
604                 /*
605                  * Now read in the block.  If this is a directory
606                  * block, check the entries as we read them to see if
607                  * it references another block, and push it in that case.
608                  */
609                 while (i < end) {
610                         if (read_rom(device, generation, i, &rom[i]) !=
611                             RCODE_COMPLETE)
612                                 goto out;
613                         if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
614                             sp < READ_BIB_STACK_SIZE)
615                                 stack[sp++] = i + rom[i];
616                         i++;
617                 }
618                 if (length < i)
619                         length = i;
620         }
621
622         old_rom = device->config_rom;
623         new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
624         if (new_rom == NULL)
625                 goto out;
626
627         down_write(&fw_device_rwsem);
628         device->config_rom = new_rom;
629         device->config_rom_length = length;
630         up_write(&fw_device_rwsem);
631
632         kfree(old_rom);
633         ret = 0;
634         device->max_rec = rom[2] >> 12 & 0xf;
635         device->cmc     = rom[2] >> 30 & 1;
636         device->irmc    = rom[2] >> 31 & 1;
637  out:
638         kfree(rom);
639
640         return ret;
641 }
642
643 static void fw_unit_release(struct device *dev)
644 {
645         struct fw_unit *unit = fw_unit(dev);
646
647         kfree(unit);
648 }
649
650 static struct device_type fw_unit_type = {
651         .uevent         = fw_unit_uevent,
652         .release        = fw_unit_release,
653 };
654
655 static bool is_fw_unit(struct device *dev)
656 {
657         return dev->type == &fw_unit_type;
658 }
659
660 static void create_units(struct fw_device *device)
661 {
662         struct fw_csr_iterator ci;
663         struct fw_unit *unit;
664         int key, value, i;
665
666         i = 0;
667         fw_csr_iterator_init(&ci, &device->config_rom[5]);
668         while (fw_csr_iterator_next(&ci, &key, &value)) {
669                 if (key != (CSR_UNIT | CSR_DIRECTORY))
670                         continue;
671
672                 /*
673                  * Get the address of the unit directory and try to
674                  * match the drivers id_tables against it.
675                  */
676                 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
677                 if (unit == NULL) {
678                         fw_error("failed to allocate memory for unit\n");
679                         continue;
680                 }
681
682                 unit->directory = ci.p + value - 1;
683                 unit->device.bus = &fw_bus_type;
684                 unit->device.type = &fw_unit_type;
685                 unit->device.parent = &device->device;
686                 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
687
688                 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
689                                 ARRAY_SIZE(fw_unit_attributes) +
690                                 ARRAY_SIZE(config_rom_attributes));
691                 init_fw_attribute_group(&unit->device,
692                                         fw_unit_attributes,
693                                         &unit->attribute_group);
694
695                 if (device_register(&unit->device) < 0)
696                         goto skip_unit;
697
698                 continue;
699
700         skip_unit:
701                 kfree(unit);
702         }
703 }
704
705 static int shutdown_unit(struct device *device, void *data)
706 {
707         device_unregister(device);
708
709         return 0;
710 }
711
712 /*
713  * fw_device_rwsem acts as dual purpose mutex:
714  *   - serializes accesses to fw_device_idr,
715  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
716  *     fw_unit.directory, unless those accesses happen at safe occasions
717  */
718 DECLARE_RWSEM(fw_device_rwsem);
719
720 DEFINE_IDR(fw_device_idr);
721 int fw_cdev_major;
722
723 struct fw_device *fw_device_get_by_devt(dev_t devt)
724 {
725         struct fw_device *device;
726
727         down_read(&fw_device_rwsem);
728         device = idr_find(&fw_device_idr, MINOR(devt));
729         if (device)
730                 fw_device_get(device);
731         up_read(&fw_device_rwsem);
732
733         return device;
734 }
735
736 /*
737  * These defines control the retry behavior for reading the config
738  * rom.  It shouldn't be necessary to tweak these; if the device
739  * doesn't respond to a config rom read within 10 seconds, it's not
740  * going to respond at all.  As for the initial delay, a lot of
741  * devices will be able to respond within half a second after bus
742  * reset.  On the other hand, it's not really worth being more
743  * aggressive than that, since it scales pretty well; if 10 devices
744  * are plugged in, they're all getting read within one second.
745  */
746
747 #define MAX_RETRIES     10
748 #define RETRY_DELAY     (3 * HZ)
749 #define INITIAL_DELAY   (HZ / 2)
750 #define SHUTDOWN_DELAY  (2 * HZ)
751
752 static void fw_device_shutdown(struct work_struct *work)
753 {
754         struct fw_device *device =
755                 container_of(work, struct fw_device, work.work);
756         int minor = MINOR(device->device.devt);
757
758         if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
759             && !list_empty(&device->card->link)) {
760                 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
761                 return;
762         }
763
764         if (atomic_cmpxchg(&device->state,
765                            FW_DEVICE_GONE,
766                            FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
767                 return;
768
769         fw_device_cdev_remove(device);
770         device_for_each_child(&device->device, NULL, shutdown_unit);
771         device_unregister(&device->device);
772
773         down_write(&fw_device_rwsem);
774         idr_remove(&fw_device_idr, minor);
775         up_write(&fw_device_rwsem);
776
777         fw_device_put(device);
778 }
779
780 static void fw_device_release(struct device *dev)
781 {
782         struct fw_device *device = fw_device(dev);
783         struct fw_card *card = device->card;
784         unsigned long flags;
785
786         /*
787          * Take the card lock so we don't set this to NULL while a
788          * FW_NODE_UPDATED callback is being handled or while the
789          * bus manager work looks at this node.
790          */
791         spin_lock_irqsave(&card->lock, flags);
792         device->node->data = NULL;
793         spin_unlock_irqrestore(&card->lock, flags);
794
795         fw_node_put(device->node);
796         kfree(device->config_rom);
797         kfree(device);
798         fw_card_put(card);
799 }
800
801 static struct device_type fw_device_type = {
802         .release = fw_device_release,
803 };
804
805 static bool is_fw_device(struct device *dev)
806 {
807         return dev->type == &fw_device_type;
808 }
809
810 static int update_unit(struct device *dev, void *data)
811 {
812         struct fw_unit *unit = fw_unit(dev);
813         struct fw_driver *driver = (struct fw_driver *)dev->driver;
814
815         if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
816                 down(&dev->sem);
817                 driver->update(unit);
818                 up(&dev->sem);
819         }
820
821         return 0;
822 }
823
824 static void fw_device_update(struct work_struct *work)
825 {
826         struct fw_device *device =
827                 container_of(work, struct fw_device, work.work);
828
829         fw_device_cdev_update(device);
830         device_for_each_child(&device->device, NULL, update_unit);
831 }
832
833 /*
834  * If a device was pending for deletion because its node went away but its
835  * bus info block and root directory header matches that of a newly discovered
836  * device, revive the existing fw_device.
837  * The newly allocated fw_device becomes obsolete instead.
838  */
839 static int lookup_existing_device(struct device *dev, void *data)
840 {
841         struct fw_device *old = fw_device(dev);
842         struct fw_device *new = data;
843         struct fw_card *card = new->card;
844         int match = 0;
845
846         if (!is_fw_device(dev))
847                 return 0;
848
849         down_read(&fw_device_rwsem); /* serialize config_rom access */
850         spin_lock_irq(&card->lock);  /* serialize node access */
851
852         if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
853             atomic_cmpxchg(&old->state,
854                            FW_DEVICE_GONE,
855                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
856                 struct fw_node *current_node = new->node;
857                 struct fw_node *obsolete_node = old->node;
858
859                 new->node = obsolete_node;
860                 new->node->data = new;
861                 old->node = current_node;
862                 old->node->data = old;
863
864                 old->max_speed = new->max_speed;
865                 old->node_id = current_node->node_id;
866                 smp_wmb();  /* update node_id before generation */
867                 old->generation = card->generation;
868                 old->config_rom_retries = 0;
869                 fw_notify("rediscovered device %s\n", dev_name(dev));
870
871                 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
872                 schedule_delayed_work(&old->work, 0);
873
874                 if (current_node == card->root_node)
875                         fw_schedule_bm_work(card, 0);
876
877                 match = 1;
878         }
879
880         spin_unlock_irq(&card->lock);
881         up_read(&fw_device_rwsem);
882
883         return match;
884 }
885
886 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
887
888 static void set_broadcast_channel(struct fw_device *device, int generation)
889 {
890         struct fw_card *card = device->card;
891         __be32 data;
892         int rcode;
893
894         if (!card->broadcast_channel_allocated)
895                 return;
896
897         /*
898          * The Broadcast_Channel Valid bit is required by nodes which want to
899          * transmit on this channel.  Such transmissions are practically
900          * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
901          * to be IRM capable and have a max_rec of 8 or more.  We use this fact
902          * to narrow down to which nodes we send Broadcast_Channel updates.
903          */
904         if (!device->irmc || device->max_rec < 8)
905                 return;
906
907         /*
908          * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
909          * Perform a read test first.
910          */
911         if (device->bc_implemented == BC_UNKNOWN) {
912                 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
913                                 device->node_id, generation, device->max_speed,
914                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
915                                 &data, 4);
916                 switch (rcode) {
917                 case RCODE_COMPLETE:
918                         if (data & cpu_to_be32(1 << 31)) {
919                                 device->bc_implemented = BC_IMPLEMENTED;
920                                 break;
921                         }
922                         /* else fall through to case address error */
923                 case RCODE_ADDRESS_ERROR:
924                         device->bc_implemented = BC_UNIMPLEMENTED;
925                 }
926         }
927
928         if (device->bc_implemented == BC_IMPLEMENTED) {
929                 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
930                                    BROADCAST_CHANNEL_VALID);
931                 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
932                                 device->node_id, generation, device->max_speed,
933                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
934                                 &data, 4);
935         }
936 }
937
938 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
939 {
940         if (is_fw_device(dev))
941                 set_broadcast_channel(fw_device(dev), (long)gen);
942
943         return 0;
944 }
945
946 static void fw_device_init(struct work_struct *work)
947 {
948         struct fw_device *device =
949                 container_of(work, struct fw_device, work.work);
950         struct device *revived_dev;
951         int minor, ret;
952
953         /*
954          * All failure paths here set node->data to NULL, so that we
955          * don't try to do device_for_each_child() on a kfree()'d
956          * device.
957          */
958
959         if (read_bus_info_block(device, device->generation) < 0) {
960                 if (device->config_rom_retries < MAX_RETRIES &&
961                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
962                         device->config_rom_retries++;
963                         schedule_delayed_work(&device->work, RETRY_DELAY);
964                 } else {
965                         fw_notify("giving up on config rom for node id %x\n",
966                                   device->node_id);
967                         if (device->node == device->card->root_node)
968                                 fw_schedule_bm_work(device->card, 0);
969                         fw_device_release(&device->device);
970                 }
971                 return;
972         }
973
974         revived_dev = device_find_child(device->card->device,
975                                         device, lookup_existing_device);
976         if (revived_dev) {
977                 put_device(revived_dev);
978                 fw_device_release(&device->device);
979
980                 return;
981         }
982
983         device_initialize(&device->device);
984
985         fw_device_get(device);
986         down_write(&fw_device_rwsem);
987         ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
988               idr_get_new(&fw_device_idr, device, &minor) :
989               -ENOMEM;
990         up_write(&fw_device_rwsem);
991
992         if (ret < 0)
993                 goto error;
994
995         device->device.bus = &fw_bus_type;
996         device->device.type = &fw_device_type;
997         device->device.parent = device->card->device;
998         device->device.devt = MKDEV(fw_cdev_major, minor);
999         dev_set_name(&device->device, "fw%d", minor);
1000
1001         BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1002                         ARRAY_SIZE(fw_device_attributes) +
1003                         ARRAY_SIZE(config_rom_attributes));
1004         init_fw_attribute_group(&device->device,
1005                                 fw_device_attributes,
1006                                 &device->attribute_group);
1007
1008         if (device_add(&device->device)) {
1009                 fw_error("Failed to add device.\n");
1010                 goto error_with_cdev;
1011         }
1012
1013         create_units(device);
1014
1015         /*
1016          * Transition the device to running state.  If it got pulled
1017          * out from under us while we did the intialization work, we
1018          * have to shut down the device again here.  Normally, though,
1019          * fw_node_event will be responsible for shutting it down when
1020          * necessary.  We have to use the atomic cmpxchg here to avoid
1021          * racing with the FW_NODE_DESTROYED case in
1022          * fw_node_event().
1023          */
1024         if (atomic_cmpxchg(&device->state,
1025                            FW_DEVICE_INITIALIZING,
1026                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1027                 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1028                 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1029         } else {
1030                 if (device->config_rom_retries)
1031                         fw_notify("created device %s: GUID %08x%08x, S%d00, "
1032                                   "%d config ROM retries\n",
1033                                   dev_name(&device->device),
1034                                   device->config_rom[3], device->config_rom[4],
1035                                   1 << device->max_speed,
1036                                   device->config_rom_retries);
1037                 else
1038                         fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1039                                   dev_name(&device->device),
1040                                   device->config_rom[3], device->config_rom[4],
1041                                   1 << device->max_speed);
1042                 device->config_rom_retries = 0;
1043
1044                 set_broadcast_channel(device, device->generation);
1045         }
1046
1047         /*
1048          * Reschedule the IRM work if we just finished reading the
1049          * root node config rom.  If this races with a bus reset we
1050          * just end up running the IRM work a couple of extra times -
1051          * pretty harmless.
1052          */
1053         if (device->node == device->card->root_node)
1054                 fw_schedule_bm_work(device->card, 0);
1055
1056         return;
1057
1058  error_with_cdev:
1059         down_write(&fw_device_rwsem);
1060         idr_remove(&fw_device_idr, minor);
1061         up_write(&fw_device_rwsem);
1062  error:
1063         fw_device_put(device);          /* fw_device_idr's reference */
1064
1065         put_device(&device->device);    /* our reference */
1066 }
1067
1068 enum {
1069         REREAD_BIB_ERROR,
1070         REREAD_BIB_GONE,
1071         REREAD_BIB_UNCHANGED,
1072         REREAD_BIB_CHANGED,
1073 };
1074
1075 /* Reread and compare bus info block and header of root directory */
1076 static int reread_bus_info_block(struct fw_device *device, int generation)
1077 {
1078         u32 q;
1079         int i;
1080
1081         for (i = 0; i < 6; i++) {
1082                 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1083                         return REREAD_BIB_ERROR;
1084
1085                 if (i == 0 && q == 0)
1086                         return REREAD_BIB_GONE;
1087
1088                 if (q != device->config_rom[i])
1089                         return REREAD_BIB_CHANGED;
1090         }
1091
1092         return REREAD_BIB_UNCHANGED;
1093 }
1094
1095 static void fw_device_refresh(struct work_struct *work)
1096 {
1097         struct fw_device *device =
1098                 container_of(work, struct fw_device, work.work);
1099         struct fw_card *card = device->card;
1100         int node_id = device->node_id;
1101
1102         switch (reread_bus_info_block(device, device->generation)) {
1103         case REREAD_BIB_ERROR:
1104                 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1105                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1106                         device->config_rom_retries++;
1107                         schedule_delayed_work(&device->work, RETRY_DELAY / 2);
1108
1109                         return;
1110                 }
1111                 goto give_up;
1112
1113         case REREAD_BIB_GONE:
1114                 goto gone;
1115
1116         case REREAD_BIB_UNCHANGED:
1117                 if (atomic_cmpxchg(&device->state,
1118                                    FW_DEVICE_INITIALIZING,
1119                                    FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1120                         goto gone;
1121
1122                 fw_device_update(work);
1123                 device->config_rom_retries = 0;
1124                 goto out;
1125
1126         case REREAD_BIB_CHANGED:
1127                 break;
1128         }
1129
1130         /*
1131          * Something changed.  We keep things simple and don't investigate
1132          * further.  We just destroy all previous units and create new ones.
1133          */
1134         device_for_each_child(&device->device, NULL, shutdown_unit);
1135
1136         if (read_bus_info_block(device, device->generation) < 0) {
1137                 if (device->config_rom_retries < MAX_RETRIES &&
1138                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1139                         device->config_rom_retries++;
1140                         schedule_delayed_work(&device->work, RETRY_DELAY);
1141
1142                         return;
1143                 }
1144                 goto give_up;
1145         }
1146
1147         create_units(device);
1148
1149         /* Userspace may want to re-read attributes. */
1150         kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1151
1152         if (atomic_cmpxchg(&device->state,
1153                            FW_DEVICE_INITIALIZING,
1154                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1155                 goto gone;
1156
1157         fw_notify("refreshed device %s\n", dev_name(&device->device));
1158         device->config_rom_retries = 0;
1159         goto out;
1160
1161  give_up:
1162         fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1163  gone:
1164         atomic_set(&device->state, FW_DEVICE_GONE);
1165         PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1166         schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1167  out:
1168         if (node_id == card->root_node->node_id)
1169                 fw_schedule_bm_work(card, 0);
1170 }
1171
1172 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1173 {
1174         struct fw_device *device;
1175
1176         switch (event) {
1177         case FW_NODE_CREATED:
1178         case FW_NODE_LINK_ON:
1179                 if (!node->link_on)
1180                         break;
1181  create:
1182                 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1183                 if (device == NULL)
1184                         break;
1185
1186                 /*
1187                  * Do minimal intialization of the device here, the
1188                  * rest will happen in fw_device_init().
1189                  *
1190                  * Attention:  A lot of things, even fw_device_get(),
1191                  * cannot be done before fw_device_init() finished!
1192                  * You can basically just check device->state and
1193                  * schedule work until then, but only while holding
1194                  * card->lock.
1195                  */
1196                 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1197                 device->card = fw_card_get(card);
1198                 device->node = fw_node_get(node);
1199                 device->node_id = node->node_id;
1200                 device->generation = card->generation;
1201                 device->is_local = node == card->local_node;
1202                 mutex_init(&device->client_list_mutex);
1203                 INIT_LIST_HEAD(&device->client_list);
1204
1205                 /*
1206                  * Set the node data to point back to this device so
1207                  * FW_NODE_UPDATED callbacks can update the node_id
1208                  * and generation for the device.
1209                  */
1210                 node->data = device;
1211
1212                 /*
1213                  * Many devices are slow to respond after bus resets,
1214                  * especially if they are bus powered and go through
1215                  * power-up after getting plugged in.  We schedule the
1216                  * first config rom scan half a second after bus reset.
1217                  */
1218                 INIT_DELAYED_WORK(&device->work, fw_device_init);
1219                 schedule_delayed_work(&device->work, INITIAL_DELAY);
1220                 break;
1221
1222         case FW_NODE_INITIATED_RESET:
1223                 device = node->data;
1224                 if (device == NULL)
1225                         goto create;
1226
1227                 device->node_id = node->node_id;
1228                 smp_wmb();  /* update node_id before generation */
1229                 device->generation = card->generation;
1230                 if (atomic_cmpxchg(&device->state,
1231                             FW_DEVICE_RUNNING,
1232                             FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1233                         PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1234                         schedule_delayed_work(&device->work,
1235                                 device->is_local ? 0 : INITIAL_DELAY);
1236                 }
1237                 break;
1238
1239         case FW_NODE_UPDATED:
1240                 if (!node->link_on || node->data == NULL)
1241                         break;
1242
1243                 device = node->data;
1244                 device->node_id = node->node_id;
1245                 smp_wmb();  /* update node_id before generation */
1246                 device->generation = card->generation;
1247                 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1248                         PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1249                         schedule_delayed_work(&device->work, 0);
1250                 }
1251                 break;
1252
1253         case FW_NODE_DESTROYED:
1254         case FW_NODE_LINK_OFF:
1255                 if (!node->data)
1256                         break;
1257
1258                 /*
1259                  * Destroy the device associated with the node.  There
1260                  * are two cases here: either the device is fully
1261                  * initialized (FW_DEVICE_RUNNING) or we're in the
1262                  * process of reading its config rom
1263                  * (FW_DEVICE_INITIALIZING).  If it is fully
1264                  * initialized we can reuse device->work to schedule a
1265                  * full fw_device_shutdown().  If not, there's work
1266                  * scheduled to read it's config rom, and we just put
1267                  * the device in shutdown state to have that code fail
1268                  * to create the device.
1269                  */
1270                 device = node->data;
1271                 if (atomic_xchg(&device->state,
1272                                 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1273                         PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1274                         schedule_delayed_work(&device->work,
1275                                 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1276                 }
1277                 break;
1278         }
1279 }