[PATCH] EDAC: printk cleanup
[safe/jmp/linux-2.6] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/proc_fs.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/smp.h>
22 #include <linux/init.h>
23 #include <linux/sysctl.h>
24 #include <linux/highmem.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/spinlock.h>
29 #include <linux/list.h>
30 #include <linux/sysdev.h>
31 #include <linux/ctype.h>
32 #include <linux/kthread.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/page.h>
36 #include <asm/edac.h>
37
38 #include "edac_mc.h"
39
40 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
41
42 /* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
43  * presents to user space needs more thought, and is likely to change
44  * substantially.
45  */
46 #define DISABLE_EDAC_SYSFS
47
48 #ifdef CONFIG_EDAC_DEBUG
49 /* Values of 0 to 4 will generate output */
50 int edac_debug_level = 1;
51 EXPORT_SYMBOL(edac_debug_level);
52 #endif
53
54 /* EDAC Controls, setable by module parameter, and sysfs */
55 static int log_ue = 1;
56 static int log_ce = 1;
57 static int panic_on_ue;
58 static int poll_msec = 1000;
59
60 static int check_pci_parity = 0;        /* default YES check PCI parity */
61 static int panic_on_pci_parity;         /* default no panic on PCI Parity */
62 static atomic_t pci_parity_count = ATOMIC_INIT(0);
63
64 /* lock to memory controller's control array */
65 static DECLARE_MUTEX(mem_ctls_mutex);
66 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
67
68 static struct task_struct *edac_thread;
69
70 /* Structure of the whitelist and blacklist arrays */
71 struct edac_pci_device_list {
72         unsigned int  vendor;           /* Vendor ID */
73         unsigned int  device;           /* Deviice ID */
74 };
75
76
77 #define MAX_LISTED_PCI_DEVICES          32
78
79 /* List of PCI devices (vendor-id:device-id) that should be skipped */
80 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
81 static int pci_blacklist_count;
82
83 /* List of PCI devices (vendor-id:device-id) that should be scanned */
84 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
85 static int pci_whitelist_count ;
86
87 /*  START sysfs data and methods */
88
89 #ifndef DISABLE_EDAC_SYSFS
90
91 static const char *mem_types[] = {
92         [MEM_EMPTY] = "Empty",
93         [MEM_RESERVED] = "Reserved",
94         [MEM_UNKNOWN] = "Unknown",
95         [MEM_FPM] = "FPM",
96         [MEM_EDO] = "EDO",
97         [MEM_BEDO] = "BEDO",
98         [MEM_SDR] = "Unbuffered-SDR",
99         [MEM_RDR] = "Registered-SDR",
100         [MEM_DDR] = "Unbuffered-DDR",
101         [MEM_RDDR] = "Registered-DDR",
102         [MEM_RMBS] = "RMBS"
103 };
104
105 static const char *dev_types[] = {
106         [DEV_UNKNOWN] = "Unknown",
107         [DEV_X1] = "x1",
108         [DEV_X2] = "x2",
109         [DEV_X4] = "x4",
110         [DEV_X8] = "x8",
111         [DEV_X16] = "x16",
112         [DEV_X32] = "x32",
113         [DEV_X64] = "x64"
114 };
115
116 static const char *edac_caps[] = {
117         [EDAC_UNKNOWN] = "Unknown",
118         [EDAC_NONE] = "None",
119         [EDAC_RESERVED] = "Reserved",
120         [EDAC_PARITY] = "PARITY",
121         [EDAC_EC] = "EC",
122         [EDAC_SECDED] = "SECDED",
123         [EDAC_S2ECD2ED] = "S2ECD2ED",
124         [EDAC_S4ECD4ED] = "S4ECD4ED",
125         [EDAC_S8ECD8ED] = "S8ECD8ED",
126         [EDAC_S16ECD16ED] = "S16ECD16ED"
127 };
128
129
130 /* sysfs object: /sys/devices/system/edac */
131 static struct sysdev_class edac_class = {
132         set_kset_name("edac"),
133 };
134
135 /* sysfs objects:
136  *      /sys/devices/system/edac/mc
137  *      /sys/devices/system/edac/pci
138  */
139 static struct kobject edac_memctrl_kobj;
140 static struct kobject edac_pci_kobj;
141
142 /*
143  * /sys/devices/system/edac/mc;
144  *      data structures and methods
145  */
146 #if 0
147 static ssize_t memctrl_string_show(void *ptr, char *buffer)
148 {
149         char *value = (char*) ptr;
150         return sprintf(buffer, "%s\n", value);
151 }
152 #endif
153
154 static ssize_t memctrl_int_show(void *ptr, char *buffer)
155 {
156         int *value = (int*) ptr;
157         return sprintf(buffer, "%d\n", *value);
158 }
159
160 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
161 {
162         int *value = (int*) ptr;
163
164         if (isdigit(*buffer))
165                 *value = simple_strtoul(buffer, NULL, 0);
166
167         return count;
168 }
169
170 struct memctrl_dev_attribute {
171         struct attribute        attr;
172         void    *value;
173         ssize_t (*show)(void *,char *);
174         ssize_t (*store)(void *, const char *, size_t);
175 };
176
177 /* Set of show/store abstract level functions for memory control object */
178 static ssize_t
179 memctrl_dev_show(struct kobject *kobj, struct attribute *attr, char *buffer)
180 {
181         struct memctrl_dev_attribute *memctrl_dev;
182         memctrl_dev = (struct memctrl_dev_attribute*)attr;
183
184         if (memctrl_dev->show)
185                 return memctrl_dev->show(memctrl_dev->value, buffer);
186         return -EIO;
187 }
188
189 static ssize_t
190 memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
191                         const char *buffer, size_t count)
192 {
193         struct memctrl_dev_attribute *memctrl_dev;
194         memctrl_dev = (struct memctrl_dev_attribute*)attr;
195
196         if (memctrl_dev->store)
197                 return memctrl_dev->store(memctrl_dev->value, buffer, count);
198         return -EIO;
199 }
200
201 static struct sysfs_ops memctrlfs_ops = {
202         .show   = memctrl_dev_show,
203         .store  = memctrl_dev_store
204 };
205
206 #define MEMCTRL_ATTR(_name,_mode,_show,_store)                  \
207 struct memctrl_dev_attribute attr_##_name = {                   \
208         .attr = {.name = __stringify(_name), .mode = _mode },   \
209         .value  = &_name,                                       \
210         .show   = _show,                                        \
211         .store  = _store,                                       \
212 };
213
214 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)     \
215 struct memctrl_dev_attribute attr_##_name = {                   \
216         .attr = {.name = __stringify(_name), .mode = _mode },   \
217         .value  = _data,                                        \
218         .show   = _show,                                        \
219         .store  = _store,                                       \
220 };
221
222 /* cwrow<id> attribute f*/
223 #if 0
224 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
225 #endif
226
227 /* csrow<id> control files */
228 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
229 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
230 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
231 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
232
233
234 /* Base Attributes of the memory ECC object */
235 static struct memctrl_dev_attribute *memctrl_attr[] = {
236         &attr_panic_on_ue,
237         &attr_log_ue,
238         &attr_log_ce,
239         &attr_poll_msec,
240         NULL,
241 };
242
243 /* Main MC kobject release() function */
244 static void edac_memctrl_master_release(struct kobject *kobj)
245 {
246         debugf1("%s()\n", __func__);
247 }
248
249 static struct kobj_type ktype_memctrl = {
250         .release        = edac_memctrl_master_release,
251         .sysfs_ops      = &memctrlfs_ops,
252         .default_attrs  = (struct attribute **) memctrl_attr,
253 };
254
255 #endif  /* DISABLE_EDAC_SYSFS */
256
257 /* Initialize the main sysfs entries for edac:
258  *   /sys/devices/system/edac
259  *
260  * and children
261  *
262  * Return:  0 SUCCESS
263  *         !0 FAILURE
264  */
265 static int edac_sysfs_memctrl_setup(void)
266 #ifdef DISABLE_EDAC_SYSFS
267 {
268         return 0;
269 }
270 #else
271 {
272         int err=0;
273
274         debugf1("%s()\n", __func__);
275
276         /* create the /sys/devices/system/edac directory */
277         err = sysdev_class_register(&edac_class);
278         if (!err) {
279                 /* Init the MC's kobject */
280                 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
281                 kobject_init(&edac_memctrl_kobj);
282
283                 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
284                 edac_memctrl_kobj.ktype = &ktype_memctrl;
285
286                 /* generate sysfs "..../edac/mc"   */
287                 err = kobject_set_name(&edac_memctrl_kobj,"mc");
288                 if (!err) {
289                         /* FIXME: maybe new sysdev_create_subdir() */
290                         err = kobject_register(&edac_memctrl_kobj);
291                         if (err) {
292                                 debugf1("Failed to register '.../edac/mc'\n");
293                         } else {
294                                 debugf1("Registered '.../edac/mc' kobject\n");
295                         }
296                 }
297         } else {
298                 debugf1("%s() error=%d\n", __func__, err);
299         }
300
301         return err;
302 }
303 #endif  /* DISABLE_EDAC_SYSFS */
304
305 /*
306  * MC teardown:
307  *      the '..../edac/mc' kobject followed by '..../edac' itself
308  */
309 static void edac_sysfs_memctrl_teardown(void)
310 {
311 #ifndef DISABLE_EDAC_SYSFS
312         debugf0("MC: " __FILE__ ": %s()\n", __func__);
313
314         /* Unregister the MC's kobject */
315         kobject_unregister(&edac_memctrl_kobj);
316
317         /* release the master edac mc kobject */
318         kobject_put(&edac_memctrl_kobj);
319
320         /* Unregister the 'edac' object */
321         sysdev_class_unregister(&edac_class);
322 #endif  /* DISABLE_EDAC_SYSFS */
323 }
324
325 #ifndef DISABLE_EDAC_SYSFS
326
327 /*
328  * /sys/devices/system/edac/pci;
329  *      data structures and methods
330  */
331
332 struct list_control {
333         struct edac_pci_device_list *list;
334         int *count;
335 };
336
337
338 #if 0
339 /* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
340 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
341 {
342         struct list_control *listctl;
343         struct edac_pci_device_list *list;
344         char *p = buffer;
345         int len=0;
346         int i;
347
348         listctl = ptr;
349         list = listctl->list;
350
351         for (i = 0; i < *(listctl->count); i++, list++ ) {
352                 if (len > 0)
353                         len += snprintf(p + len, (PAGE_SIZE-len), ",");
354
355                 len += snprintf(p + len,
356                                 (PAGE_SIZE-len),
357                                 "%x:%x",
358                                 list->vendor,list->device);
359         }
360
361         len += snprintf(p + len,(PAGE_SIZE-len), "\n");
362
363         return (ssize_t) len;
364 }
365
366 /**
367  *
368  * Scan string from **s to **e looking for one 'vendor:device' tuple
369  * where each field is a hex value
370  *
371  * return 0 if an entry is NOT found
372  * return 1 if an entry is found
373  *      fill in *vendor_id and *device_id with values found
374  *
375  * In both cases, make sure *s has been moved forward toward *e
376  */
377 static int parse_one_device(const char **s,const char **e,
378         unsigned int *vendor_id, unsigned int *device_id)
379 {
380         const char *runner, *p;
381
382         /* if null byte, we are done */
383         if (!**s) {
384                 (*s)++; /* keep *s moving */
385                 return 0;
386         }
387
388         /* skip over newlines & whitespace */
389         if ((**s == '\n') || isspace(**s)) {
390                 (*s)++;
391                 return 0;
392         }
393
394         if (!isxdigit(**s)) {
395                 (*s)++;
396                 return 0;
397         }
398
399         /* parse vendor_id */
400         runner = *s;
401         while (runner < *e) {
402                 /* scan for vendor:device delimiter */
403                 if (*runner == ':') {
404                         *vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
405                         runner = p + 1;
406                         break;
407                 }
408                 runner++;
409         }
410
411         if (!isxdigit(*runner)) {
412                 *s = ++runner;
413                 return 0;
414         }
415
416         /* parse device_id */
417         if (runner < *e) {
418                 *device_id = simple_strtol((char*)runner, (char**)&p, 16);
419                 runner = p;
420         }
421
422         *s = runner;
423
424         return 1;
425 }
426
427 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
428                                         size_t count)
429 {
430         struct list_control *listctl;
431         struct edac_pci_device_list *list;
432         unsigned int vendor_id, device_id;
433         const char *s, *e;
434         int *index;
435
436         s = (char*)buffer;
437         e = s + count;
438
439         listctl = ptr;
440         list = listctl->list;
441         index = listctl->count;
442
443         *index = 0;
444         while (*index < MAX_LISTED_PCI_DEVICES) {
445
446                 if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
447                         list[ *index ].vendor = vendor_id;
448                         list[ *index ].device = device_id;
449                         (*index)++;
450                 }
451
452                 /* check for all data consume */
453                 if (s >= e)
454                         break;
455         }
456
457         return count;
458 }
459
460 #endif
461 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
462 {
463         int *value = ptr;
464         return sprintf(buffer,"%d\n",*value);
465 }
466
467 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
468 {
469         int *value = ptr;
470
471         if (isdigit(*buffer))
472                 *value = simple_strtoul(buffer,NULL,0);
473
474         return count;
475 }
476
477 struct edac_pci_dev_attribute {
478         struct attribute        attr;
479         void    *value;
480         ssize_t (*show)(void *,char *);
481         ssize_t (*store)(void *, const char *,size_t);
482 };
483
484 /* Set of show/store abstract level functions for PCI Parity object */
485 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
486                                 char *buffer)
487 {
488         struct edac_pci_dev_attribute *edac_pci_dev;
489         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
490
491         if (edac_pci_dev->show)
492                 return edac_pci_dev->show(edac_pci_dev->value, buffer);
493         return -EIO;
494 }
495
496 static ssize_t edac_pci_dev_store(struct kobject *kobj, struct attribute *attr,
497                                 const char *buffer, size_t count)
498 {
499         struct edac_pci_dev_attribute *edac_pci_dev;
500         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
501
502         if (edac_pci_dev->show)
503                 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
504         return -EIO;
505 }
506
507 static struct sysfs_ops edac_pci_sysfs_ops = {
508         .show   = edac_pci_dev_show,
509         .store  = edac_pci_dev_store
510 };
511
512
513 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)                 \
514 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
515         .attr = {.name = __stringify(_name), .mode = _mode },   \
516         .value  = &_name,                                       \
517         .show   = _show,                                        \
518         .store  = _store,                                       \
519 };
520
521 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)    \
522 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
523         .attr = {.name = __stringify(_name), .mode = _mode },   \
524         .value  = _data,                                        \
525         .show   = _show,                                        \
526         .store  = _store,                                       \
527 };
528
529 #if 0
530 static struct list_control pci_whitelist_control = {
531         .list = pci_whitelist,
532         .count = &pci_whitelist_count
533 };
534
535 static struct list_control pci_blacklist_control = {
536         .list = pci_blacklist,
537         .count = &pci_blacklist_count
538 };
539
540 /* whitelist attribute */
541 EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
542         &pci_whitelist_control,
543         S_IRUGO|S_IWUSR,
544         edac_pci_list_string_show,
545         edac_pci_list_string_store);
546
547 EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
548         &pci_blacklist_control,
549         S_IRUGO|S_IWUSR,
550         edac_pci_list_string_show,
551         edac_pci_list_string_store);
552 #endif
553
554 /* PCI Parity control files */
555 EDAC_PCI_ATTR(check_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
556 EDAC_PCI_ATTR(panic_on_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
557 EDAC_PCI_ATTR(pci_parity_count,S_IRUGO,edac_pci_int_show,NULL);
558
559 /* Base Attributes of the memory ECC object */
560 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
561         &edac_pci_attr_check_pci_parity,
562         &edac_pci_attr_panic_on_pci_parity,
563         &edac_pci_attr_pci_parity_count,
564         NULL,
565 };
566
567 /* No memory to release */
568 static void edac_pci_release(struct kobject *kobj)
569 {
570         debugf1("%s()\n", __func__);
571 }
572
573 static struct kobj_type ktype_edac_pci = {
574         .release        = edac_pci_release,
575         .sysfs_ops      = &edac_pci_sysfs_ops,
576         .default_attrs  = (struct attribute **) edac_pci_attr,
577 };
578
579 #endif  /* DISABLE_EDAC_SYSFS */
580
581 /**
582  * edac_sysfs_pci_setup()
583  *
584  */
585 static int edac_sysfs_pci_setup(void)
586 #ifdef DISABLE_EDAC_SYSFS
587 {
588         return 0;
589 }
590 #else
591 {
592         int err;
593
594         debugf1("%s()\n", __func__);
595
596         memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
597
598         kobject_init(&edac_pci_kobj);
599         edac_pci_kobj.parent = &edac_class.kset.kobj;
600         edac_pci_kobj.ktype = &ktype_edac_pci;
601
602         err = kobject_set_name(&edac_pci_kobj, "pci");
603         if (!err) {
604                 /* Instanstiate the csrow object */
605                 /* FIXME: maybe new sysdev_create_subdir() */
606                 err = kobject_register(&edac_pci_kobj);
607                 if (err)
608                         debugf1("Failed to register '.../edac/pci'\n");
609                 else
610                         debugf1("Registered '.../edac/pci' kobject\n");
611         }
612         return err;
613 }
614 #endif  /* DISABLE_EDAC_SYSFS */
615
616 static void edac_sysfs_pci_teardown(void)
617 {
618 #ifndef DISABLE_EDAC_SYSFS
619         debugf0("%s()\n", __func__);
620
621         kobject_unregister(&edac_pci_kobj);
622         kobject_put(&edac_pci_kobj);
623 #endif
624 }
625
626 #ifndef DISABLE_EDAC_SYSFS
627
628 /* EDAC sysfs CSROW data structures and methods */
629
630 /* Set of more detailed csrow<id> attribute show/store functions */
631 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
632 {
633         ssize_t size = 0;
634
635         if (csrow->nr_channels > 0) {
636                 size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
637                         csrow->channels[0].label);
638         }
639         return size;
640 }
641
642 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
643 {
644         ssize_t size = 0;
645
646         if (csrow->nr_channels > 0) {
647                 size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
648                         csrow->channels[1].label);
649         }
650         return size;
651 }
652
653 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
654                         const char *data, size_t size)
655 {
656         ssize_t max_size = 0;
657
658         if (csrow->nr_channels > 0) {
659                 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
660                 strncpy(csrow->channels[0].label, data, max_size);
661                 csrow->channels[0].label[max_size] = '\0';
662         }
663         return size;
664 }
665
666 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
667                         const char *data, size_t size)
668 {
669         ssize_t max_size = 0;
670
671         if (csrow->nr_channels > 1) {
672                 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
673                 strncpy(csrow->channels[1].label, data, max_size);
674                 csrow->channels[1].label[max_size] = '\0';
675         }
676         return max_size;
677 }
678
679 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
680 {
681         return sprintf(data,"%u\n", csrow->ue_count);
682 }
683
684 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
685 {
686         return sprintf(data,"%u\n", csrow->ce_count);
687 }
688
689 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
690 {
691         ssize_t size = 0;
692
693         if (csrow->nr_channels > 0) {
694                 size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
695         }
696         return size;
697 }
698
699 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
700 {
701         ssize_t size = 0;
702
703         if (csrow->nr_channels > 1) {
704                 size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
705         }
706         return size;
707 }
708
709 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
710 {
711         return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
712 }
713
714 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
715 {
716         return sprintf(data,"%s\n", mem_types[csrow->mtype]);
717 }
718
719 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
720 {
721         return sprintf(data,"%s\n", dev_types[csrow->dtype]);
722 }
723
724 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
725 {
726         return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
727 }
728
729 struct csrowdev_attribute {
730         struct attribute        attr;
731         ssize_t (*show)(struct csrow_info *,char *);
732         ssize_t (*store)(struct csrow_info *, const char *,size_t);
733 };
734
735 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
736 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
737
738 /* Set of show/store higher level functions for csrow objects */
739 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
740                                 char *buffer)
741 {
742         struct csrow_info *csrow = to_csrow(kobj);
743         struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
744
745         if (csrowdev_attr->show)
746                 return csrowdev_attr->show(csrow, buffer);
747         return -EIO;
748 }
749
750 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
751                                 const char *buffer, size_t count)
752 {
753         struct csrow_info *csrow = to_csrow(kobj);
754         struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
755
756         if (csrowdev_attr->store)
757                 return csrowdev_attr->store(csrow, buffer, count);
758         return -EIO;
759 }
760
761 static struct sysfs_ops csrowfs_ops = {
762         .show   = csrowdev_show,
763         .store  = csrowdev_store
764 };
765
766 #define CSROWDEV_ATTR(_name,_mode,_show,_store)                 \
767 struct csrowdev_attribute attr_##_name = {                      \
768         .attr = {.name = __stringify(_name), .mode = _mode },   \
769         .show   = _show,                                        \
770         .store  = _store,                                       \
771 };
772
773 /* cwrow<id>/attribute files */
774 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
775 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
776 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
777 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
778 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
779 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
780 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
781 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
782
783 /* control/attribute files */
784 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
785                 csrow_ch0_dimm_label_show,
786                 csrow_ch0_dimm_label_store);
787 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
788                 csrow_ch1_dimm_label_show,
789                 csrow_ch1_dimm_label_store);
790
791
792 /* Attributes of the CSROW<id> object */
793 static struct csrowdev_attribute *csrow_attr[] = {
794         &attr_dev_type,
795         &attr_mem_type,
796         &attr_edac_mode,
797         &attr_size_mb,
798         &attr_ue_count,
799         &attr_ce_count,
800         &attr_ch0_ce_count,
801         &attr_ch1_ce_count,
802         &attr_ch0_dimm_label,
803         &attr_ch1_dimm_label,
804         NULL,
805 };
806
807
808 /* No memory to release */
809 static void edac_csrow_instance_release(struct kobject *kobj)
810 {
811         debugf1("%s()\n", __func__);
812 }
813
814 static struct kobj_type ktype_csrow = {
815         .release        = edac_csrow_instance_release,
816         .sysfs_ops      = &csrowfs_ops,
817         .default_attrs  = (struct attribute **) csrow_attr,
818 };
819
820 /* Create a CSROW object under specifed edac_mc_device */
821 static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
822                                 struct csrow_info *csrow, int index )
823 {
824         int err = 0;
825
826         debugf0("%s()\n", __func__);
827
828         memset(&csrow->kobj, 0, sizeof(csrow->kobj));
829
830         /* generate ..../edac/mc/mc<id>/csrow<index>   */
831
832         kobject_init(&csrow->kobj);
833         csrow->kobj.parent = edac_mci_kobj;
834         csrow->kobj.ktype = &ktype_csrow;
835
836         /* name this instance of csrow<id> */
837         err = kobject_set_name(&csrow->kobj,"csrow%d",index);
838         if (!err) {
839                 /* Instanstiate the csrow object */
840                 err = kobject_register(&csrow->kobj);
841                 if (err)
842                         debugf0("Failed to register CSROW%d\n",index);
843                 else
844                         debugf0("Registered CSROW%d\n",index);
845         }
846
847         return err;
848 }
849
850 /* sysfs data structures and methods for the MCI kobjects */
851
852 static ssize_t mci_reset_counters_store(struct mem_ctl_info  *mci,
853                                         const char *data, size_t count )
854 {
855         int row, chan;
856
857         mci->ue_noinfo_count = 0;
858         mci->ce_noinfo_count = 0;
859         mci->ue_count = 0;
860         mci->ce_count = 0;
861         for (row = 0; row < mci->nr_csrows; row++) {
862                 struct csrow_info *ri = &mci->csrows[row];
863
864                 ri->ue_count = 0;
865                 ri->ce_count = 0;
866                 for (chan = 0; chan < ri->nr_channels; chan++)
867                         ri->channels[chan].ce_count = 0;
868         }
869         mci->start_time = jiffies;
870
871         return count;
872 }
873
874 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
875 {
876         return sprintf(data,"%d\n", mci->ue_count);
877 }
878
879 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
880 {
881         return sprintf(data,"%d\n", mci->ce_count);
882 }
883
884 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
885 {
886         return sprintf(data,"%d\n", mci->ce_noinfo_count);
887 }
888
889 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
890 {
891         return sprintf(data,"%d\n", mci->ue_noinfo_count);
892 }
893
894 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
895 {
896         return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
897 }
898
899 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
900 {
901         return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
902 }
903
904 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
905 {
906         return sprintf(data,"%s\n", mci->ctl_name);
907 }
908
909 static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
910 {
911         char *p = buf;
912         int bit_idx;
913
914         for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
915                 if ((edac_cap >> bit_idx) & 0x1)
916                         p += sprintf(p, "%s ", edac_caps[bit_idx]);
917         }
918
919         return p - buf;
920 }
921
922 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
923 {
924         char *p = data;
925
926         p += mci_output_edac_cap(p,mci->edac_ctl_cap);
927         p += sprintf(p, "\n");
928
929         return p - data;
930 }
931
932 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
933                                                 char *data)
934 {
935         char *p = data;
936
937         p += mci_output_edac_cap(p,mci->edac_cap);
938         p += sprintf(p, "\n");
939
940         return p - data;
941 }
942
943 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
944 {
945         char *p = buf;
946         int bit_idx;
947
948         for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
949                 if ((mtype_cap >> bit_idx) & 0x1)
950                         p += sprintf(p, "%s ", mem_types[bit_idx]);
951         }
952
953         return p - buf;
954 }
955
956 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, char *data)
957 {
958         char *p = data;
959
960         p += mci_output_mtype_cap(p,mci->mtype_cap);
961         p += sprintf(p, "\n");
962
963         return p - data;
964 }
965
966 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
967 {
968         int total_pages, csrow_idx;
969
970         for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
971                         csrow_idx++) {
972                 struct csrow_info *csrow = &mci->csrows[csrow_idx];
973
974                 if (!csrow->nr_pages)
975                         continue;
976                 total_pages += csrow->nr_pages;
977         }
978
979         return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
980 }
981
982 struct mcidev_attribute {
983         struct attribute        attr;
984         ssize_t (*show)(struct mem_ctl_info *,char *);
985         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
986 };
987
988 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
989 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
990
991 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
992                         char *buffer)
993 {
994         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
995         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
996
997         if (mcidev_attr->show)
998                 return mcidev_attr->show(mem_ctl_info, buffer);
999         return -EIO;
1000 }
1001
1002 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1003                                 const char *buffer, size_t count)
1004 {
1005         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1006         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1007
1008         if (mcidev_attr->store)
1009                 return mcidev_attr->store(mem_ctl_info, buffer, count);
1010         return -EIO;
1011 }
1012
1013 static struct sysfs_ops mci_ops = {
1014         .show   = mcidev_show,
1015         .store  = mcidev_store
1016 };
1017
1018 #define MCIDEV_ATTR(_name,_mode,_show,_store)                   \
1019 struct mcidev_attribute mci_attr_##_name = {                    \
1020         .attr = {.name = __stringify(_name), .mode = _mode },   \
1021         .show   = _show,                                        \
1022         .store  = _store,                                       \
1023 };
1024
1025 /* Control file */
1026 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1027
1028 /* Attribute files */
1029 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1030 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1031 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1032 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1033 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1034 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1035 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1036 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1037 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1038 MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1039         mci_edac_current_capability_show,NULL);
1040 MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1041         mci_supported_mem_type_show,NULL);
1042
1043
1044 static struct mcidev_attribute *mci_attr[] = {
1045         &mci_attr_reset_counters,
1046         &mci_attr_module_name,
1047         &mci_attr_mc_name,
1048         &mci_attr_edac_capability,
1049         &mci_attr_edac_current_capability,
1050         &mci_attr_supported_mem_type,
1051         &mci_attr_size_mb,
1052         &mci_attr_seconds_since_reset,
1053         &mci_attr_ue_noinfo_count,
1054         &mci_attr_ce_noinfo_count,
1055         &mci_attr_ue_count,
1056         &mci_attr_ce_count,
1057         NULL
1058 };
1059
1060
1061 /*
1062  * Release of a MC controlling instance
1063  */
1064 static void edac_mci_instance_release(struct kobject *kobj)
1065 {
1066         struct mem_ctl_info *mci;
1067         mci = container_of(kobj,struct mem_ctl_info,edac_mci_kobj);
1068
1069         debugf0("%s() idx=%d calling kfree\n", __func__, mci->mc_idx);
1070
1071         kfree(mci);
1072 }
1073
1074 static struct kobj_type ktype_mci = {
1075         .release        = edac_mci_instance_release,
1076         .sysfs_ops      = &mci_ops,
1077         .default_attrs  = (struct attribute **) mci_attr,
1078 };
1079
1080 #endif  /* DISABLE_EDAC_SYSFS */
1081
1082 #define EDAC_DEVICE_SYMLINK     "device"
1083
1084 /*
1085  * Create a new Memory Controller kobject instance,
1086  *      mc<id> under the 'mc' directory
1087  *
1088  * Return:
1089  *      0       Success
1090  *      !0      Failure
1091  */
1092 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1093 #ifdef DISABLE_EDAC_SYSFS
1094 {
1095         return 0;
1096 }
1097 #else
1098 {
1099         int i;
1100         int err;
1101         struct csrow_info *csrow;
1102         struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1103
1104         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1105
1106         memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1107         kobject_init(edac_mci_kobj);
1108
1109         /* set the name of the mc<id> object */
1110         err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1111         if (err)
1112                 return err;
1113
1114         /* link to our parent the '..../edac/mc' object */
1115         edac_mci_kobj->parent = &edac_memctrl_kobj;
1116         edac_mci_kobj->ktype = &ktype_mci;
1117
1118         /* register the mc<id> kobject */
1119         err = kobject_register(edac_mci_kobj);
1120         if (err)
1121                 return err;
1122
1123         /* create a symlink for the device */
1124         err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1125                                 EDAC_DEVICE_SYMLINK);
1126         if (err) {
1127                 kobject_unregister(edac_mci_kobj);
1128                 return err;
1129         }
1130
1131         /* Make directories for each CSROW object
1132          * under the mc<id> kobject
1133          */
1134         for (i = 0; i < mci->nr_csrows; i++) {
1135
1136                 csrow = &mci->csrows[i];
1137
1138                 /* Only expose populated CSROWs */
1139                 if (csrow->nr_pages > 0) {
1140                         err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1141                         if (err)
1142                                 goto fail;
1143                 }
1144         }
1145
1146         /* Mark this MCI instance as having sysfs entries */
1147         mci->sysfs_active = MCI_SYSFS_ACTIVE;
1148
1149         return 0;
1150
1151
1152         /* CSROW error: backout what has already been registered,  */
1153 fail:
1154         for ( i--; i >= 0; i--) {
1155                 if (csrow->nr_pages > 0) {
1156                         kobject_unregister(&mci->csrows[i].kobj);
1157                         kobject_put(&mci->csrows[i].kobj);
1158                 }
1159         }
1160
1161         kobject_unregister(edac_mci_kobj);
1162         kobject_put(edac_mci_kobj);
1163
1164         return err;
1165 }
1166 #endif  /* DISABLE_EDAC_SYSFS */
1167
1168 /*
1169  * remove a Memory Controller instance
1170  */
1171 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1172 {
1173 #ifndef DISABLE_EDAC_SYSFS
1174         int i;
1175
1176         debugf0("%s()\n", __func__);
1177
1178         /* remove all csrow kobjects */
1179         for (i = 0; i < mci->nr_csrows; i++) {
1180                 if (mci->csrows[i].nr_pages > 0)  {
1181                         kobject_unregister(&mci->csrows[i].kobj);
1182                         kobject_put(&mci->csrows[i].kobj);
1183                 }
1184         }
1185
1186         sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1187
1188         kobject_unregister(&mci->edac_mci_kobj);
1189         kobject_put(&mci->edac_mci_kobj);
1190 #endif  /* DISABLE_EDAC_SYSFS */
1191 }
1192
1193 /* END OF sysfs data and methods */
1194
1195 #ifdef CONFIG_EDAC_DEBUG
1196
1197 EXPORT_SYMBOL(edac_mc_dump_channel);
1198
1199 void edac_mc_dump_channel(struct channel_info *chan)
1200 {
1201         debugf4("\tchannel = %p\n", chan);
1202         debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1203         debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1204         debugf4("\tchannel->label = '%s'\n", chan->label);
1205         debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1206 }
1207
1208
1209 EXPORT_SYMBOL(edac_mc_dump_csrow);
1210
1211 void edac_mc_dump_csrow(struct csrow_info *csrow)
1212 {
1213         debugf4("\tcsrow = %p\n", csrow);
1214         debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1215         debugf4("\tcsrow->first_page = 0x%lx\n",
1216                 csrow->first_page);
1217         debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1218         debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1219         debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1220         debugf4("\tcsrow->nr_channels = %d\n",
1221                 csrow->nr_channels);
1222         debugf4("\tcsrow->channels = %p\n", csrow->channels);
1223         debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1224 }
1225
1226
1227 EXPORT_SYMBOL(edac_mc_dump_mci);
1228
1229 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1230 {
1231         debugf3("\tmci = %p\n", mci);
1232         debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1233         debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1234         debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1235         debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1236         debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1237                 mci->nr_csrows, mci->csrows);
1238         debugf3("\tpdev = %p\n", mci->pdev);
1239         debugf3("\tmod_name:ctl_name = %s:%s\n",
1240                 mci->mod_name, mci->ctl_name);
1241         debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1242 }
1243
1244
1245 #endif                          /* CONFIG_EDAC_DEBUG */
1246
1247 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1248  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1249  * compiler would provide for X and return the aligned result.
1250  *
1251  * If 'size' is a constant, the compiler will optimize this whole function
1252  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1253  */
1254 static inline char * align_ptr (void *ptr, unsigned size)
1255 {
1256         unsigned align, r;
1257
1258         /* Here we assume that the alignment of a "long long" is the most
1259          * stringent alignment that the compiler will ever provide by default.
1260          * As far as I know, this is a reasonable assumption.
1261          */
1262         if (size > sizeof(long))
1263                 align = sizeof(long long);
1264         else if (size > sizeof(int))
1265                 align = sizeof(long);
1266         else if (size > sizeof(short))
1267                 align = sizeof(int);
1268         else if (size > sizeof(char))
1269                 align = sizeof(short);
1270         else
1271                 return (char *) ptr;
1272
1273         r = size % align;
1274
1275         if (r == 0)
1276                 return (char *) ptr;
1277
1278         return (char *) (((unsigned long) ptr) + align - r);
1279 }
1280
1281
1282 EXPORT_SYMBOL(edac_mc_alloc);
1283
1284 /**
1285  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1286  * @size_pvt:   size of private storage needed
1287  * @nr_csrows:  Number of CWROWS needed for this MC
1288  * @nr_chans:   Number of channels for the MC
1289  *
1290  * Everything is kmalloc'ed as one big chunk - more efficient.
1291  * Only can be used if all structures have the same lifetime - otherwise
1292  * you have to allocate and initialize your own structures.
1293  *
1294  * Use edac_mc_free() to free mc structures allocated by this function.
1295  *
1296  * Returns:
1297  *      NULL allocation failed
1298  *      struct mem_ctl_info pointer
1299  */
1300 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1301                                         unsigned nr_chans)
1302 {
1303         struct mem_ctl_info *mci;
1304         struct csrow_info *csi, *csrow;
1305         struct channel_info *chi, *chp, *chan;
1306         void *pvt;
1307         unsigned size;
1308         int row, chn;
1309
1310         /* Figure out the offsets of the various items from the start of an mc
1311          * structure.  We want the alignment of each item to be at least as
1312          * stringent as what the compiler would provide if we could simply
1313          * hardcode everything into a single struct.
1314          */
1315         mci = (struct mem_ctl_info *) 0;
1316         csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1317         chi = (struct channel_info *)
1318                         align_ptr(&csi[nr_csrows], sizeof(*chi));
1319         pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1320         size = ((unsigned long) pvt) + sz_pvt;
1321
1322         if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1323                 return NULL;
1324
1325         /* Adjust pointers so they point within the memory we just allocated
1326          * rather than an imaginary chunk of memory located at address 0.
1327          */
1328         csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1329         chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1330         pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1331
1332         memset(mci, 0, size);   /* clear all fields */
1333
1334         mci->csrows = csi;
1335         mci->pvt_info = pvt;
1336         mci->nr_csrows = nr_csrows;
1337
1338         for (row = 0; row < nr_csrows; row++) {
1339                 csrow = &csi[row];
1340                 csrow->csrow_idx = row;
1341                 csrow->mci = mci;
1342                 csrow->nr_channels = nr_chans;
1343                 chp = &chi[row * nr_chans];
1344                 csrow->channels = chp;
1345
1346                 for (chn = 0; chn < nr_chans; chn++) {
1347                         chan = &chp[chn];
1348                         chan->chan_idx = chn;
1349                         chan->csrow = csrow;
1350                 }
1351         }
1352
1353         return mci;
1354 }
1355
1356
1357 EXPORT_SYMBOL(edac_mc_free);
1358
1359 /**
1360  * edac_mc_free:  Free a previously allocated 'mci' structure
1361  * @mci: pointer to a struct mem_ctl_info structure
1362  *
1363  * Free up a previously allocated mci structure
1364  * A MCI structure can be in 2 states after being allocated
1365  * by edac_mc_alloc().
1366  *      1) Allocated in a MC driver's probe, but not yet committed
1367  *      2) Allocated and committed, by a call to  edac_mc_add_mc()
1368  * edac_mc_add_mc() is the function that adds the sysfs entries
1369  * thus, this free function must determine which state the 'mci'
1370  * structure is in, then either free it directly or
1371  * perform kobject cleanup by calling edac_remove_sysfs_mci_device().
1372  *
1373  * VOID Return
1374  */
1375 void edac_mc_free(struct mem_ctl_info *mci)
1376 {
1377         /* only if sysfs entries for this mci instance exist
1378          * do we remove them and defer the actual kfree via
1379          * the kobject 'release()' callback.
1380          *
1381          * Otherwise, do a straight kfree now.
1382          */
1383         if (mci->sysfs_active == MCI_SYSFS_ACTIVE)
1384                 edac_remove_sysfs_mci_device(mci);
1385         else
1386                 kfree(mci);
1387 }
1388
1389
1390
1391 EXPORT_SYMBOL(edac_mc_find_mci_by_pdev);
1392
1393 struct mem_ctl_info *edac_mc_find_mci_by_pdev(struct pci_dev *pdev)
1394 {
1395         struct mem_ctl_info *mci;
1396         struct list_head *item;
1397
1398         debugf3("%s()\n", __func__);
1399
1400         list_for_each(item, &mc_devices) {
1401                 mci = list_entry(item, struct mem_ctl_info, link);
1402
1403                 if (mci->pdev == pdev)
1404                         return mci;
1405         }
1406
1407         return NULL;
1408 }
1409
1410 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1411 {
1412         struct list_head *item, *insert_before;
1413         struct mem_ctl_info *p;
1414         int i;
1415
1416         if (list_empty(&mc_devices)) {
1417                 mci->mc_idx = 0;
1418                 insert_before = &mc_devices;
1419         } else {
1420                 if (edac_mc_find_mci_by_pdev(mci->pdev)) {
1421                         edac_printk(KERN_WARNING, EDAC_MC,
1422                                 "%s (%s) %s %s already assigned %d\n",
1423                                 mci->pdev->dev.bus_id,
1424                                 pci_name(mci->pdev), mci->mod_name,
1425                                 mci->ctl_name, mci->mc_idx);
1426                         return 1;
1427                 }
1428
1429                 insert_before = NULL;
1430                 i = 0;
1431
1432                 list_for_each(item, &mc_devices) {
1433                         p = list_entry(item, struct mem_ctl_info, link);
1434
1435                         if (p->mc_idx != i) {
1436                                 insert_before = item;
1437                                 break;
1438                         }
1439
1440                         i++;
1441                 }
1442
1443                 mci->mc_idx = i;
1444
1445                 if (insert_before == NULL)
1446                         insert_before = &mc_devices;
1447         }
1448
1449         list_add_tail_rcu(&mci->link, insert_before);
1450         return 0;
1451 }
1452
1453
1454
1455 EXPORT_SYMBOL(edac_mc_add_mc);
1456
1457 /**
1458  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list
1459  * @mci: pointer to the mci structure to be added to the list
1460  *
1461  * Return:
1462  *      0       Success
1463  *      !0      Failure
1464  */
1465
1466 /* FIXME - should a warning be printed if no error detection? correction? */
1467 int edac_mc_add_mc(struct mem_ctl_info *mci)
1468 {
1469         int rc = 1;
1470
1471         debugf0("%s()\n", __func__);
1472 #ifdef CONFIG_EDAC_DEBUG
1473         if (edac_debug_level >= 3)
1474                 edac_mc_dump_mci(mci);
1475         if (edac_debug_level >= 4) {
1476                 int i;
1477
1478                 for (i = 0; i < mci->nr_csrows; i++) {
1479                         int j;
1480                         edac_mc_dump_csrow(&mci->csrows[i]);
1481                         for (j = 0; j < mci->csrows[i].nr_channels; j++)
1482                                 edac_mc_dump_channel(&mci->csrows[i].
1483                                                           channels[j]);
1484                 }
1485         }
1486 #endif
1487         down(&mem_ctls_mutex);
1488
1489         if (add_mc_to_global_list(mci))
1490                 goto finish;
1491
1492         /* set load time so that error rate can be tracked */
1493         mci->start_time = jiffies;
1494
1495         if (edac_create_sysfs_mci_device(mci)) {
1496                 edac_mc_printk(mci, KERN_WARNING,
1497                         "failed to create sysfs device\n");
1498                 /* FIXME - should there be an error code and unwind? */
1499                 goto finish;
1500         }
1501
1502         /* Report action taken */
1503         edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1504                 mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1505
1506         rc = 0;
1507
1508 finish:
1509         up(&mem_ctls_mutex);
1510         return rc;
1511 }
1512
1513
1514
1515 static void complete_mc_list_del (struct rcu_head *head)
1516 {
1517         struct mem_ctl_info *mci;
1518
1519         mci = container_of(head, struct mem_ctl_info, rcu);
1520         INIT_LIST_HEAD(&mci->link);
1521         complete(&mci->complete);
1522 }
1523
1524 static void del_mc_from_global_list (struct mem_ctl_info *mci)
1525 {
1526         list_del_rcu(&mci->link);
1527         init_completion(&mci->complete);
1528         call_rcu(&mci->rcu, complete_mc_list_del);
1529         wait_for_completion(&mci->complete);
1530 }
1531
1532 EXPORT_SYMBOL(edac_mc_del_mc);
1533
1534 /**
1535  * edac_mc_del_mc:  Remove the specified mci structure from global list
1536  * @mci:        Pointer to struct mem_ctl_info structure
1537  *
1538  * Returns:
1539  *      0       Success
1540  *      1       Failure
1541  */
1542 int edac_mc_del_mc(struct mem_ctl_info *mci)
1543 {
1544         int rc = 1;
1545
1546         debugf0("MC%d: %s()\n", mci->mc_idx, __func__);
1547         down(&mem_ctls_mutex);
1548         del_mc_from_global_list(mci);
1549         edac_printk(KERN_INFO, EDAC_MC,
1550                 "Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1551                 mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1552         rc = 0;
1553         up(&mem_ctls_mutex);
1554
1555         return rc;
1556 }
1557
1558
1559 EXPORT_SYMBOL(edac_mc_scrub_block);
1560
1561 void edac_mc_scrub_block(unsigned long page, unsigned long offset,
1562                               u32 size)
1563 {
1564         struct page *pg;
1565         void *virt_addr;
1566         unsigned long flags = 0;
1567
1568         debugf3("%s()\n", __func__);
1569
1570         /* ECC error page was not in our memory. Ignore it. */
1571         if(!pfn_valid(page))
1572                 return;
1573
1574         /* Find the actual page structure then map it and fix */
1575         pg = pfn_to_page(page);
1576
1577         if (PageHighMem(pg))
1578                 local_irq_save(flags);
1579
1580         virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1581
1582         /* Perform architecture specific atomic scrub operation */
1583         atomic_scrub(virt_addr + offset, size);
1584
1585         /* Unmap and complete */
1586         kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1587
1588         if (PageHighMem(pg))
1589                 local_irq_restore(flags);
1590 }
1591
1592
1593 /* FIXME - should return -1 */
1594 EXPORT_SYMBOL(edac_mc_find_csrow_by_page);
1595
1596 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
1597                                     unsigned long page)
1598 {
1599         struct csrow_info *csrows = mci->csrows;
1600         int row, i;
1601
1602         debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1603         row = -1;
1604
1605         for (i = 0; i < mci->nr_csrows; i++) {
1606                 struct csrow_info *csrow = &csrows[i];
1607
1608                 if (csrow->nr_pages == 0)
1609                         continue;
1610
1611                 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1612                         "mask(0x%lx)\n", mci->mc_idx, __func__,
1613                         csrow->first_page, page, csrow->last_page,
1614                         csrow->page_mask);
1615
1616                 if ((page >= csrow->first_page) &&
1617                     (page <= csrow->last_page) &&
1618                     ((page & csrow->page_mask) ==
1619                      (csrow->first_page & csrow->page_mask))) {
1620                         row = i;
1621                         break;
1622                 }
1623         }
1624
1625         if (row == -1)
1626                 edac_mc_printk(mci, KERN_ERR,
1627                         "could not look up page error address %lx\n",
1628                         (unsigned long) page);
1629
1630         return row;
1631 }
1632
1633
1634 EXPORT_SYMBOL(edac_mc_handle_ce);
1635
1636 /* FIXME - setable log (warning/emerg) levels */
1637 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1638 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1639                             unsigned long page_frame_number,
1640                             unsigned long offset_in_page,
1641                             unsigned long syndrome, int row, int channel,
1642                             const char *msg)
1643 {
1644         unsigned long remapped_page;
1645
1646         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1647
1648         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1649         if (row >= mci->nr_csrows || row < 0) {
1650                 /* something is wrong */
1651                 edac_mc_printk(mci, KERN_ERR,
1652                         "INTERNAL ERROR: row out of range "
1653                         "(%d >= %d)\n", row, mci->nr_csrows);
1654                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1655                 return;
1656         }
1657         if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1658                 /* something is wrong */
1659                 edac_mc_printk(mci, KERN_ERR,
1660                         "INTERNAL ERROR: channel out of range "
1661                         "(%d >= %d)\n", channel,
1662                         mci->csrows[row].nr_channels);
1663                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1664                 return;
1665         }
1666
1667         if (log_ce)
1668                 /* FIXME - put in DIMM location */
1669                 edac_mc_printk(mci, KERN_WARNING,
1670                         "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1671                         "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1672                         page_frame_number, offset_in_page,
1673                         mci->csrows[row].grain, syndrome, row, channel,
1674                         mci->csrows[row].channels[channel].label, msg);
1675
1676         mci->ce_count++;
1677         mci->csrows[row].ce_count++;
1678         mci->csrows[row].channels[channel].ce_count++;
1679
1680         if (mci->scrub_mode & SCRUB_SW_SRC) {
1681                 /*
1682                  * Some MC's can remap memory so that it is still available
1683                  * at a different address when PCI devices map into memory.
1684                  * MC's that can't do this lose the memory where PCI devices
1685                  * are mapped.  This mapping is MC dependant and so we call
1686                  * back into the MC driver for it to map the MC page to
1687                  * a physical (CPU) page which can then be mapped to a virtual
1688                  * page - which can then be scrubbed.
1689                  */
1690                 remapped_page = mci->ctl_page_to_phys ?
1691                     mci->ctl_page_to_phys(mci, page_frame_number) :
1692                     page_frame_number;
1693
1694                 edac_mc_scrub_block(remapped_page, offset_in_page,
1695                                          mci->csrows[row].grain);
1696         }
1697 }
1698
1699
1700 EXPORT_SYMBOL(edac_mc_handle_ce_no_info);
1701
1702 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
1703                                     const char *msg)
1704 {
1705         if (log_ce)
1706                 edac_mc_printk(mci, KERN_WARNING,
1707                         "CE - no information available: %s\n", msg);
1708         mci->ce_noinfo_count++;
1709         mci->ce_count++;
1710 }
1711
1712
1713 EXPORT_SYMBOL(edac_mc_handle_ue);
1714
1715 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1716                             unsigned long page_frame_number,
1717                             unsigned long offset_in_page, int row,
1718                             const char *msg)
1719 {
1720         int len = EDAC_MC_LABEL_LEN * 4;
1721         char labels[len + 1];
1722         char *pos = labels;
1723         int chan;
1724         int chars;
1725
1726         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1727
1728         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1729         if (row >= mci->nr_csrows || row < 0) {
1730                 /* something is wrong */
1731                 edac_mc_printk(mci, KERN_ERR,
1732                         "INTERNAL ERROR: row out of range "
1733                         "(%d >= %d)\n", row, mci->nr_csrows);
1734                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1735                 return;
1736         }
1737
1738         chars = snprintf(pos, len + 1, "%s",
1739                          mci->csrows[row].channels[0].label);
1740         len -= chars;
1741         pos += chars;
1742         for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1743              chan++) {
1744                 chars = snprintf(pos, len + 1, ":%s",
1745                                  mci->csrows[row].channels[chan].label);
1746                 len -= chars;
1747                 pos += chars;
1748         }
1749
1750         if (log_ue)
1751                 edac_mc_printk(mci, KERN_EMERG,
1752                         "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1753                         "labels \"%s\": %s\n", page_frame_number,
1754                         offset_in_page, mci->csrows[row].grain, row, labels,
1755                         msg);
1756
1757         if (panic_on_ue)
1758                 panic
1759                     ("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d,"
1760                      " labels \"%s\": %s\n", mci->mc_idx,
1761                      page_frame_number, offset_in_page,
1762                      mci->csrows[row].grain, row, labels, msg);
1763
1764         mci->ue_count++;
1765         mci->csrows[row].ue_count++;
1766 }
1767
1768
1769 EXPORT_SYMBOL(edac_mc_handle_ue_no_info);
1770
1771 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
1772                                     const char *msg)
1773 {
1774         if (panic_on_ue)
1775                 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1776
1777         if (log_ue)
1778                 edac_mc_printk(mci, KERN_WARNING,
1779                         "UE - no information available: %s\n", msg);
1780         mci->ue_noinfo_count++;
1781         mci->ue_count++;
1782 }
1783
1784
1785 #ifdef CONFIG_PCI
1786
1787 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1788 {
1789         int where;
1790         u16 status;
1791
1792         where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1793         pci_read_config_word(dev, where, &status);
1794
1795         /* If we get back 0xFFFF then we must suspect that the card has been pulled but
1796            the Linux PCI layer has not yet finished cleaning up. We don't want to report
1797            on such devices */
1798
1799         if (status == 0xFFFF) {
1800                 u32 sanity;
1801                 pci_read_config_dword(dev, 0, &sanity);
1802                 if (sanity == 0xFFFFFFFF)
1803                         return 0;
1804         }
1805         status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1806                   PCI_STATUS_PARITY;
1807
1808         if (status)
1809                 /* reset only the bits we are interested in */
1810                 pci_write_config_word(dev, where, status);
1811
1812         return status;
1813 }
1814
1815 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1816
1817 /* Clear any PCI parity errors logged by this device. */
1818 static void edac_pci_dev_parity_clear( struct pci_dev *dev )
1819 {
1820         u8 header_type;
1821
1822         get_pci_parity_status(dev, 0);
1823
1824         /* read the device TYPE, looking for bridges */
1825         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1826
1827         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1828                 get_pci_parity_status(dev, 1);
1829 }
1830
1831 /*
1832  *  PCI Parity polling
1833  *
1834  */
1835 static void edac_pci_dev_parity_test(struct pci_dev *dev)
1836 {
1837         u16 status;
1838         u8  header_type;
1839
1840         /* read the STATUS register on this device
1841          */
1842         status = get_pci_parity_status(dev, 0);
1843
1844         debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1845
1846         /* check the status reg for errors */
1847         if (status) {
1848                 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1849                         edac_printk(KERN_CRIT, EDAC_PCI,
1850                                 "Signaled System Error on %s\n",
1851                                 pci_name(dev));
1852
1853                 if (status & (PCI_STATUS_PARITY)) {
1854                         edac_printk(KERN_CRIT, EDAC_PCI,
1855                                 "Master Data Parity Error on %s\n",
1856                                 pci_name(dev));
1857
1858                         atomic_inc(&pci_parity_count);
1859                 }
1860
1861                 if (status & (PCI_STATUS_DETECTED_PARITY)) {
1862                         edac_printk(KERN_CRIT, EDAC_PCI,
1863                                 "Detected Parity Error on %s\n",
1864                                 pci_name(dev));
1865
1866                         atomic_inc(&pci_parity_count);
1867                 }
1868         }
1869
1870         /* read the device TYPE, looking for bridges */
1871         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1872
1873         debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1874
1875         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1876                 /* On bridges, need to examine secondary status register  */
1877                 status = get_pci_parity_status(dev, 1);
1878
1879                 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1880                                 status, dev->dev.bus_id );
1881
1882                 /* check the secondary status reg for errors */
1883                 if (status) {
1884                         if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1885                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1886                                         "Signaled System Error on %s\n",
1887                                         pci_name(dev));
1888
1889                         if (status & (PCI_STATUS_PARITY)) {
1890                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1891                                         "Master Data Parity Error on "
1892                                         "%s\n", pci_name(dev));
1893
1894                                 atomic_inc(&pci_parity_count);
1895                         }
1896
1897                         if (status & (PCI_STATUS_DETECTED_PARITY)) {
1898                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1899                                         "Detected Parity Error on %s\n",
1900                                         pci_name(dev));
1901
1902                                 atomic_inc(&pci_parity_count);
1903                         }
1904                 }
1905         }
1906 }
1907
1908 /*
1909  * check_dev_on_list: Scan for a PCI device on a white/black list
1910  * @list:       an EDAC  &edac_pci_device_list  white/black list pointer
1911  * @free_index: index of next free entry on the list
1912  * @pci_dev:    PCI Device pointer
1913  *
1914  * see if list contains the device.
1915  *
1916  * Returns:     0 not found
1917  *              1 found on list
1918  */
1919 static int check_dev_on_list(struct edac_pci_device_list *list, int free_index,
1920                                 struct pci_dev *dev)
1921 {
1922         int i;
1923         int rc = 0;     /* Assume not found */
1924         unsigned short vendor=dev->vendor;
1925         unsigned short device=dev->device;
1926
1927         /* Scan the list, looking for a vendor/device match
1928          */
1929         for (i = 0; i < free_index; i++, list++ ) {
1930                 if (    (list->vendor == vendor ) &&
1931                         (list->device == device )) {
1932                         rc = 1;
1933                         break;
1934                 }
1935         }
1936
1937         return rc;
1938 }
1939
1940 /*
1941  * pci_dev parity list iterator
1942  *      Scan the PCI device list for one iteration, looking for SERRORs
1943  *      Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1944  */
1945 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1946 {
1947         struct pci_dev *dev=NULL;
1948
1949         /* request for kernel access to the next PCI device, if any,
1950          * and while we are looking at it have its reference count
1951          * bumped until we are done with it
1952          */
1953         while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1954
1955                 /* if whitelist exists then it has priority, so only scan those
1956                  * devices on the whitelist
1957                  */
1958                 if (pci_whitelist_count > 0 ) {
1959                         if (check_dev_on_list(pci_whitelist,
1960                                         pci_whitelist_count, dev))
1961                                 fn(dev);
1962                 } else {
1963                         /*
1964                          * if no whitelist, then check if this devices is
1965                          * blacklisted
1966                          */
1967                         if (!check_dev_on_list(pci_blacklist,
1968                                         pci_blacklist_count, dev))
1969                                 fn(dev);
1970                 }
1971         }
1972 }
1973
1974 static void do_pci_parity_check(void)
1975 {
1976         unsigned long flags;
1977         int before_count;
1978
1979         debugf3("%s()\n", __func__);
1980
1981         if (!check_pci_parity)
1982                 return;
1983
1984         before_count = atomic_read(&pci_parity_count);
1985
1986         /* scan all PCI devices looking for a Parity Error on devices and
1987          * bridges
1988          */
1989         local_irq_save(flags);
1990         edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1991         local_irq_restore(flags);
1992
1993         /* Only if operator has selected panic on PCI Error */
1994         if (panic_on_pci_parity) {
1995                 /* If the count is different 'after' from 'before' */
1996                 if (before_count != atomic_read(&pci_parity_count))
1997                         panic("EDAC: PCI Parity Error");
1998         }
1999 }
2000
2001
2002 static inline void clear_pci_parity_errors(void)
2003 {
2004         /* Clear any PCI bus parity errors that devices initially have logged
2005          * in their registers.
2006          */
2007         edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
2008 }
2009
2010
2011 #else  /* CONFIG_PCI */
2012
2013
2014 static inline void do_pci_parity_check(void)
2015 {
2016         /* no-op */
2017 }
2018
2019
2020 static inline void clear_pci_parity_errors(void)
2021 {
2022         /* no-op */
2023 }
2024
2025
2026 #endif  /* CONFIG_PCI */
2027
2028 /*
2029  * Iterate over all MC instances and check for ECC, et al, errors
2030  */
2031 static inline void check_mc_devices (void)
2032 {
2033         unsigned long flags;
2034         struct list_head *item;
2035         struct mem_ctl_info *mci;
2036
2037         debugf3("%s()\n", __func__);
2038
2039         /* during poll, have interrupts off */
2040         local_irq_save(flags);
2041
2042         list_for_each(item, &mc_devices) {
2043                 mci = list_entry(item, struct mem_ctl_info, link);
2044
2045                 if (mci->edac_check != NULL)
2046                         mci->edac_check(mci);
2047         }
2048
2049         local_irq_restore(flags);
2050 }
2051
2052
2053 /*
2054  * Check MC status every poll_msec.
2055  * Check PCI status every poll_msec as well.
2056  *
2057  * This where the work gets done for edac.
2058  *
2059  * SMP safe, doesn't use NMI, and auto-rate-limits.
2060  */
2061 static void do_edac_check(void)
2062 {
2063         debugf3("%s()\n", __func__);
2064         check_mc_devices();
2065         do_pci_parity_check();
2066 }
2067
2068 static int edac_kernel_thread(void *arg)
2069 {
2070         while (!kthread_should_stop()) {
2071                 do_edac_check();
2072
2073                 /* goto sleep for the interval */
2074                 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2075                 try_to_freeze();
2076         }
2077
2078         return 0;
2079 }
2080
2081 /*
2082  * edac_mc_init
2083  *      module initialization entry point
2084  */
2085 static int __init edac_mc_init(void)
2086 {
2087         edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2088
2089         /*
2090          * Harvest and clear any boot/initialization PCI parity errors
2091          *
2092          * FIXME: This only clears errors logged by devices present at time of
2093          *      module initialization.  We should also do an initial clear
2094          *      of each newly hotplugged device.
2095          */
2096         clear_pci_parity_errors();
2097
2098         /* perform check for first time to harvest boot leftovers */
2099         do_edac_check();
2100
2101         /* Create the MC sysfs entires */
2102         if (edac_sysfs_memctrl_setup()) {
2103                 edac_printk(KERN_ERR, EDAC_MC,
2104                         "Error initializing sysfs code\n");
2105                 return -ENODEV;
2106         }
2107
2108         /* Create the PCI parity sysfs entries */
2109         if (edac_sysfs_pci_setup()) {
2110                 edac_sysfs_memctrl_teardown();
2111                 edac_printk(KERN_ERR, EDAC_MC,
2112                         "EDAC PCI: Error initializing sysfs code\n");
2113                 return -ENODEV;
2114         }
2115
2116         /* create our kernel thread */
2117         edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2118         if (IS_ERR(edac_thread)) {
2119                 /* remove the sysfs entries */
2120                 edac_sysfs_memctrl_teardown();
2121                 edac_sysfs_pci_teardown();
2122                 return PTR_ERR(edac_thread);
2123         }
2124
2125         return 0;
2126 }
2127
2128
2129 /*
2130  * edac_mc_exit()
2131  *      module exit/termination functioni
2132  */
2133 static void __exit edac_mc_exit(void)
2134 {
2135         debugf0("%s()\n", __func__);
2136
2137         kthread_stop(edac_thread);
2138
2139         /* tear down the sysfs device */
2140         edac_sysfs_memctrl_teardown();
2141         edac_sysfs_pci_teardown();
2142 }
2143
2144
2145
2146
2147 module_init(edac_mc_init);
2148 module_exit(edac_mc_exit);
2149
2150 MODULE_LICENSE("GPL");
2151 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2152               "Based on.work by Dan Hollis et al");
2153 MODULE_DESCRIPTION("Core library routines for MC reporting");
2154
2155 module_param(panic_on_ue, int, 0644);
2156 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2157 module_param(check_pci_parity, int, 0644);
2158 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2159 module_param(panic_on_pci_parity, int, 0644);
2160 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2161 module_param(log_ue, int, 0644);
2162 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2163 module_param(log_ce, int, 0644);
2164 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2165 module_param(poll_msec, int, 0644);
2166 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2167 #ifdef CONFIG_EDAC_DEBUG
2168 module_param(edac_debug_level, int, 0644);
2169 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2170 #endif