[CPUFREQ] Prevents un-necessary cpufreq changes if we are already at min/max
[safe/jmp/linux-2.6] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30
31 /*
32  * dbs is used in this file as a shortform for demandbased switching
33  * It helps to keep variable names smaller, simpler
34  */
35
36 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
37 #define MIN_FREQUENCY_UP_THRESHOLD              (0)
38 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
39
40 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
41 #define MIN_FREQUENCY_DOWN_THRESHOLD            (0)
42 #define MAX_FREQUENCY_DOWN_THRESHOLD            (100)
43
44 /* 
45  * The polling frequency of this governor depends on the capability of 
46  * the processor. Default polling frequency is 1000 times the transition
47  * latency of the processor. The governor will work on any processor with 
48  * transition latency <= 10mS, using appropriate sampling 
49  * rate.
50  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
51  * this governor will not work.
52  * All times here are in uS.
53  */
54 static unsigned int                             def_sampling_rate;
55 #define MIN_SAMPLING_RATE                       (def_sampling_rate / 2)
56 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR                (10)
59 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
60
61 static void do_dbs_timer(void *data);
62
63 struct cpu_dbs_info_s {
64         struct cpufreq_policy   *cur_policy;
65         unsigned int            prev_cpu_idle_up;
66         unsigned int            prev_cpu_idle_down;
67         unsigned int            enable;
68 };
69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70
71 static unsigned int dbs_enable; /* number of CPUs using this policy */
72
73 static DECLARE_MUTEX    (dbs_sem);
74 static DECLARE_WORK     (dbs_work, do_dbs_timer, NULL);
75
76 struct dbs_tuners {
77         unsigned int            sampling_rate;
78         unsigned int            sampling_down_factor;
79         unsigned int            up_threshold;
80         unsigned int            down_threshold;
81         unsigned int            ignore_nice;
82 };
83
84 static struct dbs_tuners dbs_tuners_ins = {
85         .up_threshold           = DEF_FREQUENCY_UP_THRESHOLD,
86         .down_threshold         = DEF_FREQUENCY_DOWN_THRESHOLD,
87         .sampling_down_factor   = DEF_SAMPLING_DOWN_FACTOR,
88 };
89
90 /************************** sysfs interface ************************/
91 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
92 {
93         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
94 }
95
96 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
97 {
98         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
99 }
100
101 #define define_one_ro(_name)                                    \
102 static struct freq_attr _name =                                 \
103 __ATTR(_name, 0444, show_##_name, NULL)
104
105 define_one_ro(sampling_rate_max);
106 define_one_ro(sampling_rate_min);
107
108 /* cpufreq_ondemand Governor Tunables */
109 #define show_one(file_name, object)                                     \
110 static ssize_t show_##file_name                                         \
111 (struct cpufreq_policy *unused, char *buf)                              \
112 {                                                                       \
113         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
114 }
115 show_one(sampling_rate, sampling_rate);
116 show_one(sampling_down_factor, sampling_down_factor);
117 show_one(up_threshold, up_threshold);
118 show_one(down_threshold, down_threshold);
119 show_one(ignore_nice, ignore_nice);
120
121 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
122                 const char *buf, size_t count)
123 {
124         unsigned int input;
125         int ret;
126         ret = sscanf (buf, "%u", &input);
127         if (ret != 1 )
128                 return -EINVAL;
129
130         down(&dbs_sem);
131         dbs_tuners_ins.sampling_down_factor = input;
132         up(&dbs_sem);
133
134         return count;
135 }
136
137 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
138                 const char *buf, size_t count)
139 {
140         unsigned int input;
141         int ret;
142         ret = sscanf (buf, "%u", &input);
143
144         down(&dbs_sem);
145         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
146                 up(&dbs_sem);
147                 return -EINVAL;
148         }
149
150         dbs_tuners_ins.sampling_rate = input;
151         up(&dbs_sem);
152
153         return count;
154 }
155
156 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
157                 const char *buf, size_t count)
158 {
159         unsigned int input;
160         int ret;
161         ret = sscanf (buf, "%u", &input);
162
163         down(&dbs_sem);
164         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 
165                         input < MIN_FREQUENCY_UP_THRESHOLD ||
166                         input <= dbs_tuners_ins.down_threshold) {
167                 up(&dbs_sem);
168                 return -EINVAL;
169         }
170
171         dbs_tuners_ins.up_threshold = input;
172         up(&dbs_sem);
173
174         return count;
175 }
176
177 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
178                 const char *buf, size_t count)
179 {
180         unsigned int input;
181         int ret;
182         ret = sscanf (buf, "%u", &input);
183
184         down(&dbs_sem);
185         if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || 
186                         input < MIN_FREQUENCY_DOWN_THRESHOLD ||
187                         input >= dbs_tuners_ins.up_threshold) {
188                 up(&dbs_sem);
189                 return -EINVAL;
190         }
191
192         dbs_tuners_ins.down_threshold = input;
193         up(&dbs_sem);
194
195         return count;
196 }
197
198 static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
199                 const char *buf, size_t count)
200 {
201         unsigned int input;
202         int ret;
203
204         unsigned int j;
205         
206         ret = sscanf (buf, "%u", &input);
207         if ( ret != 1 )
208                 return -EINVAL;
209
210         if ( input > 1 )
211                 input = 1;
212         
213         down(&dbs_sem);
214         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
215                 up(&dbs_sem);
216                 return count;
217         }
218         dbs_tuners_ins.ignore_nice = input;
219
220         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
221         for_each_cpu_mask(j, policy->cpus) {
222                 struct cpu_dbs_info_s *j_dbs_info;
223                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
224                 j_dbs_info->cur_policy = policy;
225
226                 j_dbs_info->prev_cpu_idle_up =
227                         kstat_cpu(j).cpustat.idle +
228                         kstat_cpu(j).cpustat.iowait +
229                         ( !dbs_tuners_ins.ignore_nice
230                           ? kstat_cpu(j).cpustat.nice : 0 );
231                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
232         }
233         up(&dbs_sem);
234
235         return count;
236 }
237
238 #define define_one_rw(_name) \
239 static struct freq_attr _name = \
240 __ATTR(_name, 0644, show_##_name, store_##_name)
241
242 define_one_rw(sampling_rate);
243 define_one_rw(sampling_down_factor);
244 define_one_rw(up_threshold);
245 define_one_rw(down_threshold);
246 define_one_rw(ignore_nice);
247
248 static struct attribute * dbs_attributes[] = {
249         &sampling_rate_max.attr,
250         &sampling_rate_min.attr,
251         &sampling_rate.attr,
252         &sampling_down_factor.attr,
253         &up_threshold.attr,
254         &down_threshold.attr,
255         &ignore_nice.attr,
256         NULL
257 };
258
259 static struct attribute_group dbs_attr_group = {
260         .attrs = dbs_attributes,
261         .name = "ondemand",
262 };
263
264 /************************** sysfs end ************************/
265
266 static void dbs_check_cpu(int cpu)
267 {
268         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
269         unsigned int total_idle_ticks;
270         unsigned int freq_down_step;
271         unsigned int freq_down_sampling_rate;
272         static int down_skip[NR_CPUS];
273         struct cpu_dbs_info_s *this_dbs_info;
274
275         struct cpufreq_policy *policy;
276         unsigned int j;
277
278         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
279         if (!this_dbs_info->enable)
280                 return;
281
282         policy = this_dbs_info->cur_policy;
283         /* 
284          * The default safe range is 20% to 80% 
285          * Every sampling_rate, we check
286          *      - If current idle time is less than 20%, then we try to 
287          *        increase frequency
288          * Every sampling_rate*sampling_down_factor, we check
289          *      - If current idle time is more than 80%, then we try to
290          *        decrease frequency
291          *
292          * Any frequency increase takes it to the maximum frequency. 
293          * Frequency reduction happens at minimum steps of 
294          * 5% of max_frequency 
295          */
296
297         /* Check for frequency increase */
298         total_idle_ticks = kstat_cpu(cpu).cpustat.idle +
299                 kstat_cpu(cpu).cpustat.iowait;
300           /* consider 'nice' tasks as 'idle' time too if required */
301           if (dbs_tuners_ins.ignore_nice == 0)
302                 total_idle_ticks += kstat_cpu(cpu).cpustat.nice;
303         idle_ticks = total_idle_ticks -
304                 this_dbs_info->prev_cpu_idle_up;
305         this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
306         
307
308         for_each_cpu_mask(j, policy->cpus) {
309                 unsigned int tmp_idle_ticks;
310                 struct cpu_dbs_info_s *j_dbs_info;
311
312                 if (j == cpu)
313                         continue;
314
315                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
316                 /* Check for frequency increase */
317                 total_idle_ticks = kstat_cpu(j).cpustat.idle +
318                         kstat_cpu(j).cpustat.iowait;
319                   /* consider 'nice' too? */
320                   if (dbs_tuners_ins.ignore_nice == 0)
321                            total_idle_ticks += kstat_cpu(j).cpustat.nice;
322                 tmp_idle_ticks = total_idle_ticks -
323                         j_dbs_info->prev_cpu_idle_up;
324                 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
325
326                 if (tmp_idle_ticks < idle_ticks)
327                         idle_ticks = tmp_idle_ticks;
328         }
329
330         /* Scale idle ticks by 100 and compare with up and down ticks */
331         idle_ticks *= 100;
332         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
333                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
334
335         if (idle_ticks < up_idle_ticks) {
336                 /* if we are already at full speed then break out early */
337                 if (policy->cur == policy->max)
338                         return;
339                 
340                 __cpufreq_driver_target(policy, policy->max, 
341                         CPUFREQ_RELATION_H);
342                 down_skip[cpu] = 0;
343                 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
344                 return;
345         }
346
347         /* Check for frequency decrease */
348         down_skip[cpu]++;
349         if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
350                 return;
351
352         total_idle_ticks = kstat_cpu(cpu).cpustat.idle +
353                 kstat_cpu(cpu).cpustat.iowait;
354           /* consider 'nice' too? */
355           if (dbs_tuners_ins.ignore_nice == 0)
356                   total_idle_ticks += kstat_cpu(cpu).cpustat.nice;
357         idle_ticks = total_idle_ticks -
358                 this_dbs_info->prev_cpu_idle_down;
359         this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
360
361         for_each_cpu_mask(j, policy->cpus) {
362                 unsigned int tmp_idle_ticks;
363                 struct cpu_dbs_info_s *j_dbs_info;
364
365                 if (j == cpu)
366                         continue;
367
368                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
369                 /* Check for frequency increase */
370                 total_idle_ticks = kstat_cpu(j).cpustat.idle +
371                         kstat_cpu(j).cpustat.iowait;
372                   /* consider 'nice' too? */
373                   if (dbs_tuners_ins.ignore_nice == 0)
374                         total_idle_ticks += kstat_cpu(j).cpustat.nice;
375                 tmp_idle_ticks = total_idle_ticks -
376                         j_dbs_info->prev_cpu_idle_down;
377                 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
378
379                 if (tmp_idle_ticks < idle_ticks)
380                         idle_ticks = tmp_idle_ticks;
381         }
382
383         /* Scale idle ticks by 100 and compare with up and down ticks */
384         idle_ticks *= 100;
385         down_skip[cpu] = 0;
386
387         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
388                 dbs_tuners_ins.sampling_down_factor;
389         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
390                         usecs_to_jiffies(freq_down_sampling_rate);
391
392         if (idle_ticks > down_idle_ticks ) {
393                 /* if we are already at the lowest speed then break out early */
394                 if (policy->cur == policy->min)
395                         return;
396                 
397                 freq_down_step = (5 * policy->max) / 100;
398
399                 /* max freq cannot be less than 100. But who knows.... */
400                 if (unlikely(freq_down_step == 0))
401                         freq_down_step = 5;
402
403                 __cpufreq_driver_target(policy,
404                         policy->cur - freq_down_step, 
405                         CPUFREQ_RELATION_H);
406                 return;
407         }
408 }
409
410 static void do_dbs_timer(void *data)
411
412         int i;
413         down(&dbs_sem);
414         for_each_online_cpu(i)
415                 dbs_check_cpu(i);
416         schedule_delayed_work(&dbs_work, 
417                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
418         up(&dbs_sem);
419
420
421 static inline void dbs_timer_init(void)
422 {
423         INIT_WORK(&dbs_work, do_dbs_timer, NULL);
424         schedule_delayed_work(&dbs_work,
425                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
426         return;
427 }
428
429 static inline void dbs_timer_exit(void)
430 {
431         cancel_delayed_work(&dbs_work);
432         return;
433 }
434
435 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
436                                    unsigned int event)
437 {
438         unsigned int cpu = policy->cpu;
439         struct cpu_dbs_info_s *this_dbs_info;
440         unsigned int j;
441
442         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
443
444         switch (event) {
445         case CPUFREQ_GOV_START:
446                 if ((!cpu_online(cpu)) || 
447                     (!policy->cur))
448                         return -EINVAL;
449
450                 if (policy->cpuinfo.transition_latency >
451                                 (TRANSITION_LATENCY_LIMIT * 1000))
452                         return -EINVAL;
453                 if (this_dbs_info->enable) /* Already enabled */
454                         break;
455                  
456                 down(&dbs_sem);
457                 for_each_cpu_mask(j, policy->cpus) {
458                         struct cpu_dbs_info_s *j_dbs_info;
459                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
460                         j_dbs_info->cur_policy = policy;
461                 
462                         j_dbs_info->prev_cpu_idle_up = 
463                                 kstat_cpu(j).cpustat.idle +
464                                 kstat_cpu(j).cpustat.iowait +
465                                 ( !dbs_tuners_ins.ignore_nice
466                                   ? kstat_cpu(j).cpustat.nice : 0 );
467                         j_dbs_info->prev_cpu_idle_down
468                                 = j_dbs_info->prev_cpu_idle_up;
469                 }
470                 this_dbs_info->enable = 1;
471                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
472                 dbs_enable++;
473                 /*
474                  * Start the timerschedule work, when this governor
475                  * is used for first time
476                  */
477                 if (dbs_enable == 1) {
478                         unsigned int latency;
479                         /* policy latency is in nS. Convert it to uS first */
480
481                         latency = policy->cpuinfo.transition_latency;
482                         if (latency < 1000)
483                                 latency = 1000;
484
485                         def_sampling_rate = (latency / 1000) *
486                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
487                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
488                         dbs_tuners_ins.ignore_nice = 0;
489
490                         dbs_timer_init();
491                 }
492                 
493                 up(&dbs_sem);
494                 break;
495
496         case CPUFREQ_GOV_STOP:
497                 down(&dbs_sem);
498                 this_dbs_info->enable = 0;
499                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
500                 dbs_enable--;
501                 /*
502                  * Stop the timerschedule work, when this governor
503                  * is used for first time
504                  */
505                 if (dbs_enable == 0) 
506                         dbs_timer_exit();
507                 
508                 up(&dbs_sem);
509
510                 break;
511
512         case CPUFREQ_GOV_LIMITS:
513                 down(&dbs_sem);
514                 if (policy->max < this_dbs_info->cur_policy->cur)
515                         __cpufreq_driver_target(
516                                         this_dbs_info->cur_policy,
517                                         policy->max, CPUFREQ_RELATION_H);
518                 else if (policy->min > this_dbs_info->cur_policy->cur)
519                         __cpufreq_driver_target(
520                                         this_dbs_info->cur_policy,
521                                         policy->min, CPUFREQ_RELATION_L);
522                 up(&dbs_sem);
523                 break;
524         }
525         return 0;
526 }
527
528 static struct cpufreq_governor cpufreq_gov_dbs = {
529         .name           = "ondemand",
530         .governor       = cpufreq_governor_dbs,
531         .owner          = THIS_MODULE,
532 };
533
534 static int __init cpufreq_gov_dbs_init(void)
535 {
536         return cpufreq_register_governor(&cpufreq_gov_dbs);
537 }
538
539 static void __exit cpufreq_gov_dbs_exit(void)
540 {
541         /* Make sure that the scheduled work is indeed not running */
542         flush_scheduled_work();
543
544         cpufreq_unregister_governor(&cpufreq_gov_dbs);
545 }
546
547
548 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
549 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
550                 "Low Latency Frequency Transition capable processors");
551 MODULE_LICENSE ("GPL");
552
553 module_init(cpufreq_gov_dbs_init);
554 module_exit(cpufreq_gov_dbs_exit);