[CPUFREQ] conservative: fix dbs_cpufreq_notifier so freq is not locked
[safe/jmp/linux-2.6] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
39
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers
47  * with CPUFREQ_ETERNAL), this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO                 (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE                  \
54                         (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE                       \
56                         (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
58  * Define the minimal settable sampling rate to the greater of:
59  *   - "HW transition latency" * 100 (same as default sampling / 10)
60  *   - MIN_STAT_SAMPLING_RATE
61  * To avoid that userspace shoots itself.
62 */
63 static unsigned int minimum_sampling_rate(void)
64 {
65         return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
66 }
67
68 /* This will also vanish soon with removing sampling_rate_max */
69 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
70 #define LATENCY_MULTIPLIER                      (1000)
71 #define DEF_SAMPLING_DOWN_FACTOR                (1)
72 #define MAX_SAMPLING_DOWN_FACTOR                (10)
73 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
74
75 static void do_dbs_timer(struct work_struct *work);
76
77 struct cpu_dbs_info_s {
78         struct cpufreq_policy *cur_policy;
79         unsigned int prev_cpu_idle_up;
80         unsigned int prev_cpu_idle_down;
81         unsigned int enable;
82         unsigned int down_skip;
83         unsigned int requested_freq;
84 };
85 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
86
87 static unsigned int dbs_enable; /* number of CPUs using this policy */
88
89 /*
90  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
91  * lock and dbs_mutex. cpu_hotplug lock should always be held before
92  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
93  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
94  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
95  * is recursive for the same process. -Venki
96  */
97 static DEFINE_MUTEX(dbs_mutex);
98 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
99
100 struct dbs_tuners {
101         unsigned int sampling_rate;
102         unsigned int sampling_down_factor;
103         unsigned int up_threshold;
104         unsigned int down_threshold;
105         unsigned int ignore_nice;
106         unsigned int freq_step;
107 };
108
109 static struct dbs_tuners dbs_tuners_ins = {
110         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
111         .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
112         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
113         .ignore_nice = 0,
114         .freq_step = 5,
115 };
116
117 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
118 {
119         unsigned int add_nice = 0, ret;
120
121         if (dbs_tuners_ins.ignore_nice)
122                 add_nice = kstat_cpu(cpu).cpustat.nice;
123
124         ret = kstat_cpu(cpu).cpustat.idle +
125                 kstat_cpu(cpu).cpustat.iowait +
126                 add_nice;
127
128         return ret;
129 }
130
131 /* keep track of frequency transitions */
132 static int
133 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
134                      void *data)
135 {
136         struct cpufreq_freqs *freq = data;
137         struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
138                                                         freq->cpu);
139
140         struct cpufreq_policy *policy;
141
142         if (!this_dbs_info->enable)
143                 return 0;
144
145         policy = this_dbs_info->cur_policy;
146
147         /*
148          * we only care if our internally tracked freq moves outside
149          * the 'valid' ranges of freqency available to us otherwise
150          * we do not change it
151         */
152         if (this_dbs_info->requested_freq > policy->max
153                         || this_dbs_info->requested_freq < policy->min)
154                 this_dbs_info->requested_freq = freq->new;
155
156         return 0;
157 }
158
159 static struct notifier_block dbs_cpufreq_notifier_block = {
160         .notifier_call = dbs_cpufreq_notifier
161 };
162
163 /************************** sysfs interface ************************/
164 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
165 {
166         static int print_once;
167
168         if (!print_once) {
169                 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
170                        "sysfs file is deprecated - used by: %s\n",
171                        current->comm);
172                 print_once = 1;
173         }
174         return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
175 }
176
177 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
178 {
179         static int print_once;
180
181         if (!print_once) {
182                 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
183                        "sysfs file is deprecated - used by: %s\n", current->comm);
184                 print_once = 1;
185         }
186         return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
187 }
188
189 #define define_one_ro(_name)                            \
190 static struct freq_attr _name =                         \
191 __ATTR(_name, 0444, show_##_name, NULL)
192
193 define_one_ro(sampling_rate_max);
194 define_one_ro(sampling_rate_min);
195
196 /* cpufreq_conservative Governor Tunables */
197 #define show_one(file_name, object)                                     \
198 static ssize_t show_##file_name                                         \
199 (struct cpufreq_policy *unused, char *buf)                              \
200 {                                                                       \
201         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
202 }
203 show_one(sampling_rate, sampling_rate);
204 show_one(sampling_down_factor, sampling_down_factor);
205 show_one(up_threshold, up_threshold);
206 show_one(down_threshold, down_threshold);
207 show_one(ignore_nice_load, ignore_nice);
208 show_one(freq_step, freq_step);
209
210 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
211                 const char *buf, size_t count)
212 {
213         unsigned int input;
214         int ret;
215         ret = sscanf(buf, "%u", &input);
216         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
217                 return -EINVAL;
218
219         mutex_lock(&dbs_mutex);
220         dbs_tuners_ins.sampling_down_factor = input;
221         mutex_unlock(&dbs_mutex);
222
223         return count;
224 }
225
226 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
227                 const char *buf, size_t count)
228 {
229         unsigned int input;
230         int ret;
231         ret = sscanf(buf, "%u", &input);
232
233         mutex_lock(&dbs_mutex);
234         if (ret != 1) {
235                 mutex_unlock(&dbs_mutex);
236                 return -EINVAL;
237         }
238         dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
239         mutex_unlock(&dbs_mutex);
240
241         return count;
242 }
243
244 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
245                 const char *buf, size_t count)
246 {
247         unsigned int input;
248         int ret;
249         ret = sscanf(buf, "%u", &input);
250
251         mutex_lock(&dbs_mutex);
252         if (ret != 1 || input > 100 ||
253             input <= dbs_tuners_ins.down_threshold) {
254                 mutex_unlock(&dbs_mutex);
255                 return -EINVAL;
256         }
257
258         dbs_tuners_ins.up_threshold = input;
259         mutex_unlock(&dbs_mutex);
260
261         return count;
262 }
263
264 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
265                 const char *buf, size_t count)
266 {
267         unsigned int input;
268         int ret;
269         ret = sscanf(buf, "%u", &input);
270
271         mutex_lock(&dbs_mutex);
272         if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
273                 mutex_unlock(&dbs_mutex);
274                 return -EINVAL;
275         }
276
277         dbs_tuners_ins.down_threshold = input;
278         mutex_unlock(&dbs_mutex);
279
280         return count;
281 }
282
283 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
284                 const char *buf, size_t count)
285 {
286         unsigned int input;
287         int ret;
288
289         unsigned int j;
290
291         ret = sscanf(buf, "%u", &input);
292         if (ret != 1)
293                 return -EINVAL;
294
295         if (input > 1)
296                 input = 1;
297
298         mutex_lock(&dbs_mutex);
299         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
300                 mutex_unlock(&dbs_mutex);
301                 return count;
302         }
303         dbs_tuners_ins.ignore_nice = input;
304
305         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
306         for_each_online_cpu(j) {
307                 struct cpu_dbs_info_s *j_dbs_info;
308                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
309                 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
310                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
311         }
312         mutex_unlock(&dbs_mutex);
313
314         return count;
315 }
316
317 static ssize_t store_freq_step(struct cpufreq_policy *policy,
318                 const char *buf, size_t count)
319 {
320         unsigned int input;
321         int ret;
322
323         ret = sscanf(buf, "%u", &input);
324
325         if (ret != 1)
326                 return -EINVAL;
327
328         if (input > 100)
329                 input = 100;
330
331         /* no need to test here if freq_step is zero as the user might actually
332          * want this, they would be crazy though :) */
333         mutex_lock(&dbs_mutex);
334         dbs_tuners_ins.freq_step = input;
335         mutex_unlock(&dbs_mutex);
336
337         return count;
338 }
339
340 #define define_one_rw(_name) \
341 static struct freq_attr _name = \
342 __ATTR(_name, 0644, show_##_name, store_##_name)
343
344 define_one_rw(sampling_rate);
345 define_one_rw(sampling_down_factor);
346 define_one_rw(up_threshold);
347 define_one_rw(down_threshold);
348 define_one_rw(ignore_nice_load);
349 define_one_rw(freq_step);
350
351 static struct attribute *dbs_attributes[] = {
352         &sampling_rate_max.attr,
353         &sampling_rate_min.attr,
354         &sampling_rate.attr,
355         &sampling_down_factor.attr,
356         &up_threshold.attr,
357         &down_threshold.attr,
358         &ignore_nice_load.attr,
359         &freq_step.attr,
360         NULL
361 };
362
363 static struct attribute_group dbs_attr_group = {
364         .attrs = dbs_attributes,
365         .name = "conservative",
366 };
367
368 /************************** sysfs end ************************/
369
370 static void dbs_check_cpu(int cpu)
371 {
372         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
373         unsigned int tmp_idle_ticks, total_idle_ticks;
374         unsigned int freq_target;
375         unsigned int freq_down_sampling_rate;
376         struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
377         struct cpufreq_policy *policy;
378
379         if (!this_dbs_info->enable)
380                 return;
381
382         policy = this_dbs_info->cur_policy;
383
384         /*
385          * The default safe range is 20% to 80%
386          * Every sampling_rate, we check
387          *      - If current idle time is less than 20%, then we try to
388          *        increase frequency
389          * Every sampling_rate*sampling_down_factor, we check
390          *      - If current idle time is more than 80%, then we try to
391          *        decrease frequency
392          *
393          * Any frequency increase takes it to the maximum frequency.
394          * Frequency reduction happens at minimum steps of
395          * 5% (default) of max_frequency
396          */
397
398         /* Check for frequency increase */
399         idle_ticks = UINT_MAX;
400
401         /* Check for frequency increase */
402         total_idle_ticks = get_cpu_idle_time(cpu);
403         tmp_idle_ticks = total_idle_ticks -
404                 this_dbs_info->prev_cpu_idle_up;
405         this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
406
407         if (tmp_idle_ticks < idle_ticks)
408                 idle_ticks = tmp_idle_ticks;
409
410         /* Scale idle ticks by 100 and compare with up and down ticks */
411         idle_ticks *= 100;
412         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
413                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
414
415         if (idle_ticks < up_idle_ticks) {
416                 this_dbs_info->down_skip = 0;
417                 this_dbs_info->prev_cpu_idle_down =
418                         this_dbs_info->prev_cpu_idle_up;
419
420                 /* if we are already at full speed then break out early */
421                 if (this_dbs_info->requested_freq == policy->max)
422                         return;
423
424                 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
425
426                 /* max freq cannot be less than 100. But who knows.... */
427                 if (unlikely(freq_target == 0))
428                         freq_target = 5;
429
430                 this_dbs_info->requested_freq += freq_target;
431                 if (this_dbs_info->requested_freq > policy->max)
432                         this_dbs_info->requested_freq = policy->max;
433
434                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
435                         CPUFREQ_RELATION_H);
436                 return;
437         }
438
439         /* Check for frequency decrease */
440         this_dbs_info->down_skip++;
441         if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
442                 return;
443
444         /* Check for frequency decrease */
445         total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
446         tmp_idle_ticks = total_idle_ticks -
447                 this_dbs_info->prev_cpu_idle_down;
448         this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
449
450         if (tmp_idle_ticks < idle_ticks)
451                 idle_ticks = tmp_idle_ticks;
452
453         /* Scale idle ticks by 100 and compare with up and down ticks */
454         idle_ticks *= 100;
455         this_dbs_info->down_skip = 0;
456
457         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
458                 dbs_tuners_ins.sampling_down_factor;
459         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
460                 usecs_to_jiffies(freq_down_sampling_rate);
461
462         if (idle_ticks > down_idle_ticks) {
463                 /*
464                  * if we are already at the lowest speed then break out early
465                  * or if we 'cannot' reduce the speed as the user might want
466                  * freq_target to be zero
467                  */
468                 if (this_dbs_info->requested_freq == policy->min
469                                 || dbs_tuners_ins.freq_step == 0)
470                         return;
471
472                 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
473
474                 /* max freq cannot be less than 100. But who knows.... */
475                 if (unlikely(freq_target == 0))
476                         freq_target = 5;
477
478                 this_dbs_info->requested_freq -= freq_target;
479                 if (this_dbs_info->requested_freq < policy->min)
480                         this_dbs_info->requested_freq = policy->min;
481
482                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
483                                 CPUFREQ_RELATION_H);
484                 return;
485         }
486 }
487
488 static void do_dbs_timer(struct work_struct *work)
489 {
490         int i;
491         mutex_lock(&dbs_mutex);
492         for_each_online_cpu(i)
493                 dbs_check_cpu(i);
494         schedule_delayed_work(&dbs_work,
495                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
496         mutex_unlock(&dbs_mutex);
497 }
498
499 static inline void dbs_timer_init(void)
500 {
501         init_timer_deferrable(&dbs_work.timer);
502         schedule_delayed_work(&dbs_work,
503                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
504         return;
505 }
506
507 static inline void dbs_timer_exit(void)
508 {
509         cancel_delayed_work(&dbs_work);
510         return;
511 }
512
513 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
514                                    unsigned int event)
515 {
516         unsigned int cpu = policy->cpu;
517         struct cpu_dbs_info_s *this_dbs_info;
518         unsigned int j;
519         int rc;
520
521         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
522
523         switch (event) {
524         case CPUFREQ_GOV_START:
525                 if ((!cpu_online(cpu)) || (!policy->cur))
526                         return -EINVAL;
527
528                 if (this_dbs_info->enable) /* Already enabled */
529                         break;
530
531                 mutex_lock(&dbs_mutex);
532
533                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
534                 if (rc) {
535                         mutex_unlock(&dbs_mutex);
536                         return rc;
537                 }
538
539                 for_each_cpu(j, policy->cpus) {
540                         struct cpu_dbs_info_s *j_dbs_info;
541                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
542                         j_dbs_info->cur_policy = policy;
543
544                         j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
545                         j_dbs_info->prev_cpu_idle_down
546                                 = j_dbs_info->prev_cpu_idle_up;
547                 }
548                 this_dbs_info->enable = 1;
549                 this_dbs_info->down_skip = 0;
550                 this_dbs_info->requested_freq = policy->cur;
551
552                 dbs_enable++;
553                 /*
554                  * Start the timerschedule work, when this governor
555                  * is used for first time
556                  */
557                 if (dbs_enable == 1) {
558                         unsigned int latency;
559                         /* policy latency is in nS. Convert it to uS first */
560                         latency = policy->cpuinfo.transition_latency / 1000;
561                         if (latency == 0)
562                                 latency = 1;
563
564                         def_sampling_rate =
565                                 max(10 * latency * LATENCY_MULTIPLIER,
566                                     MIN_STAT_SAMPLING_RATE);
567
568                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
569
570                         dbs_timer_init();
571                         cpufreq_register_notifier(
572                                         &dbs_cpufreq_notifier_block,
573                                         CPUFREQ_TRANSITION_NOTIFIER);
574                 }
575
576                 mutex_unlock(&dbs_mutex);
577                 break;
578
579         case CPUFREQ_GOV_STOP:
580                 mutex_lock(&dbs_mutex);
581                 this_dbs_info->enable = 0;
582                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
583                 dbs_enable--;
584                 /*
585                  * Stop the timerschedule work, when this governor
586                  * is used for first time
587                  */
588                 if (dbs_enable == 0) {
589                         dbs_timer_exit();
590                         cpufreq_unregister_notifier(
591                                         &dbs_cpufreq_notifier_block,
592                                         CPUFREQ_TRANSITION_NOTIFIER);
593                 }
594
595                 mutex_unlock(&dbs_mutex);
596
597                 break;
598
599         case CPUFREQ_GOV_LIMITS:
600                 mutex_lock(&dbs_mutex);
601                 if (policy->max < this_dbs_info->cur_policy->cur)
602                         __cpufreq_driver_target(
603                                         this_dbs_info->cur_policy,
604                                         policy->max, CPUFREQ_RELATION_H);
605                 else if (policy->min > this_dbs_info->cur_policy->cur)
606                         __cpufreq_driver_target(
607                                         this_dbs_info->cur_policy,
608                                         policy->min, CPUFREQ_RELATION_L);
609                 mutex_unlock(&dbs_mutex);
610                 break;
611         }
612         return 0;
613 }
614
615 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
616 static
617 #endif
618 struct cpufreq_governor cpufreq_gov_conservative = {
619         .name                   = "conservative",
620         .governor               = cpufreq_governor_dbs,
621         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
622         .owner                  = THIS_MODULE,
623 };
624
625 static int __init cpufreq_gov_dbs_init(void)
626 {
627         return cpufreq_register_governor(&cpufreq_gov_conservative);
628 }
629
630 static void __exit cpufreq_gov_dbs_exit(void)
631 {
632         /* Make sure that the scheduled work is indeed not running */
633         flush_scheduled_work();
634
635         cpufreq_unregister_governor(&cpufreq_gov_conservative);
636 }
637
638
639 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
640 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
641                 "Low Latency Frequency Transition capable processors "
642                 "optimised for use in a battery environment");
643 MODULE_LICENSE("GPL");
644
645 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
646 fs_initcall(cpufreq_gov_dbs_init);
647 #else
648 module_init(cpufreq_gov_dbs_init);
649 #endif
650 module_exit(cpufreq_gov_dbs_exit);