be78c07f72cae230bfe08b19996969bd2194e74b
[safe/jmp/linux-2.6] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *      Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *      Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33                                                 "cpufreq-core", msg)
34
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependent low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS];
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50  * all cpufreq/hotplug/workqueue/etc related lock issues.
51  *
52  * The rules for this semaphore:
53  * - Any routine that wants to read from the policy structure will
54  *   do a down_read on this semaphore.
55  * - Any routine that will write to the policy structure and/or may take away
56  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
57  *   mode before doing so.
58  *
59  * Additional rules:
60  * - All holders of the lock should check to make sure that the CPU they
61  *   are concerned with are online after they get the lock.
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu)                                    \
69 int lock_policy_rwsem_##mode                                            \
70 (int cpu)                                                               \
71 {                                                                       \
72         int policy_cpu = per_cpu(policy_cpu, cpu);                      \
73         BUG_ON(policy_cpu == -1);                                       \
74         down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));            \
75         if (unlikely(!cpu_online(cpu))) {                               \
76                 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));      \
77                 return -1;                                              \
78         }                                                               \
79                                                                         \
80         return 0;                                                       \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91         int policy_cpu = per_cpu(policy_cpu, cpu);
92         BUG_ON(policy_cpu == -1);
93         up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99         int policy_cpu = per_cpu(policy_cpu, cpu);
100         BUG_ON(policy_cpu == -1);
101         up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108 static unsigned int __cpufreq_get(unsigned int cpu);
109 static void handle_update(struct work_struct *work);
110
111 /**
112  * Two notifier lists: the "policy" list is involved in the
113  * validation process for a new CPU frequency policy; the
114  * "transition" list for kernel code that needs to handle
115  * changes to devices when the CPU clock speed changes.
116  * The mutex locks both lists.
117  */
118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124         return 0;
125 }
126 pure_initcall(init_cpufreq_transition_notifier_list);
127
128 static LIST_HEAD(cpufreq_governor_list);
129 static DEFINE_MUTEX (cpufreq_governor_mutex);
130
131 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
132 {
133         struct cpufreq_policy *data;
134         unsigned long flags;
135
136         if (cpu >= NR_CPUS)
137                 goto err_out;
138
139         /* get the cpufreq driver */
140         spin_lock_irqsave(&cpufreq_driver_lock, flags);
141
142         if (!cpufreq_driver)
143                 goto err_out_unlock;
144
145         if (!try_module_get(cpufreq_driver->owner))
146                 goto err_out_unlock;
147
148
149         /* get the CPU */
150         data = cpufreq_cpu_data[cpu];
151
152         if (!data)
153                 goto err_out_put_module;
154
155         if (!kobject_get(&data->kobj))
156                 goto err_out_put_module;
157
158         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
159         return data;
160
161 err_out_put_module:
162         module_put(cpufreq_driver->owner);
163 err_out_unlock:
164         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
165 err_out:
166         return NULL;
167 }
168 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
169
170
171 void cpufreq_cpu_put(struct cpufreq_policy *data)
172 {
173         kobject_put(&data->kobj);
174         module_put(cpufreq_driver->owner);
175 }
176 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
177
178
179 /*********************************************************************
180  *                     UNIFIED DEBUG HELPERS                         *
181  *********************************************************************/
182 #ifdef CONFIG_CPU_FREQ_DEBUG
183
184 /* what part(s) of the CPUfreq subsystem are debugged? */
185 static unsigned int debug;
186
187 /* is the debug output ratelimit'ed using printk_ratelimit? User can
188  * set or modify this value.
189  */
190 static unsigned int debug_ratelimit = 1;
191
192 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
193  * loading of a cpufreq driver, temporarily disabled when a new policy
194  * is set, and disabled upon cpufreq driver removal
195  */
196 static unsigned int disable_ratelimit = 1;
197 static DEFINE_SPINLOCK(disable_ratelimit_lock);
198
199 static void cpufreq_debug_enable_ratelimit(void)
200 {
201         unsigned long flags;
202
203         spin_lock_irqsave(&disable_ratelimit_lock, flags);
204         if (disable_ratelimit)
205                 disable_ratelimit--;
206         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
207 }
208
209 static void cpufreq_debug_disable_ratelimit(void)
210 {
211         unsigned long flags;
212
213         spin_lock_irqsave(&disable_ratelimit_lock, flags);
214         disable_ratelimit++;
215         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
216 }
217
218 void cpufreq_debug_printk(unsigned int type, const char *prefix,
219                         const char *fmt, ...)
220 {
221         char s[256];
222         va_list args;
223         unsigned int len;
224         unsigned long flags;
225
226         WARN_ON(!prefix);
227         if (type & debug) {
228                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
229                 if (!disable_ratelimit && debug_ratelimit
230                                         && !printk_ratelimit()) {
231                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
232                         return;
233                 }
234                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235
236                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
237
238                 va_start(args, fmt);
239                 len += vsnprintf(&s[len], (256 - len), fmt, args);
240                 va_end(args);
241
242                 printk(s);
243
244                 WARN_ON(len < 5);
245         }
246 }
247 EXPORT_SYMBOL(cpufreq_debug_printk);
248
249
250 module_param(debug, uint, 0644);
251 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
252                         " 2 to debug drivers, and 4 to debug governors.");
253
254 module_param(debug_ratelimit, uint, 0644);
255 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
256                                         " set to 0 to disable ratelimiting.");
257
258 #else /* !CONFIG_CPU_FREQ_DEBUG */
259
260 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
261 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
262
263 #endif /* CONFIG_CPU_FREQ_DEBUG */
264
265
266 /*********************************************************************
267  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
268  *********************************************************************/
269
270 /**
271  * adjust_jiffies - adjust the system "loops_per_jiffy"
272  *
273  * This function alters the system "loops_per_jiffy" for the clock
274  * speed change. Note that loops_per_jiffy cannot be updated on SMP
275  * systems as each CPU might be scaled differently. So, use the arch
276  * per-CPU loops_per_jiffy value wherever possible.
277  */
278 #ifndef CONFIG_SMP
279 static unsigned long l_p_j_ref;
280 static unsigned int  l_p_j_ref_freq;
281
282 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
283 {
284         if (ci->flags & CPUFREQ_CONST_LOOPS)
285                 return;
286
287         if (!l_p_j_ref_freq) {
288                 l_p_j_ref = loops_per_jiffy;
289                 l_p_j_ref_freq = ci->old;
290                 dprintk("saving %lu as reference value for loops_per_jiffy; "
291                         "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
292         }
293         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
294             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
295             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
296                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297                                                                 ci->new);
298                 dprintk("scaling loops_per_jiffy to %lu "
299                         "for frequency %u kHz\n", loops_per_jiffy, ci->new);
300         }
301 }
302 #else
303 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
304 {
305         return;
306 }
307 #endif
308
309
310 /**
311  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
312  * on frequency transition.
313  *
314  * This function calls the transition notifiers and the "adjust_jiffies"
315  * function. It is called twice on all CPU frequency changes that have
316  * external effects.
317  */
318 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
319 {
320         struct cpufreq_policy *policy;
321
322         BUG_ON(irqs_disabled());
323
324         freqs->flags = cpufreq_driver->flags;
325         dprintk("notification %u of frequency transition to %u kHz\n",
326                 state, freqs->new);
327
328         policy = cpufreq_cpu_data[freqs->cpu];
329         switch (state) {
330
331         case CPUFREQ_PRECHANGE:
332                 /* detect if the driver reported a value as "old frequency"
333                  * which is not equal to what the cpufreq core thinks is
334                  * "old frequency".
335                  */
336                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
337                         if ((policy) && (policy->cpu == freqs->cpu) &&
338                             (policy->cur) && (policy->cur != freqs->old)) {
339                                 dprintk("Warning: CPU frequency is"
340                                         " %u, cpufreq assumed %u kHz.\n",
341                                         freqs->old, policy->cur);
342                                 freqs->old = policy->cur;
343                         }
344                 }
345                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
346                                 CPUFREQ_PRECHANGE, freqs);
347                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
348                 break;
349
350         case CPUFREQ_POSTCHANGE:
351                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
352                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353                                 CPUFREQ_POSTCHANGE, freqs);
354                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
355                         policy->cur = freqs->new;
356                 break;
357         }
358 }
359 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
360
361
362
363 /*********************************************************************
364  *                          SYSFS INTERFACE                          *
365  *********************************************************************/
366
367 static struct cpufreq_governor *__find_governor(const char *str_governor)
368 {
369         struct cpufreq_governor *t;
370
371         list_for_each_entry(t, &cpufreq_governor_list, governor_list)
372                 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
373                         return t;
374
375         return NULL;
376 }
377
378 /**
379  * cpufreq_parse_governor - parse a governor string
380  */
381 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
382                                 struct cpufreq_governor **governor)
383 {
384         int err = -EINVAL;
385
386         if (!cpufreq_driver)
387                 goto out;
388
389         if (cpufreq_driver->setpolicy) {
390                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
391                         *policy = CPUFREQ_POLICY_PERFORMANCE;
392                         err = 0;
393                 } else if (!strnicmp(str_governor, "powersave",
394                                                 CPUFREQ_NAME_LEN)) {
395                         *policy = CPUFREQ_POLICY_POWERSAVE;
396                         err = 0;
397                 }
398         } else if (cpufreq_driver->target) {
399                 struct cpufreq_governor *t;
400
401                 mutex_lock(&cpufreq_governor_mutex);
402
403                 t = __find_governor(str_governor);
404
405                 if (t == NULL) {
406                         char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
407                                                                 str_governor);
408
409                         if (name) {
410                                 int ret;
411
412                                 mutex_unlock(&cpufreq_governor_mutex);
413                                 ret = request_module(name);
414                                 mutex_lock(&cpufreq_governor_mutex);
415
416                                 if (ret == 0)
417                                         t = __find_governor(str_governor);
418                         }
419
420                         kfree(name);
421                 }
422
423                 if (t != NULL) {
424                         *governor = t;
425                         err = 0;
426                 }
427
428                 mutex_unlock(&cpufreq_governor_mutex);
429         }
430   out:
431         return err;
432 }
433
434
435 /* drivers/base/cpu.c */
436 extern struct sysdev_class cpu_sysdev_class;
437
438
439 /**
440  * cpufreq_per_cpu_attr_read() / show_##file_name() -
441  * print out cpufreq information
442  *
443  * Write out information from cpufreq_driver->policy[cpu]; object must be
444  * "unsigned int".
445  */
446
447 #define show_one(file_name, object)                     \
448 static ssize_t show_##file_name                         \
449 (struct cpufreq_policy *policy, char *buf)              \
450 {                                                       \
451         return sprintf (buf, "%u\n", policy->object);   \
452 }
453
454 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
455 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461                                 struct cpufreq_policy *policy);
462
463 /**
464  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465  */
466 #define store_one(file_name, object)                    \
467 static ssize_t store_##file_name                                        \
468 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
469 {                                                                       \
470         unsigned int ret = -EINVAL;                                     \
471         struct cpufreq_policy new_policy;                               \
472                                                                         \
473         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
474         if (ret)                                                        \
475                 return -EINVAL;                                         \
476                                                                         \
477         ret = sscanf (buf, "%u", &new_policy.object);                   \
478         if (ret != 1)                                                   \
479                 return -EINVAL;                                         \
480                                                                         \
481         ret = __cpufreq_set_policy(policy, &new_policy);                \
482         policy->user_policy.object = policy->object;                    \
483                                                                         \
484         return ret ? ret : count;                                       \
485 }
486
487 store_one(scaling_min_freq,min);
488 store_one(scaling_max_freq,max);
489
490 /**
491  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492  */
493 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
494                                         char *buf)
495 {
496         unsigned int cur_freq = __cpufreq_get(policy->cpu);
497         if (!cur_freq)
498                 return sprintf(buf, "<unknown>");
499         return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504  * show_scaling_governor - show the current policy for the specified CPU
505  */
506 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
507 {
508         if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
509                 return sprintf(buf, "powersave\n");
510         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
511                 return sprintf(buf, "performance\n");
512         else if (policy->governor)
513                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
514         return -EINVAL;
515 }
516
517
518 /**
519  * store_scaling_governor - store policy for the specified CPU
520  */
521 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
522                                         const char *buf, size_t count)
523 {
524         unsigned int ret = -EINVAL;
525         char    str_governor[16];
526         struct cpufreq_policy new_policy;
527
528         ret = cpufreq_get_policy(&new_policy, policy->cpu);
529         if (ret)
530                 return ret;
531
532         ret = sscanf (buf, "%15s", str_governor);
533         if (ret != 1)
534                 return -EINVAL;
535
536         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
537                                                 &new_policy.governor))
538                 return -EINVAL;
539
540         /* Do not use cpufreq_set_policy here or the user_policy.max
541            will be wrongly overridden */
542         ret = __cpufreq_set_policy(policy, &new_policy);
543
544         policy->user_policy.policy = policy->policy;
545         policy->user_policy.governor = policy->governor;
546
547         if (ret)
548                 return ret;
549         else
550                 return count;
551 }
552
553 /**
554  * show_scaling_driver - show the cpufreq driver currently loaded
555  */
556 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
557 {
558         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
559 }
560
561 /**
562  * show_scaling_available_governors - show the available CPUfreq governors
563  */
564 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
565                                                 char *buf)
566 {
567         ssize_t i = 0;
568         struct cpufreq_governor *t;
569
570         if (!cpufreq_driver->target) {
571                 i += sprintf(buf, "performance powersave");
572                 goto out;
573         }
574
575         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
576                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
577                         goto out;
578                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
579         }
580 out:
581         i += sprintf(&buf[i], "\n");
582         return i;
583 }
584 /**
585  * show_affected_cpus - show the CPUs affected by each transition
586  */
587 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
588 {
589         ssize_t i = 0;
590         unsigned int cpu;
591
592         for_each_cpu_mask(cpu, policy->cpus) {
593                 if (i)
594                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
595                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
596                 if (i >= (PAGE_SIZE - 5))
597                     break;
598         }
599         i += sprintf(&buf[i], "\n");
600         return i;
601 }
602
603 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
604                                         const char *buf, size_t count)
605 {
606         unsigned int freq = 0;
607         unsigned int ret;
608
609         if (!policy->governor->store_setspeed)
610                 return -EINVAL;
611
612         ret = sscanf(buf, "%u", &freq);
613         if (ret != 1)
614                 return -EINVAL;
615
616         policy->governor->store_setspeed(policy, freq);
617
618         return count;
619 }
620
621 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
622 {
623         if (!policy->governor->show_setspeed)
624                 return sprintf(buf, "<unsupported>\n");
625
626         return policy->governor->show_setspeed(policy, buf);
627 }
628
629 #define define_one_ro(_name) \
630 static struct freq_attr _name = \
631 __ATTR(_name, 0444, show_##_name, NULL)
632
633 #define define_one_ro0400(_name) \
634 static struct freq_attr _name = \
635 __ATTR(_name, 0400, show_##_name, NULL)
636
637 #define define_one_rw(_name) \
638 static struct freq_attr _name = \
639 __ATTR(_name, 0644, show_##_name, store_##_name)
640
641 define_one_ro0400(cpuinfo_cur_freq);
642 define_one_ro(cpuinfo_min_freq);
643 define_one_ro(cpuinfo_max_freq);
644 define_one_ro(scaling_available_governors);
645 define_one_ro(scaling_driver);
646 define_one_ro(scaling_cur_freq);
647 define_one_ro(affected_cpus);
648 define_one_rw(scaling_min_freq);
649 define_one_rw(scaling_max_freq);
650 define_one_rw(scaling_governor);
651 define_one_rw(scaling_setspeed);
652
653 static struct attribute *default_attrs[] = {
654         &cpuinfo_min_freq.attr,
655         &cpuinfo_max_freq.attr,
656         &scaling_min_freq.attr,
657         &scaling_max_freq.attr,
658         &affected_cpus.attr,
659         &scaling_governor.attr,
660         &scaling_driver.attr,
661         &scaling_available_governors.attr,
662         &scaling_setspeed.attr,
663         NULL
664 };
665
666 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
667 #define to_attr(a) container_of(a,struct freq_attr,attr)
668
669 static ssize_t show(struct kobject *kobj, struct attribute *attr ,char *buf)
670 {
671         struct cpufreq_policy *policy = to_policy(kobj);
672         struct freq_attr *fattr = to_attr(attr);
673         ssize_t ret = -EINVAL;
674         policy = cpufreq_cpu_get(policy->cpu);
675         if (!policy)
676                 goto no_policy;
677
678         if (lock_policy_rwsem_read(policy->cpu) < 0)
679                 goto fail;
680
681         if (fattr->show)
682                 ret = fattr->show(policy, buf);
683         else
684                 ret = -EIO;
685
686         unlock_policy_rwsem_read(policy->cpu);
687 fail:
688         cpufreq_cpu_put(policy);
689 no_policy:
690         return ret;
691 }
692
693 static ssize_t store(struct kobject *kobj, struct attribute *attr,
694                      const char *buf, size_t count)
695 {
696         struct cpufreq_policy *policy = to_policy(kobj);
697         struct freq_attr *fattr = to_attr(attr);
698         ssize_t ret = -EINVAL;
699         policy = cpufreq_cpu_get(policy->cpu);
700         if (!policy)
701                 goto no_policy;
702
703         if (lock_policy_rwsem_write(policy->cpu) < 0)
704                 goto fail;
705
706         if (fattr->store)
707                 ret = fattr->store(policy, buf, count);
708         else
709                 ret = -EIO;
710
711         unlock_policy_rwsem_write(policy->cpu);
712 fail:
713         cpufreq_cpu_put(policy);
714 no_policy:
715         return ret;
716 }
717
718 static void cpufreq_sysfs_release(struct kobject *kobj)
719 {
720         struct cpufreq_policy *policy = to_policy(kobj);
721         dprintk("last reference is dropped\n");
722         complete(&policy->kobj_unregister);
723 }
724
725 static struct sysfs_ops sysfs_ops = {
726         .show   = show,
727         .store  = store,
728 };
729
730 static struct kobj_type ktype_cpufreq = {
731         .sysfs_ops      = &sysfs_ops,
732         .default_attrs  = default_attrs,
733         .release        = cpufreq_sysfs_release,
734 };
735
736
737 /**
738  * cpufreq_add_dev - add a CPU device
739  *
740  * Adds the cpufreq interface for a CPU device.
741  */
742 static int cpufreq_add_dev(struct sys_device *sys_dev)
743 {
744         unsigned int cpu = sys_dev->id;
745         int ret = 0;
746         struct cpufreq_policy new_policy;
747         struct cpufreq_policy *policy;
748         struct freq_attr **drv_attr;
749         struct sys_device *cpu_sys_dev;
750         unsigned long flags;
751         unsigned int j;
752 #ifdef CONFIG_SMP
753         struct cpufreq_policy *managed_policy;
754 #endif
755
756         if (cpu_is_offline(cpu))
757                 return 0;
758
759         cpufreq_debug_disable_ratelimit();
760         dprintk("adding CPU %u\n", cpu);
761
762 #ifdef CONFIG_SMP
763         /* check whether a different CPU already registered this
764          * CPU because it is in the same boat. */
765         policy = cpufreq_cpu_get(cpu);
766         if (unlikely(policy)) {
767                 cpufreq_cpu_put(policy);
768                 cpufreq_debug_enable_ratelimit();
769                 return 0;
770         }
771 #endif
772
773         if (!try_module_get(cpufreq_driver->owner)) {
774                 ret = -EINVAL;
775                 goto module_out;
776         }
777
778         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
779         if (!policy) {
780                 ret = -ENOMEM;
781                 goto nomem_out;
782         }
783
784         policy->cpu = cpu;
785         policy->cpus = cpumask_of_cpu(cpu);
786
787         /* Initially set CPU itself as the policy_cpu */
788         per_cpu(policy_cpu, cpu) = cpu;
789         lock_policy_rwsem_write(cpu);
790
791         init_completion(&policy->kobj_unregister);
792         INIT_WORK(&policy->update, handle_update);
793
794         /* Set governor before ->init, so that driver could check it */
795         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
796         /* call driver. From then on the cpufreq must be able
797          * to accept all calls to ->verify and ->setpolicy for this CPU
798          */
799         ret = cpufreq_driver->init(policy);
800         if (ret) {
801                 dprintk("initialization failed\n");
802                 goto err_out;
803         }
804         policy->user_policy.min = policy->cpuinfo.min_freq;
805         policy->user_policy.max = policy->cpuinfo.max_freq;
806
807 #ifdef CONFIG_SMP
808
809 #ifdef CONFIG_HOTPLUG_CPU
810         if (cpufreq_cpu_governor[cpu]){
811                 policy->governor = cpufreq_cpu_governor[cpu];
812                 dprintk("Restoring governor %s for cpu %d\n",
813                        policy->governor->name, cpu);
814         }
815 #endif
816
817         for_each_cpu_mask(j, policy->cpus) {
818                 if (cpu == j)
819                         continue;
820
821                 /* check for existing affected CPUs.  They may not be aware
822                  * of it due to CPU Hotplug.
823                  */
824                 managed_policy = cpufreq_cpu_get(j);            // FIXME: Where is this released?  What about error paths?
825                 if (unlikely(managed_policy)) {
826
827                         /* Set proper policy_cpu */
828                         unlock_policy_rwsem_write(cpu);
829                         per_cpu(policy_cpu, cpu) = managed_policy->cpu;
830
831                         if (lock_policy_rwsem_write(cpu) < 0)
832                                 goto err_out_driver_exit;
833
834                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
835                         managed_policy->cpus = policy->cpus;
836                         cpufreq_cpu_data[cpu] = managed_policy;
837                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
838
839                         dprintk("CPU already managed, adding link\n");
840                         ret = sysfs_create_link(&sys_dev->kobj,
841                                                 &managed_policy->kobj,
842                                                 "cpufreq");
843                         if (ret)
844                                 goto err_out_driver_exit;
845
846                         cpufreq_debug_enable_ratelimit();
847                         ret = 0;
848                         goto err_out_driver_exit; /* call driver->exit() */
849                 }
850         }
851 #endif
852         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
853
854         /* prepare interface data */
855         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
856                                    "cpufreq");
857         if (ret)
858                 goto err_out_driver_exit;
859
860         /* set up files for this cpu device */
861         drv_attr = cpufreq_driver->attr;
862         while ((drv_attr) && (*drv_attr)) {
863                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
864                 if (ret)
865                         goto err_out_driver_exit;
866                 drv_attr++;
867         }
868         if (cpufreq_driver->get) {
869                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
870                 if (ret)
871                         goto err_out_driver_exit;
872         }
873         if (cpufreq_driver->target) {
874                 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
875                 if (ret)
876                         goto err_out_driver_exit;
877         }
878
879         spin_lock_irqsave(&cpufreq_driver_lock, flags);
880         for_each_cpu_mask(j, policy->cpus) {
881                 cpufreq_cpu_data[j] = policy;
882                 per_cpu(policy_cpu, j) = policy->cpu;
883         }
884         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
885
886         /* symlink affected CPUs */
887         for_each_cpu_mask(j, policy->cpus) {
888                 if (j == cpu)
889                         continue;
890                 if (!cpu_online(j))
891                         continue;
892
893                 dprintk("CPU %u already managed, adding link\n", j);
894                 cpufreq_cpu_get(cpu);
895                 cpu_sys_dev = get_cpu_sysdev(j);
896                 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
897                                         "cpufreq");
898                 if (ret)
899                         goto err_out_unregister;
900         }
901
902         policy->governor = NULL; /* to assure that the starting sequence is
903                                   * run in cpufreq_set_policy */
904
905         /* set default policy */
906         ret = __cpufreq_set_policy(policy, &new_policy);
907         policy->user_policy.policy = policy->policy;
908         policy->user_policy.governor = policy->governor;
909
910         unlock_policy_rwsem_write(cpu);
911
912         if (ret) {
913                 dprintk("setting policy failed\n");
914                 goto err_out_unregister;
915         }
916
917         kobject_uevent(&policy->kobj, KOBJ_ADD);
918         module_put(cpufreq_driver->owner);
919         dprintk("initialization complete\n");
920         cpufreq_debug_enable_ratelimit();
921
922         return 0;
923
924
925 err_out_unregister:
926         spin_lock_irqsave(&cpufreq_driver_lock, flags);
927         for_each_cpu_mask(j, policy->cpus)
928                 cpufreq_cpu_data[j] = NULL;
929         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
930
931         kobject_put(&policy->kobj);
932         wait_for_completion(&policy->kobj_unregister);
933
934 err_out_driver_exit:
935         if (cpufreq_driver->exit)
936                 cpufreq_driver->exit(policy);
937
938 err_out:
939         unlock_policy_rwsem_write(cpu);
940         kfree(policy);
941
942 nomem_out:
943         module_put(cpufreq_driver->owner);
944 module_out:
945         cpufreq_debug_enable_ratelimit();
946         return ret;
947 }
948
949
950 /**
951  * __cpufreq_remove_dev - remove a CPU device
952  *
953  * Removes the cpufreq interface for a CPU device.
954  * Caller should already have policy_rwsem in write mode for this CPU.
955  * This routine frees the rwsem before returning.
956  */
957 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
958 {
959         unsigned int cpu = sys_dev->id;
960         unsigned long flags;
961         struct cpufreq_policy *data;
962 #ifdef CONFIG_SMP
963         struct sys_device *cpu_sys_dev;
964         unsigned int j;
965 #endif
966
967         cpufreq_debug_disable_ratelimit();
968         dprintk("unregistering CPU %u\n", cpu);
969
970         spin_lock_irqsave(&cpufreq_driver_lock, flags);
971         data = cpufreq_cpu_data[cpu];
972
973         if (!data) {
974                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
975                 cpufreq_debug_enable_ratelimit();
976                 unlock_policy_rwsem_write(cpu);
977                 return -EINVAL;
978         }
979         cpufreq_cpu_data[cpu] = NULL;
980
981
982 #ifdef CONFIG_SMP
983         /* if this isn't the CPU which is the parent of the kobj, we
984          * only need to unlink, put and exit
985          */
986         if (unlikely(cpu != data->cpu)) {
987                 dprintk("removing link\n");
988                 cpu_clear(cpu, data->cpus);
989                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
990                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
991                 cpufreq_cpu_put(data);
992                 cpufreq_debug_enable_ratelimit();
993                 unlock_policy_rwsem_write(cpu);
994                 return 0;
995         }
996 #endif
997
998 #ifdef CONFIG_SMP
999
1000 #ifdef CONFIG_HOTPLUG_CPU
1001         cpufreq_cpu_governor[cpu] = data->governor;
1002 #endif
1003
1004         /* if we have other CPUs still registered, we need to unlink them,
1005          * or else wait_for_completion below will lock up. Clean the
1006          * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
1007          * links afterwards.
1008          */
1009         if (unlikely(cpus_weight(data->cpus) > 1)) {
1010                 for_each_cpu_mask(j, data->cpus) {
1011                         if (j == cpu)
1012                                 continue;
1013                         cpufreq_cpu_data[j] = NULL;
1014                 }
1015         }
1016
1017         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1018
1019         if (unlikely(cpus_weight(data->cpus) > 1)) {
1020                 for_each_cpu_mask(j, data->cpus) {
1021                         if (j == cpu)
1022                                 continue;
1023                         dprintk("removing link for cpu %u\n", j);
1024 #ifdef CONFIG_HOTPLUG_CPU
1025                         cpufreq_cpu_governor[j] = data->governor;
1026 #endif
1027                         cpu_sys_dev = get_cpu_sysdev(j);
1028                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1029                         cpufreq_cpu_put(data);
1030                 }
1031         }
1032 #else
1033         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1034 #endif
1035
1036         if (cpufreq_driver->target)
1037                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1038
1039         unlock_policy_rwsem_write(cpu);
1040
1041         kobject_put(&data->kobj);
1042
1043         /* we need to make sure that the underlying kobj is actually
1044          * not referenced anymore by anybody before we proceed with
1045          * unloading.
1046          */
1047         dprintk("waiting for dropping of refcount\n");
1048         wait_for_completion(&data->kobj_unregister);
1049         dprintk("wait complete\n");
1050
1051         if (cpufreq_driver->exit)
1052                 cpufreq_driver->exit(data);
1053
1054         kfree(data);
1055
1056         cpufreq_debug_enable_ratelimit();
1057         return 0;
1058 }
1059
1060
1061 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1062 {
1063         unsigned int cpu = sys_dev->id;
1064         int retval;
1065
1066         if (cpu_is_offline(cpu))
1067                 return 0;
1068
1069         if (unlikely(lock_policy_rwsem_write(cpu)))
1070                 BUG();
1071
1072         retval = __cpufreq_remove_dev(sys_dev);
1073         return retval;
1074 }
1075
1076
1077 static void handle_update(struct work_struct *work)
1078 {
1079         struct cpufreq_policy *policy =
1080                 container_of(work, struct cpufreq_policy, update);
1081         unsigned int cpu = policy->cpu;
1082         dprintk("handle_update for cpu %u called\n", cpu);
1083         cpufreq_update_policy(cpu);
1084 }
1085
1086 /**
1087  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1088  *      @cpu: cpu number
1089  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
1090  *      @new_freq: CPU frequency the CPU actually runs at
1091  *
1092  *      We adjust to current frequency first, and need to clean up later. So either call
1093  *      to cpufreq_update_policy() or schedule handle_update()).
1094  */
1095 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1096                                 unsigned int new_freq)
1097 {
1098         struct cpufreq_freqs freqs;
1099
1100         dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1101                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1102
1103         freqs.cpu = cpu;
1104         freqs.old = old_freq;
1105         freqs.new = new_freq;
1106         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1107         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1108 }
1109
1110
1111 /**
1112  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1113  * @cpu: CPU number
1114  *
1115  * This is the last known freq, without actually getting it from the driver.
1116  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1117  */
1118 unsigned int cpufreq_quick_get(unsigned int cpu)
1119 {
1120         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1121         unsigned int ret_freq = 0;
1122
1123         if (policy) {
1124                 ret_freq = policy->cur;
1125                 cpufreq_cpu_put(policy);
1126         }
1127
1128         return ret_freq;
1129 }
1130 EXPORT_SYMBOL(cpufreq_quick_get);
1131
1132
1133 static unsigned int __cpufreq_get(unsigned int cpu)
1134 {
1135         struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1136         unsigned int ret_freq = 0;
1137
1138         if (!cpufreq_driver->get)
1139                 return ret_freq;
1140
1141         ret_freq = cpufreq_driver->get(cpu);
1142
1143         if (ret_freq && policy->cur &&
1144                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1145                 /* verify no discrepancy between actual and
1146                                         saved value exists */
1147                 if (unlikely(ret_freq != policy->cur)) {
1148                         cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1149                         schedule_work(&policy->update);
1150                 }
1151         }
1152
1153         return ret_freq;
1154 }
1155
1156 /**
1157  * cpufreq_get - get the current CPU frequency (in kHz)
1158  * @cpu: CPU number
1159  *
1160  * Get the CPU current (static) CPU frequency
1161  */
1162 unsigned int cpufreq_get(unsigned int cpu)
1163 {
1164         unsigned int ret_freq = 0;
1165         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1166
1167         if (!policy)
1168                 goto out;
1169
1170         if (unlikely(lock_policy_rwsem_read(cpu)))
1171                 goto out_policy;
1172
1173         ret_freq = __cpufreq_get(cpu);
1174
1175         unlock_policy_rwsem_read(cpu);
1176
1177 out_policy:
1178         cpufreq_cpu_put(policy);
1179 out:
1180         return ret_freq;
1181 }
1182 EXPORT_SYMBOL(cpufreq_get);
1183
1184
1185 /**
1186  *      cpufreq_suspend - let the low level driver prepare for suspend
1187  */
1188
1189 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1190 {
1191         int cpu = sysdev->id;
1192         int ret = 0;
1193         unsigned int cur_freq = 0;
1194         struct cpufreq_policy *cpu_policy;
1195
1196         dprintk("suspending cpu %u\n", cpu);
1197
1198         if (!cpu_online(cpu))
1199                 return 0;
1200
1201         /* we may be lax here as interrupts are off. Nonetheless
1202          * we need to grab the correct cpu policy, as to check
1203          * whether we really run on this CPU.
1204          */
1205
1206         cpu_policy = cpufreq_cpu_get(cpu);
1207         if (!cpu_policy)
1208                 return -EINVAL;
1209
1210         /* only handle each CPU group once */
1211         if (unlikely(cpu_policy->cpu != cpu))
1212                 goto out;
1213
1214         if (cpufreq_driver->suspend) {
1215                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1216                 if (ret) {
1217                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1218                                         "step on CPU %u\n", cpu_policy->cpu);
1219                         goto out;
1220                 }
1221         }
1222
1223         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1224                 goto out;
1225
1226         if (cpufreq_driver->get)
1227                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1228
1229         if (!cur_freq || !cpu_policy->cur) {
1230                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1231                        "frequency is what timing core thinks it is.\n");
1232                 goto out;
1233         }
1234
1235         if (unlikely(cur_freq != cpu_policy->cur)) {
1236                 struct cpufreq_freqs freqs;
1237
1238                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1239                         dprintk("Warning: CPU frequency is %u, "
1240                                "cpufreq assumed %u kHz.\n",
1241                                cur_freq, cpu_policy->cur);
1242
1243                 freqs.cpu = cpu;
1244                 freqs.old = cpu_policy->cur;
1245                 freqs.new = cur_freq;
1246
1247                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1248                                     CPUFREQ_SUSPENDCHANGE, &freqs);
1249                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1250
1251                 cpu_policy->cur = cur_freq;
1252         }
1253
1254 out:
1255         cpufreq_cpu_put(cpu_policy);
1256         return ret;
1257 }
1258
1259 /**
1260  *      cpufreq_resume -  restore proper CPU frequency handling after resume
1261  *
1262  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1263  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1264  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1265  *          restored.
1266  */
1267 static int cpufreq_resume(struct sys_device *sysdev)
1268 {
1269         int cpu = sysdev->id;
1270         int ret = 0;
1271         struct cpufreq_policy *cpu_policy;
1272
1273         dprintk("resuming cpu %u\n", cpu);
1274
1275         if (!cpu_online(cpu))
1276                 return 0;
1277
1278         /* we may be lax here as interrupts are off. Nonetheless
1279          * we need to grab the correct cpu policy, as to check
1280          * whether we really run on this CPU.
1281          */
1282
1283         cpu_policy = cpufreq_cpu_get(cpu);
1284         if (!cpu_policy)
1285                 return -EINVAL;
1286
1287         /* only handle each CPU group once */
1288         if (unlikely(cpu_policy->cpu != cpu))
1289                 goto fail;
1290
1291         if (cpufreq_driver->resume) {
1292                 ret = cpufreq_driver->resume(cpu_policy);
1293                 if (ret) {
1294                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1295                                         "step on CPU %u\n", cpu_policy->cpu);
1296                         goto fail;
1297                 }
1298         }
1299
1300         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1301                 unsigned int cur_freq = 0;
1302
1303                 if (cpufreq_driver->get)
1304                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1305
1306                 if (!cur_freq || !cpu_policy->cur) {
1307                         printk(KERN_ERR "cpufreq: resume failed to assert "
1308                                         "current frequency is what timing core "
1309                                         "thinks it is.\n");
1310                         goto out;
1311                 }
1312
1313                 if (unlikely(cur_freq != cpu_policy->cur)) {
1314                         struct cpufreq_freqs freqs;
1315
1316                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1317                                 dprintk("Warning: CPU frequency "
1318                                        "is %u, cpufreq assumed %u kHz.\n",
1319                                        cur_freq, cpu_policy->cur);
1320
1321                         freqs.cpu = cpu;
1322                         freqs.old = cpu_policy->cur;
1323                         freqs.new = cur_freq;
1324
1325                         srcu_notifier_call_chain(
1326                                         &cpufreq_transition_notifier_list,
1327                                         CPUFREQ_RESUMECHANGE, &freqs);
1328                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1329
1330                         cpu_policy->cur = cur_freq;
1331                 }
1332         }
1333
1334 out:
1335         schedule_work(&cpu_policy->update);
1336 fail:
1337         cpufreq_cpu_put(cpu_policy);
1338         return ret;
1339 }
1340
1341 static struct sysdev_driver cpufreq_sysdev_driver = {
1342         .add            = cpufreq_add_dev,
1343         .remove         = cpufreq_remove_dev,
1344         .suspend        = cpufreq_suspend,
1345         .resume         = cpufreq_resume,
1346 };
1347
1348
1349 /*********************************************************************
1350  *                     NOTIFIER LISTS INTERFACE                      *
1351  *********************************************************************/
1352
1353 /**
1354  *      cpufreq_register_notifier - register a driver with cpufreq
1355  *      @nb: notifier function to register
1356  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1357  *
1358  *      Add a driver to one of two lists: either a list of drivers that
1359  *      are notified about clock rate changes (once before and once after
1360  *      the transition), or a list of drivers that are notified about
1361  *      changes in cpufreq policy.
1362  *
1363  *      This function may sleep, and has the same return conditions as
1364  *      blocking_notifier_chain_register.
1365  */
1366 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1367 {
1368         int ret;
1369
1370         switch (list) {
1371         case CPUFREQ_TRANSITION_NOTIFIER:
1372                 ret = srcu_notifier_chain_register(
1373                                 &cpufreq_transition_notifier_list, nb);
1374                 break;
1375         case CPUFREQ_POLICY_NOTIFIER:
1376                 ret = blocking_notifier_chain_register(
1377                                 &cpufreq_policy_notifier_list, nb);
1378                 break;
1379         default:
1380                 ret = -EINVAL;
1381         }
1382
1383         return ret;
1384 }
1385 EXPORT_SYMBOL(cpufreq_register_notifier);
1386
1387
1388 /**
1389  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1390  *      @nb: notifier block to be unregistered
1391  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1392  *
1393  *      Remove a driver from the CPU frequency notifier list.
1394  *
1395  *      This function may sleep, and has the same return conditions as
1396  *      blocking_notifier_chain_unregister.
1397  */
1398 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1399 {
1400         int ret;
1401
1402         switch (list) {
1403         case CPUFREQ_TRANSITION_NOTIFIER:
1404                 ret = srcu_notifier_chain_unregister(
1405                                 &cpufreq_transition_notifier_list, nb);
1406                 break;
1407         case CPUFREQ_POLICY_NOTIFIER:
1408                 ret = blocking_notifier_chain_unregister(
1409                                 &cpufreq_policy_notifier_list, nb);
1410                 break;
1411         default:
1412                 ret = -EINVAL;
1413         }
1414
1415         return ret;
1416 }
1417 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1418
1419
1420 /*********************************************************************
1421  *                              GOVERNORS                            *
1422  *********************************************************************/
1423
1424
1425 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1426                             unsigned int target_freq,
1427                             unsigned int relation)
1428 {
1429         int retval = -EINVAL;
1430
1431         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1432                 target_freq, relation);
1433         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1434                 retval = cpufreq_driver->target(policy, target_freq, relation);
1435
1436         return retval;
1437 }
1438 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1439
1440 int cpufreq_driver_target(struct cpufreq_policy *policy,
1441                           unsigned int target_freq,
1442                           unsigned int relation)
1443 {
1444         int ret;
1445
1446         policy = cpufreq_cpu_get(policy->cpu);
1447         if (!policy)
1448                 return -EINVAL;
1449
1450         if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1451                 return -EINVAL;
1452
1453         ret = __cpufreq_driver_target(policy, target_freq, relation);
1454
1455         unlock_policy_rwsem_write(policy->cpu);
1456
1457         cpufreq_cpu_put(policy);
1458         return ret;
1459 }
1460 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1461
1462 int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1463 {
1464         int ret = 0;
1465
1466         policy = cpufreq_cpu_get(policy->cpu);
1467         if (!policy)
1468                 return -EINVAL;
1469
1470         if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1471                 ret = cpufreq_driver->getavg(policy->cpu);
1472
1473         cpufreq_cpu_put(policy);
1474         return ret;
1475 }
1476 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1477
1478 /*
1479  * when "event" is CPUFREQ_GOV_LIMITS
1480  */
1481
1482 static int __cpufreq_governor(struct cpufreq_policy *policy,
1483                                         unsigned int event)
1484 {
1485         int ret;
1486
1487         /* Only must be defined when default governor is known to have latency
1488            restrictions, like e.g. conservative or ondemand.
1489            That this is the case is already ensured in Kconfig
1490         */
1491 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1492         struct cpufreq_governor *gov = &cpufreq_gov_performance;
1493 #else
1494         struct cpufreq_governor *gov = NULL;
1495 #endif
1496
1497         if (policy->governor->max_transition_latency &&
1498             policy->cpuinfo.transition_latency >
1499             policy->governor->max_transition_latency) {
1500                 if (!gov)
1501                         return -EINVAL;
1502                 else {
1503                         printk(KERN_WARNING "%s governor failed, too long"
1504                                " transition latency of HW, fallback"
1505                                " to %s governor\n",
1506                                policy->governor->name,
1507                                gov->name);
1508                         policy->governor = gov;
1509                 }
1510         }
1511
1512         if (!try_module_get(policy->governor->owner))
1513                 return -EINVAL;
1514
1515         dprintk("__cpufreq_governor for CPU %u, event %u\n",
1516                                                 policy->cpu, event);
1517         ret = policy->governor->governor(policy, event);
1518
1519         /* we keep one module reference alive for
1520                         each CPU governed by this CPU */
1521         if ((event != CPUFREQ_GOV_START) || ret)
1522                 module_put(policy->governor->owner);
1523         if ((event == CPUFREQ_GOV_STOP) && !ret)
1524                 module_put(policy->governor->owner);
1525
1526         return ret;
1527 }
1528
1529
1530 int cpufreq_register_governor(struct cpufreq_governor *governor)
1531 {
1532         int err;
1533
1534         if (!governor)
1535                 return -EINVAL;
1536
1537         mutex_lock(&cpufreq_governor_mutex);
1538
1539         err = -EBUSY;
1540         if (__find_governor(governor->name) == NULL) {
1541                 err = 0;
1542                 list_add(&governor->governor_list, &cpufreq_governor_list);
1543         }
1544
1545         mutex_unlock(&cpufreq_governor_mutex);
1546         return err;
1547 }
1548 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1549
1550
1551 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1552 {
1553         if (!governor)
1554                 return;
1555
1556         mutex_lock(&cpufreq_governor_mutex);
1557         list_del(&governor->governor_list);
1558         mutex_unlock(&cpufreq_governor_mutex);
1559         return;
1560 }
1561 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1562
1563
1564
1565 /*********************************************************************
1566  *                          POLICY INTERFACE                         *
1567  *********************************************************************/
1568
1569 /**
1570  * cpufreq_get_policy - get the current cpufreq_policy
1571  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1572  *
1573  * Reads the current cpufreq policy.
1574  */
1575 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1576 {
1577         struct cpufreq_policy *cpu_policy;
1578         if (!policy)
1579                 return -EINVAL;
1580
1581         cpu_policy = cpufreq_cpu_get(cpu);
1582         if (!cpu_policy)
1583                 return -EINVAL;
1584
1585         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1586
1587         cpufreq_cpu_put(cpu_policy);
1588         return 0;
1589 }
1590 EXPORT_SYMBOL(cpufreq_get_policy);
1591
1592
1593 /*
1594  * data   : current policy.
1595  * policy : policy to be set.
1596  */
1597 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1598                                 struct cpufreq_policy *policy)
1599 {
1600         int ret = 0;
1601
1602         cpufreq_debug_disable_ratelimit();
1603         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1604                 policy->min, policy->max);
1605
1606         memcpy(&policy->cpuinfo, &data->cpuinfo,
1607                                 sizeof(struct cpufreq_cpuinfo));
1608
1609         if (policy->min > data->max || policy->max < data->min) {
1610                 ret = -EINVAL;
1611                 goto error_out;
1612         }
1613
1614         /* verify the cpu speed can be set within this limit */
1615         ret = cpufreq_driver->verify(policy);
1616         if (ret)
1617                 goto error_out;
1618
1619         /* adjust if necessary - all reasons */
1620         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1621                         CPUFREQ_ADJUST, policy);
1622
1623         /* adjust if necessary - hardware incompatibility*/
1624         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1625                         CPUFREQ_INCOMPATIBLE, policy);
1626
1627         /* verify the cpu speed can be set within this limit,
1628            which might be different to the first one */
1629         ret = cpufreq_driver->verify(policy);
1630         if (ret)
1631                 goto error_out;
1632
1633         /* notification of the new policy */
1634         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1635                         CPUFREQ_NOTIFY, policy);
1636
1637         data->min = policy->min;
1638         data->max = policy->max;
1639
1640         dprintk("new min and max freqs are %u - %u kHz\n",
1641                                         data->min, data->max);
1642
1643         if (cpufreq_driver->setpolicy) {
1644                 data->policy = policy->policy;
1645                 dprintk("setting range\n");
1646                 ret = cpufreq_driver->setpolicy(policy);
1647         } else {
1648                 if (policy->governor != data->governor) {
1649                         /* save old, working values */
1650                         struct cpufreq_governor *old_gov = data->governor;
1651
1652                         dprintk("governor switch\n");
1653
1654                         /* end old governor */
1655                         if (data->governor)
1656                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1657
1658                         /* start new governor */
1659                         data->governor = policy->governor;
1660                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1661                                 /* new governor failed, so re-start old one */
1662                                 dprintk("starting governor %s failed\n",
1663                                                         data->governor->name);
1664                                 if (old_gov) {
1665                                         data->governor = old_gov;
1666                                         __cpufreq_governor(data,
1667                                                            CPUFREQ_GOV_START);
1668                                 }
1669                                 ret = -EINVAL;
1670                                 goto error_out;
1671                         }
1672                         /* might be a policy change, too, so fall through */
1673                 }
1674                 dprintk("governor: change or update limits\n");
1675                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1676         }
1677
1678 error_out:
1679         cpufreq_debug_enable_ratelimit();
1680         return ret;
1681 }
1682
1683 /**
1684  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1685  *      @cpu: CPU which shall be re-evaluated
1686  *
1687  *      Usefull for policy notifiers which have different necessities
1688  *      at different times.
1689  */
1690 int cpufreq_update_policy(unsigned int cpu)
1691 {
1692         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1693         struct cpufreq_policy policy;
1694         int ret = 0;
1695
1696         if (!data)
1697                 return -ENODEV;
1698
1699         if (unlikely(lock_policy_rwsem_write(cpu)))
1700                 return -EINVAL;
1701
1702         dprintk("updating policy for CPU %u\n", cpu);
1703         memcpy(&policy, data, sizeof(struct cpufreq_policy));
1704         policy.min = data->user_policy.min;
1705         policy.max = data->user_policy.max;
1706         policy.policy = data->user_policy.policy;
1707         policy.governor = data->user_policy.governor;
1708
1709         /* BIOS might change freq behind our back
1710           -> ask driver for current freq and notify governors about a change */
1711         if (cpufreq_driver->get) {
1712                 policy.cur = cpufreq_driver->get(cpu);
1713                 if (!data->cur) {
1714                         dprintk("Driver did not initialize current freq");
1715                         data->cur = policy.cur;
1716                 } else {
1717                         if (data->cur != policy.cur)
1718                                 cpufreq_out_of_sync(cpu, data->cur,
1719                                                                 policy.cur);
1720                 }
1721         }
1722
1723         ret = __cpufreq_set_policy(data, &policy);
1724
1725         unlock_policy_rwsem_write(cpu);
1726
1727         cpufreq_cpu_put(data);
1728         return ret;
1729 }
1730 EXPORT_SYMBOL(cpufreq_update_policy);
1731
1732 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1733                                         unsigned long action, void *hcpu)
1734 {
1735         unsigned int cpu = (unsigned long)hcpu;
1736         struct sys_device *sys_dev;
1737
1738         sys_dev = get_cpu_sysdev(cpu);
1739         if (sys_dev) {
1740                 switch (action) {
1741                 case CPU_ONLINE:
1742                 case CPU_ONLINE_FROZEN:
1743                         cpufreq_add_dev(sys_dev);
1744                         break;
1745                 case CPU_DOWN_PREPARE:
1746                 case CPU_DOWN_PREPARE_FROZEN:
1747                         if (unlikely(lock_policy_rwsem_write(cpu)))
1748                                 BUG();
1749
1750                         __cpufreq_remove_dev(sys_dev);
1751                         break;
1752                 case CPU_DOWN_FAILED:
1753                 case CPU_DOWN_FAILED_FROZEN:
1754                         cpufreq_add_dev(sys_dev);
1755                         break;
1756                 }
1757         }
1758         return NOTIFY_OK;
1759 }
1760
1761 static struct notifier_block __refdata cpufreq_cpu_notifier =
1762 {
1763     .notifier_call = cpufreq_cpu_callback,
1764 };
1765
1766 /*********************************************************************
1767  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1768  *********************************************************************/
1769
1770 /**
1771  * cpufreq_register_driver - register a CPU Frequency driver
1772  * @driver_data: A struct cpufreq_driver containing the values#
1773  * submitted by the CPU Frequency driver.
1774  *
1775  *   Registers a CPU Frequency driver to this core code. This code
1776  * returns zero on success, -EBUSY when another driver got here first
1777  * (and isn't unregistered in the meantime).
1778  *
1779  */
1780 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1781 {
1782         unsigned long flags;
1783         int ret;
1784
1785         if (!driver_data || !driver_data->verify || !driver_data->init ||
1786             ((!driver_data->setpolicy) && (!driver_data->target)))
1787                 return -EINVAL;
1788
1789         dprintk("trying to register driver %s\n", driver_data->name);
1790
1791         if (driver_data->setpolicy)
1792                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1793
1794         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1795         if (cpufreq_driver) {
1796                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1797                 return -EBUSY;
1798         }
1799         cpufreq_driver = driver_data;
1800         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1801
1802         ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1803
1804         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1805                 int i;
1806                 ret = -ENODEV;
1807
1808                 /* check for at least one working CPU */
1809                 for (i=0; i<NR_CPUS; i++)
1810                         if (cpufreq_cpu_data[i])
1811                                 ret = 0;
1812
1813                 /* if all ->init() calls failed, unregister */
1814                 if (ret) {
1815                         dprintk("no CPU initialized for driver %s\n",
1816                                                         driver_data->name);
1817                         sysdev_driver_unregister(&cpu_sysdev_class,
1818                                                 &cpufreq_sysdev_driver);
1819
1820                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1821                         cpufreq_driver = NULL;
1822                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1823                 }
1824         }
1825
1826         if (!ret) {
1827                 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1828                 dprintk("driver %s up and running\n", driver_data->name);
1829                 cpufreq_debug_enable_ratelimit();
1830         }
1831
1832         return ret;
1833 }
1834 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1835
1836
1837 /**
1838  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1839  *
1840  *    Unregister the current CPUFreq driver. Only call this if you have
1841  * the right to do so, i.e. if you have succeeded in initialising before!
1842  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1843  * currently not initialised.
1844  */
1845 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1846 {
1847         unsigned long flags;
1848
1849         cpufreq_debug_disable_ratelimit();
1850
1851         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1852                 cpufreq_debug_enable_ratelimit();
1853                 return -EINVAL;
1854         }
1855
1856         dprintk("unregistering driver %s\n", driver->name);
1857
1858         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1859         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1860
1861         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1862         cpufreq_driver = NULL;
1863         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1864
1865         return 0;
1866 }
1867 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1868
1869 static int __init cpufreq_core_init(void)
1870 {
1871         int cpu;
1872
1873         for_each_possible_cpu(cpu) {
1874                 per_cpu(policy_cpu, cpu) = -1;
1875                 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1876         }
1877         return 0;
1878 }
1879
1880 core_initcall(cpufreq_core_init);