[PATCH] blk: remove BLK_TAGS_{PER_LONG|MASK}
[safe/jmp/linux-2.6] / drivers / block / ll_rw_blk.c
1 /*
2  *  linux/drivers/block/ll_rw_blk.c
3  *
4  * Copyright (C) 1991, 1992 Linus Torvalds
5  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
6  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
7  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> -  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
32
33 /*
34  * for max sense size
35  */
36 #include <scsi/scsi_cmnd.h>
37
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40
41 /*
42  * For the allocated request tables
43  */
44 static kmem_cache_t *request_cachep;
45
46 /*
47  * For queue allocation
48  */
49 static kmem_cache_t *requestq_cachep;
50
51 /*
52  * For io context allocations
53  */
54 static kmem_cache_t *iocontext_cachep;
55
56 static wait_queue_head_t congestion_wqh[2] = {
57                 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
58                 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
59         };
60
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue; 
65
66 unsigned long blk_max_low_pfn, blk_max_pfn;
67
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
70
71 /* Amount of time in which a process may batch requests */
72 #define BLK_BATCH_TIME  (HZ/50UL)
73
74 /* Number of requests a "batching" process may submit */
75 #define BLK_BATCH_REQ   32
76
77 /*
78  * Return the threshold (number of used requests) at which the queue is
79  * considered to be congested.  It include a little hysteresis to keep the
80  * context switch rate down.
81  */
82 static inline int queue_congestion_on_threshold(struct request_queue *q)
83 {
84         return q->nr_congestion_on;
85 }
86
87 /*
88  * The threshold at which a queue is considered to be uncongested
89  */
90 static inline int queue_congestion_off_threshold(struct request_queue *q)
91 {
92         return q->nr_congestion_off;
93 }
94
95 static void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97         int nr;
98
99         nr = q->nr_requests - (q->nr_requests / 8) + 1;
100         if (nr > q->nr_requests)
101                 nr = q->nr_requests;
102         q->nr_congestion_on = nr;
103
104         nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105         if (nr < 1)
106                 nr = 1;
107         q->nr_congestion_off = nr;
108 }
109
110 /*
111  * A queue has just exitted congestion.  Note this in the global counter of
112  * congested queues, and wake up anyone who was waiting for requests to be
113  * put back.
114  */
115 static void clear_queue_congested(request_queue_t *q, int rw)
116 {
117         enum bdi_state bit;
118         wait_queue_head_t *wqh = &congestion_wqh[rw];
119
120         bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
121         clear_bit(bit, &q->backing_dev_info.state);
122         smp_mb__after_clear_bit();
123         if (waitqueue_active(wqh))
124                 wake_up(wqh);
125 }
126
127 /*
128  * A queue has just entered congestion.  Flag that in the queue's VM-visible
129  * state flags and increment the global gounter of congested queues.
130  */
131 static void set_queue_congested(request_queue_t *q, int rw)
132 {
133         enum bdi_state bit;
134
135         bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
136         set_bit(bit, &q->backing_dev_info.state);
137 }
138
139 /**
140  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
141  * @bdev:       device
142  *
143  * Locates the passed device's request queue and returns the address of its
144  * backing_dev_info
145  *
146  * Will return NULL if the request queue cannot be located.
147  */
148 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149 {
150         struct backing_dev_info *ret = NULL;
151         request_queue_t *q = bdev_get_queue(bdev);
152
153         if (q)
154                 ret = &q->backing_dev_info;
155         return ret;
156 }
157
158 EXPORT_SYMBOL(blk_get_backing_dev_info);
159
160 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161 {
162         q->activity_fn = fn;
163         q->activity_data = data;
164 }
165
166 EXPORT_SYMBOL(blk_queue_activity_fn);
167
168 /**
169  * blk_queue_prep_rq - set a prepare_request function for queue
170  * @q:          queue
171  * @pfn:        prepare_request function
172  *
173  * It's possible for a queue to register a prepare_request callback which
174  * is invoked before the request is handed to the request_fn. The goal of
175  * the function is to prepare a request for I/O, it can be used to build a
176  * cdb from the request data for instance.
177  *
178  */
179 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180 {
181         q->prep_rq_fn = pfn;
182 }
183
184 EXPORT_SYMBOL(blk_queue_prep_rq);
185
186 /**
187  * blk_queue_merge_bvec - set a merge_bvec function for queue
188  * @q:          queue
189  * @mbfn:       merge_bvec_fn
190  *
191  * Usually queues have static limitations on the max sectors or segments that
192  * we can put in a request. Stacking drivers may have some settings that
193  * are dynamic, and thus we have to query the queue whether it is ok to
194  * add a new bio_vec to a bio at a given offset or not. If the block device
195  * has such limitations, it needs to register a merge_bvec_fn to control
196  * the size of bio's sent to it. Note that a block device *must* allow a
197  * single page to be added to an empty bio. The block device driver may want
198  * to use the bio_split() function to deal with these bio's. By default
199  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
200  * honored.
201  */
202 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203 {
204         q->merge_bvec_fn = mbfn;
205 }
206
207 EXPORT_SYMBOL(blk_queue_merge_bvec);
208
209 /**
210  * blk_queue_make_request - define an alternate make_request function for a device
211  * @q:  the request queue for the device to be affected
212  * @mfn: the alternate make_request function
213  *
214  * Description:
215  *    The normal way for &struct bios to be passed to a device
216  *    driver is for them to be collected into requests on a request
217  *    queue, and then to allow the device driver to select requests
218  *    off that queue when it is ready.  This works well for many block
219  *    devices. However some block devices (typically virtual devices
220  *    such as md or lvm) do not benefit from the processing on the
221  *    request queue, and are served best by having the requests passed
222  *    directly to them.  This can be achieved by providing a function
223  *    to blk_queue_make_request().
224  *
225  * Caveat:
226  *    The driver that does this *must* be able to deal appropriately
227  *    with buffers in "highmemory". This can be accomplished by either calling
228  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
229  *    blk_queue_bounce() to create a buffer in normal memory.
230  **/
231 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
232 {
233         /*
234          * set defaults
235          */
236         q->nr_requests = BLKDEV_MAX_RQ;
237         q->max_phys_segments = MAX_PHYS_SEGMENTS;
238         q->max_hw_segments = MAX_HW_SEGMENTS;
239         q->make_request_fn = mfn;
240         q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
241         q->backing_dev_info.state = 0;
242         q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
243         blk_queue_max_sectors(q, MAX_SECTORS);
244         blk_queue_hardsect_size(q, 512);
245         blk_queue_dma_alignment(q, 511);
246         blk_queue_congestion_threshold(q);
247         q->nr_batching = BLK_BATCH_REQ;
248
249         q->unplug_thresh = 4;           /* hmm */
250         q->unplug_delay = (3 * HZ) / 1000;      /* 3 milliseconds */
251         if (q->unplug_delay == 0)
252                 q->unplug_delay = 1;
253
254         INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255
256         q->unplug_timer.function = blk_unplug_timeout;
257         q->unplug_timer.data = (unsigned long)q;
258
259         /*
260          * by default assume old behaviour and bounce for any highmem page
261          */
262         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263
264         blk_queue_activity_fn(q, NULL, NULL);
265
266         INIT_LIST_HEAD(&q->drain_list);
267 }
268
269 EXPORT_SYMBOL(blk_queue_make_request);
270
271 static inline void rq_init(request_queue_t *q, struct request *rq)
272 {
273         INIT_LIST_HEAD(&rq->queuelist);
274
275         rq->errors = 0;
276         rq->rq_status = RQ_ACTIVE;
277         rq->bio = rq->biotail = NULL;
278         rq->buffer = NULL;
279         rq->ref_count = 1;
280         rq->q = q;
281         rq->waiting = NULL;
282         rq->special = NULL;
283         rq->data_len = 0;
284         rq->data = NULL;
285         rq->sense = NULL;
286         rq->end_io = NULL;
287         rq->end_io_data = NULL;
288 }
289
290 /**
291  * blk_queue_ordered - does this queue support ordered writes
292  * @q:     the request queue
293  * @flag:  see below
294  *
295  * Description:
296  *   For journalled file systems, doing ordered writes on a commit
297  *   block instead of explicitly doing wait_on_buffer (which is bad
298  *   for performance) can be a big win. Block drivers supporting this
299  *   feature should call this function and indicate so.
300  *
301  **/
302 void blk_queue_ordered(request_queue_t *q, int flag)
303 {
304         switch (flag) {
305                 case QUEUE_ORDERED_NONE:
306                         if (q->flush_rq)
307                                 kmem_cache_free(request_cachep, q->flush_rq);
308                         q->flush_rq = NULL;
309                         q->ordered = flag;
310                         break;
311                 case QUEUE_ORDERED_TAG:
312                         q->ordered = flag;
313                         break;
314                 case QUEUE_ORDERED_FLUSH:
315                         q->ordered = flag;
316                         if (!q->flush_rq)
317                                 q->flush_rq = kmem_cache_alloc(request_cachep,
318                                                                 GFP_KERNEL);
319                         break;
320                 default:
321                         printk("blk_queue_ordered: bad value %d\n", flag);
322                         break;
323         }
324 }
325
326 EXPORT_SYMBOL(blk_queue_ordered);
327
328 /**
329  * blk_queue_issue_flush_fn - set function for issuing a flush
330  * @q:     the request queue
331  * @iff:   the function to be called issuing the flush
332  *
333  * Description:
334  *   If a driver supports issuing a flush command, the support is notified
335  *   to the block layer by defining it through this call.
336  *
337  **/
338 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339 {
340         q->issue_flush_fn = iff;
341 }
342
343 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345 /*
346  * Cache flushing for ordered writes handling
347  */
348 static void blk_pre_flush_end_io(struct request *flush_rq)
349 {
350         struct request *rq = flush_rq->end_io_data;
351         request_queue_t *q = rq->q;
352
353         rq->flags |= REQ_BAR_PREFLUSH;
354
355         if (!flush_rq->errors)
356                 elv_requeue_request(q, rq);
357         else {
358                 q->end_flush_fn(q, flush_rq);
359                 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360                 q->request_fn(q);
361         }
362 }
363
364 static void blk_post_flush_end_io(struct request *flush_rq)
365 {
366         struct request *rq = flush_rq->end_io_data;
367         request_queue_t *q = rq->q;
368
369         rq->flags |= REQ_BAR_POSTFLUSH;
370
371         q->end_flush_fn(q, flush_rq);
372         clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373         q->request_fn(q);
374 }
375
376 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377 {
378         struct request *flush_rq = q->flush_rq;
379
380         BUG_ON(!blk_barrier_rq(rq));
381
382         if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383                 return NULL;
384
385         rq_init(q, flush_rq);
386         flush_rq->elevator_private = NULL;
387         flush_rq->flags = REQ_BAR_FLUSH;
388         flush_rq->rq_disk = rq->rq_disk;
389         flush_rq->rl = NULL;
390
391         /*
392          * prepare_flush returns 0 if no flush is needed, just mark both
393          * pre and post flush as done in that case
394          */
395         if (!q->prepare_flush_fn(q, flush_rq)) {
396                 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397                 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398                 return rq;
399         }
400
401         /*
402          * some drivers dequeue requests right away, some only after io
403          * completion. make sure the request is dequeued.
404          */
405         if (!list_empty(&rq->queuelist))
406                 blkdev_dequeue_request(rq);
407
408         elv_deactivate_request(q, rq);
409
410         flush_rq->end_io_data = rq;
411         flush_rq->end_io = blk_pre_flush_end_io;
412
413         __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414         return flush_rq;
415 }
416
417 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418 {
419         struct request *flush_rq = q->flush_rq;
420
421         BUG_ON(!blk_barrier_rq(rq));
422
423         rq_init(q, flush_rq);
424         flush_rq->elevator_private = NULL;
425         flush_rq->flags = REQ_BAR_FLUSH;
426         flush_rq->rq_disk = rq->rq_disk;
427         flush_rq->rl = NULL;
428
429         if (q->prepare_flush_fn(q, flush_rq)) {
430                 flush_rq->end_io_data = rq;
431                 flush_rq->end_io = blk_post_flush_end_io;
432
433                 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434                 q->request_fn(q);
435         }
436 }
437
438 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439                                         int sectors)
440 {
441         if (sectors > rq->nr_sectors)
442                 sectors = rq->nr_sectors;
443
444         rq->nr_sectors -= sectors;
445         return rq->nr_sectors;
446 }
447
448 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449                                      int sectors, int queue_locked)
450 {
451         if (q->ordered != QUEUE_ORDERED_FLUSH)
452                 return 0;
453         if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454                 return 0;
455         if (blk_barrier_postflush(rq))
456                 return 0;
457
458         if (!blk_check_end_barrier(q, rq, sectors)) {
459                 unsigned long flags = 0;
460
461                 if (!queue_locked)
462                         spin_lock_irqsave(q->queue_lock, flags);
463
464                 blk_start_post_flush(q, rq);
465
466                 if (!queue_locked)
467                         spin_unlock_irqrestore(q->queue_lock, flags);
468         }
469
470         return 1;
471 }
472
473 /**
474  * blk_complete_barrier_rq - complete possible barrier request
475  * @q:  the request queue for the device
476  * @rq:  the request
477  * @sectors:  number of sectors to complete
478  *
479  * Description:
480  *   Used in driver end_io handling to determine whether to postpone
481  *   completion of a barrier request until a post flush has been done. This
482  *   is the unlocked variant, used if the caller doesn't already hold the
483  *   queue lock.
484  **/
485 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486 {
487         return __blk_complete_barrier_rq(q, rq, sectors, 0);
488 }
489 EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491 /**
492  * blk_complete_barrier_rq_locked - complete possible barrier request
493  * @q:  the request queue for the device
494  * @rq:  the request
495  * @sectors:  number of sectors to complete
496  *
497  * Description:
498  *   See blk_complete_barrier_rq(). This variant must be used if the caller
499  *   holds the queue lock.
500  **/
501 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502                                    int sectors)
503 {
504         return __blk_complete_barrier_rq(q, rq, sectors, 1);
505 }
506 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508 /**
509  * blk_queue_bounce_limit - set bounce buffer limit for queue
510  * @q:  the request queue for the device
511  * @dma_addr:   bus address limit
512  *
513  * Description:
514  *    Different hardware can have different requirements as to what pages
515  *    it can do I/O directly to. A low level driver can call
516  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
517  *    buffers for doing I/O to pages residing above @page. By default
518  *    the block layer sets this to the highest numbered "low" memory page.
519  **/
520 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521 {
522         unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524         /*
525          * set appropriate bounce gfp mask -- unfortunately we don't have a
526          * full 4GB zone, so we have to resort to low memory for any bounces.
527          * ISA has its own < 16MB zone.
528          */
529         if (bounce_pfn < blk_max_low_pfn) {
530                 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531                 init_emergency_isa_pool();
532                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533         } else
534                 q->bounce_gfp = GFP_NOIO;
535
536         q->bounce_pfn = bounce_pfn;
537 }
538
539 EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541 /**
542  * blk_queue_max_sectors - set max sectors for a request for this queue
543  * @q:  the request queue for the device
544  * @max_sectors:  max sectors in the usual 512b unit
545  *
546  * Description:
547  *    Enables a low level driver to set an upper limit on the size of
548  *    received requests.
549  **/
550 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551 {
552         if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553                 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554                 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555         }
556
557         q->max_sectors = q->max_hw_sectors = max_sectors;
558 }
559
560 EXPORT_SYMBOL(blk_queue_max_sectors);
561
562 /**
563  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564  * @q:  the request queue for the device
565  * @max_segments:  max number of segments
566  *
567  * Description:
568  *    Enables a low level driver to set an upper limit on the number of
569  *    physical data segments in a request.  This would be the largest sized
570  *    scatter list the driver could handle.
571  **/
572 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573 {
574         if (!max_segments) {
575                 max_segments = 1;
576                 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577         }
578
579         q->max_phys_segments = max_segments;
580 }
581
582 EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584 /**
585  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586  * @q:  the request queue for the device
587  * @max_segments:  max number of segments
588  *
589  * Description:
590  *    Enables a low level driver to set an upper limit on the number of
591  *    hw data segments in a request.  This would be the largest number of
592  *    address/length pairs the host adapter can actually give as once
593  *    to the device.
594  **/
595 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596 {
597         if (!max_segments) {
598                 max_segments = 1;
599                 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600         }
601
602         q->max_hw_segments = max_segments;
603 }
604
605 EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607 /**
608  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609  * @q:  the request queue for the device
610  * @max_size:  max size of segment in bytes
611  *
612  * Description:
613  *    Enables a low level driver to set an upper limit on the size of a
614  *    coalesced segment
615  **/
616 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617 {
618         if (max_size < PAGE_CACHE_SIZE) {
619                 max_size = PAGE_CACHE_SIZE;
620                 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621         }
622
623         q->max_segment_size = max_size;
624 }
625
626 EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628 /**
629  * blk_queue_hardsect_size - set hardware sector size for the queue
630  * @q:  the request queue for the device
631  * @size:  the hardware sector size, in bytes
632  *
633  * Description:
634  *   This should typically be set to the lowest possible sector size
635  *   that the hardware can operate on (possible without reverting to
636  *   even internal read-modify-write operations). Usually the default
637  *   of 512 covers most hardware.
638  **/
639 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640 {
641         q->hardsect_size = size;
642 }
643
644 EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646 /*
647  * Returns the minimum that is _not_ zero, unless both are zero.
648  */
649 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651 /**
652  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653  * @t:  the stacking driver (top)
654  * @b:  the underlying device (bottom)
655  **/
656 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657 {
658         /* zero is "infinity" */
659         t->max_sectors = t->max_hw_sectors =
660                 min_not_zero(t->max_sectors,b->max_sectors);
661
662         t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663         t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664         t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665         t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666 }
667
668 EXPORT_SYMBOL(blk_queue_stack_limits);
669
670 /**
671  * blk_queue_segment_boundary - set boundary rules for segment merging
672  * @q:  the request queue for the device
673  * @mask:  the memory boundary mask
674  **/
675 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676 {
677         if (mask < PAGE_CACHE_SIZE - 1) {
678                 mask = PAGE_CACHE_SIZE - 1;
679                 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680         }
681
682         q->seg_boundary_mask = mask;
683 }
684
685 EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687 /**
688  * blk_queue_dma_alignment - set dma length and memory alignment
689  * @q:     the request queue for the device
690  * @mask:  alignment mask
691  *
692  * description:
693  *    set required memory and length aligment for direct dma transactions.
694  *    this is used when buiding direct io requests for the queue.
695  *
696  **/
697 void blk_queue_dma_alignment(request_queue_t *q, int mask)
698 {
699         q->dma_alignment = mask;
700 }
701
702 EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704 /**
705  * blk_queue_find_tag - find a request by its tag and queue
706  *
707  * @q:   The request queue for the device
708  * @tag: The tag of the request
709  *
710  * Notes:
711  *    Should be used when a device returns a tag and you want to match
712  *    it with a request.
713  *
714  *    no locks need be held.
715  **/
716 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717 {
718         struct blk_queue_tag *bqt = q->queue_tags;
719
720         if (unlikely(bqt == NULL || tag >= bqt->max_depth))
721                 return NULL;
722
723         return bqt->tag_index[tag];
724 }
725
726 EXPORT_SYMBOL(blk_queue_find_tag);
727
728 /**
729  * __blk_queue_free_tags - release tag maintenance info
730  * @q:  the request queue for the device
731  *
732  *  Notes:
733  *    blk_cleanup_queue() will take care of calling this function, if tagging
734  *    has been used. So there's no need to call this directly.
735  **/
736 static void __blk_queue_free_tags(request_queue_t *q)
737 {
738         struct blk_queue_tag *bqt = q->queue_tags;
739
740         if (!bqt)
741                 return;
742
743         if (atomic_dec_and_test(&bqt->refcnt)) {
744                 BUG_ON(bqt->busy);
745                 BUG_ON(!list_empty(&bqt->busy_list));
746
747                 kfree(bqt->tag_index);
748                 bqt->tag_index = NULL;
749
750                 kfree(bqt->tag_map);
751                 bqt->tag_map = NULL;
752
753                 kfree(bqt);
754         }
755
756         q->queue_tags = NULL;
757         q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758 }
759
760 /**
761  * blk_queue_free_tags - release tag maintenance info
762  * @q:  the request queue for the device
763  *
764  *  Notes:
765  *      This is used to disabled tagged queuing to a device, yet leave
766  *      queue in function.
767  **/
768 void blk_queue_free_tags(request_queue_t *q)
769 {
770         clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771 }
772
773 EXPORT_SYMBOL(blk_queue_free_tags);
774
775 static int
776 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777 {
778         struct request **tag_index;
779         unsigned long *tag_map;
780         int nr_ulongs;
781
782         if (depth > q->nr_requests * 2) {
783                 depth = q->nr_requests * 2;
784                 printk(KERN_ERR "%s: adjusted depth to %d\n",
785                                 __FUNCTION__, depth);
786         }
787
788         tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789         if (!tag_index)
790                 goto fail;
791
792         nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
793         tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
794         if (!tag_map)
795                 goto fail;
796
797         memset(tag_index, 0, depth * sizeof(struct request *));
798         memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
799         tags->max_depth = depth;
800         tags->tag_index = tag_index;
801         tags->tag_map = tag_map;
802
803         return 0;
804 fail:
805         kfree(tag_index);
806         return -ENOMEM;
807 }
808
809 /**
810  * blk_queue_init_tags - initialize the queue tag info
811  * @q:  the request queue for the device
812  * @depth:  the maximum queue depth supported
813  * @tags: the tag to use
814  **/
815 int blk_queue_init_tags(request_queue_t *q, int depth,
816                         struct blk_queue_tag *tags)
817 {
818         int rc;
819
820         BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
821
822         if (!tags && !q->queue_tags) {
823                 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
824                 if (!tags)
825                         goto fail;
826
827                 if (init_tag_map(q, tags, depth))
828                         goto fail;
829
830                 INIT_LIST_HEAD(&tags->busy_list);
831                 tags->busy = 0;
832                 atomic_set(&tags->refcnt, 1);
833         } else if (q->queue_tags) {
834                 if ((rc = blk_queue_resize_tags(q, depth)))
835                         return rc;
836                 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
837                 return 0;
838         } else
839                 atomic_inc(&tags->refcnt);
840
841         /*
842          * assign it, all done
843          */
844         q->queue_tags = tags;
845         q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
846         return 0;
847 fail:
848         kfree(tags);
849         return -ENOMEM;
850 }
851
852 EXPORT_SYMBOL(blk_queue_init_tags);
853
854 /**
855  * blk_queue_resize_tags - change the queueing depth
856  * @q:  the request queue for the device
857  * @new_depth: the new max command queueing depth
858  *
859  *  Notes:
860  *    Must be called with the queue lock held.
861  **/
862 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
863 {
864         struct blk_queue_tag *bqt = q->queue_tags;
865         struct request **tag_index;
866         unsigned long *tag_map;
867         int max_depth, nr_ulongs;
868
869         if (!bqt)
870                 return -ENXIO;
871
872         /*
873          * save the old state info, so we can copy it back
874          */
875         tag_index = bqt->tag_index;
876         tag_map = bqt->tag_map;
877         max_depth = bqt->max_depth;
878
879         if (init_tag_map(q, bqt, new_depth))
880                 return -ENOMEM;
881
882         memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
883         nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
884         memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
885
886         kfree(tag_index);
887         kfree(tag_map);
888         return 0;
889 }
890
891 EXPORT_SYMBOL(blk_queue_resize_tags);
892
893 /**
894  * blk_queue_end_tag - end tag operations for a request
895  * @q:  the request queue for the device
896  * @rq: the request that has completed
897  *
898  *  Description:
899  *    Typically called when end_that_request_first() returns 0, meaning
900  *    all transfers have been done for a request. It's important to call
901  *    this function before end_that_request_last(), as that will put the
902  *    request back on the free list thus corrupting the internal tag list.
903  *
904  *  Notes:
905  *   queue lock must be held.
906  **/
907 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
908 {
909         struct blk_queue_tag *bqt = q->queue_tags;
910         int tag = rq->tag;
911
912         BUG_ON(tag == -1);
913
914         if (unlikely(tag >= bqt->max_depth))
915                 return;
916
917         if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
918                 printk("attempt to clear non-busy tag (%d)\n", tag);
919                 return;
920         }
921
922         list_del_init(&rq->queuelist);
923         rq->flags &= ~REQ_QUEUED;
924         rq->tag = -1;
925
926         if (unlikely(bqt->tag_index[tag] == NULL))
927                 printk("tag %d is missing\n", tag);
928
929         bqt->tag_index[tag] = NULL;
930         bqt->busy--;
931 }
932
933 EXPORT_SYMBOL(blk_queue_end_tag);
934
935 /**
936  * blk_queue_start_tag - find a free tag and assign it
937  * @q:  the request queue for the device
938  * @rq:  the block request that needs tagging
939  *
940  *  Description:
941  *    This can either be used as a stand-alone helper, or possibly be
942  *    assigned as the queue &prep_rq_fn (in which case &struct request
943  *    automagically gets a tag assigned). Note that this function
944  *    assumes that any type of request can be queued! if this is not
945  *    true for your device, you must check the request type before
946  *    calling this function.  The request will also be removed from
947  *    the request queue, so it's the drivers responsibility to readd
948  *    it if it should need to be restarted for some reason.
949  *
950  *  Notes:
951  *   queue lock must be held.
952  **/
953 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
954 {
955         struct blk_queue_tag *bqt = q->queue_tags;
956         int tag;
957
958         if (unlikely((rq->flags & REQ_QUEUED))) {
959                 printk(KERN_ERR 
960                        "request %p for device [%s] already tagged %d",
961                        rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
962                 BUG();
963         }
964
965         tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
966         if (tag >= bqt->max_depth)
967                 return 1;
968
969         __set_bit(tag, bqt->tag_map);
970
971         rq->flags |= REQ_QUEUED;
972         rq->tag = tag;
973         bqt->tag_index[tag] = rq;
974         blkdev_dequeue_request(rq);
975         list_add(&rq->queuelist, &bqt->busy_list);
976         bqt->busy++;
977         return 0;
978 }
979
980 EXPORT_SYMBOL(blk_queue_start_tag);
981
982 /**
983  * blk_queue_invalidate_tags - invalidate all pending tags
984  * @q:  the request queue for the device
985  *
986  *  Description:
987  *   Hardware conditions may dictate a need to stop all pending requests.
988  *   In this case, we will safely clear the block side of the tag queue and
989  *   readd all requests to the request queue in the right order.
990  *
991  *  Notes:
992  *   queue lock must be held.
993  **/
994 void blk_queue_invalidate_tags(request_queue_t *q)
995 {
996         struct blk_queue_tag *bqt = q->queue_tags;
997         struct list_head *tmp, *n;
998         struct request *rq;
999
1000         list_for_each_safe(tmp, n, &bqt->busy_list) {
1001                 rq = list_entry_rq(tmp);
1002
1003                 if (rq->tag == -1) {
1004                         printk("bad tag found on list\n");
1005                         list_del_init(&rq->queuelist);
1006                         rq->flags &= ~REQ_QUEUED;
1007                 } else
1008                         blk_queue_end_tag(q, rq);
1009
1010                 rq->flags &= ~REQ_STARTED;
1011                 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1012         }
1013 }
1014
1015 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1016
1017 static char *rq_flags[] = {
1018         "REQ_RW",
1019         "REQ_FAILFAST",
1020         "REQ_SOFTBARRIER",
1021         "REQ_HARDBARRIER",
1022         "REQ_CMD",
1023         "REQ_NOMERGE",
1024         "REQ_STARTED",
1025         "REQ_DONTPREP",
1026         "REQ_QUEUED",
1027         "REQ_PC",
1028         "REQ_BLOCK_PC",
1029         "REQ_SENSE",
1030         "REQ_FAILED",
1031         "REQ_QUIET",
1032         "REQ_SPECIAL",
1033         "REQ_DRIVE_CMD",
1034         "REQ_DRIVE_TASK",
1035         "REQ_DRIVE_TASKFILE",
1036         "REQ_PREEMPT",
1037         "REQ_PM_SUSPEND",
1038         "REQ_PM_RESUME",
1039         "REQ_PM_SHUTDOWN",
1040 };
1041
1042 void blk_dump_rq_flags(struct request *rq, char *msg)
1043 {
1044         int bit;
1045
1046         printk("%s: dev %s: flags = ", msg,
1047                 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1048         bit = 0;
1049         do {
1050                 if (rq->flags & (1 << bit))
1051                         printk("%s ", rq_flags[bit]);
1052                 bit++;
1053         } while (bit < __REQ_NR_BITS);
1054
1055         printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1056                                                        rq->nr_sectors,
1057                                                        rq->current_nr_sectors);
1058         printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1059
1060         if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1061                 printk("cdb: ");
1062                 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1063                         printk("%02x ", rq->cmd[bit]);
1064                 printk("\n");
1065         }
1066 }
1067
1068 EXPORT_SYMBOL(blk_dump_rq_flags);
1069
1070 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1071 {
1072         struct bio_vec *bv, *bvprv = NULL;
1073         int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1074         int high, highprv = 1;
1075
1076         if (unlikely(!bio->bi_io_vec))
1077                 return;
1078
1079         cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1080         hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1081         bio_for_each_segment(bv, bio, i) {
1082                 /*
1083                  * the trick here is making sure that a high page is never
1084                  * considered part of another segment, since that might
1085                  * change with the bounce page.
1086                  */
1087                 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1088                 if (high || highprv)
1089                         goto new_hw_segment;
1090                 if (cluster) {
1091                         if (seg_size + bv->bv_len > q->max_segment_size)
1092                                 goto new_segment;
1093                         if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1094                                 goto new_segment;
1095                         if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1096                                 goto new_segment;
1097                         if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1098                                 goto new_hw_segment;
1099
1100                         seg_size += bv->bv_len;
1101                         hw_seg_size += bv->bv_len;
1102                         bvprv = bv;
1103                         continue;
1104                 }
1105 new_segment:
1106                 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1107                     !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1108                         hw_seg_size += bv->bv_len;
1109                 } else {
1110 new_hw_segment:
1111                         if (hw_seg_size > bio->bi_hw_front_size)
1112                                 bio->bi_hw_front_size = hw_seg_size;
1113                         hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1114                         nr_hw_segs++;
1115                 }
1116
1117                 nr_phys_segs++;
1118                 bvprv = bv;
1119                 seg_size = bv->bv_len;
1120                 highprv = high;
1121         }
1122         if (hw_seg_size > bio->bi_hw_back_size)
1123                 bio->bi_hw_back_size = hw_seg_size;
1124         if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1125                 bio->bi_hw_front_size = hw_seg_size;
1126         bio->bi_phys_segments = nr_phys_segs;
1127         bio->bi_hw_segments = nr_hw_segs;
1128         bio->bi_flags |= (1 << BIO_SEG_VALID);
1129 }
1130
1131
1132 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1133                                    struct bio *nxt)
1134 {
1135         if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1136                 return 0;
1137
1138         if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1139                 return 0;
1140         if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1141                 return 0;
1142
1143         /*
1144          * bio and nxt are contigous in memory, check if the queue allows
1145          * these two to be merged into one
1146          */
1147         if (BIO_SEG_BOUNDARY(q, bio, nxt))
1148                 return 1;
1149
1150         return 0;
1151 }
1152
1153 EXPORT_SYMBOL(blk_phys_contig_segment);
1154
1155 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1156                                  struct bio *nxt)
1157 {
1158         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1159                 blk_recount_segments(q, bio);
1160         if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1161                 blk_recount_segments(q, nxt);
1162         if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1163             BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1164                 return 0;
1165         if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1166                 return 0;
1167
1168         return 1;
1169 }
1170
1171 EXPORT_SYMBOL(blk_hw_contig_segment);
1172
1173 /*
1174  * map a request to scatterlist, return number of sg entries setup. Caller
1175  * must make sure sg can hold rq->nr_phys_segments entries
1176  */
1177 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1178 {
1179         struct bio_vec *bvec, *bvprv;
1180         struct bio *bio;
1181         int nsegs, i, cluster;
1182
1183         nsegs = 0;
1184         cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1185
1186         /*
1187          * for each bio in rq
1188          */
1189         bvprv = NULL;
1190         rq_for_each_bio(bio, rq) {
1191                 /*
1192                  * for each segment in bio
1193                  */
1194                 bio_for_each_segment(bvec, bio, i) {
1195                         int nbytes = bvec->bv_len;
1196
1197                         if (bvprv && cluster) {
1198                                 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1199                                         goto new_segment;
1200
1201                                 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1202                                         goto new_segment;
1203                                 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1204                                         goto new_segment;
1205
1206                                 sg[nsegs - 1].length += nbytes;
1207                         } else {
1208 new_segment:
1209                                 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1210                                 sg[nsegs].page = bvec->bv_page;
1211                                 sg[nsegs].length = nbytes;
1212                                 sg[nsegs].offset = bvec->bv_offset;
1213
1214                                 nsegs++;
1215                         }
1216                         bvprv = bvec;
1217                 } /* segments in bio */
1218         } /* bios in rq */
1219
1220         return nsegs;
1221 }
1222
1223 EXPORT_SYMBOL(blk_rq_map_sg);
1224
1225 /*
1226  * the standard queue merge functions, can be overridden with device
1227  * specific ones if so desired
1228  */
1229
1230 static inline int ll_new_mergeable(request_queue_t *q,
1231                                    struct request *req,
1232                                    struct bio *bio)
1233 {
1234         int nr_phys_segs = bio_phys_segments(q, bio);
1235
1236         if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1237                 req->flags |= REQ_NOMERGE;
1238                 if (req == q->last_merge)
1239                         q->last_merge = NULL;
1240                 return 0;
1241         }
1242
1243         /*
1244          * A hw segment is just getting larger, bump just the phys
1245          * counter.
1246          */
1247         req->nr_phys_segments += nr_phys_segs;
1248         return 1;
1249 }
1250
1251 static inline int ll_new_hw_segment(request_queue_t *q,
1252                                     struct request *req,
1253                                     struct bio *bio)
1254 {
1255         int nr_hw_segs = bio_hw_segments(q, bio);
1256         int nr_phys_segs = bio_phys_segments(q, bio);
1257
1258         if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1259             || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1260                 req->flags |= REQ_NOMERGE;
1261                 if (req == q->last_merge)
1262                         q->last_merge = NULL;
1263                 return 0;
1264         }
1265
1266         /*
1267          * This will form the start of a new hw segment.  Bump both
1268          * counters.
1269          */
1270         req->nr_hw_segments += nr_hw_segs;
1271         req->nr_phys_segments += nr_phys_segs;
1272         return 1;
1273 }
1274
1275 static int ll_back_merge_fn(request_queue_t *q, struct request *req, 
1276                             struct bio *bio)
1277 {
1278         int len;
1279
1280         if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1281                 req->flags |= REQ_NOMERGE;
1282                 if (req == q->last_merge)
1283                         q->last_merge = NULL;
1284                 return 0;
1285         }
1286         if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1287                 blk_recount_segments(q, req->biotail);
1288         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1289                 blk_recount_segments(q, bio);
1290         len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1291         if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1292             !BIOVEC_VIRT_OVERSIZE(len)) {
1293                 int mergeable =  ll_new_mergeable(q, req, bio);
1294
1295                 if (mergeable) {
1296                         if (req->nr_hw_segments == 1)
1297                                 req->bio->bi_hw_front_size = len;
1298                         if (bio->bi_hw_segments == 1)
1299                                 bio->bi_hw_back_size = len;
1300                 }
1301                 return mergeable;
1302         }
1303
1304         return ll_new_hw_segment(q, req, bio);
1305 }
1306
1307 static int ll_front_merge_fn(request_queue_t *q, struct request *req, 
1308                              struct bio *bio)
1309 {
1310         int len;
1311
1312         if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1313                 req->flags |= REQ_NOMERGE;
1314                 if (req == q->last_merge)
1315                         q->last_merge = NULL;
1316                 return 0;
1317         }
1318         len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1319         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1320                 blk_recount_segments(q, bio);
1321         if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1322                 blk_recount_segments(q, req->bio);
1323         if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1324             !BIOVEC_VIRT_OVERSIZE(len)) {
1325                 int mergeable =  ll_new_mergeable(q, req, bio);
1326
1327                 if (mergeable) {
1328                         if (bio->bi_hw_segments == 1)
1329                                 bio->bi_hw_front_size = len;
1330                         if (req->nr_hw_segments == 1)
1331                                 req->biotail->bi_hw_back_size = len;
1332                 }
1333                 return mergeable;
1334         }
1335
1336         return ll_new_hw_segment(q, req, bio);
1337 }
1338
1339 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1340                                 struct request *next)
1341 {
1342         int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1343         int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1344
1345         /*
1346          * First check if the either of the requests are re-queued
1347          * requests.  Can't merge them if they are.
1348          */
1349         if (req->special || next->special)
1350                 return 0;
1351
1352         /*
1353          * Will it become to large?
1354          */
1355         if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1356                 return 0;
1357
1358         total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1359         if (blk_phys_contig_segment(q, req->biotail, next->bio))
1360                 total_phys_segments--;
1361
1362         if (total_phys_segments > q->max_phys_segments)
1363                 return 0;
1364
1365         total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1366         if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1367                 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1368                 /*
1369                  * propagate the combined length to the end of the requests
1370                  */
1371                 if (req->nr_hw_segments == 1)
1372                         req->bio->bi_hw_front_size = len;
1373                 if (next->nr_hw_segments == 1)
1374                         next->biotail->bi_hw_back_size = len;
1375                 total_hw_segments--;
1376         }
1377
1378         if (total_hw_segments > q->max_hw_segments)
1379                 return 0;
1380
1381         /* Merge is OK... */
1382         req->nr_phys_segments = total_phys_segments;
1383         req->nr_hw_segments = total_hw_segments;
1384         return 1;
1385 }
1386
1387 /*
1388  * "plug" the device if there are no outstanding requests: this will
1389  * force the transfer to start only after we have put all the requests
1390  * on the list.
1391  *
1392  * This is called with interrupts off and no requests on the queue and
1393  * with the queue lock held.
1394  */
1395 void blk_plug_device(request_queue_t *q)
1396 {
1397         WARN_ON(!irqs_disabled());
1398
1399         /*
1400          * don't plug a stopped queue, it must be paired with blk_start_queue()
1401          * which will restart the queueing
1402          */
1403         if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1404                 return;
1405
1406         if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1407                 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1408 }
1409
1410 EXPORT_SYMBOL(blk_plug_device);
1411
1412 /*
1413  * remove the queue from the plugged list, if present. called with
1414  * queue lock held and interrupts disabled.
1415  */
1416 int blk_remove_plug(request_queue_t *q)
1417 {
1418         WARN_ON(!irqs_disabled());
1419
1420         if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1421                 return 0;
1422
1423         del_timer(&q->unplug_timer);
1424         return 1;
1425 }
1426
1427 EXPORT_SYMBOL(blk_remove_plug);
1428
1429 /*
1430  * remove the plug and let it rip..
1431  */
1432 void __generic_unplug_device(request_queue_t *q)
1433 {
1434         if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1435                 return;
1436
1437         if (!blk_remove_plug(q))
1438                 return;
1439
1440         /*
1441          * was plugged, fire request_fn if queue has stuff to do
1442          */
1443         if (elv_next_request(q))
1444                 q->request_fn(q);
1445 }
1446 EXPORT_SYMBOL(__generic_unplug_device);
1447
1448 /**
1449  * generic_unplug_device - fire a request queue
1450  * @q:    The &request_queue_t in question
1451  *
1452  * Description:
1453  *   Linux uses plugging to build bigger requests queues before letting
1454  *   the device have at them. If a queue is plugged, the I/O scheduler
1455  *   is still adding and merging requests on the queue. Once the queue
1456  *   gets unplugged, the request_fn defined for the queue is invoked and
1457  *   transfers started.
1458  **/
1459 void generic_unplug_device(request_queue_t *q)
1460 {
1461         spin_lock_irq(q->queue_lock);
1462         __generic_unplug_device(q);
1463         spin_unlock_irq(q->queue_lock);
1464 }
1465 EXPORT_SYMBOL(generic_unplug_device);
1466
1467 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1468                                    struct page *page)
1469 {
1470         request_queue_t *q = bdi->unplug_io_data;
1471
1472         /*
1473          * devices don't necessarily have an ->unplug_fn defined
1474          */
1475         if (q->unplug_fn)
1476                 q->unplug_fn(q);
1477 }
1478
1479 static void blk_unplug_work(void *data)
1480 {
1481         request_queue_t *q = data;
1482
1483         q->unplug_fn(q);
1484 }
1485
1486 static void blk_unplug_timeout(unsigned long data)
1487 {
1488         request_queue_t *q = (request_queue_t *)data;
1489
1490         kblockd_schedule_work(&q->unplug_work);
1491 }
1492
1493 /**
1494  * blk_start_queue - restart a previously stopped queue
1495  * @q:    The &request_queue_t in question
1496  *
1497  * Description:
1498  *   blk_start_queue() will clear the stop flag on the queue, and call
1499  *   the request_fn for the queue if it was in a stopped state when
1500  *   entered. Also see blk_stop_queue(). Queue lock must be held.
1501  **/
1502 void blk_start_queue(request_queue_t *q)
1503 {
1504         clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1505
1506         /*
1507          * one level of recursion is ok and is much faster than kicking
1508          * the unplug handling
1509          */
1510         if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1511                 q->request_fn(q);
1512                 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1513         } else {
1514                 blk_plug_device(q);
1515                 kblockd_schedule_work(&q->unplug_work);
1516         }
1517 }
1518
1519 EXPORT_SYMBOL(blk_start_queue);
1520
1521 /**
1522  * blk_stop_queue - stop a queue
1523  * @q:    The &request_queue_t in question
1524  *
1525  * Description:
1526  *   The Linux block layer assumes that a block driver will consume all
1527  *   entries on the request queue when the request_fn strategy is called.
1528  *   Often this will not happen, because of hardware limitations (queue
1529  *   depth settings). If a device driver gets a 'queue full' response,
1530  *   or if it simply chooses not to queue more I/O at one point, it can
1531  *   call this function to prevent the request_fn from being called until
1532  *   the driver has signalled it's ready to go again. This happens by calling
1533  *   blk_start_queue() to restart queue operations. Queue lock must be held.
1534  **/
1535 void blk_stop_queue(request_queue_t *q)
1536 {
1537         blk_remove_plug(q);
1538         set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1539 }
1540 EXPORT_SYMBOL(blk_stop_queue);
1541
1542 /**
1543  * blk_sync_queue - cancel any pending callbacks on a queue
1544  * @q: the queue
1545  *
1546  * Description:
1547  *     The block layer may perform asynchronous callback activity
1548  *     on a queue, such as calling the unplug function after a timeout.
1549  *     A block device may call blk_sync_queue to ensure that any
1550  *     such activity is cancelled, thus allowing it to release resources
1551  *     the the callbacks might use. The caller must already have made sure
1552  *     that its ->make_request_fn will not re-add plugging prior to calling
1553  *     this function.
1554  *
1555  */
1556 void blk_sync_queue(struct request_queue *q)
1557 {
1558         del_timer_sync(&q->unplug_timer);
1559         kblockd_flush();
1560 }
1561 EXPORT_SYMBOL(blk_sync_queue);
1562
1563 /**
1564  * blk_run_queue - run a single device queue
1565  * @q:  The queue to run
1566  */
1567 void blk_run_queue(struct request_queue *q)
1568 {
1569         unsigned long flags;
1570
1571         spin_lock_irqsave(q->queue_lock, flags);
1572         blk_remove_plug(q);
1573         if (!elv_queue_empty(q))
1574                 q->request_fn(q);
1575         spin_unlock_irqrestore(q->queue_lock, flags);
1576 }
1577 EXPORT_SYMBOL(blk_run_queue);
1578
1579 /**
1580  * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1581  * @q:    the request queue to be released
1582  *
1583  * Description:
1584  *     blk_cleanup_queue is the pair to blk_init_queue() or
1585  *     blk_queue_make_request().  It should be called when a request queue is
1586  *     being released; typically when a block device is being de-registered.
1587  *     Currently, its primary task it to free all the &struct request
1588  *     structures that were allocated to the queue and the queue itself.
1589  *
1590  * Caveat:
1591  *     Hopefully the low level driver will have finished any
1592  *     outstanding requests first...
1593  **/
1594 void blk_cleanup_queue(request_queue_t * q)
1595 {
1596         struct request_list *rl = &q->rq;
1597
1598         if (!atomic_dec_and_test(&q->refcnt))
1599                 return;
1600
1601         if (q->elevator)
1602                 elevator_exit(q->elevator);
1603
1604         blk_sync_queue(q);
1605
1606         if (rl->rq_pool)
1607                 mempool_destroy(rl->rq_pool);
1608
1609         if (q->queue_tags)
1610                 __blk_queue_free_tags(q);
1611
1612         blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1613
1614         kmem_cache_free(requestq_cachep, q);
1615 }
1616
1617 EXPORT_SYMBOL(blk_cleanup_queue);
1618
1619 static int blk_init_free_list(request_queue_t *q)
1620 {
1621         struct request_list *rl = &q->rq;
1622
1623         rl->count[READ] = rl->count[WRITE] = 0;
1624         rl->starved[READ] = rl->starved[WRITE] = 0;
1625         init_waitqueue_head(&rl->wait[READ]);
1626         init_waitqueue_head(&rl->wait[WRITE]);
1627         init_waitqueue_head(&rl->drain);
1628
1629         rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1630                                 mempool_free_slab, request_cachep, q->node);
1631
1632         if (!rl->rq_pool)
1633                 return -ENOMEM;
1634
1635         return 0;
1636 }
1637
1638 static int __make_request(request_queue_t *, struct bio *);
1639
1640 request_queue_t *blk_alloc_queue(int gfp_mask)
1641 {
1642         return blk_alloc_queue_node(gfp_mask, -1);
1643 }
1644 EXPORT_SYMBOL(blk_alloc_queue);
1645
1646 request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1647 {
1648         request_queue_t *q;
1649
1650         q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1651         if (!q)
1652                 return NULL;
1653
1654         memset(q, 0, sizeof(*q));
1655         init_timer(&q->unplug_timer);
1656         atomic_set(&q->refcnt, 1);
1657
1658         q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1659         q->backing_dev_info.unplug_io_data = q;
1660
1661         return q;
1662 }
1663 EXPORT_SYMBOL(blk_alloc_queue_node);
1664
1665 /**
1666  * blk_init_queue  - prepare a request queue for use with a block device
1667  * @rfn:  The function to be called to process requests that have been
1668  *        placed on the queue.
1669  * @lock: Request queue spin lock
1670  *
1671  * Description:
1672  *    If a block device wishes to use the standard request handling procedures,
1673  *    which sorts requests and coalesces adjacent requests, then it must
1674  *    call blk_init_queue().  The function @rfn will be called when there
1675  *    are requests on the queue that need to be processed.  If the device
1676  *    supports plugging, then @rfn may not be called immediately when requests
1677  *    are available on the queue, but may be called at some time later instead.
1678  *    Plugged queues are generally unplugged when a buffer belonging to one
1679  *    of the requests on the queue is needed, or due to memory pressure.
1680  *
1681  *    @rfn is not required, or even expected, to remove all requests off the
1682  *    queue, but only as many as it can handle at a time.  If it does leave
1683  *    requests on the queue, it is responsible for arranging that the requests
1684  *    get dealt with eventually.
1685  *
1686  *    The queue spin lock must be held while manipulating the requests on the
1687  *    request queue.
1688  *
1689  *    Function returns a pointer to the initialized request queue, or NULL if
1690  *    it didn't succeed.
1691  *
1692  * Note:
1693  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1694  *    when the block device is deactivated (such as at module unload).
1695  **/
1696
1697 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1698 {
1699         return blk_init_queue_node(rfn, lock, -1);
1700 }
1701 EXPORT_SYMBOL(blk_init_queue);
1702
1703 request_queue_t *
1704 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1705 {
1706         request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1707
1708         if (!q)
1709                 return NULL;
1710
1711         q->node = node_id;
1712         if (blk_init_free_list(q))
1713                 goto out_init;
1714
1715         /*
1716          * if caller didn't supply a lock, they get per-queue locking with
1717          * our embedded lock
1718          */
1719         if (!lock) {
1720                 spin_lock_init(&q->__queue_lock);
1721                 lock = &q->__queue_lock;
1722         }
1723
1724         q->request_fn           = rfn;
1725         q->back_merge_fn        = ll_back_merge_fn;
1726         q->front_merge_fn       = ll_front_merge_fn;
1727         q->merge_requests_fn    = ll_merge_requests_fn;
1728         q->prep_rq_fn           = NULL;
1729         q->unplug_fn            = generic_unplug_device;
1730         q->queue_flags          = (1 << QUEUE_FLAG_CLUSTER);
1731         q->queue_lock           = lock;
1732
1733         blk_queue_segment_boundary(q, 0xffffffff);
1734
1735         blk_queue_make_request(q, __make_request);
1736         blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1737
1738         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1739         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1740
1741         /*
1742          * all done
1743          */
1744         if (!elevator_init(q, NULL)) {
1745                 blk_queue_congestion_threshold(q);
1746                 return q;
1747         }
1748
1749         blk_cleanup_queue(q);
1750 out_init:
1751         kmem_cache_free(requestq_cachep, q);
1752         return NULL;
1753 }
1754 EXPORT_SYMBOL(blk_init_queue_node);
1755
1756 int blk_get_queue(request_queue_t *q)
1757 {
1758         if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1759                 atomic_inc(&q->refcnt);
1760                 return 0;
1761         }
1762
1763         return 1;
1764 }
1765
1766 EXPORT_SYMBOL(blk_get_queue);
1767
1768 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1769 {
1770         elv_put_request(q, rq);
1771         mempool_free(rq, q->rq.rq_pool);
1772 }
1773
1774 static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1775                                                 int gfp_mask)
1776 {
1777         struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1778
1779         if (!rq)
1780                 return NULL;
1781
1782         /*
1783          * first three bits are identical in rq->flags and bio->bi_rw,
1784          * see bio.h and blkdev.h
1785          */
1786         rq->flags = rw;
1787
1788         if (!elv_set_request(q, rq, gfp_mask))
1789                 return rq;
1790
1791         mempool_free(rq, q->rq.rq_pool);
1792         return NULL;
1793 }
1794
1795 /*
1796  * ioc_batching returns true if the ioc is a valid batching request and
1797  * should be given priority access to a request.
1798  */
1799 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1800 {
1801         if (!ioc)
1802                 return 0;
1803
1804         /*
1805          * Make sure the process is able to allocate at least 1 request
1806          * even if the batch times out, otherwise we could theoretically
1807          * lose wakeups.
1808          */
1809         return ioc->nr_batch_requests == q->nr_batching ||
1810                 (ioc->nr_batch_requests > 0
1811                 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1812 }
1813
1814 /*
1815  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1816  * will cause the process to be a "batcher" on all queues in the system. This
1817  * is the behaviour we want though - once it gets a wakeup it should be given
1818  * a nice run.
1819  */
1820 void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1821 {
1822         if (!ioc || ioc_batching(q, ioc))
1823                 return;
1824
1825         ioc->nr_batch_requests = q->nr_batching;
1826         ioc->last_waited = jiffies;
1827 }
1828
1829 static void __freed_request(request_queue_t *q, int rw)
1830 {
1831         struct request_list *rl = &q->rq;
1832
1833         if (rl->count[rw] < queue_congestion_off_threshold(q))
1834                 clear_queue_congested(q, rw);
1835
1836         if (rl->count[rw] + 1 <= q->nr_requests) {
1837                 smp_mb();
1838                 if (waitqueue_active(&rl->wait[rw]))
1839                         wake_up(&rl->wait[rw]);
1840
1841                 blk_clear_queue_full(q, rw);
1842         }
1843 }
1844
1845 /*
1846  * A request has just been released.  Account for it, update the full and
1847  * congestion status, wake up any waiters.   Called under q->queue_lock.
1848  */
1849 static void freed_request(request_queue_t *q, int rw)
1850 {
1851         struct request_list *rl = &q->rq;
1852
1853         rl->count[rw]--;
1854
1855         __freed_request(q, rw);
1856
1857         if (unlikely(rl->starved[rw ^ 1]))
1858                 __freed_request(q, rw ^ 1);
1859
1860         if (!rl->count[READ] && !rl->count[WRITE]) {
1861                 smp_mb();
1862                 if (unlikely(waitqueue_active(&rl->drain)))
1863                         wake_up(&rl->drain);
1864         }
1865 }
1866
1867 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1868 /*
1869  * Get a free request, queue_lock must not be held
1870  */
1871 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1872 {
1873         struct request *rq = NULL;
1874         struct request_list *rl = &q->rq;
1875         struct io_context *ioc = get_io_context(gfp_mask);
1876
1877         if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1878                 goto out;
1879
1880         spin_lock_irq(q->queue_lock);
1881         if (rl->count[rw]+1 >= q->nr_requests) {
1882                 /*
1883                  * The queue will fill after this allocation, so set it as
1884                  * full, and mark this process as "batching". This process
1885                  * will be allowed to complete a batch of requests, others
1886                  * will be blocked.
1887                  */
1888                 if (!blk_queue_full(q, rw)) {
1889                         ioc_set_batching(q, ioc);
1890                         blk_set_queue_full(q, rw);
1891                 }
1892         }
1893
1894         switch (elv_may_queue(q, rw)) {
1895                 case ELV_MQUEUE_NO:
1896                         goto rq_starved;
1897                 case ELV_MQUEUE_MAY:
1898                         break;
1899                 case ELV_MQUEUE_MUST:
1900                         goto get_rq;
1901         }
1902
1903         if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1904                 /*
1905                  * The queue is full and the allocating process is not a
1906                  * "batcher", and not exempted by the IO scheduler
1907                  */
1908                 spin_unlock_irq(q->queue_lock);
1909                 goto out;
1910         }
1911
1912 get_rq:
1913         rl->count[rw]++;
1914         rl->starved[rw] = 0;
1915         if (rl->count[rw] >= queue_congestion_on_threshold(q))
1916                 set_queue_congested(q, rw);
1917         spin_unlock_irq(q->queue_lock);
1918
1919         rq = blk_alloc_request(q, rw, gfp_mask);
1920         if (!rq) {
1921                 /*
1922                  * Allocation failed presumably due to memory. Undo anything
1923                  * we might have messed up.
1924                  *
1925                  * Allocating task should really be put onto the front of the
1926                  * wait queue, but this is pretty rare.
1927                  */
1928                 spin_lock_irq(q->queue_lock);
1929                 freed_request(q, rw);
1930
1931                 /*
1932                  * in the very unlikely event that allocation failed and no
1933                  * requests for this direction was pending, mark us starved
1934                  * so that freeing of a request in the other direction will
1935                  * notice us. another possible fix would be to split the
1936                  * rq mempool into READ and WRITE
1937                  */
1938 rq_starved:
1939                 if (unlikely(rl->count[rw] == 0))
1940                         rl->starved[rw] = 1;
1941
1942                 spin_unlock_irq(q->queue_lock);
1943                 goto out;
1944         }
1945
1946         if (ioc_batching(q, ioc))
1947                 ioc->nr_batch_requests--;
1948         
1949         rq_init(q, rq);
1950         rq->rl = rl;
1951 out:
1952         put_io_context(ioc);
1953         return rq;
1954 }
1955
1956 /*
1957  * No available requests for this queue, unplug the device and wait for some
1958  * requests to become available.
1959  */
1960 static struct request *get_request_wait(request_queue_t *q, int rw)
1961 {
1962         DEFINE_WAIT(wait);
1963         struct request *rq;
1964
1965         generic_unplug_device(q);
1966         do {
1967                 struct request_list *rl = &q->rq;
1968
1969                 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1970                                 TASK_UNINTERRUPTIBLE);
1971
1972                 rq = get_request(q, rw, GFP_NOIO);
1973
1974                 if (!rq) {
1975                         struct io_context *ioc;
1976
1977                         io_schedule();
1978
1979                         /*
1980                          * After sleeping, we become a "batching" process and
1981                          * will be able to allocate at least one request, and
1982                          * up to a big batch of them for a small period time.
1983                          * See ioc_batching, ioc_set_batching
1984                          */
1985                         ioc = get_io_context(GFP_NOIO);
1986                         ioc_set_batching(q, ioc);
1987                         put_io_context(ioc);
1988                 }
1989                 finish_wait(&rl->wait[rw], &wait);
1990         } while (!rq);
1991
1992         return rq;
1993 }
1994
1995 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
1996 {
1997         struct request *rq;
1998
1999         BUG_ON(rw != READ && rw != WRITE);
2000
2001         if (gfp_mask & __GFP_WAIT)
2002                 rq = get_request_wait(q, rw);
2003         else
2004                 rq = get_request(q, rw, gfp_mask);
2005
2006         return rq;
2007 }
2008
2009 EXPORT_SYMBOL(blk_get_request);
2010
2011 /**
2012  * blk_requeue_request - put a request back on queue
2013  * @q:          request queue where request should be inserted
2014  * @rq:         request to be inserted
2015  *
2016  * Description:
2017  *    Drivers often keep queueing requests until the hardware cannot accept
2018  *    more, when that condition happens we need to put the request back
2019  *    on the queue. Must be called with queue lock held.
2020  */
2021 void blk_requeue_request(request_queue_t *q, struct request *rq)
2022 {
2023         if (blk_rq_tagged(rq))
2024                 blk_queue_end_tag(q, rq);
2025
2026         elv_requeue_request(q, rq);
2027 }
2028
2029 EXPORT_SYMBOL(blk_requeue_request);
2030
2031 /**
2032  * blk_insert_request - insert a special request in to a request queue
2033  * @q:          request queue where request should be inserted
2034  * @rq:         request to be inserted
2035  * @at_head:    insert request at head or tail of queue
2036  * @data:       private data
2037  *
2038  * Description:
2039  *    Many block devices need to execute commands asynchronously, so they don't
2040  *    block the whole kernel from preemption during request execution.  This is
2041  *    accomplished normally by inserting aritficial requests tagged as
2042  *    REQ_SPECIAL in to the corresponding request queue, and letting them be
2043  *    scheduled for actual execution by the request queue.
2044  *
2045  *    We have the option of inserting the head or the tail of the queue.
2046  *    Typically we use the tail for new ioctls and so forth.  We use the head
2047  *    of the queue for things like a QUEUE_FULL message from a device, or a
2048  *    host that is unable to accept a particular command.
2049  */
2050 void blk_insert_request(request_queue_t *q, struct request *rq,
2051                         int at_head, void *data)
2052 {
2053         int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2054         unsigned long flags;
2055
2056         /*
2057          * tell I/O scheduler that this isn't a regular read/write (ie it
2058          * must not attempt merges on this) and that it acts as a soft
2059          * barrier
2060          */
2061         rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2062
2063         rq->special = data;
2064
2065         spin_lock_irqsave(q->queue_lock, flags);
2066
2067         /*
2068          * If command is tagged, release the tag
2069          */
2070         if (blk_rq_tagged(rq))
2071                 blk_queue_end_tag(q, rq);
2072
2073         drive_stat_acct(rq, rq->nr_sectors, 1);
2074         __elv_add_request(q, rq, where, 0);
2075
2076         if (blk_queue_plugged(q))
2077                 __generic_unplug_device(q);
2078         else
2079                 q->request_fn(q);
2080         spin_unlock_irqrestore(q->queue_lock, flags);
2081 }
2082
2083 EXPORT_SYMBOL(blk_insert_request);
2084
2085 /**
2086  * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2087  * @q:          request queue where request should be inserted
2088  * @rw:         READ or WRITE data
2089  * @ubuf:       the user buffer
2090  * @len:        length of user data
2091  *
2092  * Description:
2093  *    Data will be mapped directly for zero copy io, if possible. Otherwise
2094  *    a kernel bounce buffer is used.
2095  *
2096  *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2097  *    still in process context.
2098  *
2099  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2100  *    before being submitted to the device, as pages mapped may be out of
2101  *    reach. It's the callers responsibility to make sure this happens. The
2102  *    original bio must be passed back in to blk_rq_unmap_user() for proper
2103  *    unmapping.
2104  */
2105 struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2106                                 unsigned int len)
2107 {
2108         unsigned long uaddr;
2109         struct request *rq;
2110         struct bio *bio;
2111
2112         if (len > (q->max_sectors << 9))
2113                 return ERR_PTR(-EINVAL);
2114         if ((!len && ubuf) || (len && !ubuf))
2115                 return ERR_PTR(-EINVAL);
2116
2117         rq = blk_get_request(q, rw, __GFP_WAIT);
2118         if (!rq)
2119                 return ERR_PTR(-ENOMEM);
2120
2121         /*
2122          * if alignment requirement is satisfied, map in user pages for
2123          * direct dma. else, set up kernel bounce buffers
2124          */
2125         uaddr = (unsigned long) ubuf;
2126         if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2127                 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2128         else
2129                 bio = bio_copy_user(q, uaddr, len, rw == READ);
2130
2131         if (!IS_ERR(bio)) {
2132                 rq->bio = rq->biotail = bio;
2133                 blk_rq_bio_prep(q, rq, bio);
2134
2135                 rq->buffer = rq->data = NULL;
2136                 rq->data_len = len;
2137                 return rq;
2138         }
2139
2140         /*
2141          * bio is the err-ptr
2142          */
2143         blk_put_request(rq);
2144         return (struct request *) bio;
2145 }
2146
2147 EXPORT_SYMBOL(blk_rq_map_user);
2148
2149 /**
2150  * blk_rq_unmap_user - unmap a request with user data
2151  * @rq:         request to be unmapped
2152  * @bio:        bio for the request
2153  * @ulen:       length of user buffer
2154  *
2155  * Description:
2156  *    Unmap a request previously mapped by blk_rq_map_user().
2157  */
2158 int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2159 {
2160         int ret = 0;
2161
2162         if (bio) {
2163                 if (bio_flagged(bio, BIO_USER_MAPPED))
2164                         bio_unmap_user(bio);
2165                 else
2166                         ret = bio_uncopy_user(bio);
2167         }
2168
2169         blk_put_request(rq);
2170         return ret;
2171 }
2172
2173 EXPORT_SYMBOL(blk_rq_unmap_user);
2174
2175 /**
2176  * blk_execute_rq - insert a request into queue for execution
2177  * @q:          queue to insert the request in
2178  * @bd_disk:    matching gendisk
2179  * @rq:         request to insert
2180  *
2181  * Description:
2182  *    Insert a fully prepared request at the back of the io scheduler queue
2183  *    for execution.
2184  */
2185 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2186                    struct request *rq)
2187 {
2188         DECLARE_COMPLETION(wait);
2189         char sense[SCSI_SENSE_BUFFERSIZE];
2190         int err = 0;
2191
2192         rq->rq_disk = bd_disk;
2193
2194         /*
2195          * we need an extra reference to the request, so we can look at
2196          * it after io completion
2197          */
2198         rq->ref_count++;
2199
2200         if (!rq->sense) {
2201                 memset(sense, 0, sizeof(sense));
2202                 rq->sense = sense;
2203                 rq->sense_len = 0;
2204         }
2205
2206         rq->flags |= REQ_NOMERGE;
2207         rq->waiting = &wait;
2208         rq->end_io = blk_end_sync_rq;
2209         elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2210         generic_unplug_device(q);
2211         wait_for_completion(&wait);
2212         rq->waiting = NULL;
2213
2214         if (rq->errors)
2215                 err = -EIO;
2216
2217         return err;
2218 }
2219
2220 EXPORT_SYMBOL(blk_execute_rq);
2221
2222 /**
2223  * blkdev_issue_flush - queue a flush
2224  * @bdev:       blockdev to issue flush for
2225  * @error_sector:       error sector
2226  *
2227  * Description:
2228  *    Issue a flush for the block device in question. Caller can supply
2229  *    room for storing the error offset in case of a flush error, if they
2230  *    wish to.  Caller must run wait_for_completion() on its own.
2231  */
2232 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2233 {
2234         request_queue_t *q;
2235
2236         if (bdev->bd_disk == NULL)
2237                 return -ENXIO;
2238
2239         q = bdev_get_queue(bdev);
2240         if (!q)
2241                 return -ENXIO;
2242         if (!q->issue_flush_fn)
2243                 return -EOPNOTSUPP;
2244
2245         return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2246 }
2247
2248 EXPORT_SYMBOL(blkdev_issue_flush);
2249
2250 /**
2251  * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2252  * @q:          device queue
2253  * @disk:       gendisk
2254  * @error_sector:       error offset
2255  *
2256  * Description:
2257  *    Devices understanding the SCSI command set, can use this function as
2258  *    a helper for issuing a cache flush. Note: driver is required to store
2259  *    the error offset (in case of error flushing) in ->sector of struct
2260  *    request.
2261  */
2262 int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2263                                sector_t *error_sector)
2264 {
2265         struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2266         int ret;
2267
2268         rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2269         rq->sector = 0;
2270         memset(rq->cmd, 0, sizeof(rq->cmd));
2271         rq->cmd[0] = 0x35;
2272         rq->cmd_len = 12;
2273         rq->data = NULL;
2274         rq->data_len = 0;
2275         rq->timeout = 60 * HZ;
2276
2277         ret = blk_execute_rq(q, disk, rq);
2278
2279         if (ret && error_sector)
2280                 *error_sector = rq->sector;
2281
2282         blk_put_request(rq);
2283         return ret;
2284 }
2285
2286 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2287
2288 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2289 {
2290         int rw = rq_data_dir(rq);
2291
2292         if (!blk_fs_request(rq) || !rq->rq_disk)
2293                 return;
2294
2295         if (rw == READ) {
2296                 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2297                 if (!new_io)
2298                         __disk_stat_inc(rq->rq_disk, read_merges);
2299         } else if (rw == WRITE) {
2300                 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2301                 if (!new_io)
2302                         __disk_stat_inc(rq->rq_disk, write_merges);
2303         }
2304         if (new_io) {
2305                 disk_round_stats(rq->rq_disk);
2306                 rq->rq_disk->in_flight++;
2307         }
2308 }
2309
2310 /*
2311  * add-request adds a request to the linked list.
2312  * queue lock is held and interrupts disabled, as we muck with the
2313  * request queue list.
2314  */
2315 static inline void add_request(request_queue_t * q, struct request * req)
2316 {
2317         drive_stat_acct(req, req->nr_sectors, 1);
2318
2319         if (q->activity_fn)
2320                 q->activity_fn(q->activity_data, rq_data_dir(req));
2321
2322         /*
2323          * elevator indicated where it wants this request to be
2324          * inserted at elevator_merge time
2325          */
2326         __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2327 }
2328  
2329 /*
2330  * disk_round_stats()   - Round off the performance stats on a struct
2331  * disk_stats.
2332  *
2333  * The average IO queue length and utilisation statistics are maintained
2334  * by observing the current state of the queue length and the amount of
2335  * time it has been in this state for.
2336  *
2337  * Normally, that accounting is done on IO completion, but that can result
2338  * in more than a second's worth of IO being accounted for within any one
2339  * second, leading to >100% utilisation.  To deal with that, we call this
2340  * function to do a round-off before returning the results when reading
2341  * /proc/diskstats.  This accounts immediately for all queue usage up to
2342  * the current jiffies and restarts the counters again.
2343  */
2344 void disk_round_stats(struct gendisk *disk)
2345 {
2346         unsigned long now = jiffies;
2347
2348         __disk_stat_add(disk, time_in_queue,
2349                         disk->in_flight * (now - disk->stamp));
2350         disk->stamp = now;
2351
2352         if (disk->in_flight)
2353                 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2354         disk->stamp_idle = now;
2355 }
2356
2357 /*
2358  * queue lock must be held
2359  */
2360 static void __blk_put_request(request_queue_t *q, struct request *req)
2361 {
2362         struct request_list *rl = req->rl;
2363
2364         if (unlikely(!q))
2365                 return;
2366         if (unlikely(--req->ref_count))
2367                 return;
2368
2369         req->rq_status = RQ_INACTIVE;
2370         req->q = NULL;
2371         req->rl = NULL;
2372
2373         /*
2374          * Request may not have originated from ll_rw_blk. if not,
2375          * it didn't come out of our reserved rq pools
2376          */
2377         if (rl) {
2378                 int rw = rq_data_dir(req);
2379
2380                 elv_completed_request(q, req);
2381
2382                 BUG_ON(!list_empty(&req->queuelist));
2383
2384                 blk_free_request(q, req);
2385                 freed_request(q, rw);
2386         }
2387 }
2388
2389 void blk_put_request(struct request *req)
2390 {
2391         /*
2392          * if req->rl isn't set, this request didnt originate from the
2393          * block layer, so it's safe to just disregard it
2394          */
2395         if (req->rl) {
2396                 unsigned long flags;
2397                 request_queue_t *q = req->q;
2398
2399                 spin_lock_irqsave(q->queue_lock, flags);
2400                 __blk_put_request(q, req);
2401                 spin_unlock_irqrestore(q->queue_lock, flags);
2402         }
2403 }
2404
2405 EXPORT_SYMBOL(blk_put_request);
2406
2407 /**
2408  * blk_end_sync_rq - executes a completion event on a request
2409  * @rq: request to complete
2410  */
2411 void blk_end_sync_rq(struct request *rq)
2412 {
2413         struct completion *waiting = rq->waiting;
2414
2415         rq->waiting = NULL;
2416         __blk_put_request(rq->q, rq);
2417
2418         /*
2419          * complete last, if this is a stack request the process (and thus
2420          * the rq pointer) could be invalid right after this complete()
2421          */
2422         complete(waiting);
2423 }
2424 EXPORT_SYMBOL(blk_end_sync_rq);
2425
2426 /**
2427  * blk_congestion_wait - wait for a queue to become uncongested
2428  * @rw: READ or WRITE
2429  * @timeout: timeout in jiffies
2430  *
2431  * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2432  * If no queues are congested then just wait for the next request to be
2433  * returned.
2434  */
2435 long blk_congestion_wait(int rw, long timeout)
2436 {
2437         long ret;
2438         DEFINE_WAIT(wait);
2439         wait_queue_head_t *wqh = &congestion_wqh[rw];
2440
2441         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2442         ret = io_schedule_timeout(timeout);
2443         finish_wait(wqh, &wait);
2444         return ret;
2445 }
2446
2447 EXPORT_SYMBOL(blk_congestion_wait);
2448
2449 /*
2450  * Has to be called with the request spinlock acquired
2451  */
2452 static int attempt_merge(request_queue_t *q, struct request *req,
2453                           struct request *next)
2454 {
2455         if (!rq_mergeable(req) || !rq_mergeable(next))
2456                 return 0;
2457
2458         /*
2459          * not contigious
2460          */
2461         if (req->sector + req->nr_sectors != next->sector)
2462                 return 0;
2463
2464         if (rq_data_dir(req) != rq_data_dir(next)
2465             || req->rq_disk != next->rq_disk
2466             || next->waiting || next->special)
2467                 return 0;
2468
2469         /*
2470          * If we are allowed to merge, then append bio list
2471          * from next to rq and release next. merge_requests_fn
2472          * will have updated segment counts, update sector
2473          * counts here.
2474          */
2475         if (!q->merge_requests_fn(q, req, next))
2476                 return 0;
2477
2478         /*
2479          * At this point we have either done a back merge
2480          * or front merge. We need the smaller start_time of
2481          * the merged requests to be the current request
2482          * for accounting purposes.
2483          */
2484         if (time_after(req->start_time, next->start_time))
2485                 req->start_time = next->start_time;
2486
2487         req->biotail->bi_next = next->bio;
2488         req->biotail = next->biotail;
2489
2490         req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2491
2492         elv_merge_requests(q, req, next);
2493
2494         if (req->rq_disk) {
2495                 disk_round_stats(req->rq_disk);
2496                 req->rq_disk->in_flight--;
2497         }
2498
2499         __blk_put_request(q, next);
2500         return 1;
2501 }
2502
2503 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2504 {
2505         struct request *next = elv_latter_request(q, rq);
2506
2507         if (next)
2508                 return attempt_merge(q, rq, next);
2509
2510         return 0;
2511 }
2512
2513 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2514 {
2515         struct request *prev = elv_former_request(q, rq);
2516
2517         if (prev)
2518                 return attempt_merge(q, prev, rq);
2519
2520         return 0;
2521 }
2522
2523 /**
2524  * blk_attempt_remerge  - attempt to remerge active head with next request
2525  * @q:    The &request_queue_t belonging to the device
2526  * @rq:   The head request (usually)
2527  *
2528  * Description:
2529  *    For head-active devices, the queue can easily be unplugged so quickly
2530  *    that proper merging is not done on the front request. This may hurt
2531  *    performance greatly for some devices. The block layer cannot safely
2532  *    do merging on that first request for these queues, but the driver can
2533  *    call this function and make it happen any way. Only the driver knows
2534  *    when it is safe to do so.
2535  **/
2536 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2537 {
2538         unsigned long flags;
2539
2540         spin_lock_irqsave(q->queue_lock, flags);
2541         attempt_back_merge(q, rq);
2542         spin_unlock_irqrestore(q->queue_lock, flags);
2543 }
2544
2545 EXPORT_SYMBOL(blk_attempt_remerge);
2546
2547 /*
2548  * Non-locking blk_attempt_remerge variant.
2549  */
2550 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2551 {
2552         attempt_back_merge(q, rq);
2553 }
2554
2555 EXPORT_SYMBOL(__blk_attempt_remerge);
2556
2557 static int __make_request(request_queue_t *q, struct bio *bio)
2558 {
2559         struct request *req, *freereq = NULL;
2560         int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2561         sector_t sector;
2562
2563         sector = bio->bi_sector;
2564         nr_sectors = bio_sectors(bio);
2565         cur_nr_sectors = bio_cur_sectors(bio);
2566
2567         rw = bio_data_dir(bio);
2568         sync = bio_sync(bio);
2569
2570         /*
2571          * low level driver can indicate that it wants pages above a
2572          * certain limit bounced to low memory (ie for highmem, or even
2573          * ISA dma in theory)
2574          */
2575         blk_queue_bounce(q, &bio);
2576
2577         spin_lock_prefetch(q->queue_lock);
2578
2579         barrier = bio_barrier(bio);
2580         if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2581                 err = -EOPNOTSUPP;
2582                 goto end_io;
2583         }
2584
2585 again:
2586         spin_lock_irq(q->queue_lock);
2587
2588         if (elv_queue_empty(q)) {
2589                 blk_plug_device(q);
2590                 goto get_rq;
2591         }
2592         if (barrier)
2593                 goto get_rq;
2594
2595         el_ret = elv_merge(q, &req, bio);
2596         switch (el_ret) {
2597                 case ELEVATOR_BACK_MERGE:
2598                         BUG_ON(!rq_mergeable(req));
2599
2600                         if (!q->back_merge_fn(q, req, bio))
2601                                 break;
2602
2603                         req->biotail->bi_next = bio;
2604                         req->biotail = bio;
2605                         req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2606                         drive_stat_acct(req, nr_sectors, 0);
2607                         if (!attempt_back_merge(q, req))
2608                                 elv_merged_request(q, req);
2609                         goto out;
2610
2611                 case ELEVATOR_FRONT_MERGE:
2612                         BUG_ON(!rq_mergeable(req));
2613
2614                         if (!q->front_merge_fn(q, req, bio))
2615                                 break;
2616
2617                         bio->bi_next = req->bio;
2618                         req->bio = bio;
2619
2620                         /*
2621                          * may not be valid. if the low level driver said
2622                          * it didn't need a bounce buffer then it better
2623                          * not touch req->buffer either...
2624                          */
2625                         req->buffer = bio_data(bio);
2626                         req->current_nr_sectors = cur_nr_sectors;
2627                         req->hard_cur_sectors = cur_nr_sectors;
2628                         req->sector = req->hard_sector = sector;
2629                         req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2630                         drive_stat_acct(req, nr_sectors, 0);
2631                         if (!attempt_front_merge(q, req))
2632                                 elv_merged_request(q, req);
2633                         goto out;
2634
2635                 /*
2636                  * elevator says don't/can't merge. get new request
2637                  */
2638                 case ELEVATOR_NO_MERGE:
2639                         break;
2640
2641                 default:
2642                         printk("elevator returned crap (%d)\n", el_ret);
2643                         BUG();
2644         }
2645
2646         /*
2647          * Grab a free request from the freelist - if that is empty, check
2648          * if we are doing read ahead and abort instead of blocking for
2649          * a free slot.
2650          */
2651 get_rq:
2652         if (freereq) {
2653                 req = freereq;
2654                 freereq = NULL;
2655         } else {
2656                 spin_unlock_irq(q->queue_lock);
2657                 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2658                         /*
2659                          * READA bit set
2660                          */
2661                         err = -EWOULDBLOCK;
2662                         if (bio_rw_ahead(bio))
2663                                 goto end_io;
2664         
2665                         freereq = get_request_wait(q, rw);
2666                 }
2667                 goto again;
2668         }
2669
2670         req->flags |= REQ_CMD;
2671
2672         /*
2673          * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2674          */
2675         if (bio_rw_ahead(bio) || bio_failfast(bio))
2676                 req->flags |= REQ_FAILFAST;
2677
2678         /*
2679          * REQ_BARRIER implies no merging, but lets make it explicit
2680          */
2681         if (barrier)
2682                 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2683
2684         req->errors = 0;
2685         req->hard_sector = req->sector = sector;
2686         req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2687         req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2688         req->nr_phys_segments = bio_phys_segments(q, bio);
2689         req->nr_hw_segments = bio_hw_segments(q, bio);
2690         req->buffer = bio_data(bio);    /* see ->buffer comment above */
2691         req->waiting = NULL;
2692         req->bio = req->biotail = bio;
2693         req->rq_disk = bio->bi_bdev->bd_disk;
2694         req->start_time = jiffies;
2695
2696         add_request(q, req);
2697 out:
2698         if (freereq)
2699                 __blk_put_request(q, freereq);
2700         if (sync)
2701                 __generic_unplug_device(q);
2702
2703         spin_unlock_irq(q->queue_lock);
2704         return 0;
2705
2706 end_io:
2707         bio_endio(bio, nr_sectors << 9, err);
2708         return 0;
2709 }
2710
2711 /*
2712  * If bio->bi_dev is a partition, remap the location
2713  */
2714 static inline void blk_partition_remap(struct bio *bio)
2715 {
2716         struct block_device *bdev = bio->bi_bdev;
2717
2718         if (bdev != bdev->bd_contains) {
2719                 struct hd_struct *p = bdev->bd_part;
2720
2721                 switch (bio->bi_rw) {
2722                 case READ:
2723                         p->read_sectors += bio_sectors(bio);
2724                         p->reads++;
2725                         break;
2726                 case WRITE:
2727                         p->write_sectors += bio_sectors(bio);
2728                         p->writes++;
2729                         break;
2730                 }
2731                 bio->bi_sector += p->start_sect;
2732                 bio->bi_bdev = bdev->bd_contains;
2733         }
2734 }
2735
2736 void blk_finish_queue_drain(request_queue_t *q)
2737 {
2738         struct request_list *rl = &q->rq;
2739         struct request *rq;
2740
2741         spin_lock_irq(q->queue_lock);
2742         clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2743
2744         while (!list_empty(&q->drain_list)) {
2745                 rq = list_entry_rq(q->drain_list.next);
2746
2747                 list_del_init(&rq->queuelist);
2748                 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2749         }
2750
2751         spin_unlock_irq(q->queue_lock);
2752
2753         wake_up(&rl->wait[0]);
2754         wake_up(&rl->wait[1]);
2755         wake_up(&rl->drain);
2756 }
2757
2758 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2759 {
2760         int wait = rl->count[READ] + rl->count[WRITE];
2761
2762         if (dispatch)
2763                 wait += !list_empty(&q->queue_head);
2764
2765         return wait;
2766 }
2767
2768 /*
2769  * We rely on the fact that only requests allocated through blk_alloc_request()
2770  * have io scheduler private data structures associated with them. Any other
2771  * type of request (allocated on stack or through kmalloc()) should not go
2772  * to the io scheduler core, but be attached to the queue head instead.
2773  */
2774 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2775 {
2776         struct request_list *rl = &q->rq;
2777         DEFINE_WAIT(wait);
2778
2779         spin_lock_irq(q->queue_lock);
2780         set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2781
2782         while (wait_drain(q, rl, wait_dispatch)) {
2783                 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2784
2785                 if (wait_drain(q, rl, wait_dispatch)) {
2786                         __generic_unplug_device(q);
2787                         spin_unlock_irq(q->queue_lock);
2788                         io_schedule();
2789                         spin_lock_irq(q->queue_lock);
2790                 }
2791
2792                 finish_wait(&rl->drain, &wait);
2793         }
2794
2795         spin_unlock_irq(q->queue_lock);
2796 }
2797
2798 /*
2799  * block waiting for the io scheduler being started again.
2800  */
2801 static inline void block_wait_queue_running(request_queue_t *q)
2802 {
2803         DEFINE_WAIT(wait);
2804
2805         while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2806                 struct request_list *rl = &q->rq;
2807
2808                 prepare_to_wait_exclusive(&rl->drain, &wait,
2809                                 TASK_UNINTERRUPTIBLE);
2810
2811                 /*
2812                  * re-check the condition. avoids using prepare_to_wait()
2813                  * in the fast path (queue is running)
2814                  */
2815                 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2816                         io_schedule();
2817
2818                 finish_wait(&rl->drain, &wait);
2819         }
2820 }
2821
2822 static void handle_bad_sector(struct bio *bio)
2823 {
2824         char b[BDEVNAME_SIZE];
2825
2826         printk(KERN_INFO "attempt to access beyond end of device\n");
2827         printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2828                         bdevname(bio->bi_bdev, b),
2829                         bio->bi_rw,
2830                         (unsigned long long)bio->bi_sector + bio_sectors(bio),
2831                         (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2832
2833         set_bit(BIO_EOF, &bio->bi_flags);
2834 }
2835
2836 /**
2837  * generic_make_request: hand a buffer to its device driver for I/O
2838  * @bio:  The bio describing the location in memory and on the device.
2839  *
2840  * generic_make_request() is used to make I/O requests of block
2841  * devices. It is passed a &struct bio, which describes the I/O that needs
2842  * to be done.
2843  *
2844  * generic_make_request() does not return any status.  The
2845  * success/failure status of the request, along with notification of
2846  * completion, is delivered asynchronously through the bio->bi_end_io
2847  * function described (one day) else where.
2848  *
2849  * The caller of generic_make_request must make sure that bi_io_vec
2850  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2851  * set to describe the device address, and the
2852  * bi_end_io and optionally bi_private are set to describe how
2853  * completion notification should be signaled.
2854  *
2855  * generic_make_request and the drivers it calls may use bi_next if this
2856  * bio happens to be merged with someone else, and may change bi_dev and
2857  * bi_sector for remaps as it sees fit.  So the values of these fields
2858  * should NOT be depended on after the call to generic_make_request.
2859  */
2860 void generic_make_request(struct bio *bio)
2861 {
2862         request_queue_t *q;
2863         sector_t maxsector;
2864         int ret, nr_sectors = bio_sectors(bio);
2865
2866         might_sleep();
2867         /* Test device or partition size, when known. */
2868         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2869         if (maxsector) {
2870                 sector_t sector = bio->bi_sector;
2871
2872                 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2873                         /*
2874                          * This may well happen - the kernel calls bread()
2875                          * without checking the size of the device, e.g., when
2876                          * mounting a device.
2877                          */
2878                         handle_bad_sector(bio);
2879                         goto end_io;
2880                 }
2881         }
2882
2883         /*
2884          * Resolve the mapping until finished. (drivers are
2885          * still free to implement/resolve their own stacking
2886          * by explicitly returning 0)
2887          *
2888          * NOTE: we don't repeat the blk_size check for each new device.
2889          * Stacking drivers are expected to know what they are doing.
2890          */
2891         do {
2892                 char b[BDEVNAME_SIZE];
2893
2894                 q = bdev_get_queue(bio->bi_bdev);
2895                 if (!q) {
2896                         printk(KERN_ERR
2897                                "generic_make_request: Trying to access "
2898                                 "nonexistent block-device %s (%Lu)\n",
2899                                 bdevname(bio->bi_bdev, b),
2900                                 (long long) bio->bi_sector);
2901 end_io:
2902                         bio_endio(bio, bio->bi_size, -EIO);
2903                         break;
2904                 }
2905
2906                 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2907                         printk("bio too big device %s (%u > %u)\n", 
2908                                 bdevname(bio->bi_bdev, b),
2909                                 bio_sectors(bio),
2910                                 q->max_hw_sectors);
2911                         goto end_io;
2912                 }
2913
2914                 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2915                         goto end_io;
2916
2917                 block_wait_queue_running(q);
2918
2919                 /*
2920                  * If this device has partitions, remap block n
2921                  * of partition p to block n+start(p) of the disk.
2922                  */
2923                 blk_partition_remap(bio);
2924
2925                 ret = q->make_request_fn(q, bio);
2926         } while (ret);
2927 }
2928
2929 EXPORT_SYMBOL(generic_make_request);
2930
2931 /**
2932  * submit_bio: submit a bio to the block device layer for I/O
2933  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2934  * @bio: The &struct bio which describes the I/O
2935  *
2936  * submit_bio() is very similar in purpose to generic_make_request(), and
2937  * uses that function to do most of the work. Both are fairly rough
2938  * interfaces, @bio must be presetup and ready for I/O.
2939  *
2940  */
2941 void submit_bio(int rw, struct bio *bio)
2942 {
2943         int count = bio_sectors(bio);
2944
2945         BIO_BUG_ON(!bio->bi_size);
2946         BIO_BUG_ON(!bio->bi_io_vec);
2947         bio->bi_rw = rw;
2948         if (rw & WRITE)
2949                 mod_page_state(pgpgout, count);
2950         else
2951                 mod_page_state(pgpgin, count);
2952
2953         if (unlikely(block_dump)) {
2954                 char b[BDEVNAME_SIZE];
2955                 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2956                         current->comm, current->pid,
2957                         (rw & WRITE) ? "WRITE" : "READ",
2958                         (unsigned long long)bio->bi_sector,
2959                         bdevname(bio->bi_bdev,b));
2960         }
2961
2962         generic_make_request(bio);
2963 }
2964
2965 EXPORT_SYMBOL(submit_bio);
2966
2967 void blk_recalc_rq_segments(struct request *rq)
2968 {
2969         struct bio *bio, *prevbio = NULL;
2970         int nr_phys_segs, nr_hw_segs;
2971         unsigned int phys_size, hw_size;
2972         request_queue_t *q = rq->q;
2973
2974         if (!rq->bio)
2975                 return;
2976
2977         phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2978         rq_for_each_bio(bio, rq) {
2979                 /* Force bio hw/phys segs to be recalculated. */
2980                 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2981
2982                 nr_phys_segs += bio_phys_segments(q, bio);
2983                 nr_hw_segs += bio_hw_segments(q, bio);
2984                 if (prevbio) {
2985                         int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2986                         int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2987
2988                         if (blk_phys_contig_segment(q, prevbio, bio) &&
2989                             pseg <= q->max_segment_size) {
2990                                 nr_phys_segs--;
2991                                 phys_size += prevbio->bi_size + bio->bi_size;
2992                         } else
2993                                 phys_size = 0;
2994
2995                         if (blk_hw_contig_segment(q, prevbio, bio) &&
2996                             hseg <= q->max_segment_size) {
2997                                 nr_hw_segs--;
2998                                 hw_size += prevbio->bi_size + bio->bi_size;
2999                         } else
3000                                 hw_size = 0;
3001                 }
3002                 prevbio = bio;
3003         }
3004
3005         rq->nr_phys_segments = nr_phys_segs;
3006         rq->nr_hw_segments = nr_hw_segs;
3007 }
3008
3009 void blk_recalc_rq_sectors(struct request *rq, int nsect)
3010 {
3011         if (blk_fs_request(rq)) {
3012                 rq->hard_sector += nsect;
3013                 rq->hard_nr_sectors -= nsect;
3014
3015                 /*
3016                  * Move the I/O submission pointers ahead if required.
3017                  */
3018                 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3019                     (rq->sector <= rq->hard_sector)) {
3020                         rq->sector = rq->hard_sector;
3021                         rq->nr_sectors = rq->hard_nr_sectors;
3022                         rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3023                         rq->current_nr_sectors = rq->hard_cur_sectors;
3024                         rq->buffer = bio_data(rq->bio);
3025                 }
3026
3027                 /*
3028                  * if total number of sectors is less than the first segment
3029                  * size, something has gone terribly wrong
3030                  */
3031                 if (rq->nr_sectors < rq->current_nr_sectors) {
3032                         printk("blk: request botched\n");
3033                         rq->nr_sectors = rq->current_nr_sectors;
3034                 }
3035         }
3036 }
3037
3038 static int __end_that_request_first(struct request *req, int uptodate,
3039                                     int nr_bytes)
3040 {
3041         int total_bytes, bio_nbytes, error, next_idx = 0;
3042         struct bio *bio;
3043
3044         /*
3045          * extend uptodate bool to allow < 0 value to be direct io error
3046          */
3047         error = 0;
3048         if (end_io_error(uptodate))
3049                 error = !uptodate ? -EIO : uptodate;
3050
3051         /*
3052          * for a REQ_BLOCK_PC request, we want to carry any eventual
3053          * sense key with us all the way through
3054          */
3055         if (!blk_pc_request(req))
3056                 req->errors = 0;
3057
3058         if (!uptodate) {
3059                 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3060                         printk("end_request: I/O error, dev %s, sector %llu\n",
3061                                 req->rq_disk ? req->rq_disk->disk_name : "?",
3062                                 (unsigned long long)req->sector);
3063         }
3064
3065         total_bytes = bio_nbytes = 0;
3066         while ((bio = req->bio) != NULL) {
3067                 int nbytes;
3068
3069                 if (nr_bytes >= bio->bi_size) {
3070                         req->bio = bio->bi_next;
3071                         nbytes = bio->bi_size;
3072                         bio_endio(bio, nbytes, error);
3073                         next_idx = 0;
3074                         bio_nbytes = 0;
3075                 } else {
3076                         int idx = bio->bi_idx + next_idx;
3077
3078                         if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3079                                 blk_dump_rq_flags(req, "__end_that");
3080                                 printk("%s: bio idx %d >= vcnt %d\n",
3081                                                 __FUNCTION__,
3082                                                 bio->bi_idx, bio->bi_vcnt);
3083                                 break;
3084                         }
3085
3086                         nbytes = bio_iovec_idx(bio, idx)->bv_len;
3087                         BIO_BUG_ON(nbytes > bio->bi_size);
3088
3089                         /*
3090                          * not a complete bvec done
3091                          */
3092                         if (unlikely(nbytes > nr_bytes)) {
3093                                 bio_nbytes += nr_bytes;
3094                                 total_bytes += nr_bytes;
3095                                 break;
3096                         }
3097
3098                         /*
3099                          * advance to the next vector
3100                          */
3101                         next_idx++;
3102                         bio_nbytes += nbytes;
3103                 }
3104
3105                 total_bytes += nbytes;
3106                 nr_bytes -= nbytes;
3107
3108                 if ((bio = req->bio)) {
3109                         /*
3110                          * end more in this run, or just return 'not-done'
3111                          */
3112                         if (unlikely(nr_bytes <= 0))
3113                                 break;
3114                 }
3115         }
3116
3117         /*
3118          * completely done
3119          */
3120         if (!req->bio)
3121                 return 0;
3122
3123         /*
3124          * if the request wasn't completed, update state
3125          */
3126         if (bio_nbytes) {
3127                 bio_endio(bio, bio_nbytes, error);
3128                 bio->bi_idx += next_idx;
3129                 bio_iovec(bio)->bv_offset += nr_bytes;
3130                 bio_iovec(bio)->bv_len -= nr_bytes;
3131         }
3132
3133         blk_recalc_rq_sectors(req, total_bytes >> 9);
3134         blk_recalc_rq_segments(req);
3135         return 1;
3136 }
3137
3138 /**
3139  * end_that_request_first - end I/O on a request
3140  * @req:      the request being processed
3141  * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3142  * @nr_sectors: number of sectors to end I/O on
3143  *
3144  * Description:
3145  *     Ends I/O on a number of sectors attached to @req, and sets it up
3146  *     for the next range of segments (if any) in the cluster.
3147  *
3148  * Return:
3149  *     0 - we are done with this request, call end_that_request_last()
3150  *     1 - still buffers pending for this request
3151  **/
3152 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3153 {
3154         return __end_that_request_first(req, uptodate, nr_sectors << 9);
3155 }
3156
3157 EXPORT_SYMBOL(end_that_request_first);
3158
3159 /**
3160  * end_that_request_chunk - end I/O on a request
3161  * @req:      the request being processed
3162  * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3163  * @nr_bytes: number of bytes to complete
3164  *
3165  * Description:
3166  *     Ends I/O on a number of bytes attached to @req, and sets it up
3167  *     for the next range of segments (if any). Like end_that_request_first(),
3168  *     but deals with bytes instead of sectors.
3169  *
3170  * Return:
3171  *     0 - we are done with this request, call end_that_request_last()
3172  *     1 - still buffers pending for this request
3173  **/
3174 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3175 {
3176         return __end_that_request_first(req, uptodate, nr_bytes);
3177 }
3178
3179 EXPORT_SYMBOL(end_that_request_chunk);
3180
3181 /*
3182  * queue lock must be held
3183  */
3184 void end_that_request_last(struct request *req)
3185 {
3186         struct gendisk *disk = req->rq_disk;
3187
3188         if (unlikely(laptop_mode) && blk_fs_request(req))
3189                 laptop_io_completion();
3190
3191         if (disk && blk_fs_request(req)) {
3192                 unsigned long duration = jiffies - req->start_time;
3193                 switch (rq_data_dir(req)) {
3194                     case WRITE:
3195                         __disk_stat_inc(disk, writes);
3196                         __disk_stat_add(disk, write_ticks, duration);
3197                         break;
3198                     case READ:
3199                         __disk_stat_inc(disk, reads);
3200                         __disk_stat_add(disk, read_ticks, duration);
3201                         break;
3202                 }
3203                 disk_round_stats(disk);
3204                 disk->in_flight--;
3205         }
3206         if (req->end_io)
3207                 req->end_io(req);
3208         else
3209                 __blk_put_request(req->q, req);
3210 }
3211
3212 EXPORT_SYMBOL(end_that_request_last);
3213
3214 void end_request(struct request *req, int uptodate)
3215 {
3216         if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3217                 add_disk_randomness(req->rq_disk);
3218                 blkdev_dequeue_request(req);
3219                 end_that_request_last(req);
3220         }
3221 }
3222
3223 EXPORT_SYMBOL(end_request);
3224
3225 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3226 {
3227         /* first three bits are identical in rq->flags and bio->bi_rw */
3228         rq->flags |= (bio->bi_rw & 7);
3229
3230         rq->nr_phys_segments = bio_phys_segments(q, bio);
3231         rq->nr_hw_segments = bio_hw_segments(q, bio);
3232         rq->current_nr_sectors = bio_cur_sectors(bio);
3233         rq->hard_cur_sectors = rq->current_nr_sectors;
3234         rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3235         rq->buffer = bio_data(bio);
3236
3237         rq->bio = rq->biotail = bio;
3238 }
3239
3240 EXPORT_SYMBOL(blk_rq_bio_prep);
3241
3242 int kblockd_schedule_work(struct work_struct *work)
3243 {
3244         return queue_work(kblockd_workqueue, work);
3245 }
3246
3247 EXPORT_SYMBOL(kblockd_schedule_work);
3248
3249 void kblockd_flush(void)
3250 {
3251         flush_workqueue(kblockd_workqueue);
3252 }
3253 EXPORT_SYMBOL(kblockd_flush);
3254
3255 int __init blk_dev_init(void)
3256 {
3257         kblockd_workqueue = create_workqueue("kblockd");
3258         if (!kblockd_workqueue)
3259                 panic("Failed to create kblockd\n");
3260
3261         request_cachep = kmem_cache_create("blkdev_requests",
3262                         sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3263
3264         requestq_cachep = kmem_cache_create("blkdev_queue",
3265                         sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3266
3267         iocontext_cachep = kmem_cache_create("blkdev_ioc",
3268                         sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3269
3270         blk_max_low_pfn = max_low_pfn;
3271         blk_max_pfn = max_pfn;
3272
3273         return 0;
3274 }
3275
3276 /*
3277  * IO Context helper functions
3278  */
3279 void put_io_context(struct io_context *ioc)
3280 {
3281         if (ioc == NULL)
3282                 return;
3283
3284         BUG_ON(atomic_read(&ioc->refcount) == 0);
3285
3286         if (atomic_dec_and_test(&ioc->refcount)) {
3287                 if (ioc->aic && ioc->aic->dtor)
3288                         ioc->aic->dtor(ioc->aic);
3289                 if (ioc->cic && ioc->cic->dtor)
3290                         ioc->cic->dtor(ioc->cic);
3291
3292                 kmem_cache_free(iocontext_cachep, ioc);
3293         }
3294 }
3295 EXPORT_SYMBOL(put_io_context);
3296
3297 /* Called by the exitting task */
3298 void exit_io_context(void)
3299 {
3300         unsigned long flags;
3301         struct io_context *ioc;
3302
3303         local_irq_save(flags);
3304         ioc = current->io_context;
3305         current->io_context = NULL;
3306         local_irq_restore(flags);
3307
3308         if (ioc->aic && ioc->aic->exit)
3309                 ioc->aic->exit(ioc->aic);
3310         if (ioc->cic && ioc->cic->exit)
3311                 ioc->cic->exit(ioc->cic);
3312
3313         put_io_context(ioc);
3314 }
3315
3316 /*
3317  * If the current task has no IO context then create one and initialise it.
3318  * If it does have a context, take a ref on it.
3319  *
3320  * This is always called in the context of the task which submitted the I/O.
3321  * But weird things happen, so we disable local interrupts to ensure exclusive
3322  * access to *current.
3323  */
3324 struct io_context *get_io_context(int gfp_flags)
3325 {
3326         struct task_struct *tsk = current;
3327         unsigned long flags;
3328         struct io_context *ret;
3329
3330         local_irq_save(flags);
3331         ret = tsk->io_context;
3332         if (ret)
3333                 goto out;
3334
3335         local_irq_restore(flags);
3336
3337         ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3338         if (ret) {
3339                 atomic_set(&ret->refcount, 1);
3340                 ret->pid = tsk->pid;
3341                 ret->last_waited = jiffies; /* doesn't matter... */
3342                 ret->nr_batch_requests = 0; /* because this is 0 */
3343                 ret->aic = NULL;
3344                 ret->cic = NULL;
3345                 spin_lock_init(&ret->lock);
3346
3347                 local_irq_save(flags);
3348
3349                 /*
3350                  * very unlikely, someone raced with us in setting up the task
3351                  * io context. free new context and just grab a reference.
3352                  */
3353                 if (!tsk->io_context)
3354                         tsk->io_context = ret;
3355                 else {
3356                         kmem_cache_free(iocontext_cachep, ret);
3357                         ret = tsk->io_context;
3358                 }
3359
3360 out:
3361                 atomic_inc(&ret->refcount);
3362                 local_irq_restore(flags);
3363         }
3364
3365         return ret;
3366 }
3367 EXPORT_SYMBOL(get_io_context);
3368
3369 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3370 {
3371         struct io_context *src = *psrc;
3372         struct io_context *dst = *pdst;
3373
3374         if (src) {
3375                 BUG_ON(atomic_read(&src->refcount) == 0);
3376                 atomic_inc(&src->refcount);
3377                 put_io_context(dst);
3378                 *pdst = src;
3379         }
3380 }
3381 EXPORT_SYMBOL(copy_io_context);
3382
3383 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3384 {
3385         struct io_context *temp;
3386         temp = *ioc1;
3387         *ioc1 = *ioc2;
3388         *ioc2 = temp;
3389 }
3390 EXPORT_SYMBOL(swap_io_context);
3391
3392 /*
3393  * sysfs parts below
3394  */
3395 struct queue_sysfs_entry {
3396         struct attribute attr;
3397         ssize_t (*show)(struct request_queue *, char *);
3398         ssize_t (*store)(struct request_queue *, const char *, size_t);
3399 };
3400
3401 static ssize_t
3402 queue_var_show(unsigned int var, char *page)
3403 {
3404         return sprintf(page, "%d\n", var);
3405 }
3406
3407 static ssize_t
3408 queue_var_store(unsigned long *var, const char *page, size_t count)
3409 {
3410         char *p = (char *) page;
3411
3412         *var = simple_strtoul(p, &p, 10);
3413         return count;
3414 }
3415
3416 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3417 {
3418         return queue_var_show(q->nr_requests, (page));
3419 }
3420
3421 static ssize_t
3422 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3423 {
3424         struct request_list *rl = &q->rq;
3425
3426         int ret = queue_var_store(&q->nr_requests, page, count);
3427         if (q->nr_requests < BLKDEV_MIN_RQ)
3428                 q->nr_requests = BLKDEV_MIN_RQ;
3429         blk_queue_congestion_threshold(q);
3430
3431         if (rl->count[READ] >= queue_congestion_on_threshold(q))
3432                 set_queue_congested(q, READ);
3433         else if (rl->count[READ] < queue_congestion_off_threshold(q))
3434                 clear_queue_congested(q, READ);
3435
3436         if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3437                 set_queue_congested(q, WRITE);
3438         else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3439                 clear_queue_congested(q, WRITE);
3440
3441         if (rl->count[READ] >= q->nr_requests) {
3442                 blk_set_queue_full(q, READ);
3443         } else if (rl->count[READ]+1 <= q->nr_requests) {
3444                 blk_clear_queue_full(q, READ);
3445                 wake_up(&rl->wait[READ]);
3446         }
3447
3448         if (rl->count[WRITE] >= q->nr_requests) {
3449                 blk_set_queue_full(q, WRITE);
3450         } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3451                 blk_clear_queue_full(q, WRITE);
3452                 wake_up(&rl->wait[WRITE]);
3453         }
3454         return ret;
3455 }
3456
3457 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3458 {
3459         int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3460
3461         return queue_var_show(ra_kb, (page));
3462 }
3463
3464 static ssize_t
3465 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3466 {
3467         unsigned long ra_kb;
3468         ssize_t ret = queue_var_store(&ra_kb, page, count);
3469
3470         spin_lock_irq(q->queue_lock);
3471         if (ra_kb > (q->max_sectors >> 1))
3472                 ra_kb = (q->max_sectors >> 1);
3473
3474         q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3475         spin_unlock_irq(q->queue_lock);
3476
3477         return ret;
3478 }
3479
3480 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3481 {
3482         int max_sectors_kb = q->max_sectors >> 1;
3483
3484         return queue_var_show(max_sectors_kb, (page));
3485 }
3486
3487 static ssize_t
3488 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3489 {
3490         unsigned long max_sectors_kb,
3491                         max_hw_sectors_kb = q->max_hw_sectors >> 1,
3492                         page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3493         ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3494         int ra_kb;
3495
3496         if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3497                 return -EINVAL;
3498         /*
3499          * Take the queue lock to update the readahead and max_sectors
3500          * values synchronously:
3501          */
3502         spin_lock_irq(q->queue_lock);
3503         /*
3504          * Trim readahead window as well, if necessary:
3505          */
3506         ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3507         if (ra_kb > max_sectors_kb)
3508                 q->backing_dev_info.ra_pages =
3509                                 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3510
3511         q->max_sectors = max_sectors_kb << 1;
3512         spin_unlock_irq(q->queue_lock);
3513
3514         return ret;
3515 }
3516
3517 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3518 {
3519         int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3520
3521         return queue_var_show(max_hw_sectors_kb, (page));
3522 }
3523
3524
3525 static struct queue_sysfs_entry queue_requests_entry = {
3526         .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3527         .show = queue_requests_show,
3528         .store = queue_requests_store,
3529 };
3530
3531 static struct queue_sysfs_entry queue_ra_entry = {
3532         .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3533         .show = queue_ra_show,
3534         .store = queue_ra_store,
3535 };
3536
3537 static struct queue_sysfs_entry queue_max_sectors_entry = {
3538         .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3539         .show = queue_max_sectors_show,
3540         .store = queue_max_sectors_store,
3541 };
3542
3543 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3544         .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3545         .show = queue_max_hw_sectors_show,
3546 };
3547
3548 static struct queue_sysfs_entry queue_iosched_entry = {
3549         .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3550         .show = elv_iosched_show,
3551         .store = elv_iosched_store,
3552 };
3553
3554 static struct attribute *default_attrs[] = {
3555         &queue_requests_entry.attr,
3556         &queue_ra_entry.attr,
3557         &queue_max_hw_sectors_entry.attr,
3558         &queue_max_sectors_entry.attr,
3559         &queue_iosched_entry.attr,
3560         NULL,
3561 };
3562
3563 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3564
3565 static ssize_t
3566 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3567 {
3568         struct queue_sysfs_entry *entry = to_queue(attr);
3569         struct request_queue *q;
3570
3571         q = container_of(kobj, struct request_queue, kobj);
3572         if (!entry->show)
3573                 return -EIO;
3574
3575         return entry->show(q, page);
3576 }
3577
3578 static ssize_t
3579 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3580                     const char *page, size_t length)
3581 {
3582         struct queue_sysfs_entry *entry = to_queue(attr);
3583         struct request_queue *q;
3584
3585         q = container_of(kobj, struct request_queue, kobj);
3586         if (!entry->store)
3587                 return -EIO;
3588
3589         return entry->store(q, page, length);
3590 }
3591
3592 static struct sysfs_ops queue_sysfs_ops = {
3593         .show   = queue_attr_show,
3594         .store  = queue_attr_store,
3595 };
3596
3597 struct kobj_type queue_ktype = {
3598         .sysfs_ops      = &queue_sysfs_ops,
3599         .default_attrs  = default_attrs,
3600 };
3601
3602 int blk_register_queue(struct gendisk *disk)
3603 {
3604         int ret;
3605
3606         request_queue_t *q = disk->queue;
3607
3608         if (!q || !q->request_fn)
3609                 return -ENXIO;
3610
3611         q->kobj.parent = kobject_get(&disk->kobj);
3612         if (!q->kobj.parent)
3613                 return -EBUSY;
3614
3615         snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3616         q->kobj.ktype = &queue_ktype;
3617
3618         ret = kobject_register(&q->kobj);
3619         if (ret < 0)
3620                 return ret;
3621
3622         ret = elv_register_queue(q);
3623         if (ret) {
3624                 kobject_unregister(&q->kobj);
3625                 return ret;
3626         }
3627
3628         return 0;
3629 }
3630
3631 void blk_unregister_queue(struct gendisk *disk)
3632 {
3633         request_queue_t *q = disk->queue;
3634
3635         if (q && q->request_fn) {
3636                 elv_unregister_queue(q);
3637
3638                 kobject_unregister(&q->kobj);
3639                 kobject_put(&disk->kobj);
3640         }
3641 }