cciss: simplify scatter gather code
[safe/jmp/linux-2.6] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66                         " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67                         " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74         "Prevent cciss driver from accessing hardware known to be "
75         " supported by the hpsa driver");
76
77 #include "cciss_cmd.h"
78 #include "cciss.h"
79 #include <linux/cciss_ioctl.h>
80
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
110         {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
114
115 /*  board_id = Subsystem Device ID & Vendor ID
116  *  product = Marketing Name for the board
117  *  access = Address of the struct of function pointers
118  */
119 static struct board_type products[] = {
120         {0x40700E11, "Smart Array 5300", &SA5_access},
121         {0x40800E11, "Smart Array 5i", &SA5B_access},
122         {0x40820E11, "Smart Array 532", &SA5B_access},
123         {0x40830E11, "Smart Array 5312", &SA5B_access},
124         {0x409A0E11, "Smart Array 641", &SA5_access},
125         {0x409B0E11, "Smart Array 642", &SA5_access},
126         {0x409C0E11, "Smart Array 6400", &SA5_access},
127         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128         {0x40910E11, "Smart Array 6i", &SA5_access},
129         {0x3225103C, "Smart Array P600", &SA5_access},
130         {0x3235103C, "Smart Array P400i", &SA5_access},
131         {0x3211103C, "Smart Array E200i", &SA5_access},
132         {0x3212103C, "Smart Array E200", &SA5_access},
133         {0x3213103C, "Smart Array E200i", &SA5_access},
134         {0x3214103C, "Smart Array E200i", &SA5_access},
135         {0x3215103C, "Smart Array E200i", &SA5_access},
136         {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139         {0x3223103C, "Smart Array P800", &SA5_access},
140         {0x3234103C, "Smart Array P400", &SA5_access},
141         {0x323D103C, "Smart Array P700m", &SA5_access},
142         {0x3241103C, "Smart Array P212", &SA5_access},
143         {0x3243103C, "Smart Array P410", &SA5_access},
144         {0x3245103C, "Smart Array P410i", &SA5_access},
145         {0x3247103C, "Smart Array P411", &SA5_access},
146         {0x3249103C, "Smart Array P812", &SA5_access},
147         {0x324A103C, "Smart Array P712m", &SA5_access},
148         {0x324B103C, "Smart Array P711m", &SA5_access},
149 };
150
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
154
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
157
158 #define MAX_CTLR        32
159
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG   8
162
163 static ctlr_info_t *hba[MAX_CTLR];
164
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
168
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174                        unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
176
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180                            int clear_all, int via_ioctl);
181
182 static void cciss_read_capacity(int ctlr, int logvol,
183                         sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol,
185                         sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
187                         sector_t total_size,
188                         unsigned int block_size, InquiryData_struct *inq_buff,
189                                    drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
191                                            __u32);
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
194                         __u8 page_code, unsigned char scsi3addr[],
195                         int cmd_type);
196 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
197         int attempt_retry);
198 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
199
200 static void fail_all_cmds(unsigned long ctlr);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
208
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i);
211 #else
212 static void cciss_procinit(int i)
213 {
214 }
215 #endif                          /* CONFIG_PROC_FS */
216
217 #ifdef CONFIG_COMPAT
218 static int cciss_compat_ioctl(struct block_device *, fmode_t,
219                               unsigned, unsigned long);
220 #endif
221
222 static const struct block_device_operations cciss_fops = {
223         .owner = THIS_MODULE,
224         .open = cciss_open,
225         .release = cciss_release,
226         .locked_ioctl = cciss_ioctl,
227         .getgeo = cciss_getgeo,
228 #ifdef CONFIG_COMPAT
229         .compat_ioctl = cciss_compat_ioctl,
230 #endif
231         .revalidate_disk = cciss_revalidate,
232 };
233
234 /*
235  * Enqueuing and dequeuing functions for cmdlists.
236  */
237 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
238 {
239         hlist_add_head(&c->list, list);
240 }
241
242 static inline void removeQ(CommandList_struct *c)
243 {
244         /*
245          * After kexec/dump some commands might still
246          * be in flight, which the firmware will try
247          * to complete. Resetting the firmware doesn't work
248          * with old fw revisions, so we have to mark
249          * them off as 'stale' to prevent the driver from
250          * falling over.
251          */
252         if (WARN_ON(hlist_unhashed(&c->list))) {
253                 c->cmd_type = CMD_MSG_STALE;
254                 return;
255         }
256
257         hlist_del_init(&c->list);
258 }
259
260 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
261         int nr_cmds)
262 {
263         int i;
264
265         if (!cmd_sg_list)
266                 return;
267         for (i = 0; i < nr_cmds; i++) {
268                 kfree(cmd_sg_list[i]);
269                 cmd_sg_list[i] = NULL;
270         }
271         kfree(cmd_sg_list);
272 }
273
274 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
275         ctlr_info_t *h, int chainsize, int nr_cmds)
276 {
277         int j;
278         SGDescriptor_struct **cmd_sg_list;
279
280         if (chainsize <= 0)
281                 return NULL;
282
283         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
284         if (!cmd_sg_list)
285                 return NULL;
286
287         /* Build up chain blocks for each command */
288         for (j = 0; j < nr_cmds; j++) {
289                 /* Need a block of chainsized s/g elements. */
290                 cmd_sg_list[j] = kmalloc((chainsize *
291                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
292                 if (!cmd_sg_list[j]) {
293                         dev_err(&h->pdev->dev, "Cannot get memory "
294                                 "for s/g chains.\n");
295                         goto clean;
296                 }
297         }
298         return cmd_sg_list;
299 clean:
300         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
301         return NULL;
302 }
303
304 #include "cciss_scsi.c"         /* For SCSI tape support */
305
306 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
307         "UNKNOWN"
308 };
309 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
310
311 #ifdef CONFIG_PROC_FS
312
313 /*
314  * Report information about this controller.
315  */
316 #define ENG_GIG 1000000000
317 #define ENG_GIG_FACTOR (ENG_GIG/512)
318 #define ENGAGE_SCSI     "engage scsi"
319
320 static struct proc_dir_entry *proc_cciss;
321
322 static void cciss_seq_show_header(struct seq_file *seq)
323 {
324         ctlr_info_t *h = seq->private;
325
326         seq_printf(seq, "%s: HP %s Controller\n"
327                 "Board ID: 0x%08lx\n"
328                 "Firmware Version: %c%c%c%c\n"
329                 "IRQ: %d\n"
330                 "Logical drives: %d\n"
331                 "Current Q depth: %d\n"
332                 "Current # commands on controller: %d\n"
333                 "Max Q depth since init: %d\n"
334                 "Max # commands on controller since init: %d\n"
335                 "Max SG entries since init: %d\n",
336                 h->devname,
337                 h->product_name,
338                 (unsigned long)h->board_id,
339                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
340                 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
341                 h->num_luns,
342                 h->Qdepth, h->commands_outstanding,
343                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
344
345 #ifdef CONFIG_CISS_SCSI_TAPE
346         cciss_seq_tape_report(seq, h->ctlr);
347 #endif /* CONFIG_CISS_SCSI_TAPE */
348 }
349
350 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
351 {
352         ctlr_info_t *h = seq->private;
353         unsigned ctlr = h->ctlr;
354         unsigned long flags;
355
356         /* prevent displaying bogus info during configuration
357          * or deconfiguration of a logical volume
358          */
359         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
360         if (h->busy_configuring) {
361                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
362                 return ERR_PTR(-EBUSY);
363         }
364         h->busy_configuring = 1;
365         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
366
367         if (*pos == 0)
368                 cciss_seq_show_header(seq);
369
370         return pos;
371 }
372
373 static int cciss_seq_show(struct seq_file *seq, void *v)
374 {
375         sector_t vol_sz, vol_sz_frac;
376         ctlr_info_t *h = seq->private;
377         unsigned ctlr = h->ctlr;
378         loff_t *pos = v;
379         drive_info_struct *drv = h->drv[*pos];
380
381         if (*pos > h->highest_lun)
382                 return 0;
383
384         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
385                 return 0;
386
387         if (drv->heads == 0)
388                 return 0;
389
390         vol_sz = drv->nr_blocks;
391         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
392         vol_sz_frac *= 100;
393         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
394
395         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
396                 drv->raid_level = RAID_UNKNOWN;
397         seq_printf(seq, "cciss/c%dd%d:"
398                         "\t%4u.%02uGB\tRAID %s\n",
399                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
400                         raid_label[drv->raid_level]);
401         return 0;
402 }
403
404 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
405 {
406         ctlr_info_t *h = seq->private;
407
408         if (*pos > h->highest_lun)
409                 return NULL;
410         *pos += 1;
411
412         return pos;
413 }
414
415 static void cciss_seq_stop(struct seq_file *seq, void *v)
416 {
417         ctlr_info_t *h = seq->private;
418
419         /* Only reset h->busy_configuring if we succeeded in setting
420          * it during cciss_seq_start. */
421         if (v == ERR_PTR(-EBUSY))
422                 return;
423
424         h->busy_configuring = 0;
425 }
426
427 static const struct seq_operations cciss_seq_ops = {
428         .start = cciss_seq_start,
429         .show  = cciss_seq_show,
430         .next  = cciss_seq_next,
431         .stop  = cciss_seq_stop,
432 };
433
434 static int cciss_seq_open(struct inode *inode, struct file *file)
435 {
436         int ret = seq_open(file, &cciss_seq_ops);
437         struct seq_file *seq = file->private_data;
438
439         if (!ret)
440                 seq->private = PDE(inode)->data;
441
442         return ret;
443 }
444
445 static ssize_t
446 cciss_proc_write(struct file *file, const char __user *buf,
447                  size_t length, loff_t *ppos)
448 {
449         int err;
450         char *buffer;
451
452 #ifndef CONFIG_CISS_SCSI_TAPE
453         return -EINVAL;
454 #endif
455
456         if (!buf || length > PAGE_SIZE - 1)
457                 return -EINVAL;
458
459         buffer = (char *)__get_free_page(GFP_KERNEL);
460         if (!buffer)
461                 return -ENOMEM;
462
463         err = -EFAULT;
464         if (copy_from_user(buffer, buf, length))
465                 goto out;
466         buffer[length] = '\0';
467
468 #ifdef CONFIG_CISS_SCSI_TAPE
469         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
470                 struct seq_file *seq = file->private_data;
471                 ctlr_info_t *h = seq->private;
472
473                 err = cciss_engage_scsi(h->ctlr);
474                 if (err == 0)
475                         err = length;
476         } else
477 #endif /* CONFIG_CISS_SCSI_TAPE */
478                 err = -EINVAL;
479         /* might be nice to have "disengage" too, but it's not
480            safely possible. (only 1 module use count, lock issues.) */
481
482 out:
483         free_page((unsigned long)buffer);
484         return err;
485 }
486
487 static const struct file_operations cciss_proc_fops = {
488         .owner   = THIS_MODULE,
489         .open    = cciss_seq_open,
490         .read    = seq_read,
491         .llseek  = seq_lseek,
492         .release = seq_release,
493         .write   = cciss_proc_write,
494 };
495
496 static void __devinit cciss_procinit(int i)
497 {
498         struct proc_dir_entry *pde;
499
500         if (proc_cciss == NULL)
501                 proc_cciss = proc_mkdir("driver/cciss", NULL);
502         if (!proc_cciss)
503                 return;
504         pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
505                                         S_IROTH, proc_cciss,
506                                         &cciss_proc_fops, hba[i]);
507 }
508 #endif                          /* CONFIG_PROC_FS */
509
510 #define MAX_PRODUCT_NAME_LEN 19
511
512 #define to_hba(n) container_of(n, struct ctlr_info, dev)
513 #define to_drv(n) container_of(n, drive_info_struct, dev)
514
515 static ssize_t host_store_rescan(struct device *dev,
516                                  struct device_attribute *attr,
517                                  const char *buf, size_t count)
518 {
519         struct ctlr_info *h = to_hba(dev);
520
521         add_to_scan_list(h);
522         wake_up_process(cciss_scan_thread);
523         wait_for_completion_interruptible(&h->scan_wait);
524
525         return count;
526 }
527 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
528
529 static ssize_t dev_show_unique_id(struct device *dev,
530                                  struct device_attribute *attr,
531                                  char *buf)
532 {
533         drive_info_struct *drv = to_drv(dev);
534         struct ctlr_info *h = to_hba(drv->dev.parent);
535         __u8 sn[16];
536         unsigned long flags;
537         int ret = 0;
538
539         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
540         if (h->busy_configuring)
541                 ret = -EBUSY;
542         else
543                 memcpy(sn, drv->serial_no, sizeof(sn));
544         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
545
546         if (ret)
547                 return ret;
548         else
549                 return snprintf(buf, 16 * 2 + 2,
550                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
551                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
552                                 sn[0], sn[1], sn[2], sn[3],
553                                 sn[4], sn[5], sn[6], sn[7],
554                                 sn[8], sn[9], sn[10], sn[11],
555                                 sn[12], sn[13], sn[14], sn[15]);
556 }
557 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
558
559 static ssize_t dev_show_vendor(struct device *dev,
560                                struct device_attribute *attr,
561                                char *buf)
562 {
563         drive_info_struct *drv = to_drv(dev);
564         struct ctlr_info *h = to_hba(drv->dev.parent);
565         char vendor[VENDOR_LEN + 1];
566         unsigned long flags;
567         int ret = 0;
568
569         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
570         if (h->busy_configuring)
571                 ret = -EBUSY;
572         else
573                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
574         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
575
576         if (ret)
577                 return ret;
578         else
579                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
580 }
581 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
582
583 static ssize_t dev_show_model(struct device *dev,
584                               struct device_attribute *attr,
585                               char *buf)
586 {
587         drive_info_struct *drv = to_drv(dev);
588         struct ctlr_info *h = to_hba(drv->dev.parent);
589         char model[MODEL_LEN + 1];
590         unsigned long flags;
591         int ret = 0;
592
593         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
594         if (h->busy_configuring)
595                 ret = -EBUSY;
596         else
597                 memcpy(model, drv->model, MODEL_LEN + 1);
598         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
599
600         if (ret)
601                 return ret;
602         else
603                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
604 }
605 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
606
607 static ssize_t dev_show_rev(struct device *dev,
608                             struct device_attribute *attr,
609                             char *buf)
610 {
611         drive_info_struct *drv = to_drv(dev);
612         struct ctlr_info *h = to_hba(drv->dev.parent);
613         char rev[REV_LEN + 1];
614         unsigned long flags;
615         int ret = 0;
616
617         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
618         if (h->busy_configuring)
619                 ret = -EBUSY;
620         else
621                 memcpy(rev, drv->rev, REV_LEN + 1);
622         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
623
624         if (ret)
625                 return ret;
626         else
627                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
628 }
629 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
630
631 static ssize_t cciss_show_lunid(struct device *dev,
632                                 struct device_attribute *attr, char *buf)
633 {
634         drive_info_struct *drv = to_drv(dev);
635         struct ctlr_info *h = to_hba(drv->dev.parent);
636         unsigned long flags;
637         unsigned char lunid[8];
638
639         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
640         if (h->busy_configuring) {
641                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
642                 return -EBUSY;
643         }
644         if (!drv->heads) {
645                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
646                 return -ENOTTY;
647         }
648         memcpy(lunid, drv->LunID, sizeof(lunid));
649         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
650         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
651                 lunid[0], lunid[1], lunid[2], lunid[3],
652                 lunid[4], lunid[5], lunid[6], lunid[7]);
653 }
654 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
655
656 static ssize_t cciss_show_raid_level(struct device *dev,
657                                      struct device_attribute *attr, char *buf)
658 {
659         drive_info_struct *drv = to_drv(dev);
660         struct ctlr_info *h = to_hba(drv->dev.parent);
661         int raid;
662         unsigned long flags;
663
664         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
665         if (h->busy_configuring) {
666                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
667                 return -EBUSY;
668         }
669         raid = drv->raid_level;
670         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
671         if (raid < 0 || raid > RAID_UNKNOWN)
672                 raid = RAID_UNKNOWN;
673
674         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
675                         raid_label[raid]);
676 }
677 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
678
679 static ssize_t cciss_show_usage_count(struct device *dev,
680                                       struct device_attribute *attr, char *buf)
681 {
682         drive_info_struct *drv = to_drv(dev);
683         struct ctlr_info *h = to_hba(drv->dev.parent);
684         unsigned long flags;
685         int count;
686
687         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
688         if (h->busy_configuring) {
689                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
690                 return -EBUSY;
691         }
692         count = drv->usage_count;
693         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
694         return snprintf(buf, 20, "%d\n", count);
695 }
696 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
697
698 static struct attribute *cciss_host_attrs[] = {
699         &dev_attr_rescan.attr,
700         NULL
701 };
702
703 static struct attribute_group cciss_host_attr_group = {
704         .attrs = cciss_host_attrs,
705 };
706
707 static const struct attribute_group *cciss_host_attr_groups[] = {
708         &cciss_host_attr_group,
709         NULL
710 };
711
712 static struct device_type cciss_host_type = {
713         .name           = "cciss_host",
714         .groups         = cciss_host_attr_groups,
715         .release        = cciss_hba_release,
716 };
717
718 static struct attribute *cciss_dev_attrs[] = {
719         &dev_attr_unique_id.attr,
720         &dev_attr_model.attr,
721         &dev_attr_vendor.attr,
722         &dev_attr_rev.attr,
723         &dev_attr_lunid.attr,
724         &dev_attr_raid_level.attr,
725         &dev_attr_usage_count.attr,
726         NULL
727 };
728
729 static struct attribute_group cciss_dev_attr_group = {
730         .attrs = cciss_dev_attrs,
731 };
732
733 static const struct attribute_group *cciss_dev_attr_groups[] = {
734         &cciss_dev_attr_group,
735         NULL
736 };
737
738 static struct device_type cciss_dev_type = {
739         .name           = "cciss_device",
740         .groups         = cciss_dev_attr_groups,
741         .release        = cciss_device_release,
742 };
743
744 static struct bus_type cciss_bus_type = {
745         .name           = "cciss",
746 };
747
748 /*
749  * cciss_hba_release is called when the reference count
750  * of h->dev goes to zero.
751  */
752 static void cciss_hba_release(struct device *dev)
753 {
754         /*
755          * nothing to do, but need this to avoid a warning
756          * about not having a release handler from lib/kref.c.
757          */
758 }
759
760 /*
761  * Initialize sysfs entry for each controller.  This sets up and registers
762  * the 'cciss#' directory for each individual controller under
763  * /sys/bus/pci/devices/<dev>/.
764  */
765 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
766 {
767         device_initialize(&h->dev);
768         h->dev.type = &cciss_host_type;
769         h->dev.bus = &cciss_bus_type;
770         dev_set_name(&h->dev, "%s", h->devname);
771         h->dev.parent = &h->pdev->dev;
772
773         return device_add(&h->dev);
774 }
775
776 /*
777  * Remove sysfs entries for an hba.
778  */
779 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
780 {
781         device_del(&h->dev);
782         put_device(&h->dev); /* final put. */
783 }
784
785 /* cciss_device_release is called when the reference count
786  * of h->drv[x]dev goes to zero.
787  */
788 static void cciss_device_release(struct device *dev)
789 {
790         drive_info_struct *drv = to_drv(dev);
791         kfree(drv);
792 }
793
794 /*
795  * Initialize sysfs for each logical drive.  This sets up and registers
796  * the 'c#d#' directory for each individual logical drive under
797  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
798  * /sys/block/cciss!c#d# to this entry.
799  */
800 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
801                                        int drv_index)
802 {
803         struct device *dev;
804
805         if (h->drv[drv_index]->device_initialized)
806                 return 0;
807
808         dev = &h->drv[drv_index]->dev;
809         device_initialize(dev);
810         dev->type = &cciss_dev_type;
811         dev->bus = &cciss_bus_type;
812         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
813         dev->parent = &h->dev;
814         h->drv[drv_index]->device_initialized = 1;
815         return device_add(dev);
816 }
817
818 /*
819  * Remove sysfs entries for a logical drive.
820  */
821 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
822         int ctlr_exiting)
823 {
824         struct device *dev = &h->drv[drv_index]->dev;
825
826         /* special case for c*d0, we only destroy it on controller exit */
827         if (drv_index == 0 && !ctlr_exiting)
828                 return;
829
830         device_del(dev);
831         put_device(dev); /* the "final" put. */
832         h->drv[drv_index] = NULL;
833 }
834
835 /*
836  * For operations that cannot sleep, a command block is allocated at init,
837  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
838  * which ones are free or in use.  For operations that can wait for kmalloc
839  * to possible sleep, this routine can be called with get_from_pool set to 0.
840  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
841  */
842 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
843 {
844         CommandList_struct *c;
845         int i;
846         u64bit temp64;
847         dma_addr_t cmd_dma_handle, err_dma_handle;
848
849         if (!get_from_pool) {
850                 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
851                         sizeof(CommandList_struct), &cmd_dma_handle);
852                 if (c == NULL)
853                         return NULL;
854                 memset(c, 0, sizeof(CommandList_struct));
855
856                 c->cmdindex = -1;
857
858                 c->err_info = (ErrorInfo_struct *)
859                     pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
860                             &err_dma_handle);
861
862                 if (c->err_info == NULL) {
863                         pci_free_consistent(h->pdev,
864                                 sizeof(CommandList_struct), c, cmd_dma_handle);
865                         return NULL;
866                 }
867                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
868         } else {                /* get it out of the controllers pool */
869
870                 do {
871                         i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
872                         if (i == h->nr_cmds)
873                                 return NULL;
874                 } while (test_and_set_bit
875                          (i & (BITS_PER_LONG - 1),
876                           h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
877 #ifdef CCISS_DEBUG
878                 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
879 #endif
880                 c = h->cmd_pool + i;
881                 memset(c, 0, sizeof(CommandList_struct));
882                 cmd_dma_handle = h->cmd_pool_dhandle
883                     + i * sizeof(CommandList_struct);
884                 c->err_info = h->errinfo_pool + i;
885                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
886                 err_dma_handle = h->errinfo_pool_dhandle
887                     + i * sizeof(ErrorInfo_struct);
888                 h->nr_allocs++;
889
890                 c->cmdindex = i;
891         }
892
893         INIT_HLIST_NODE(&c->list);
894         c->busaddr = (__u32) cmd_dma_handle;
895         temp64.val = (__u64) err_dma_handle;
896         c->ErrDesc.Addr.lower = temp64.val32.lower;
897         c->ErrDesc.Addr.upper = temp64.val32.upper;
898         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
899
900         c->ctlr = h->ctlr;
901         return c;
902 }
903
904 /*
905  * Frees a command block that was previously allocated with cmd_alloc().
906  */
907 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
908 {
909         int i;
910         u64bit temp64;
911
912         if (!got_from_pool) {
913                 temp64.val32.lower = c->ErrDesc.Addr.lower;
914                 temp64.val32.upper = c->ErrDesc.Addr.upper;
915                 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
916                                     c->err_info, (dma_addr_t) temp64.val);
917                 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
918                                     c, (dma_addr_t) c->busaddr);
919         } else {
920                 i = c - h->cmd_pool;
921                 clear_bit(i & (BITS_PER_LONG - 1),
922                           h->cmd_pool_bits + (i / BITS_PER_LONG));
923                 h->nr_frees++;
924         }
925 }
926
927 static inline ctlr_info_t *get_host(struct gendisk *disk)
928 {
929         return disk->queue->queuedata;
930 }
931
932 static inline drive_info_struct *get_drv(struct gendisk *disk)
933 {
934         return disk->private_data;
935 }
936
937 /*
938  * Open.  Make sure the device is really there.
939  */
940 static int cciss_open(struct block_device *bdev, fmode_t mode)
941 {
942         ctlr_info_t *host = get_host(bdev->bd_disk);
943         drive_info_struct *drv = get_drv(bdev->bd_disk);
944
945 #ifdef CCISS_DEBUG
946         printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
947 #endif                          /* CCISS_DEBUG */
948
949         if (drv->busy_configuring)
950                 return -EBUSY;
951         /*
952          * Root is allowed to open raw volume zero even if it's not configured
953          * so array config can still work. Root is also allowed to open any
954          * volume that has a LUN ID, so it can issue IOCTL to reread the
955          * disk information.  I don't think I really like this
956          * but I'm already using way to many device nodes to claim another one
957          * for "raw controller".
958          */
959         if (drv->heads == 0) {
960                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
961                         /* if not node 0 make sure it is a partition = 0 */
962                         if (MINOR(bdev->bd_dev) & 0x0f) {
963                                 return -ENXIO;
964                                 /* if it is, make sure we have a LUN ID */
965                         } else if (memcmp(drv->LunID, CTLR_LUNID,
966                                 sizeof(drv->LunID))) {
967                                 return -ENXIO;
968                         }
969                 }
970                 if (!capable(CAP_SYS_ADMIN))
971                         return -EPERM;
972         }
973         drv->usage_count++;
974         host->usage_count++;
975         return 0;
976 }
977
978 /*
979  * Close.  Sync first.
980  */
981 static int cciss_release(struct gendisk *disk, fmode_t mode)
982 {
983         ctlr_info_t *host = get_host(disk);
984         drive_info_struct *drv = get_drv(disk);
985
986 #ifdef CCISS_DEBUG
987         printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
988 #endif                          /* CCISS_DEBUG */
989
990         drv->usage_count--;
991         host->usage_count--;
992         return 0;
993 }
994
995 #ifdef CONFIG_COMPAT
996
997 static int do_ioctl(struct block_device *bdev, fmode_t mode,
998                     unsigned cmd, unsigned long arg)
999 {
1000         int ret;
1001         lock_kernel();
1002         ret = cciss_ioctl(bdev, mode, cmd, arg);
1003         unlock_kernel();
1004         return ret;
1005 }
1006
1007 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1008                                   unsigned cmd, unsigned long arg);
1009 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1010                                       unsigned cmd, unsigned long arg);
1011
1012 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1013                               unsigned cmd, unsigned long arg)
1014 {
1015         switch (cmd) {
1016         case CCISS_GETPCIINFO:
1017         case CCISS_GETINTINFO:
1018         case CCISS_SETINTINFO:
1019         case CCISS_GETNODENAME:
1020         case CCISS_SETNODENAME:
1021         case CCISS_GETHEARTBEAT:
1022         case CCISS_GETBUSTYPES:
1023         case CCISS_GETFIRMVER:
1024         case CCISS_GETDRIVVER:
1025         case CCISS_REVALIDVOLS:
1026         case CCISS_DEREGDISK:
1027         case CCISS_REGNEWDISK:
1028         case CCISS_REGNEWD:
1029         case CCISS_RESCANDISK:
1030         case CCISS_GETLUNINFO:
1031                 return do_ioctl(bdev, mode, cmd, arg);
1032
1033         case CCISS_PASSTHRU32:
1034                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1035         case CCISS_BIG_PASSTHRU32:
1036                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1037
1038         default:
1039                 return -ENOIOCTLCMD;
1040         }
1041 }
1042
1043 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1044                                   unsigned cmd, unsigned long arg)
1045 {
1046         IOCTL32_Command_struct __user *arg32 =
1047             (IOCTL32_Command_struct __user *) arg;
1048         IOCTL_Command_struct arg64;
1049         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1050         int err;
1051         u32 cp;
1052
1053         err = 0;
1054         err |=
1055             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1056                            sizeof(arg64.LUN_info));
1057         err |=
1058             copy_from_user(&arg64.Request, &arg32->Request,
1059                            sizeof(arg64.Request));
1060         err |=
1061             copy_from_user(&arg64.error_info, &arg32->error_info,
1062                            sizeof(arg64.error_info));
1063         err |= get_user(arg64.buf_size, &arg32->buf_size);
1064         err |= get_user(cp, &arg32->buf);
1065         arg64.buf = compat_ptr(cp);
1066         err |= copy_to_user(p, &arg64, sizeof(arg64));
1067
1068         if (err)
1069                 return -EFAULT;
1070
1071         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1072         if (err)
1073                 return err;
1074         err |=
1075             copy_in_user(&arg32->error_info, &p->error_info,
1076                          sizeof(arg32->error_info));
1077         if (err)
1078                 return -EFAULT;
1079         return err;
1080 }
1081
1082 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1083                                       unsigned cmd, unsigned long arg)
1084 {
1085         BIG_IOCTL32_Command_struct __user *arg32 =
1086             (BIG_IOCTL32_Command_struct __user *) arg;
1087         BIG_IOCTL_Command_struct arg64;
1088         BIG_IOCTL_Command_struct __user *p =
1089             compat_alloc_user_space(sizeof(arg64));
1090         int err;
1091         u32 cp;
1092
1093         err = 0;
1094         err |=
1095             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1096                            sizeof(arg64.LUN_info));
1097         err |=
1098             copy_from_user(&arg64.Request, &arg32->Request,
1099                            sizeof(arg64.Request));
1100         err |=
1101             copy_from_user(&arg64.error_info, &arg32->error_info,
1102                            sizeof(arg64.error_info));
1103         err |= get_user(arg64.buf_size, &arg32->buf_size);
1104         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1105         err |= get_user(cp, &arg32->buf);
1106         arg64.buf = compat_ptr(cp);
1107         err |= copy_to_user(p, &arg64, sizeof(arg64));
1108
1109         if (err)
1110                 return -EFAULT;
1111
1112         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1113         if (err)
1114                 return err;
1115         err |=
1116             copy_in_user(&arg32->error_info, &p->error_info,
1117                          sizeof(arg32->error_info));
1118         if (err)
1119                 return -EFAULT;
1120         return err;
1121 }
1122 #endif
1123
1124 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1125 {
1126         drive_info_struct *drv = get_drv(bdev->bd_disk);
1127
1128         if (!drv->cylinders)
1129                 return -ENXIO;
1130
1131         geo->heads = drv->heads;
1132         geo->sectors = drv->sectors;
1133         geo->cylinders = drv->cylinders;
1134         return 0;
1135 }
1136
1137 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1138 {
1139         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1140                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1141                 (void)check_for_unit_attention(host, c);
1142 }
1143 /*
1144  * ioctl
1145  */
1146 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1147                        unsigned int cmd, unsigned long arg)
1148 {
1149         struct gendisk *disk = bdev->bd_disk;
1150         ctlr_info_t *host = get_host(disk);
1151         drive_info_struct *drv = get_drv(disk);
1152         int ctlr = host->ctlr;
1153         void __user *argp = (void __user *)arg;
1154
1155 #ifdef CCISS_DEBUG
1156         printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1157 #endif                          /* CCISS_DEBUG */
1158
1159         switch (cmd) {
1160         case CCISS_GETPCIINFO:
1161                 {
1162                         cciss_pci_info_struct pciinfo;
1163
1164                         if (!arg)
1165                                 return -EINVAL;
1166                         pciinfo.domain = pci_domain_nr(host->pdev->bus);
1167                         pciinfo.bus = host->pdev->bus->number;
1168                         pciinfo.dev_fn = host->pdev->devfn;
1169                         pciinfo.board_id = host->board_id;
1170                         if (copy_to_user
1171                             (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1172                                 return -EFAULT;
1173                         return 0;
1174                 }
1175         case CCISS_GETINTINFO:
1176                 {
1177                         cciss_coalint_struct intinfo;
1178                         if (!arg)
1179                                 return -EINVAL;
1180                         intinfo.delay =
1181                             readl(&host->cfgtable->HostWrite.CoalIntDelay);
1182                         intinfo.count =
1183                             readl(&host->cfgtable->HostWrite.CoalIntCount);
1184                         if (copy_to_user
1185                             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1186                                 return -EFAULT;
1187                         return 0;
1188                 }
1189         case CCISS_SETINTINFO:
1190                 {
1191                         cciss_coalint_struct intinfo;
1192                         unsigned long flags;
1193                         int i;
1194
1195                         if (!arg)
1196                                 return -EINVAL;
1197                         if (!capable(CAP_SYS_ADMIN))
1198                                 return -EPERM;
1199                         if (copy_from_user
1200                             (&intinfo, argp, sizeof(cciss_coalint_struct)))
1201                                 return -EFAULT;
1202                         if ((intinfo.delay == 0) && (intinfo.count == 0))
1203                         {
1204 //                      printk("cciss_ioctl: delay and count cannot be 0\n");
1205                                 return -EINVAL;
1206                         }
1207                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1208                         /* Update the field, and then ring the doorbell */
1209                         writel(intinfo.delay,
1210                                &(host->cfgtable->HostWrite.CoalIntDelay));
1211                         writel(intinfo.count,
1212                                &(host->cfgtable->HostWrite.CoalIntCount));
1213                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1214
1215                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1216                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1217                                       & CFGTBL_ChangeReq))
1218                                         break;
1219                                 /* delay and try again */
1220                                 udelay(1000);
1221                         }
1222                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1223                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1224                                 return -EAGAIN;
1225                         return 0;
1226                 }
1227         case CCISS_GETNODENAME:
1228                 {
1229                         NodeName_type NodeName;
1230                         int i;
1231
1232                         if (!arg)
1233                                 return -EINVAL;
1234                         for (i = 0; i < 16; i++)
1235                                 NodeName[i] =
1236                                     readb(&host->cfgtable->ServerName[i]);
1237                         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1238                                 return -EFAULT;
1239                         return 0;
1240                 }
1241         case CCISS_SETNODENAME:
1242                 {
1243                         NodeName_type NodeName;
1244                         unsigned long flags;
1245                         int i;
1246
1247                         if (!arg)
1248                                 return -EINVAL;
1249                         if (!capable(CAP_SYS_ADMIN))
1250                                 return -EPERM;
1251
1252                         if (copy_from_user
1253                             (NodeName, argp, sizeof(NodeName_type)))
1254                                 return -EFAULT;
1255
1256                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1257
1258                         /* Update the field, and then ring the doorbell */
1259                         for (i = 0; i < 16; i++)
1260                                 writeb(NodeName[i],
1261                                        &host->cfgtable->ServerName[i]);
1262
1263                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1264
1265                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1266                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1267                                       & CFGTBL_ChangeReq))
1268                                         break;
1269                                 /* delay and try again */
1270                                 udelay(1000);
1271                         }
1272                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1273                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1274                                 return -EAGAIN;
1275                         return 0;
1276                 }
1277
1278         case CCISS_GETHEARTBEAT:
1279                 {
1280                         Heartbeat_type heartbeat;
1281
1282                         if (!arg)
1283                                 return -EINVAL;
1284                         heartbeat = readl(&host->cfgtable->HeartBeat);
1285                         if (copy_to_user
1286                             (argp, &heartbeat, sizeof(Heartbeat_type)))
1287                                 return -EFAULT;
1288                         return 0;
1289                 }
1290         case CCISS_GETBUSTYPES:
1291                 {
1292                         BusTypes_type BusTypes;
1293
1294                         if (!arg)
1295                                 return -EINVAL;
1296                         BusTypes = readl(&host->cfgtable->BusTypes);
1297                         if (copy_to_user
1298                             (argp, &BusTypes, sizeof(BusTypes_type)))
1299                                 return -EFAULT;
1300                         return 0;
1301                 }
1302         case CCISS_GETFIRMVER:
1303                 {
1304                         FirmwareVer_type firmware;
1305
1306                         if (!arg)
1307                                 return -EINVAL;
1308                         memcpy(firmware, host->firm_ver, 4);
1309
1310                         if (copy_to_user
1311                             (argp, firmware, sizeof(FirmwareVer_type)))
1312                                 return -EFAULT;
1313                         return 0;
1314                 }
1315         case CCISS_GETDRIVVER:
1316                 {
1317                         DriverVer_type DriverVer = DRIVER_VERSION;
1318
1319                         if (!arg)
1320                                 return -EINVAL;
1321
1322                         if (copy_to_user
1323                             (argp, &DriverVer, sizeof(DriverVer_type)))
1324                                 return -EFAULT;
1325                         return 0;
1326                 }
1327
1328         case CCISS_DEREGDISK:
1329         case CCISS_REGNEWD:
1330         case CCISS_REVALIDVOLS:
1331                 return rebuild_lun_table(host, 0, 1);
1332
1333         case CCISS_GETLUNINFO:{
1334                         LogvolInfo_struct luninfo;
1335
1336                         memcpy(&luninfo.LunID, drv->LunID,
1337                                 sizeof(luninfo.LunID));
1338                         luninfo.num_opens = drv->usage_count;
1339                         luninfo.num_parts = 0;
1340                         if (copy_to_user(argp, &luninfo,
1341                                          sizeof(LogvolInfo_struct)))
1342                                 return -EFAULT;
1343                         return 0;
1344                 }
1345         case CCISS_PASSTHRU:
1346                 {
1347                         IOCTL_Command_struct iocommand;
1348                         CommandList_struct *c;
1349                         char *buff = NULL;
1350                         u64bit temp64;
1351                         unsigned long flags;
1352                         DECLARE_COMPLETION_ONSTACK(wait);
1353
1354                         if (!arg)
1355                                 return -EINVAL;
1356
1357                         if (!capable(CAP_SYS_RAWIO))
1358                                 return -EPERM;
1359
1360                         if (copy_from_user
1361                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1362                                 return -EFAULT;
1363                         if ((iocommand.buf_size < 1) &&
1364                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1365                                 return -EINVAL;
1366                         }
1367 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1368                         /* Check kmalloc limits */
1369                         if (iocommand.buf_size > 128000)
1370                                 return -EINVAL;
1371 #endif
1372                         if (iocommand.buf_size > 0) {
1373                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1374                                 if (buff == NULL)
1375                                         return -EFAULT;
1376                         }
1377                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1378                                 /* Copy the data into the buffer we created */
1379                                 if (copy_from_user
1380                                     (buff, iocommand.buf, iocommand.buf_size)) {
1381                                         kfree(buff);
1382                                         return -EFAULT;
1383                                 }
1384                         } else {
1385                                 memset(buff, 0, iocommand.buf_size);
1386                         }
1387                         if ((c = cmd_alloc(host, 0)) == NULL) {
1388                                 kfree(buff);
1389                                 return -ENOMEM;
1390                         }
1391                         /* Fill in the command type */
1392                         c->cmd_type = CMD_IOCTL_PEND;
1393                         /* Fill in Command Header */
1394                         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1395                         if (iocommand.buf_size > 0) /* buffer to fill */
1396                         {
1397                                 c->Header.SGList = 1;
1398                                 c->Header.SGTotal = 1;
1399                         } else /* no buffers to fill */
1400                         {
1401                                 c->Header.SGList = 0;
1402                                 c->Header.SGTotal = 0;
1403                         }
1404                         c->Header.LUN = iocommand.LUN_info;
1405                         /* use the kernel address the cmd block for tag */
1406                         c->Header.Tag.lower = c->busaddr;
1407
1408                         /* Fill in Request block */
1409                         c->Request = iocommand.Request;
1410
1411                         /* Fill in the scatter gather information */
1412                         if (iocommand.buf_size > 0) {
1413                                 temp64.val = pci_map_single(host->pdev, buff,
1414                                         iocommand.buf_size,
1415                                         PCI_DMA_BIDIRECTIONAL);
1416                                 c->SG[0].Addr.lower = temp64.val32.lower;
1417                                 c->SG[0].Addr.upper = temp64.val32.upper;
1418                                 c->SG[0].Len = iocommand.buf_size;
1419                                 c->SG[0].Ext = 0;  /* we are not chaining */
1420                         }
1421                         c->waiting = &wait;
1422
1423                         /* Put the request on the tail of the request queue */
1424                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1425                         addQ(&host->reqQ, c);
1426                         host->Qdepth++;
1427                         start_io(host);
1428                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1429
1430                         wait_for_completion(&wait);
1431
1432                         /* unlock the buffers from DMA */
1433                         temp64.val32.lower = c->SG[0].Addr.lower;
1434                         temp64.val32.upper = c->SG[0].Addr.upper;
1435                         pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1436                                          iocommand.buf_size,
1437                                          PCI_DMA_BIDIRECTIONAL);
1438
1439                         check_ioctl_unit_attention(host, c);
1440
1441                         /* Copy the error information out */
1442                         iocommand.error_info = *(c->err_info);
1443                         if (copy_to_user
1444                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1445                                 kfree(buff);
1446                                 cmd_free(host, c, 0);
1447                                 return -EFAULT;
1448                         }
1449
1450                         if (iocommand.Request.Type.Direction == XFER_READ) {
1451                                 /* Copy the data out of the buffer we created */
1452                                 if (copy_to_user
1453                                     (iocommand.buf, buff, iocommand.buf_size)) {
1454                                         kfree(buff);
1455                                         cmd_free(host, c, 0);
1456                                         return -EFAULT;
1457                                 }
1458                         }
1459                         kfree(buff);
1460                         cmd_free(host, c, 0);
1461                         return 0;
1462                 }
1463         case CCISS_BIG_PASSTHRU:{
1464                         BIG_IOCTL_Command_struct *ioc;
1465                         CommandList_struct *c;
1466                         unsigned char **buff = NULL;
1467                         int *buff_size = NULL;
1468                         u64bit temp64;
1469                         unsigned long flags;
1470                         BYTE sg_used = 0;
1471                         int status = 0;
1472                         int i;
1473                         DECLARE_COMPLETION_ONSTACK(wait);
1474                         __u32 left;
1475                         __u32 sz;
1476                         BYTE __user *data_ptr;
1477
1478                         if (!arg)
1479                                 return -EINVAL;
1480                         if (!capable(CAP_SYS_RAWIO))
1481                                 return -EPERM;
1482                         ioc = (BIG_IOCTL_Command_struct *)
1483                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1484                         if (!ioc) {
1485                                 status = -ENOMEM;
1486                                 goto cleanup1;
1487                         }
1488                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1489                                 status = -EFAULT;
1490                                 goto cleanup1;
1491                         }
1492                         if ((ioc->buf_size < 1) &&
1493                             (ioc->Request.Type.Direction != XFER_NONE)) {
1494                                 status = -EINVAL;
1495                                 goto cleanup1;
1496                         }
1497                         /* Check kmalloc limits  using all SGs */
1498                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1499                                 status = -EINVAL;
1500                                 goto cleanup1;
1501                         }
1502                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1503                                 status = -EINVAL;
1504                                 goto cleanup1;
1505                         }
1506                         buff =
1507                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1508                         if (!buff) {
1509                                 status = -ENOMEM;
1510                                 goto cleanup1;
1511                         }
1512                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1513                                                    GFP_KERNEL);
1514                         if (!buff_size) {
1515                                 status = -ENOMEM;
1516                                 goto cleanup1;
1517                         }
1518                         left = ioc->buf_size;
1519                         data_ptr = ioc->buf;
1520                         while (left) {
1521                                 sz = (left >
1522                                       ioc->malloc_size) ? ioc->
1523                                     malloc_size : left;
1524                                 buff_size[sg_used] = sz;
1525                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1526                                 if (buff[sg_used] == NULL) {
1527                                         status = -ENOMEM;
1528                                         goto cleanup1;
1529                                 }
1530                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1531                                         if (copy_from_user
1532                                             (buff[sg_used], data_ptr, sz)) {
1533                                                 status = -EFAULT;
1534                                                 goto cleanup1;
1535                                         }
1536                                 } else {
1537                                         memset(buff[sg_used], 0, sz);
1538                                 }
1539                                 left -= sz;
1540                                 data_ptr += sz;
1541                                 sg_used++;
1542                         }
1543                         if ((c = cmd_alloc(host, 0)) == NULL) {
1544                                 status = -ENOMEM;
1545                                 goto cleanup1;
1546                         }
1547                         c->cmd_type = CMD_IOCTL_PEND;
1548                         c->Header.ReplyQueue = 0;
1549
1550                         if (ioc->buf_size > 0) {
1551                                 c->Header.SGList = sg_used;
1552                                 c->Header.SGTotal = sg_used;
1553                         } else {
1554                                 c->Header.SGList = 0;
1555                                 c->Header.SGTotal = 0;
1556                         }
1557                         c->Header.LUN = ioc->LUN_info;
1558                         c->Header.Tag.lower = c->busaddr;
1559
1560                         c->Request = ioc->Request;
1561                         if (ioc->buf_size > 0) {
1562                                 int i;
1563                                 for (i = 0; i < sg_used; i++) {
1564                                         temp64.val =
1565                                             pci_map_single(host->pdev, buff[i],
1566                                                     buff_size[i],
1567                                                     PCI_DMA_BIDIRECTIONAL);
1568                                         c->SG[i].Addr.lower =
1569                                             temp64.val32.lower;
1570                                         c->SG[i].Addr.upper =
1571                                             temp64.val32.upper;
1572                                         c->SG[i].Len = buff_size[i];
1573                                         c->SG[i].Ext = 0;       /* we are not chaining */
1574                                 }
1575                         }
1576                         c->waiting = &wait;
1577                         /* Put the request on the tail of the request queue */
1578                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1579                         addQ(&host->reqQ, c);
1580                         host->Qdepth++;
1581                         start_io(host);
1582                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1583                         wait_for_completion(&wait);
1584                         /* unlock the buffers from DMA */
1585                         for (i = 0; i < sg_used; i++) {
1586                                 temp64.val32.lower = c->SG[i].Addr.lower;
1587                                 temp64.val32.upper = c->SG[i].Addr.upper;
1588                                 pci_unmap_single(host->pdev,
1589                                         (dma_addr_t) temp64.val, buff_size[i],
1590                                         PCI_DMA_BIDIRECTIONAL);
1591                         }
1592                         check_ioctl_unit_attention(host, c);
1593                         /* Copy the error information out */
1594                         ioc->error_info = *(c->err_info);
1595                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1596                                 cmd_free(host, c, 0);
1597                                 status = -EFAULT;
1598                                 goto cleanup1;
1599                         }
1600                         if (ioc->Request.Type.Direction == XFER_READ) {
1601                                 /* Copy the data out of the buffer we created */
1602                                 BYTE __user *ptr = ioc->buf;
1603                                 for (i = 0; i < sg_used; i++) {
1604                                         if (copy_to_user
1605                                             (ptr, buff[i], buff_size[i])) {
1606                                                 cmd_free(host, c, 0);
1607                                                 status = -EFAULT;
1608                                                 goto cleanup1;
1609                                         }
1610                                         ptr += buff_size[i];
1611                                 }
1612                         }
1613                         cmd_free(host, c, 0);
1614                         status = 0;
1615                       cleanup1:
1616                         if (buff) {
1617                                 for (i = 0; i < sg_used; i++)
1618                                         kfree(buff[i]);
1619                                 kfree(buff);
1620                         }
1621                         kfree(buff_size);
1622                         kfree(ioc);
1623                         return status;
1624                 }
1625
1626         /* scsi_cmd_ioctl handles these, below, though some are not */
1627         /* very meaningful for cciss.  SG_IO is the main one people want. */
1628
1629         case SG_GET_VERSION_NUM:
1630         case SG_SET_TIMEOUT:
1631         case SG_GET_TIMEOUT:
1632         case SG_GET_RESERVED_SIZE:
1633         case SG_SET_RESERVED_SIZE:
1634         case SG_EMULATED_HOST:
1635         case SG_IO:
1636         case SCSI_IOCTL_SEND_COMMAND:
1637                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1638
1639         /* scsi_cmd_ioctl would normally handle these, below, but */
1640         /* they aren't a good fit for cciss, as CD-ROMs are */
1641         /* not supported, and we don't have any bus/target/lun */
1642         /* which we present to the kernel. */
1643
1644         case CDROM_SEND_PACKET:
1645         case CDROMCLOSETRAY:
1646         case CDROMEJECT:
1647         case SCSI_IOCTL_GET_IDLUN:
1648         case SCSI_IOCTL_GET_BUS_NUMBER:
1649         default:
1650                 return -ENOTTY;
1651         }
1652 }
1653
1654 static void cciss_check_queues(ctlr_info_t *h)
1655 {
1656         int start_queue = h->next_to_run;
1657         int i;
1658
1659         /* check to see if we have maxed out the number of commands that can
1660          * be placed on the queue.  If so then exit.  We do this check here
1661          * in case the interrupt we serviced was from an ioctl and did not
1662          * free any new commands.
1663          */
1664         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1665                 return;
1666
1667         /* We have room on the queue for more commands.  Now we need to queue
1668          * them up.  We will also keep track of the next queue to run so
1669          * that every queue gets a chance to be started first.
1670          */
1671         for (i = 0; i < h->highest_lun + 1; i++) {
1672                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1673                 /* make sure the disk has been added and the drive is real
1674                  * because this can be called from the middle of init_one.
1675                  */
1676                 if (!h->drv[curr_queue])
1677                         continue;
1678                 if (!(h->drv[curr_queue]->queue) ||
1679                         !(h->drv[curr_queue]->heads))
1680                         continue;
1681                 blk_start_queue(h->gendisk[curr_queue]->queue);
1682
1683                 /* check to see if we have maxed out the number of commands
1684                  * that can be placed on the queue.
1685                  */
1686                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1687                         if (curr_queue == start_queue) {
1688                                 h->next_to_run =
1689                                     (start_queue + 1) % (h->highest_lun + 1);
1690                                 break;
1691                         } else {
1692                                 h->next_to_run = curr_queue;
1693                                 break;
1694                         }
1695                 }
1696         }
1697 }
1698
1699 static void cciss_softirq_done(struct request *rq)
1700 {
1701         CommandList_struct *cmd = rq->completion_data;
1702         ctlr_info_t *h = hba[cmd->ctlr];
1703         SGDescriptor_struct *curr_sg = cmd->SG;
1704         unsigned long flags;
1705         u64bit temp64;
1706         int i, ddir;
1707         int sg_index = 0;
1708
1709         if (cmd->Request.Type.Direction == XFER_READ)
1710                 ddir = PCI_DMA_FROMDEVICE;
1711         else
1712                 ddir = PCI_DMA_TODEVICE;
1713
1714         /* command did not need to be retried */
1715         /* unmap the DMA mapping for all the scatter gather elements */
1716         for (i = 0; i < cmd->Header.SGList; i++) {
1717                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1718                         temp64.val32.lower = cmd->SG[i].Addr.lower;
1719                         temp64.val32.upper = cmd->SG[i].Addr.upper;
1720                         pci_dma_sync_single_for_cpu(h->pdev, temp64.val,
1721                                                 cmd->SG[i].Len, ddir);
1722                         pci_unmap_single(h->pdev, temp64.val,
1723                                                 cmd->SG[i].Len, ddir);
1724                         /* Point to the next block */
1725                         curr_sg = h->cmd_sg_list[cmd->cmdindex];
1726                         sg_index = 0;
1727                 }
1728                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1729                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1730                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1731                                 ddir);
1732                 ++sg_index;
1733         }
1734
1735 #ifdef CCISS_DEBUG
1736         printk("Done with %p\n", rq);
1737 #endif                          /* CCISS_DEBUG */
1738
1739         /* set the residual count for pc requests */
1740         if (blk_pc_request(rq))
1741                 rq->resid_len = cmd->err_info->ResidualCnt;
1742
1743         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1744
1745         spin_lock_irqsave(&h->lock, flags);
1746         cmd_free(h, cmd, 1);
1747         cciss_check_queues(h);
1748         spin_unlock_irqrestore(&h->lock, flags);
1749 }
1750
1751 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1752         unsigned char scsi3addr[], uint32_t log_unit)
1753 {
1754         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1755                 sizeof(h->drv[log_unit]->LunID));
1756 }
1757
1758 /* This function gets the SCSI vendor, model, and revision of a logical drive
1759  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1760  * they cannot be read.
1761  */
1762 static void cciss_get_device_descr(int ctlr, int logvol,
1763                                    char *vendor, char *model, char *rev)
1764 {
1765         int rc;
1766         InquiryData_struct *inq_buf;
1767         unsigned char scsi3addr[8];
1768
1769         *vendor = '\0';
1770         *model = '\0';
1771         *rev = '\0';
1772
1773         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1774         if (!inq_buf)
1775                 return;
1776
1777         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1778         rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1779                         scsi3addr, TYPE_CMD);
1780         if (rc == IO_OK) {
1781                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1782                 vendor[VENDOR_LEN] = '\0';
1783                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1784                 model[MODEL_LEN] = '\0';
1785                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1786                 rev[REV_LEN] = '\0';
1787         }
1788
1789         kfree(inq_buf);
1790         return;
1791 }
1792
1793 /* This function gets the serial number of a logical drive via
1794  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1795  * number cannot be had, for whatever reason, 16 bytes of 0xff
1796  * are returned instead.
1797  */
1798 static void cciss_get_serial_no(int ctlr, int logvol,
1799                                 unsigned char *serial_no, int buflen)
1800 {
1801 #define PAGE_83_INQ_BYTES 64
1802         int rc;
1803         unsigned char *buf;
1804         unsigned char scsi3addr[8];
1805
1806         if (buflen > 16)
1807                 buflen = 16;
1808         memset(serial_no, 0xff, buflen);
1809         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1810         if (!buf)
1811                 return;
1812         memset(serial_no, 0, buflen);
1813         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1814         rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1815                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1816         if (rc == IO_OK)
1817                 memcpy(serial_no, &buf[8], buflen);
1818         kfree(buf);
1819         return;
1820 }
1821
1822 /*
1823  * cciss_add_disk sets up the block device queue for a logical drive
1824  */
1825 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1826                                 int drv_index)
1827 {
1828         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1829         if (!disk->queue)
1830                 goto init_queue_failure;
1831         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1832         disk->major = h->major;
1833         disk->first_minor = drv_index << NWD_SHIFT;
1834         disk->fops = &cciss_fops;
1835         if (cciss_create_ld_sysfs_entry(h, drv_index))
1836                 goto cleanup_queue;
1837         disk->private_data = h->drv[drv_index];
1838         disk->driverfs_dev = &h->drv[drv_index]->dev;
1839
1840         /* Set up queue information */
1841         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1842
1843         /* This is a hardware imposed limit. */
1844         blk_queue_max_segments(disk->queue, h->maxsgentries);
1845
1846         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1847
1848         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1849
1850         disk->queue->queuedata = h;
1851
1852         blk_queue_logical_block_size(disk->queue,
1853                                      h->drv[drv_index]->block_size);
1854
1855         /* Make sure all queue data is written out before */
1856         /* setting h->drv[drv_index]->queue, as setting this */
1857         /* allows the interrupt handler to start the queue */
1858         wmb();
1859         h->drv[drv_index]->queue = disk->queue;
1860         add_disk(disk);
1861         return 0;
1862
1863 cleanup_queue:
1864         blk_cleanup_queue(disk->queue);
1865         disk->queue = NULL;
1866 init_queue_failure:
1867         return -1;
1868 }
1869
1870 /* This function will check the usage_count of the drive to be updated/added.
1871  * If the usage_count is zero and it is a heretofore unknown drive, or,
1872  * the drive's capacity, geometry, or serial number has changed,
1873  * then the drive information will be updated and the disk will be
1874  * re-registered with the kernel.  If these conditions don't hold,
1875  * then it will be left alone for the next reboot.  The exception to this
1876  * is disk 0 which will always be left registered with the kernel since it
1877  * is also the controller node.  Any changes to disk 0 will show up on
1878  * the next reboot.
1879  */
1880 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1881         int via_ioctl)
1882 {
1883         ctlr_info_t *h = hba[ctlr];
1884         struct gendisk *disk;
1885         InquiryData_struct *inq_buff = NULL;
1886         unsigned int block_size;
1887         sector_t total_size;
1888         unsigned long flags = 0;
1889         int ret = 0;
1890         drive_info_struct *drvinfo;
1891
1892         /* Get information about the disk and modify the driver structure */
1893         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1894         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1895         if (inq_buff == NULL || drvinfo == NULL)
1896                 goto mem_msg;
1897
1898         /* testing to see if 16-byte CDBs are already being used */
1899         if (h->cciss_read == CCISS_READ_16) {
1900                 cciss_read_capacity_16(h->ctlr, drv_index,
1901                         &total_size, &block_size);
1902
1903         } else {
1904                 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1905                 /* if read_capacity returns all F's this volume is >2TB */
1906                 /* in size so we switch to 16-byte CDB's for all */
1907                 /* read/write ops */
1908                 if (total_size == 0xFFFFFFFFULL) {
1909                         cciss_read_capacity_16(ctlr, drv_index,
1910                         &total_size, &block_size);
1911                         h->cciss_read = CCISS_READ_16;
1912                         h->cciss_write = CCISS_WRITE_16;
1913                 } else {
1914                         h->cciss_read = CCISS_READ_10;
1915                         h->cciss_write = CCISS_WRITE_10;
1916                 }
1917         }
1918
1919         cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1920                                inq_buff, drvinfo);
1921         drvinfo->block_size = block_size;
1922         drvinfo->nr_blocks = total_size + 1;
1923
1924         cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1925                                 drvinfo->model, drvinfo->rev);
1926         cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1927                         sizeof(drvinfo->serial_no));
1928         /* Save the lunid in case we deregister the disk, below. */
1929         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1930                 sizeof(drvinfo->LunID));
1931
1932         /* Is it the same disk we already know, and nothing's changed? */
1933         if (h->drv[drv_index]->raid_level != -1 &&
1934                 ((memcmp(drvinfo->serial_no,
1935                                 h->drv[drv_index]->serial_no, 16) == 0) &&
1936                 drvinfo->block_size == h->drv[drv_index]->block_size &&
1937                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1938                 drvinfo->heads == h->drv[drv_index]->heads &&
1939                 drvinfo->sectors == h->drv[drv_index]->sectors &&
1940                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1941                         /* The disk is unchanged, nothing to update */
1942                         goto freeret;
1943
1944         /* If we get here it's not the same disk, or something's changed,
1945          * so we need to * deregister it, and re-register it, if it's not
1946          * in use.
1947          * If the disk already exists then deregister it before proceeding
1948          * (unless it's the first disk (for the controller node).
1949          */
1950         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1951                 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1952                 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1953                 h->drv[drv_index]->busy_configuring = 1;
1954                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1955
1956                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1957                  * which keeps the interrupt handler from starting
1958                  * the queue.
1959                  */
1960                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1961         }
1962
1963         /* If the disk is in use return */
1964         if (ret)
1965                 goto freeret;
1966
1967         /* Save the new information from cciss_geometry_inquiry
1968          * and serial number inquiry.  If the disk was deregistered
1969          * above, then h->drv[drv_index] will be NULL.
1970          */
1971         if (h->drv[drv_index] == NULL) {
1972                 drvinfo->device_initialized = 0;
1973                 h->drv[drv_index] = drvinfo;
1974                 drvinfo = NULL; /* so it won't be freed below. */
1975         } else {
1976                 /* special case for cxd0 */
1977                 h->drv[drv_index]->block_size = drvinfo->block_size;
1978                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1979                 h->drv[drv_index]->heads = drvinfo->heads;
1980                 h->drv[drv_index]->sectors = drvinfo->sectors;
1981                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1982                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1983                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1984                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1985                         VENDOR_LEN + 1);
1986                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1987                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1988         }
1989
1990         ++h->num_luns;
1991         disk = h->gendisk[drv_index];
1992         set_capacity(disk, h->drv[drv_index]->nr_blocks);
1993
1994         /* If it's not disk 0 (drv_index != 0)
1995          * or if it was disk 0, but there was previously
1996          * no actual corresponding configured logical drive
1997          * (raid_leve == -1) then we want to update the
1998          * logical drive's information.
1999          */
2000         if (drv_index || first_time) {
2001                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2002                         cciss_free_gendisk(h, drv_index);
2003                         cciss_free_drive_info(h, drv_index);
2004                         printk(KERN_WARNING "cciss:%d could not update "
2005                                 "disk %d\n", h->ctlr, drv_index);
2006                         --h->num_luns;
2007                 }
2008         }
2009
2010 freeret:
2011         kfree(inq_buff);
2012         kfree(drvinfo);
2013         return;
2014 mem_msg:
2015         printk(KERN_ERR "cciss: out of memory\n");
2016         goto freeret;
2017 }
2018
2019 /* This function will find the first index of the controllers drive array
2020  * that has a null drv pointer and allocate the drive info struct and
2021  * will return that index   This is where new drives will be added.
2022  * If the index to be returned is greater than the highest_lun index for
2023  * the controller then highest_lun is set * to this new index.
2024  * If there are no available indexes or if tha allocation fails, then -1
2025  * is returned.  * "controller_node" is used to know if this is a real
2026  * logical drive, or just the controller node, which determines if this
2027  * counts towards highest_lun.
2028  */
2029 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2030 {
2031         int i;
2032         drive_info_struct *drv;
2033
2034         /* Search for an empty slot for our drive info */
2035         for (i = 0; i < CISS_MAX_LUN; i++) {
2036
2037                 /* if not cxd0 case, and it's occupied, skip it. */
2038                 if (h->drv[i] && i != 0)
2039                         continue;
2040                 /*
2041                  * If it's cxd0 case, and drv is alloc'ed already, and a
2042                  * disk is configured there, skip it.
2043                  */
2044                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2045                         continue;
2046
2047                 /*
2048                  * We've found an empty slot.  Update highest_lun
2049                  * provided this isn't just the fake cxd0 controller node.
2050                  */
2051                 if (i > h->highest_lun && !controller_node)
2052                         h->highest_lun = i;
2053
2054                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2055                 if (i == 0 && h->drv[i] != NULL)
2056                         return i;
2057
2058                 /*
2059                  * Found an empty slot, not already alloc'ed.  Allocate it.
2060                  * Mark it with raid_level == -1, so we know it's new later on.
2061                  */
2062                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2063                 if (!drv)
2064                         return -1;
2065                 drv->raid_level = -1; /* so we know it's new */
2066                 h->drv[i] = drv;
2067                 return i;
2068         }
2069         return -1;
2070 }
2071
2072 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2073 {
2074         kfree(h->drv[drv_index]);
2075         h->drv[drv_index] = NULL;
2076 }
2077
2078 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2079 {
2080         put_disk(h->gendisk[drv_index]);
2081         h->gendisk[drv_index] = NULL;
2082 }
2083
2084 /* cciss_add_gendisk finds a free hba[]->drv structure
2085  * and allocates a gendisk if needed, and sets the lunid
2086  * in the drvinfo structure.   It returns the index into
2087  * the ->drv[] array, or -1 if none are free.
2088  * is_controller_node indicates whether highest_lun should
2089  * count this disk, or if it's only being added to provide
2090  * a means to talk to the controller in case no logical
2091  * drives have yet been configured.
2092  */
2093 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2094         int controller_node)
2095 {
2096         int drv_index;
2097
2098         drv_index = cciss_alloc_drive_info(h, controller_node);
2099         if (drv_index == -1)
2100                 return -1;
2101
2102         /*Check if the gendisk needs to be allocated */
2103         if (!h->gendisk[drv_index]) {
2104                 h->gendisk[drv_index] =
2105                         alloc_disk(1 << NWD_SHIFT);
2106                 if (!h->gendisk[drv_index]) {
2107                         printk(KERN_ERR "cciss%d: could not "
2108                                 "allocate a new disk %d\n",
2109                                 h->ctlr, drv_index);
2110                         goto err_free_drive_info;
2111                 }
2112         }
2113         memcpy(h->drv[drv_index]->LunID, lunid,
2114                 sizeof(h->drv[drv_index]->LunID));
2115         if (cciss_create_ld_sysfs_entry(h, drv_index))
2116                 goto err_free_disk;
2117         /* Don't need to mark this busy because nobody */
2118         /* else knows about this disk yet to contend */
2119         /* for access to it. */
2120         h->drv[drv_index]->busy_configuring = 0;
2121         wmb();
2122         return drv_index;
2123
2124 err_free_disk:
2125         cciss_free_gendisk(h, drv_index);
2126 err_free_drive_info:
2127         cciss_free_drive_info(h, drv_index);
2128         return -1;
2129 }
2130
2131 /* This is for the special case of a controller which
2132  * has no logical drives.  In this case, we still need
2133  * to register a disk so the controller can be accessed
2134  * by the Array Config Utility.
2135  */
2136 static void cciss_add_controller_node(ctlr_info_t *h)
2137 {
2138         struct gendisk *disk;
2139         int drv_index;
2140
2141         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2142                 return;
2143
2144         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2145         if (drv_index == -1)
2146                 goto error;
2147         h->drv[drv_index]->block_size = 512;
2148         h->drv[drv_index]->nr_blocks = 0;
2149         h->drv[drv_index]->heads = 0;
2150         h->drv[drv_index]->sectors = 0;
2151         h->drv[drv_index]->cylinders = 0;
2152         h->drv[drv_index]->raid_level = -1;
2153         memset(h->drv[drv_index]->serial_no, 0, 16);
2154         disk = h->gendisk[drv_index];
2155         if (cciss_add_disk(h, disk, drv_index) == 0)
2156                 return;
2157         cciss_free_gendisk(h, drv_index);
2158         cciss_free_drive_info(h, drv_index);
2159 error:
2160         printk(KERN_WARNING "cciss%d: could not "
2161                 "add disk 0.\n", h->ctlr);
2162         return;
2163 }
2164
2165 /* This function will add and remove logical drives from the Logical
2166  * drive array of the controller and maintain persistency of ordering
2167  * so that mount points are preserved until the next reboot.  This allows
2168  * for the removal of logical drives in the middle of the drive array
2169  * without a re-ordering of those drives.
2170  * INPUT
2171  * h            = The controller to perform the operations on
2172  */
2173 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2174         int via_ioctl)
2175 {
2176         int ctlr = h->ctlr;
2177         int num_luns;
2178         ReportLunData_struct *ld_buff = NULL;
2179         int return_code;
2180         int listlength = 0;
2181         int i;
2182         int drv_found;
2183         int drv_index = 0;
2184         unsigned char lunid[8] = CTLR_LUNID;
2185         unsigned long flags;
2186
2187         if (!capable(CAP_SYS_RAWIO))
2188                 return -EPERM;
2189
2190         /* Set busy_configuring flag for this operation */
2191         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2192         if (h->busy_configuring) {
2193                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2194                 return -EBUSY;
2195         }
2196         h->busy_configuring = 1;
2197         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2198
2199         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2200         if (ld_buff == NULL)
2201                 goto mem_msg;
2202
2203         return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2204                                       sizeof(ReportLunData_struct),
2205                                       0, CTLR_LUNID, TYPE_CMD);
2206
2207         if (return_code == IO_OK)
2208                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2209         else {  /* reading number of logical volumes failed */
2210                 printk(KERN_WARNING "cciss: report logical volume"
2211                        " command failed\n");
2212                 listlength = 0;
2213                 goto freeret;
2214         }
2215
2216         num_luns = listlength / 8;      /* 8 bytes per entry */
2217         if (num_luns > CISS_MAX_LUN) {
2218                 num_luns = CISS_MAX_LUN;
2219                 printk(KERN_WARNING "cciss: more luns configured"
2220                        " on controller than can be handled by"
2221                        " this driver.\n");
2222         }
2223
2224         if (num_luns == 0)
2225                 cciss_add_controller_node(h);
2226
2227         /* Compare controller drive array to driver's drive array
2228          * to see if any drives are missing on the controller due
2229          * to action of Array Config Utility (user deletes drive)
2230          * and deregister logical drives which have disappeared.
2231          */
2232         for (i = 0; i <= h->highest_lun; i++) {
2233                 int j;
2234                 drv_found = 0;
2235
2236                 /* skip holes in the array from already deleted drives */
2237                 if (h->drv[i] == NULL)
2238                         continue;
2239
2240                 for (j = 0; j < num_luns; j++) {
2241                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2242                         if (memcmp(h->drv[i]->LunID, lunid,
2243                                 sizeof(lunid)) == 0) {
2244                                 drv_found = 1;
2245                                 break;
2246                         }
2247                 }
2248                 if (!drv_found) {
2249                         /* Deregister it from the OS, it's gone. */
2250                         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2251                         h->drv[i]->busy_configuring = 1;
2252                         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2253                         return_code = deregister_disk(h, i, 1, via_ioctl);
2254                         if (h->drv[i] != NULL)
2255                                 h->drv[i]->busy_configuring = 0;
2256                 }
2257         }
2258
2259         /* Compare controller drive array to driver's drive array.
2260          * Check for updates in the drive information and any new drives
2261          * on the controller due to ACU adding logical drives, or changing
2262          * a logical drive's size, etc.  Reregister any new/changed drives
2263          */
2264         for (i = 0; i < num_luns; i++) {
2265                 int j;
2266
2267                 drv_found = 0;
2268
2269                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2270                 /* Find if the LUN is already in the drive array
2271                  * of the driver.  If so then update its info
2272                  * if not in use.  If it does not exist then find
2273                  * the first free index and add it.
2274                  */
2275                 for (j = 0; j <= h->highest_lun; j++) {
2276                         if (h->drv[j] != NULL &&
2277                                 memcmp(h->drv[j]->LunID, lunid,
2278                                         sizeof(h->drv[j]->LunID)) == 0) {
2279                                 drv_index = j;
2280                                 drv_found = 1;
2281                                 break;
2282                         }
2283                 }
2284
2285                 /* check if the drive was found already in the array */
2286                 if (!drv_found) {
2287                         drv_index = cciss_add_gendisk(h, lunid, 0);
2288                         if (drv_index == -1)
2289                                 goto freeret;
2290                 }
2291                 cciss_update_drive_info(ctlr, drv_index, first_time,
2292                         via_ioctl);
2293         }               /* end for */
2294
2295 freeret:
2296         kfree(ld_buff);
2297         h->busy_configuring = 0;
2298         /* We return -1 here to tell the ACU that we have registered/updated
2299          * all of the drives that we can and to keep it from calling us
2300          * additional times.
2301          */
2302         return -1;
2303 mem_msg:
2304         printk(KERN_ERR "cciss: out of memory\n");
2305         h->busy_configuring = 0;
2306         goto freeret;
2307 }
2308
2309 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2310 {
2311         /* zero out the disk size info */
2312         drive_info->nr_blocks = 0;
2313         drive_info->block_size = 0;
2314         drive_info->heads = 0;
2315         drive_info->sectors = 0;
2316         drive_info->cylinders = 0;
2317         drive_info->raid_level = -1;
2318         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2319         memset(drive_info->model, 0, sizeof(drive_info->model));
2320         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2321         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2322         /*
2323          * don't clear the LUNID though, we need to remember which
2324          * one this one is.
2325          */
2326 }
2327
2328 /* This function will deregister the disk and it's queue from the
2329  * kernel.  It must be called with the controller lock held and the
2330  * drv structures busy_configuring flag set.  It's parameters are:
2331  *
2332  * disk = This is the disk to be deregistered
2333  * drv  = This is the drive_info_struct associated with the disk to be
2334  *        deregistered.  It contains information about the disk used
2335  *        by the driver.
2336  * clear_all = This flag determines whether or not the disk information
2337  *             is going to be completely cleared out and the highest_lun
2338  *             reset.  Sometimes we want to clear out information about
2339  *             the disk in preparation for re-adding it.  In this case
2340  *             the highest_lun should be left unchanged and the LunID
2341  *             should not be cleared.
2342  * via_ioctl
2343  *    This indicates whether we've reached this path via ioctl.
2344  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2345  *    If this path is reached via ioctl(), then the max_usage_count will
2346  *    be 1, as the process calling ioctl() has got to have the device open.
2347  *    If we get here via sysfs, then the max usage count will be zero.
2348 */
2349 static int deregister_disk(ctlr_info_t *h, int drv_index,
2350                            int clear_all, int via_ioctl)
2351 {
2352         int i;
2353         struct gendisk *disk;
2354         drive_info_struct *drv;
2355         int recalculate_highest_lun;
2356
2357         if (!capable(CAP_SYS_RAWIO))
2358                 return -EPERM;
2359
2360         drv = h->drv[drv_index];
2361         disk = h->gendisk[drv_index];
2362
2363         /* make sure logical volume is NOT is use */
2364         if (clear_all || (h->gendisk[0] == disk)) {
2365                 if (drv->usage_count > via_ioctl)
2366                         return -EBUSY;
2367         } else if (drv->usage_count > 0)
2368                 return -EBUSY;
2369
2370         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2371
2372         /* invalidate the devices and deregister the disk.  If it is disk
2373          * zero do not deregister it but just zero out it's values.  This
2374          * allows us to delete disk zero but keep the controller registered.
2375          */
2376         if (h->gendisk[0] != disk) {
2377                 struct request_queue *q = disk->queue;
2378                 if (disk->flags & GENHD_FL_UP) {
2379                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2380                         del_gendisk(disk);
2381                 }
2382                 if (q)
2383                         blk_cleanup_queue(q);
2384                 /* If clear_all is set then we are deleting the logical
2385                  * drive, not just refreshing its info.  For drives
2386                  * other than disk 0 we will call put_disk.  We do not
2387                  * do this for disk 0 as we need it to be able to
2388                  * configure the controller.
2389                  */
2390                 if (clear_all){
2391                         /* This isn't pretty, but we need to find the
2392                          * disk in our array and NULL our the pointer.
2393                          * This is so that we will call alloc_disk if
2394                          * this index is used again later.
2395                          */
2396                         for (i=0; i < CISS_MAX_LUN; i++){
2397                                 if (h->gendisk[i] == disk) {
2398                                         h->gendisk[i] = NULL;
2399                                         break;
2400                                 }
2401                         }
2402                         put_disk(disk);
2403                 }
2404         } else {
2405                 set_capacity(disk, 0);
2406                 cciss_clear_drive_info(drv);
2407         }
2408
2409         --h->num_luns;
2410
2411         /* if it was the last disk, find the new hightest lun */
2412         if (clear_all && recalculate_highest_lun) {
2413                 int i, newhighest = -1;
2414                 for (i = 0; i <= h->highest_lun; i++) {
2415                         /* if the disk has size > 0, it is available */
2416                         if (h->drv[i] && h->drv[i]->heads)
2417                                 newhighest = i;
2418                 }
2419                 h->highest_lun = newhighest;
2420         }
2421         return 0;
2422 }
2423
2424 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2425                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2426                 int cmd_type)
2427 {
2428         ctlr_info_t *h = hba[ctlr];
2429         u64bit buff_dma_handle;
2430         int status = IO_OK;
2431
2432         c->cmd_type = CMD_IOCTL_PEND;
2433         c->Header.ReplyQueue = 0;
2434         if (buff != NULL) {
2435                 c->Header.SGList = 1;
2436                 c->Header.SGTotal = 1;
2437         } else {
2438                 c->Header.SGList = 0;
2439                 c->Header.SGTotal = 0;
2440         }
2441         c->Header.Tag.lower = c->busaddr;
2442         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2443
2444         c->Request.Type.Type = cmd_type;
2445         if (cmd_type == TYPE_CMD) {
2446                 switch (cmd) {
2447                 case CISS_INQUIRY:
2448                         /* are we trying to read a vital product page */
2449                         if (page_code != 0) {
2450                                 c->Request.CDB[1] = 0x01;
2451                                 c->Request.CDB[2] = page_code;
2452                         }
2453                         c->Request.CDBLen = 6;
2454                         c->Request.Type.Attribute = ATTR_SIMPLE;
2455                         c->Request.Type.Direction = XFER_READ;
2456                         c->Request.Timeout = 0;
2457                         c->Request.CDB[0] = CISS_INQUIRY;
2458                         c->Request.CDB[4] = size & 0xFF;
2459                         break;
2460                 case CISS_REPORT_LOG:
2461                 case CISS_REPORT_PHYS:
2462                         /* Talking to controller so It's a physical command
2463                            mode = 00 target = 0.  Nothing to write.
2464                          */
2465                         c->Request.CDBLen = 12;
2466                         c->Request.Type.Attribute = ATTR_SIMPLE;
2467                         c->Request.Type.Direction = XFER_READ;
2468                         c->Request.Timeout = 0;
2469                         c->Request.CDB[0] = cmd;
2470                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2471                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2472                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2473                         c->Request.CDB[9] = size & 0xFF;
2474                         break;
2475
2476                 case CCISS_READ_CAPACITY:
2477                         c->Request.CDBLen = 10;
2478                         c->Request.Type.Attribute = ATTR_SIMPLE;
2479                         c->Request.Type.Direction = XFER_READ;
2480                         c->Request.Timeout = 0;
2481                         c->Request.CDB[0] = cmd;
2482                         break;
2483                 case CCISS_READ_CAPACITY_16:
2484                         c->Request.CDBLen = 16;
2485                         c->Request.Type.Attribute = ATTR_SIMPLE;
2486                         c->Request.Type.Direction = XFER_READ;
2487                         c->Request.Timeout = 0;
2488                         c->Request.CDB[0] = cmd;
2489                         c->Request.CDB[1] = 0x10;
2490                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2491                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2492                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2493                         c->Request.CDB[13] = size & 0xFF;
2494                         c->Request.Timeout = 0;
2495                         c->Request.CDB[0] = cmd;
2496                         break;
2497                 case CCISS_CACHE_FLUSH:
2498                         c->Request.CDBLen = 12;
2499                         c->Request.Type.Attribute = ATTR_SIMPLE;
2500                         c->Request.Type.Direction = XFER_WRITE;
2501                         c->Request.Timeout = 0;
2502                         c->Request.CDB[0] = BMIC_WRITE;
2503                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2504                         break;
2505                 case TEST_UNIT_READY:
2506                         c->Request.CDBLen = 6;
2507                         c->Request.Type.Attribute = ATTR_SIMPLE;
2508                         c->Request.Type.Direction = XFER_NONE;
2509                         c->Request.Timeout = 0;
2510                         break;
2511                 default:
2512                         printk(KERN_WARNING
2513                                "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2514                         return IO_ERROR;
2515                 }
2516         } else if (cmd_type == TYPE_MSG) {
2517                 switch (cmd) {
2518                 case 0: /* ABORT message */
2519                         c->Request.CDBLen = 12;
2520                         c->Request.Type.Attribute = ATTR_SIMPLE;
2521                         c->Request.Type.Direction = XFER_WRITE;
2522                         c->Request.Timeout = 0;
2523                         c->Request.CDB[0] = cmd;        /* abort */
2524                         c->Request.CDB[1] = 0;  /* abort a command */
2525                         /* buff contains the tag of the command to abort */
2526                         memcpy(&c->Request.CDB[4], buff, 8);
2527                         break;
2528                 case 1: /* RESET message */
2529                         c->Request.CDBLen = 16;
2530                         c->Request.Type.Attribute = ATTR_SIMPLE;
2531                         c->Request.Type.Direction = XFER_NONE;
2532                         c->Request.Timeout = 0;
2533                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2534                         c->Request.CDB[0] = cmd;        /* reset */
2535                         c->Request.CDB[1] = 0x03;       /* reset a target */
2536                         break;
2537                 case 3: /* No-Op message */
2538                         c->Request.CDBLen = 1;
2539                         c->Request.Type.Attribute = ATTR_SIMPLE;
2540                         c->Request.Type.Direction = XFER_WRITE;
2541                         c->Request.Timeout = 0;
2542                         c->Request.CDB[0] = cmd;
2543                         break;
2544                 default:
2545                         printk(KERN_WARNING
2546                                "cciss%d: unknown message type %d\n", ctlr, cmd);
2547                         return IO_ERROR;
2548                 }
2549         } else {
2550                 printk(KERN_WARNING
2551                        "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2552                 return IO_ERROR;
2553         }
2554         /* Fill in the scatter gather information */
2555         if (size > 0) {
2556                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2557                                                              buff, size,
2558                                                              PCI_DMA_BIDIRECTIONAL);
2559                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2560                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2561                 c->SG[0].Len = size;
2562                 c->SG[0].Ext = 0;       /* we are not chaining */
2563         }
2564         return status;
2565 }
2566
2567 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2568 {
2569         switch (c->err_info->ScsiStatus) {
2570         case SAM_STAT_GOOD:
2571                 return IO_OK;
2572         case SAM_STAT_CHECK_CONDITION:
2573                 switch (0xf & c->err_info->SenseInfo[2]) {
2574                 case 0: return IO_OK; /* no sense */
2575                 case 1: return IO_OK; /* recovered error */
2576                 default:
2577                         if (check_for_unit_attention(h, c))
2578                                 return IO_NEEDS_RETRY;
2579                         printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2580                                 "check condition, sense key = 0x%02x\n",
2581                                 h->ctlr, c->Request.CDB[0],
2582                                 c->err_info->SenseInfo[2]);
2583                 }
2584                 break;
2585         default:
2586                 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2587                         "scsi status = 0x%02x\n", h->ctlr,
2588                         c->Request.CDB[0], c->err_info->ScsiStatus);
2589                 break;
2590         }
2591         return IO_ERROR;
2592 }
2593
2594 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2595 {
2596         int return_status = IO_OK;
2597
2598         if (c->err_info->CommandStatus == CMD_SUCCESS)
2599                 return IO_OK;
2600
2601         switch (c->err_info->CommandStatus) {
2602         case CMD_TARGET_STATUS:
2603                 return_status = check_target_status(h, c);
2604                 break;
2605         case CMD_DATA_UNDERRUN:
2606         case CMD_DATA_OVERRUN:
2607                 /* expected for inquiry and report lun commands */
2608                 break;
2609         case CMD_INVALID:
2610                 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2611                        "reported invalid\n", c->Request.CDB[0]);
2612                 return_status = IO_ERROR;
2613                 break;
2614         case CMD_PROTOCOL_ERR:
2615                 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2616                        "protocol error \n", c->Request.CDB[0]);
2617                 return_status = IO_ERROR;
2618                 break;
2619         case CMD_HARDWARE_ERR:
2620                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2621                        " hardware error\n", c->Request.CDB[0]);
2622                 return_status = IO_ERROR;
2623                 break;
2624         case CMD_CONNECTION_LOST:
2625                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2626                        "connection lost\n", c->Request.CDB[0]);
2627                 return_status = IO_ERROR;
2628                 break;
2629         case CMD_ABORTED:
2630                 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2631                        "aborted\n", c->Request.CDB[0]);
2632                 return_status = IO_ERROR;
2633                 break;
2634         case CMD_ABORT_FAILED:
2635                 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2636                        "abort failed\n", c->Request.CDB[0]);
2637                 return_status = IO_ERROR;
2638                 break;
2639         case CMD_UNSOLICITED_ABORT:
2640                 printk(KERN_WARNING
2641                        "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2642                         c->Request.CDB[0]);
2643                 return_status = IO_NEEDS_RETRY;
2644                 break;
2645         default:
2646                 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2647                        "unknown status %x\n", c->Request.CDB[0],
2648                        c->err_info->CommandStatus);
2649                 return_status = IO_ERROR;
2650         }
2651         return return_status;
2652 }
2653
2654 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2655         int attempt_retry)
2656 {
2657         DECLARE_COMPLETION_ONSTACK(wait);
2658         u64bit buff_dma_handle;
2659         unsigned long flags;
2660         int return_status = IO_OK;
2661
2662 resend_cmd2:
2663         c->waiting = &wait;
2664         /* Put the request on the tail of the queue and send it */
2665         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2666         addQ(&h->reqQ, c);
2667         h->Qdepth++;
2668         start_io(h);
2669         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2670
2671         wait_for_completion(&wait);
2672
2673         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2674                 goto command_done;
2675
2676         return_status = process_sendcmd_error(h, c);
2677
2678         if (return_status == IO_NEEDS_RETRY &&
2679                 c->retry_count < MAX_CMD_RETRIES) {
2680                 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2681                         c->Request.CDB[0]);
2682                 c->retry_count++;
2683                 /* erase the old error information */
2684                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2685                 return_status = IO_OK;
2686                 INIT_COMPLETION(wait);
2687                 goto resend_cmd2;
2688         }
2689
2690 command_done:
2691         /* unlock the buffers from DMA */
2692         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2693         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2694         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2695                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2696         return return_status;
2697 }
2698
2699 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2700                            __u8 page_code, unsigned char scsi3addr[],
2701                         int cmd_type)
2702 {
2703         ctlr_info_t *h = hba[ctlr];
2704         CommandList_struct *c;
2705         int return_status;
2706
2707         c = cmd_alloc(h, 0);
2708         if (!c)
2709                 return -ENOMEM;
2710         return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2711                 scsi3addr, cmd_type);
2712         if (return_status == IO_OK)
2713                 return_status = sendcmd_withirq_core(h, c, 1);
2714
2715         cmd_free(h, c, 0);
2716         return return_status;
2717 }
2718
2719 static void cciss_geometry_inquiry(int ctlr, int logvol,
2720                                    sector_t total_size,
2721                                    unsigned int block_size,
2722                                    InquiryData_struct *inq_buff,
2723                                    drive_info_struct *drv)
2724 {
2725         int return_code;
2726         unsigned long t;
2727         unsigned char scsi3addr[8];
2728
2729         memset(inq_buff, 0, sizeof(InquiryData_struct));
2730         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2731         return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2732                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2733         if (return_code == IO_OK) {
2734                 if (inq_buff->data_byte[8] == 0xFF) {
2735                         printk(KERN_WARNING
2736                                "cciss: reading geometry failed, volume "
2737                                "does not support reading geometry\n");
2738                         drv->heads = 255;
2739                         drv->sectors = 32;      /* Sectors per track */
2740                         drv->cylinders = total_size + 1;
2741                         drv->raid_level = RAID_UNKNOWN;
2742                 } else {
2743                         drv->heads = inq_buff->data_byte[6];
2744                         drv->sectors = inq_buff->data_byte[7];
2745                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2746                         drv->cylinders += inq_buff->data_byte[5];
2747                         drv->raid_level = inq_buff->data_byte[8];
2748                 }
2749                 drv->block_size = block_size;
2750                 drv->nr_blocks = total_size + 1;
2751                 t = drv->heads * drv->sectors;
2752                 if (t > 1) {
2753                         sector_t real_size = total_size + 1;
2754                         unsigned long rem = sector_div(real_size, t);
2755                         if (rem)
2756                                 real_size++;
2757                         drv->cylinders = real_size;
2758                 }
2759         } else {                /* Get geometry failed */
2760                 printk(KERN_WARNING "cciss: reading geometry failed\n");
2761         }
2762 }
2763
2764 static void
2765 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2766                     unsigned int *block_size)
2767 {
2768         ReadCapdata_struct *buf;
2769         int return_code;
2770         unsigned char scsi3addr[8];
2771
2772         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2773         if (!buf) {
2774                 printk(KERN_WARNING "cciss: out of memory\n");
2775                 return;
2776         }
2777
2778         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2779         return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2780                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2781         if (return_code == IO_OK) {
2782                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2783                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2784         } else {                /* read capacity command failed */
2785                 printk(KERN_WARNING "cciss: read capacity failed\n");
2786                 *total_size = 0;
2787                 *block_size = BLOCK_SIZE;
2788         }
2789         kfree(buf);
2790 }
2791
2792 static void cciss_read_capacity_16(int ctlr, int logvol,
2793         sector_t *total_size, unsigned int *block_size)
2794 {
2795         ReadCapdata_struct_16 *buf;
2796         int return_code;
2797         unsigned char scsi3addr[8];
2798
2799         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2800         if (!buf) {
2801                 printk(KERN_WARNING "cciss: out of memory\n");
2802                 return;
2803         }
2804
2805         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2806         return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2807                 ctlr, buf, sizeof(ReadCapdata_struct_16),
2808                         0, scsi3addr, TYPE_CMD);
2809         if (return_code == IO_OK) {
2810                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2811                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2812         } else {                /* read capacity command failed */
2813                 printk(KERN_WARNING "cciss: read capacity failed\n");
2814                 *total_size = 0;
2815                 *block_size = BLOCK_SIZE;
2816         }
2817         printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2818                (unsigned long long)*total_size+1, *block_size);
2819         kfree(buf);
2820 }
2821
2822 static int cciss_revalidate(struct gendisk *disk)
2823 {
2824         ctlr_info_t *h = get_host(disk);
2825         drive_info_struct *drv = get_drv(disk);
2826         int logvol;
2827         int FOUND = 0;
2828         unsigned int block_size;
2829         sector_t total_size;
2830         InquiryData_struct *inq_buff = NULL;
2831
2832         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2833                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2834                         sizeof(drv->LunID)) == 0) {
2835                         FOUND = 1;
2836                         break;
2837                 }
2838         }
2839
2840         if (!FOUND)
2841                 return 1;
2842
2843         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2844         if (inq_buff == NULL) {
2845                 printk(KERN_WARNING "cciss: out of memory\n");
2846                 return 1;
2847         }
2848         if (h->cciss_read == CCISS_READ_10) {
2849                 cciss_read_capacity(h->ctlr, logvol,
2850                                         &total_size, &block_size);
2851         } else {
2852                 cciss_read_capacity_16(h->ctlr, logvol,
2853                                         &total_size, &block_size);
2854         }
2855         cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2856                                inq_buff, drv);
2857
2858         blk_queue_logical_block_size(drv->queue, drv->block_size);
2859         set_capacity(disk, drv->nr_blocks);
2860
2861         kfree(inq_buff);
2862         return 0;
2863 }
2864
2865 /*
2866  * Map (physical) PCI mem into (virtual) kernel space
2867  */
2868 static void __iomem *remap_pci_mem(ulong base, ulong size)
2869 {
2870         ulong page_base = ((ulong) base) & PAGE_MASK;
2871         ulong page_offs = ((ulong) base) - page_base;
2872         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2873
2874         return page_remapped ? (page_remapped + page_offs) : NULL;
2875 }
2876
2877 /*
2878  * Takes jobs of the Q and sends them to the hardware, then puts it on
2879  * the Q to wait for completion.
2880  */
2881 static void start_io(ctlr_info_t *h)
2882 {
2883         CommandList_struct *c;
2884
2885         while (!hlist_empty(&h->reqQ)) {
2886                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2887                 /* can't do anything if fifo is full */
2888                 if ((h->access.fifo_full(h))) {
2889                         printk(KERN_WARNING "cciss: fifo full\n");
2890                         break;
2891                 }
2892
2893                 /* Get the first entry from the Request Q */
2894                 removeQ(c);
2895                 h->Qdepth--;
2896
2897                 /* Tell the controller execute command */
2898                 h->access.submit_command(h, c);
2899
2900                 /* Put job onto the completed Q */
2901                 addQ(&h->cmpQ, c);
2902         }
2903 }
2904
2905 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2906 /* Zeros out the error record and then resends the command back */
2907 /* to the controller */
2908 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2909 {
2910         /* erase the old error information */
2911         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2912
2913         /* add it to software queue and then send it to the controller */
2914         addQ(&h->reqQ, c);
2915         h->Qdepth++;
2916         if (h->Qdepth > h->maxQsinceinit)
2917                 h->maxQsinceinit = h->Qdepth;
2918
2919         start_io(h);
2920 }
2921
2922 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2923         unsigned int msg_byte, unsigned int host_byte,
2924         unsigned int driver_byte)
2925 {
2926         /* inverse of macros in scsi.h */
2927         return (scsi_status_byte & 0xff) |
2928                 ((msg_byte & 0xff) << 8) |
2929                 ((host_byte & 0xff) << 16) |
2930                 ((driver_byte & 0xff) << 24);
2931 }
2932
2933 static inline int evaluate_target_status(ctlr_info_t *h,
2934                         CommandList_struct *cmd, int *retry_cmd)
2935 {
2936         unsigned char sense_key;
2937         unsigned char status_byte, msg_byte, host_byte, driver_byte;
2938         int error_value;
2939
2940         *retry_cmd = 0;
2941         /* If we get in here, it means we got "target status", that is, scsi status */
2942         status_byte = cmd->err_info->ScsiStatus;
2943         driver_byte = DRIVER_OK;
2944         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2945
2946         if (blk_pc_request(cmd->rq))
2947                 host_byte = DID_PASSTHROUGH;
2948         else
2949                 host_byte = DID_OK;
2950
2951         error_value = make_status_bytes(status_byte, msg_byte,
2952                 host_byte, driver_byte);
2953
2954         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2955                 if (!blk_pc_request(cmd->rq))
2956                         printk(KERN_WARNING "cciss: cmd %p "
2957                                "has SCSI Status 0x%x\n",
2958                                cmd, cmd->err_info->ScsiStatus);
2959                 return error_value;
2960         }
2961
2962         /* check the sense key */
2963         sense_key = 0xf & cmd->err_info->SenseInfo[2];
2964         /* no status or recovered error */
2965         if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2966                 error_value = 0;
2967
2968         if (check_for_unit_attention(h, cmd)) {
2969                 *retry_cmd = !blk_pc_request(cmd->rq);
2970                 return 0;
2971         }
2972
2973         if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2974                 if (error_value != 0)
2975                         printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2976                                " sense key = 0x%x\n", cmd, sense_key);
2977                 return error_value;
2978         }
2979
2980         /* SG_IO or similar, copy sense data back */
2981         if (cmd->rq->sense) {
2982                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2983                         cmd->rq->sense_len = cmd->err_info->SenseLen;
2984                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2985                         cmd->rq->sense_len);
2986         } else
2987                 cmd->rq->sense_len = 0;
2988
2989         return error_value;
2990 }
2991
2992 /* checks the status of the job and calls complete buffers to mark all
2993  * buffers for the completed job. Note that this function does not need
2994  * to hold the hba/queue lock.
2995  */
2996 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2997                                     int timeout)
2998 {
2999         int retry_cmd = 0;
3000         struct request *rq = cmd->rq;
3001
3002         rq->errors = 0;
3003
3004         if (timeout)
3005                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3006
3007         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3008                 goto after_error_processing;
3009
3010         switch (cmd->err_info->CommandStatus) {
3011         case CMD_TARGET_STATUS:
3012                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3013                 break;
3014         case CMD_DATA_UNDERRUN:
3015                 if (blk_fs_request(cmd->rq)) {
3016                         printk(KERN_WARNING "cciss: cmd %p has"
3017                                " completed with data underrun "
3018                                "reported\n", cmd);
3019                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3020                 }
3021                 break;
3022         case CMD_DATA_OVERRUN:
3023                 if (blk_fs_request(cmd->rq))
3024                         printk(KERN_WARNING "cciss: cmd %p has"
3025                                " completed with data overrun "
3026                                "reported\n", cmd);
3027                 break;
3028         case CMD_INVALID:
3029                 printk(KERN_WARNING "cciss: cmd %p is "
3030                        "reported invalid\n", cmd);
3031                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3032                         cmd->err_info->CommandStatus, DRIVER_OK,
3033                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3034                 break;
3035         case CMD_PROTOCOL_ERR:
3036                 printk(KERN_WARNING "cciss: cmd %p has "
3037                        "protocol error \n", cmd);
3038                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3039                         cmd->err_info->CommandStatus, DRIVER_OK,
3040                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3041                 break;
3042         case CMD_HARDWARE_ERR:
3043                 printk(KERN_WARNING "cciss: cmd %p had "
3044                        " hardware error\n", cmd);
3045                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3046                         cmd->err_info->CommandStatus, DRIVER_OK,
3047                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3048                 break;
3049         case CMD_CONNECTION_LOST:
3050                 printk(KERN_WARNING "cciss: cmd %p had "
3051                        "connection lost\n", cmd);
3052                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3053                         cmd->err_info->CommandStatus, DRIVER_OK,
3054                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3055                 break;
3056         case CMD_ABORTED:
3057                 printk(KERN_WARNING "cciss: cmd %p was "
3058                        "aborted\n", cmd);
3059                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3060                         cmd->err_info->CommandStatus, DRIVER_OK,
3061                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3062                 break;
3063         case CMD_ABORT_FAILED:
3064                 printk(KERN_WARNING "cciss: cmd %p reports "
3065                        "abort failed\n", cmd);
3066                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3067                         cmd->err_info->CommandStatus, DRIVER_OK,
3068                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3069                 break;
3070         case CMD_UNSOLICITED_ABORT:
3071                 printk(KERN_WARNING "cciss%d: unsolicited "
3072                        "abort %p\n", h->ctlr, cmd);
3073                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3074                         retry_cmd = 1;
3075                         printk(KERN_WARNING
3076                                "cciss%d: retrying %p\n", h->ctlr, cmd);
3077                         cmd->retry_count++;
3078                 } else
3079                         printk(KERN_WARNING
3080                                "cciss%d: %p retried too "
3081                                "many times\n", h->ctlr, cmd);
3082                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3083                         cmd->err_info->CommandStatus, DRIVER_OK,
3084                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3085                 break;
3086         case CMD_TIMEOUT:
3087                 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3088                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3089                         cmd->err_info->CommandStatus, DRIVER_OK,
3090                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3091                 break;
3092         default:
3093                 printk(KERN_WARNING "cciss: cmd %p returned "
3094                        "unknown status %x\n", cmd,
3095                        cmd->err_info->CommandStatus);
3096                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3097                         cmd->err_info->CommandStatus, DRIVER_OK,
3098                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3099         }
3100
3101 after_error_processing:
3102
3103         /* We need to return this command */
3104         if (retry_cmd) {
3105                 resend_cciss_cmd(h, cmd);
3106                 return;
3107         }
3108         cmd->rq->completion_data = cmd;
3109         blk_complete_request(cmd->rq);
3110 }
3111
3112 /*
3113  * Get a request and submit it to the controller.
3114  */
3115 static void do_cciss_request(struct request_queue *q)
3116 {
3117         ctlr_info_t *h = q->queuedata;
3118         CommandList_struct *c;
3119         sector_t start_blk;
3120         int seg;
3121         struct request *creq;
3122         u64bit temp64;
3123         struct scatterlist *tmp_sg;
3124         SGDescriptor_struct *curr_sg;
3125         drive_info_struct *drv;
3126         int i, dir;
3127         int nseg = 0;
3128         int sg_index = 0;
3129         int chained = 0;
3130
3131         /* We call start_io here in case there is a command waiting on the
3132          * queue that has not been sent.
3133          */
3134         if (blk_queue_plugged(q))
3135                 goto startio;
3136
3137       queue:
3138         creq = blk_peek_request(q);
3139         if (!creq)
3140                 goto startio;
3141
3142         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3143
3144         if ((c = cmd_alloc(h, 1)) == NULL)
3145                 goto full;
3146
3147         blk_start_request(creq);
3148
3149         tmp_sg = h->scatter_list[c->cmdindex];
3150         spin_unlock_irq(q->queue_lock);
3151
3152         c->cmd_type = CMD_RWREQ;
3153         c->rq = creq;
3154
3155         /* fill in the request */
3156         drv = creq->rq_disk->private_data;
3157         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3158         /* got command from pool, so use the command block index instead */
3159         /* for direct lookups. */
3160         /* The first 2 bits are reserved for controller error reporting. */
3161         c->Header.Tag.lower = (c->cmdindex << 3);
3162         c->Header.Tag.lower |= 0x04;    /* flag for direct lookup. */
3163         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3164         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3165         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3166         c->Request.Type.Attribute = ATTR_SIMPLE;
3167         c->Request.Type.Direction =
3168             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3169         c->Request.Timeout = 0; /* Don't time out */
3170         c->Request.CDB[0] =
3171             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3172         start_blk = blk_rq_pos(creq);
3173 #ifdef CCISS_DEBUG
3174         printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3175                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3176 #endif                          /* CCISS_DEBUG */
3177
3178         sg_init_table(tmp_sg, h->maxsgentries);
3179         seg = blk_rq_map_sg(q, creq, tmp_sg);
3180
3181         /* get the DMA records for the setup */
3182         if (c->Request.Type.Direction == XFER_READ)
3183                 dir = PCI_DMA_FROMDEVICE;
3184         else
3185                 dir = PCI_DMA_TODEVICE;
3186
3187         curr_sg = c->SG;
3188         sg_index = 0;
3189         chained = 0;
3190
3191         for (i = 0; i < seg; i++) {
3192                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3193                         !chained && ((seg - i) > 1)) {
3194                         nseg = seg - i;
3195                         curr_sg[sg_index].Len = (nseg) *
3196                                         sizeof(SGDescriptor_struct);
3197                         curr_sg[sg_index].Ext = CCISS_SG_CHAIN;
3198
3199                         /* Point to next chain block. */
3200                         curr_sg = h->cmd_sg_list[c->cmdindex];
3201                         sg_index = 0;
3202                         chained = 1;
3203                 }
3204                 curr_sg[sg_index].Len = tmp_sg[i].length;
3205                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3206                                                 tmp_sg[i].offset,
3207                                                 tmp_sg[i].length, dir);
3208                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3209                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3210                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3211
3212                 ++sg_index;
3213         }
3214
3215         if (chained) {
3216                 int len;
3217                 dma_addr_t dma_addr;
3218                 curr_sg = c->SG;
3219                 sg_index = h->max_cmd_sgentries - 1;
3220                 len = curr_sg[sg_index].Len;
3221                 /* Setup pointer to next chain block.
3222                  * Fill out last element in current chain
3223                  * block with address of next chain block.
3224                  */
3225                 temp64.val = pci_map_single(h->pdev,
3226                                         h->cmd_sg_list[c->cmdindex], len, dir);
3227                 dma_addr = temp64.val;
3228                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3229                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3230                 pci_dma_sync_single_for_device(h->pdev, dma_addr, len, dir);
3231         }
3232
3233         /* track how many SG entries we are using */
3234         if (seg > h->maxSG)
3235                 h->maxSG = seg;
3236
3237 #ifdef CCISS_DEBUG
3238         printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3239                         "chained[%d]\n",
3240                         blk_rq_sectors(creq), seg, chained);
3241 #endif                          /* CCISS_DEBUG */
3242
3243         c->Header.SGList = c->Header.SGTotal = seg + chained;
3244         if (seg > h->max_cmd_sgentries)
3245                 c->Header.SGList = h->max_cmd_sgentries;
3246
3247         if (likely(blk_fs_request(creq))) {
3248                 if(h->cciss_read == CCISS_READ_10) {
3249                         c->Request.CDB[1] = 0;
3250                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3251                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3252                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3253                         c->Request.CDB[5] = start_blk & 0xff;
3254                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3255                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3256                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3257                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3258                 } else {
3259                         u32 upper32 = upper_32_bits(start_blk);
3260
3261                         c->Request.CDBLen = 16;
3262                         c->Request.CDB[1]= 0;
3263                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3264                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3265                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3266                         c->Request.CDB[5]= upper32 & 0xff;
3267                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3268                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3269                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3270                         c->Request.CDB[9]= start_blk & 0xff;
3271                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3272                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3273                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3274                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3275                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3276                 }
3277         } else if (blk_pc_request(creq)) {
3278                 c->Request.CDBLen = creq->cmd_len;
3279                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3280         } else {
3281                 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3282                 BUG();
3283         }
3284
3285         spin_lock_irq(q->queue_lock);
3286
3287         addQ(&h->reqQ, c);
3288         h->Qdepth++;
3289         if (h->Qdepth > h->maxQsinceinit)
3290                 h->maxQsinceinit = h->Qdepth;
3291
3292         goto queue;
3293 full:
3294         blk_stop_queue(q);
3295 startio:
3296         /* We will already have the driver lock here so not need
3297          * to lock it.
3298          */
3299         start_io(h);
3300 }
3301
3302 static inline unsigned long get_next_completion(ctlr_info_t *h)
3303 {
3304         return h->access.command_completed(h);
3305 }
3306
3307 static inline int interrupt_pending(ctlr_info_t *h)
3308 {
3309         return h->access.intr_pending(h);
3310 }
3311
3312 static inline long interrupt_not_for_us(ctlr_info_t *h)
3313 {
3314         return (((h->access.intr_pending(h) == 0) ||
3315                  (h->interrupts_enabled == 0)));
3316 }
3317
3318 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3319 {
3320         ctlr_info_t *h = dev_id;
3321         CommandList_struct *c;
3322         unsigned long flags;
3323         __u32 a, a1, a2;
3324
3325         if (interrupt_not_for_us(h))
3326                 return IRQ_NONE;
3327         /*
3328          * If there are completed commands in the completion queue,
3329          * we had better do something about it.
3330          */
3331         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3332         while (interrupt_pending(h)) {
3333                 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3334                         a1 = a;
3335                         if ((a & 0x04)) {
3336                                 a2 = (a >> 3);
3337                                 if (a2 >= h->nr_cmds) {
3338                                         printk(KERN_WARNING
3339                                                "cciss: controller cciss%d failed, stopping.\n",
3340                                                h->ctlr);
3341                                         fail_all_cmds(h->ctlr);
3342                                         return IRQ_HANDLED;
3343                                 }
3344
3345                                 c = h->cmd_pool + a2;
3346                                 a = c->busaddr;
3347
3348                         } else {
3349                                 struct hlist_node *tmp;
3350
3351                                 a &= ~3;
3352                                 c = NULL;
3353                                 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3354                                         if (c->busaddr == a)
3355                                                 break;
3356                                 }
3357                         }
3358                         /*
3359                          * If we've found the command, take it off the
3360                          * completion Q and free it
3361                          */
3362                         if (c && c->busaddr == a) {
3363                                 removeQ(c);
3364                                 if (c->cmd_type == CMD_RWREQ) {
3365                                         complete_command(h, c, 0);
3366                                 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3367                                         complete(c->waiting);
3368                                 }
3369 #                               ifdef CONFIG_CISS_SCSI_TAPE
3370                                 else if (c->cmd_type == CMD_SCSI)
3371                                         complete_scsi_command(c, 0, a1);
3372 #                               endif
3373                                 continue;
3374                         }
3375                 }
3376         }
3377
3378         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3379         return IRQ_HANDLED;
3380 }
3381
3382 /**
3383  * add_to_scan_list() - add controller to rescan queue
3384  * @h:                Pointer to the controller.
3385  *
3386  * Adds the controller to the rescan queue if not already on the queue.
3387  *
3388  * returns 1 if added to the queue, 0 if skipped (could be on the
3389  * queue already, or the controller could be initializing or shutting
3390  * down).
3391  **/
3392 static int add_to_scan_list(struct ctlr_info *h)
3393 {
3394         struct ctlr_info *test_h;
3395         int found = 0;
3396         int ret = 0;
3397
3398         if (h->busy_initializing)
3399                 return 0;
3400
3401         if (!mutex_trylock(&h->busy_shutting_down))
3402                 return 0;
3403
3404         mutex_lock(&scan_mutex);
3405         list_for_each_entry(test_h, &scan_q, scan_list) {
3406                 if (test_h == h) {
3407                         found = 1;
3408                         break;
3409                 }
3410         }
3411         if (!found && !h->busy_scanning) {
3412                 INIT_COMPLETION(h->scan_wait);
3413                 list_add_tail(&h->scan_list, &scan_q);
3414                 ret = 1;
3415         }
3416         mutex_unlock(&scan_mutex);
3417         mutex_unlock(&h->busy_shutting_down);
3418
3419         return ret;
3420 }
3421
3422 /**
3423  * remove_from_scan_list() - remove controller from rescan queue
3424  * @h:                     Pointer to the controller.
3425  *
3426  * Removes the controller from the rescan queue if present. Blocks if
3427  * the controller is currently conducting a rescan.  The controller
3428  * can be in one of three states:
3429  * 1. Doesn't need a scan
3430  * 2. On the scan list, but not scanning yet (we remove it)
3431  * 3. Busy scanning (and not on the list). In this case we want to wait for
3432  *    the scan to complete to make sure the scanning thread for this
3433  *    controller is completely idle.
3434  **/
3435 static void remove_from_scan_list(struct ctlr_info *h)
3436 {
3437         struct ctlr_info *test_h, *tmp_h;
3438
3439         mutex_lock(&scan_mutex);
3440         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3441                 if (test_h == h) { /* state 2. */
3442                         list_del(&h->scan_list);
3443                         complete_all(&h->scan_wait);
3444                         mutex_unlock(&scan_mutex);
3445                         return;
3446                 }
3447         }
3448         if (h->busy_scanning) { /* state 3. */
3449                 mutex_unlock(&scan_mutex);
3450                 wait_for_completion(&h->scan_wait);
3451         } else { /* state 1, nothing to do. */
3452                 mutex_unlock(&scan_mutex);
3453         }
3454 }
3455
3456 /**
3457  * scan_thread() - kernel thread used to rescan controllers
3458  * @data:        Ignored.
3459  *
3460  * A kernel thread used scan for drive topology changes on
3461  * controllers. The thread processes only one controller at a time
3462  * using a queue.  Controllers are added to the queue using
3463  * add_to_scan_list() and removed from the queue either after done
3464  * processing or using remove_from_scan_list().
3465  *
3466  * returns 0.
3467  **/
3468 static int scan_thread(void *data)
3469 {
3470         struct ctlr_info *h;
3471
3472         while (1) {
3473                 set_current_state(TASK_INTERRUPTIBLE);
3474                 schedule();
3475                 if (kthread_should_stop())
3476                         break;
3477
3478                 while (1) {
3479                         mutex_lock(&scan_mutex);
3480                         if (list_empty(&scan_q)) {
3481                                 mutex_unlock(&scan_mutex);
3482                                 break;
3483                         }
3484
3485                         h = list_entry(scan_q.next,
3486                                        struct ctlr_info,
3487                                        scan_list);
3488                         list_del(&h->scan_list);
3489                         h->busy_scanning = 1;
3490                         mutex_unlock(&scan_mutex);
3491
3492                         rebuild_lun_table(h, 0, 0);
3493                         complete_all(&h->scan_wait);
3494                         mutex_lock(&scan_mutex);
3495                         h->busy_scanning = 0;
3496                         mutex_unlock(&scan_mutex);
3497                 }
3498         }
3499
3500         return 0;
3501 }
3502
3503 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3504 {
3505         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3506                 return 0;
3507
3508         switch (c->err_info->SenseInfo[12]) {
3509         case STATE_CHANGED:
3510                 printk(KERN_WARNING "cciss%d: a state change "
3511                         "detected, command retried\n", h->ctlr);
3512                 return 1;
3513         break;
3514         case LUN_FAILED:
3515                 printk(KERN_WARNING "cciss%d: LUN failure "
3516                         "detected, action required\n", h->ctlr);
3517                 return 1;
3518         break;
3519         case REPORT_LUNS_CHANGED:
3520                 printk(KERN_WARNING "cciss%d: report LUN data "
3521                         "changed\n", h->ctlr);
3522         /*
3523          * Here, we could call add_to_scan_list and wake up the scan thread,
3524          * except that it's quite likely that we will get more than one
3525          * REPORT_LUNS_CHANGED condition in quick succession, which means
3526          * that those which occur after the first one will likely happen
3527          * *during* the scan_thread's rescan.  And the rescan code is not
3528          * robust enough to restart in the middle, undoing what it has already
3529          * done, and it's not clear that it's even possible to do this, since
3530          * part of what it does is notify the block layer, which starts
3531          * doing it's own i/o to read partition tables and so on, and the
3532          * driver doesn't have visibility to know what might need undoing.
3533          * In any event, if possible, it is horribly complicated to get right
3534          * so we just don't do it for now.
3535          *
3536          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3537          */
3538                 return 1;
3539         break;
3540         case POWER_OR_RESET:
3541                 printk(KERN_WARNING "cciss%d: a power on "
3542                         "or device reset detected\n", h->ctlr);
3543                 return 1;
3544         break;
3545         case UNIT_ATTENTION_CLEARED:
3546                 printk(KERN_WARNING "cciss%d: unit attention "
3547                     "cleared by another initiator\n", h->ctlr);
3548                 return 1;
3549         break;
3550         default:
3551                 printk(KERN_WARNING "cciss%d: unknown "
3552                         "unit attention detected\n", h->ctlr);
3553                                 return 1;
3554         }
3555 }
3556
3557 /*
3558  *  We cannot read the structure directly, for portability we must use
3559  *   the io functions.
3560  *   This is for debug only.
3561  */
3562 #ifdef CCISS_DEBUG
3563 static void print_cfg_table(CfgTable_struct *tb)
3564 {
3565         int i;
3566         char temp_name[17];
3567
3568         printk("Controller Configuration information\n");
3569         printk("------------------------------------\n");
3570         for (i = 0; i < 4; i++)
3571                 temp_name[i] = readb(&(tb->Signature[i]));
3572         temp_name[4] = '\0';
3573         printk("   Signature = %s\n", temp_name);
3574         printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3575         printk("   Transport methods supported = 0x%x\n",
3576                readl(&(tb->TransportSupport)));
3577         printk("   Transport methods active = 0x%x\n",
3578                readl(&(tb->TransportActive)));
3579         printk("   Requested transport Method = 0x%x\n",
3580                readl(&(tb->HostWrite.TransportRequest)));
3581         printk("   Coalesce Interrupt Delay = 0x%x\n",
3582                readl(&(tb->HostWrite.CoalIntDelay)));
3583         printk("   Coalesce Interrupt Count = 0x%x\n",
3584                readl(&(tb->HostWrite.CoalIntCount)));
3585         printk("   Max outstanding commands = 0x%d\n",
3586                readl(&(tb->CmdsOutMax)));
3587         printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3588         for (i = 0; i < 16; i++)
3589                 temp_name[i] = readb(&(tb->ServerName[i]));
3590         temp_name[16] = '\0';
3591         printk("   Server Name = %s\n", temp_name);
3592         printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3593 }
3594 #endif                          /* CCISS_DEBUG */
3595
3596 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3597 {
3598         int i, offset, mem_type, bar_type;
3599         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3600                 return 0;
3601         offset = 0;
3602         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3603                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3604                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3605                         offset += 4;
3606                 else {
3607                         mem_type = pci_resource_flags(pdev, i) &
3608                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3609                         switch (mem_type) {
3610                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3611                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3612                                 offset += 4;    /* 32 bit */
3613                                 break;
3614                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3615                                 offset += 8;
3616                                 break;
3617                         default:        /* reserved in PCI 2.2 */
3618                                 printk(KERN_WARNING
3619                                        "Base address is invalid\n");
3620                                 return -1;
3621                                 break;
3622                         }
3623                 }
3624                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3625                         return i + 1;
3626         }
3627         return -1;
3628 }
3629
3630 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3631  * controllers that are capable. If not, we use IO-APIC mode.
3632  */
3633
3634 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3635                                            struct pci_dev *pdev, __u32 board_id)
3636 {
3637 #ifdef CONFIG_PCI_MSI
3638         int err;
3639         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3640         {0, 2}, {0, 3}
3641         };
3642
3643         /* Some boards advertise MSI but don't really support it */
3644         if ((board_id == 0x40700E11) ||
3645             (board_id == 0x40800E11) ||
3646             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3647                 goto default_int_mode;
3648
3649         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3650                 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3651                 if (!err) {
3652                         c->intr[0] = cciss_msix_entries[0].vector;
3653                         c->intr[1] = cciss_msix_entries[1].vector;
3654                         c->intr[2] = cciss_msix_entries[2].vector;
3655                         c->intr[3] = cciss_msix_entries[3].vector;
3656                         c->msix_vector = 1;
3657                         return;
3658                 }
3659                 if (err > 0) {
3660                         printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3661                                "available\n", err);
3662                         goto default_int_mode;
3663                 } else {
3664                         printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3665                                err);
3666                         goto default_int_mode;
3667                 }
3668         }
3669         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3670                 if (!pci_enable_msi(pdev)) {
3671                         c->msi_vector = 1;
3672                 } else {
3673                         printk(KERN_WARNING "cciss: MSI init failed\n");
3674                 }
3675         }
3676 default_int_mode:
3677 #endif                          /* CONFIG_PCI_MSI */
3678         /* if we get here we're going to use the default interrupt mode */
3679         c->intr[SIMPLE_MODE_INT] = pdev->irq;
3680         return;
3681 }
3682
3683 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3684 {
3685         ushort subsystem_vendor_id, subsystem_device_id, command;
3686         __u32 board_id, scratchpad = 0;
3687         __u64 cfg_offset;
3688         __u32 cfg_base_addr;
3689         __u64 cfg_base_addr_index;
3690         int i, prod_index, err;
3691
3692         subsystem_vendor_id = pdev->subsystem_vendor;
3693         subsystem_device_id = pdev->subsystem_device;
3694         board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3695                     subsystem_vendor_id);
3696
3697         for (i = 0; i < ARRAY_SIZE(products); i++) {
3698                 /* Stand aside for hpsa driver on request */
3699                 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3700                         return -ENODEV;
3701                 if (board_id == products[i].board_id)
3702                         break;
3703         }
3704         prod_index = i;
3705         if (prod_index == ARRAY_SIZE(products)) {
3706                 dev_warn(&pdev->dev,
3707                         "unrecognized board ID: 0x%08lx, ignoring.\n",
3708                         (unsigned long) board_id);
3709                 return -ENODEV;
3710         }
3711
3712         /* check to see if controller has been disabled */
3713         /* BEFORE trying to enable it */
3714         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3715         if (!(command & 0x02)) {
3716                 printk(KERN_WARNING
3717                        "cciss: controller appears to be disabled\n");
3718                 return -ENODEV;
3719         }
3720
3721         err = pci_enable_device(pdev);
3722         if (err) {
3723                 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3724                 return err;
3725         }
3726
3727         err = pci_request_regions(pdev, "cciss");
3728         if (err) {
3729                 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3730                        "aborting\n");
3731                 return err;
3732         }
3733
3734 #ifdef CCISS_DEBUG
3735         printk("command = %x\n", command);
3736         printk("irq = %x\n", pdev->irq);
3737         printk("board_id = %x\n", board_id);
3738 #endif                          /* CCISS_DEBUG */
3739
3740 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3741  * else we use the IO-APIC interrupt assigned to us by system ROM.
3742  */
3743         cciss_interrupt_mode(c, pdev, board_id);
3744
3745         /* find the memory BAR */
3746         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3747                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3748                         break;
3749         }
3750         if (i == DEVICE_COUNT_RESOURCE) {
3751                 printk(KERN_WARNING "cciss: No memory BAR found\n");
3752                 err = -ENODEV;
3753                 goto err_out_free_res;
3754         }
3755
3756         c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3757                                                  * already removed
3758                                                  */
3759
3760 #ifdef CCISS_DEBUG
3761         printk("address 0 = %lx\n", c->paddr);
3762 #endif                          /* CCISS_DEBUG */
3763         c->vaddr = remap_pci_mem(c->paddr, 0x250);
3764
3765         /* Wait for the board to become ready.  (PCI hotplug needs this.)
3766          * We poll for up to 120 secs, once per 100ms. */
3767         for (i = 0; i < 1200; i++) {
3768                 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3769                 if (scratchpad == CCISS_FIRMWARE_READY)
3770                         break;
3771                 set_current_state(TASK_INTERRUPTIBLE);
3772                 schedule_timeout(msecs_to_jiffies(100));        /* wait 100ms */
3773         }
3774         if (scratchpad != CCISS_FIRMWARE_READY) {
3775                 printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3776                 err = -ENODEV;
3777                 goto err_out_free_res;
3778         }
3779
3780         /* get the address index number */
3781         cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3782         cfg_base_addr &= (__u32) 0x0000ffff;
3783 #ifdef CCISS_DEBUG
3784         printk("cfg base address = %x\n", cfg_base_addr);
3785 #endif                          /* CCISS_DEBUG */
3786         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3787 #ifdef CCISS_DEBUG
3788         printk("cfg base address index = %llx\n",
3789                 (unsigned long long)cfg_base_addr_index);
3790 #endif                          /* CCISS_DEBUG */
3791         if (cfg_base_addr_index == -1) {
3792                 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3793                 err = -ENODEV;
3794                 goto err_out_free_res;
3795         }
3796
3797         cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3798 #ifdef CCISS_DEBUG
3799         printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3800 #endif                          /* CCISS_DEBUG */
3801         c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3802                                                        cfg_base_addr_index) +
3803                                     cfg_offset, sizeof(CfgTable_struct));
3804         c->board_id = board_id;
3805
3806 #ifdef CCISS_DEBUG
3807         print_cfg_table(c->cfgtable);
3808 #endif                          /* CCISS_DEBUG */
3809
3810         /* Some controllers support Zero Memory Raid (ZMR).
3811          * When configured in ZMR mode the number of supported
3812          * commands drops to 64. So instead of just setting an
3813          * arbitrary value we make the driver a little smarter.
3814          * We read the config table to tell us how many commands
3815          * are supported on the controller then subtract 4 to
3816          * leave a little room for ioctl calls.
3817          */
3818         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3819         c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
3820
3821         /*
3822          * Limit native command to 32 s/g elements to save dma'able memory.
3823          * Howvever spec says if 0, use 31
3824          */
3825
3826         c->max_cmd_sgentries = 31;
3827         if (c->maxsgentries > 512) {
3828                 c->max_cmd_sgentries = 32;
3829                 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
3830                 c->maxsgentries -= 1;   /* account for chain pointer */
3831         } else {
3832                 c->maxsgentries = 31;   /* Default to traditional value */
3833                 c->chainsize = 0;       /* traditional */
3834         }
3835
3836         c->product_name = products[prod_index].product_name;
3837         c->access = *(products[prod_index].access);
3838         c->nr_cmds = c->max_commands - 4;
3839         if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3840             (readb(&c->cfgtable->Signature[1]) != 'I') ||
3841             (readb(&c->cfgtable->Signature[2]) != 'S') ||
3842             (readb(&c->cfgtable->Signature[3]) != 'S')) {
3843                 printk("Does not appear to be a valid CISS config table\n");
3844                 err = -ENODEV;
3845                 goto err_out_free_res;
3846         }
3847 #ifdef CONFIG_X86
3848         {
3849                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3850                 __u32 prefetch;
3851                 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3852                 prefetch |= 0x100;
3853                 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3854         }
3855 #endif
3856
3857         /* Disabling DMA prefetch and refetch for the P600.
3858          * An ASIC bug may result in accesses to invalid memory addresses.
3859          * We've disabled prefetch for some time now. Testing with XEN
3860          * kernels revealed a bug in the refetch if dom0 resides on a P600.
3861          */
3862         if(board_id == 0x3225103C) {
3863                 __u32 dma_prefetch;
3864                 __u32 dma_refetch;
3865                 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3866                 dma_prefetch |= 0x8000;
3867                 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3868                 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3869                 dma_refetch |= 0x1;
3870                 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3871         }
3872
3873 #ifdef CCISS_DEBUG
3874         printk("Trying to put board into Simple mode\n");
3875 #endif                          /* CCISS_DEBUG */
3876         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3877         /* Update the field, and then ring the doorbell */
3878         writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3879         writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3880
3881         /* under certain very rare conditions, this can take awhile.
3882          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3883          * as we enter this code.) */
3884         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3885                 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3886                         break;
3887                 /* delay and try again */
3888                 set_current_state(TASK_INTERRUPTIBLE);
3889                 schedule_timeout(msecs_to_jiffies(1));
3890         }
3891
3892 #ifdef CCISS_DEBUG
3893         printk(KERN_DEBUG "I counter got to %d %x\n", i,
3894                readl(c->vaddr + SA5_DOORBELL));
3895 #endif                          /* CCISS_DEBUG */
3896 #ifdef CCISS_DEBUG
3897         print_cfg_table(c->cfgtable);
3898 #endif                          /* CCISS_DEBUG */
3899
3900         if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3901                 printk(KERN_WARNING "cciss: unable to get board into"
3902                        " simple mode\n");
3903                 err = -ENODEV;
3904                 goto err_out_free_res;
3905         }
3906         return 0;
3907
3908 err_out_free_res:
3909         /*
3910          * Deliberately omit pci_disable_device(): it does something nasty to
3911          * Smart Array controllers that pci_enable_device does not undo
3912          */
3913         pci_release_regions(pdev);
3914         return err;
3915 }
3916
3917 /* Function to find the first free pointer into our hba[] array
3918  * Returns -1 if no free entries are left.
3919  */
3920 static int alloc_cciss_hba(void)
3921 {
3922         int i;
3923
3924         for (i = 0; i < MAX_CTLR; i++) {
3925                 if (!hba[i]) {
3926                         ctlr_info_t *p;
3927
3928                         p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3929                         if (!p)
3930                                 goto Enomem;
3931                         hba[i] = p;
3932                         return i;
3933                 }
3934         }
3935         printk(KERN_WARNING "cciss: This driver supports a maximum"
3936                " of %d controllers.\n", MAX_CTLR);
3937         return -1;
3938 Enomem:
3939         printk(KERN_ERR "cciss: out of memory.\n");
3940         return -1;
3941 }
3942
3943 static void free_hba(int n)
3944 {
3945         ctlr_info_t *h = hba[n];
3946         int i;
3947
3948         hba[n] = NULL;
3949         for (i = 0; i < h->highest_lun + 1; i++)
3950                 if (h->gendisk[i] != NULL)
3951                         put_disk(h->gendisk[i]);
3952         kfree(h);
3953 }
3954
3955 /* Send a message CDB to the firmware. */
3956 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3957 {
3958         typedef struct {
3959                 CommandListHeader_struct CommandHeader;
3960                 RequestBlock_struct Request;
3961                 ErrDescriptor_struct ErrorDescriptor;
3962         } Command;
3963         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3964         Command *cmd;
3965         dma_addr_t paddr64;
3966         uint32_t paddr32, tag;
3967         void __iomem *vaddr;
3968         int i, err;
3969
3970         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3971         if (vaddr == NULL)
3972                 return -ENOMEM;
3973
3974         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3975            CCISS commands, so they must be allocated from the lower 4GiB of
3976            memory. */
3977         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3978         if (err) {
3979                 iounmap(vaddr);
3980                 return -ENOMEM;
3981         }
3982
3983         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3984         if (cmd == NULL) {
3985                 iounmap(vaddr);
3986                 return -ENOMEM;
3987         }
3988
3989         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3990            although there's no guarantee, we assume that the address is at
3991            least 4-byte aligned (most likely, it's page-aligned). */
3992         paddr32 = paddr64;
3993
3994         cmd->CommandHeader.ReplyQueue = 0;
3995         cmd->CommandHeader.SGList = 0;
3996         cmd->CommandHeader.SGTotal = 0;
3997         cmd->CommandHeader.Tag.lower = paddr32;
3998         cmd->CommandHeader.Tag.upper = 0;
3999         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4000
4001         cmd->Request.CDBLen = 16;
4002         cmd->Request.Type.Type = TYPE_MSG;
4003         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4004         cmd->Request.Type.Direction = XFER_NONE;
4005         cmd->Request.Timeout = 0; /* Don't time out */
4006         cmd->Request.CDB[0] = opcode;
4007         cmd->Request.CDB[1] = type;
4008         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4009
4010         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4011         cmd->ErrorDescriptor.Addr.upper = 0;
4012         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4013
4014         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4015
4016         for (i = 0; i < 10; i++) {
4017                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4018                 if ((tag & ~3) == paddr32)
4019                         break;
4020                 schedule_timeout_uninterruptible(HZ);
4021         }
4022
4023         iounmap(vaddr);
4024
4025         /* we leak the DMA buffer here ... no choice since the controller could
4026            still complete the command. */
4027         if (i == 10) {
4028                 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4029                         opcode, type);
4030                 return -ETIMEDOUT;
4031         }
4032
4033         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4034
4035         if (tag & 2) {
4036                 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4037                         opcode, type);
4038                 return -EIO;
4039         }
4040
4041         printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4042                 opcode, type);
4043         return 0;
4044 }
4045
4046 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4047 #define cciss_noop(p) cciss_message(p, 3, 0)
4048
4049 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4050 {
4051 /* the #defines are stolen from drivers/pci/msi.h. */
4052 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
4053 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
4054
4055         int pos;
4056         u16 control = 0;
4057
4058         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4059         if (pos) {
4060                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4061                 if (control & PCI_MSI_FLAGS_ENABLE) {
4062                         printk(KERN_INFO "cciss: resetting MSI\n");
4063                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4064                 }
4065         }
4066
4067         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4068         if (pos) {
4069                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4070                 if (control & PCI_MSIX_FLAGS_ENABLE) {
4071                         printk(KERN_INFO "cciss: resetting MSI-X\n");
4072                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4073                 }
4074         }
4075
4076         return 0;
4077 }
4078
4079 /* This does a hard reset of the controller using PCI power management
4080  * states. */
4081 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4082 {
4083         u16 pmcsr, saved_config_space[32];
4084         int i, pos;
4085
4086         printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4087
4088         /* This is very nearly the same thing as
4089
4090            pci_save_state(pci_dev);
4091            pci_set_power_state(pci_dev, PCI_D3hot);
4092            pci_set_power_state(pci_dev, PCI_D0);
4093            pci_restore_state(pci_dev);
4094
4095            but we can't use these nice canned kernel routines on
4096            kexec, because they also check the MSI/MSI-X state in PCI
4097            configuration space and do the wrong thing when it is
4098            set/cleared.  Also, the pci_save/restore_state functions
4099            violate the ordering requirements for restoring the
4100            configuration space from the CCISS document (see the
4101            comment below).  So we roll our own .... */
4102
4103         for (i = 0; i < 32; i++)
4104                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4105
4106         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4107         if (pos == 0) {
4108                 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4109                 return -ENODEV;
4110         }
4111
4112         /* Quoting from the Open CISS Specification: "The Power
4113          * Management Control/Status Register (CSR) controls the power
4114          * state of the device.  The normal operating state is D0,
4115          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4116          * the controller, place the interface device in D3 then to
4117          * D0, this causes a secondary PCI reset which will reset the
4118          * controller." */
4119
4120         /* enter the D3hot power management state */
4121         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4122         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4123         pmcsr |= PCI_D3hot;
4124         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4125
4126         schedule_timeout_uninterruptible(HZ >> 1);
4127
4128         /* enter the D0 power management state */
4129         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4130         pmcsr |= PCI_D0;
4131         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4132
4133         schedule_timeout_uninterruptible(HZ >> 1);
4134
4135         /* Restore the PCI configuration space.  The Open CISS
4136          * Specification says, "Restore the PCI Configuration
4137          * Registers, offsets 00h through 60h. It is important to
4138          * restore the command register, 16-bits at offset 04h,
4139          * last. Do not restore the configuration status register,
4140          * 16-bits at offset 06h."  Note that the offset is 2*i. */
4141         for (i = 0; i < 32; i++) {
4142                 if (i == 2 || i == 3)
4143                         continue;
4144                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4145         }
4146         wmb();
4147         pci_write_config_word(pdev, 4, saved_config_space[2]);
4148
4149         return 0;
4150 }
4151
4152 /*
4153  *  This is it.  Find all the controllers and register them.  I really hate
4154  *  stealing all these major device numbers.
4155  *  returns the number of block devices registered.
4156  */
4157 static int __devinit cciss_init_one(struct pci_dev *pdev,
4158                                     const struct pci_device_id *ent)
4159 {
4160         int i;
4161         int j = 0;
4162         int k = 0;
4163         int rc;
4164         int dac, return_code;
4165         InquiryData_struct *inq_buff;
4166
4167         if (reset_devices) {
4168                 /* Reset the controller with a PCI power-cycle */
4169                 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4170                         return -ENODEV;
4171
4172                 /* Now try to get the controller to respond to a no-op. Some
4173                    devices (notably the HP Smart Array 5i Controller) need
4174                    up to 30 seconds to respond. */
4175                 for (i=0; i<30; i++) {
4176                         if (cciss_noop(pdev) == 0)
4177                                 break;
4178
4179                         schedule_timeout_uninterruptible(HZ);
4180                 }
4181                 if (i == 30) {
4182                         printk(KERN_ERR "cciss: controller seems dead\n");
4183                         return -EBUSY;
4184                 }
4185         }
4186
4187         i = alloc_cciss_hba();
4188         if (i < 0)
4189                 return -1;
4190
4191         hba[i]->busy_initializing = 1;
4192         INIT_HLIST_HEAD(&hba[i]->cmpQ);
4193         INIT_HLIST_HEAD(&hba[i]->reqQ);
4194         mutex_init(&hba[i]->busy_shutting_down);
4195
4196         if (cciss_pci_init(hba[i], pdev) != 0)
4197                 goto clean_no_release_regions;
4198
4199         sprintf(hba[i]->devname, "cciss%d", i);
4200         hba[i]->ctlr = i;
4201         hba[i]->pdev = pdev;
4202
4203         init_completion(&hba[i]->scan_wait);
4204
4205         if (cciss_create_hba_sysfs_entry(hba[i]))
4206                 goto clean0;
4207
4208         /* configure PCI DMA stuff */
4209         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4210                 dac = 1;
4211         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4212                 dac = 0;
4213         else {
4214                 printk(KERN_ERR "cciss: no suitable DMA available\n");
4215                 goto clean1;
4216         }
4217
4218         /*
4219          * register with the major number, or get a dynamic major number
4220          * by passing 0 as argument.  This is done for greater than
4221          * 8 controller support.
4222          */
4223         if (i < MAX_CTLR_ORIG)
4224                 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4225         rc = register_blkdev(hba[i]->major, hba[i]->devname);
4226         if (rc == -EBUSY || rc == -EINVAL) {
4227                 printk(KERN_ERR
4228                        "cciss:  Unable to get major number %d for %s "
4229                        "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4230                 goto clean1;
4231         } else {
4232                 if (i >= MAX_CTLR_ORIG)
4233                         hba[i]->major = rc;
4234         }
4235
4236         /* make sure the board interrupts are off */
4237         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4238         if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4239                         IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4240                 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4241                        hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4242                 goto clean2;
4243         }
4244
4245         printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4246                hba[i]->devname, pdev->device, pci_name(pdev),
4247                hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4248
4249         hba[i]->cmd_pool_bits =
4250             kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4251                         * sizeof(unsigned long), GFP_KERNEL);
4252         hba[i]->cmd_pool = (CommandList_struct *)
4253             pci_alloc_consistent(hba[i]->pdev,
4254                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4255                     &(hba[i]->cmd_pool_dhandle));
4256         hba[i]->errinfo_pool = (ErrorInfo_struct *)
4257             pci_alloc_consistent(hba[i]->pdev,
4258                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4259                     &(hba[i]->errinfo_pool_dhandle));
4260         if ((hba[i]->cmd_pool_bits == NULL)
4261             || (hba[i]->cmd_pool == NULL)
4262             || (hba[i]->errinfo_pool == NULL)) {
4263                 printk(KERN_ERR "cciss: out of memory");
4264                 goto clean4;
4265         }
4266
4267         /* Need space for temp scatter list */
4268         hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4269                                                 sizeof(struct scatterlist *),
4270                                                 GFP_KERNEL);
4271         for (k = 0; k < hba[i]->nr_cmds; k++) {
4272                 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4273                                                         hba[i]->maxsgentries,
4274                                                         GFP_KERNEL);
4275                 if (hba[i]->scatter_list[k] == NULL) {
4276                         printk(KERN_ERR "cciss%d: could not allocate "
4277                                 "s/g lists\n", i);
4278                         goto clean4;
4279                 }
4280         }
4281         hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4282                 hba[i]->chainsize, hba[i]->nr_cmds);
4283         if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4284                 goto clean4;
4285
4286         spin_lock_init(&hba[i]->lock);
4287
4288         /* Initialize the pdev driver private data.
4289            have it point to hba[i].  */
4290         pci_set_drvdata(pdev, hba[i]);
4291         /* command and error info recs zeroed out before
4292            they are used */
4293         memset(hba[i]->cmd_pool_bits, 0,
4294                DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4295                         * sizeof(unsigned long));
4296
4297         hba[i]->num_luns = 0;
4298         hba[i]->highest_lun = -1;
4299         for (j = 0; j < CISS_MAX_LUN; j++) {
4300                 hba[i]->drv[j] = NULL;
4301                 hba[i]->gendisk[j] = NULL;
4302         }
4303
4304         cciss_scsi_setup(i);
4305
4306         /* Turn the interrupts on so we can service requests */
4307         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4308
4309         /* Get the firmware version */
4310         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4311         if (inq_buff == NULL) {
4312                 printk(KERN_ERR "cciss: out of memory\n");
4313                 goto clean4;
4314         }
4315
4316         return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4317                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4318         if (return_code == IO_OK) {
4319                 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4320                 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4321                 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4322                 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4323         } else {         /* send command failed */
4324                 printk(KERN_WARNING "cciss: unable to determine firmware"
4325                         " version of controller\n");
4326         }
4327         kfree(inq_buff);
4328
4329         cciss_procinit(i);
4330
4331         hba[i]->cciss_max_sectors = 8192;
4332
4333         rebuild_lun_table(hba[i], 1, 0);
4334         hba[i]->busy_initializing = 0;
4335         return 1;
4336
4337 clean4:
4338         kfree(hba[i]->cmd_pool_bits);
4339         /* Free up sg elements */
4340         for (k = 0; k < hba[i]->nr_cmds; k++)
4341                 kfree(hba[i]->scatter_list[k]);
4342         kfree(hba[i]->scatter_list);
4343         cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4344         if (hba[i]->cmd_pool)
4345                 pci_free_consistent(hba[i]->pdev,
4346                                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4347                                     hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4348         if (hba[i]->errinfo_pool)
4349                 pci_free_consistent(hba[i]->pdev,
4350                                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4351                                     hba[i]->errinfo_pool,
4352                                     hba[i]->errinfo_pool_dhandle);
4353         free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4354 clean2:
4355         unregister_blkdev(hba[i]->major, hba[i]->devname);
4356 clean1:
4357         cciss_destroy_hba_sysfs_entry(hba[i]);
4358 clean0:
4359         pci_release_regions(pdev);
4360 clean_no_release_regions:
4361         hba[i]->busy_initializing = 0;
4362
4363         /*
4364          * Deliberately omit pci_disable_device(): it does something nasty to
4365          * Smart Array controllers that pci_enable_device does not undo
4366          */
4367         pci_set_drvdata(pdev, NULL);
4368         free_hba(i);
4369         return -1;
4370 }
4371
4372 static void cciss_shutdown(struct pci_dev *pdev)
4373 {
4374         ctlr_info_t *h;
4375         char *flush_buf;
4376         int return_code;
4377
4378         h = pci_get_drvdata(pdev);
4379         flush_buf = kzalloc(4, GFP_KERNEL);
4380         if (!flush_buf) {
4381                 printk(KERN_WARNING
4382                         "cciss:%d cache not flushed, out of memory.\n",
4383                         h->ctlr);
4384                 return;
4385         }
4386         /* write all data in the battery backed cache to disk */
4387         memset(flush_buf, 0, 4);
4388         return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4389                 4, 0, CTLR_LUNID, TYPE_CMD);
4390         kfree(flush_buf);
4391         if (return_code != IO_OK)
4392                 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4393                         h->ctlr);
4394         h->access.set_intr_mask(h, CCISS_INTR_OFF);
4395         free_irq(h->intr[2], h);
4396 }
4397
4398 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4399 {
4400         ctlr_info_t *tmp_ptr;
4401         int i, j;
4402
4403         if (pci_get_drvdata(pdev) == NULL) {
4404                 printk(KERN_ERR "cciss: Unable to remove device \n");
4405                 return;
4406         }
4407
4408         tmp_ptr = pci_get_drvdata(pdev);
4409         i = tmp_ptr->ctlr;
4410         if (hba[i] == NULL) {
4411                 printk(KERN_ERR "cciss: device appears to "
4412                        "already be removed \n");
4413                 return;
4414         }
4415
4416         mutex_lock(&hba[i]->busy_shutting_down);
4417
4418         remove_from_scan_list(hba[i]);
4419         remove_proc_entry(hba[i]->devname, proc_cciss);
4420         unregister_blkdev(hba[i]->major, hba[i]->devname);
4421
4422         /* remove it from the disk list */
4423         for (j = 0; j < CISS_MAX_LUN; j++) {
4424                 struct gendisk *disk = hba[i]->gendisk[j];
4425                 if (disk) {
4426                         struct request_queue *q = disk->queue;
4427
4428                         if (disk->flags & GENHD_FL_UP) {
4429                                 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4430                                 del_gendisk(disk);
4431                         }
4432                         if (q)
4433                                 blk_cleanup_queue(q);
4434                 }
4435         }
4436
4437 #ifdef CONFIG_CISS_SCSI_TAPE
4438         cciss_unregister_scsi(i);       /* unhook from SCSI subsystem */
4439 #endif
4440
4441         cciss_shutdown(pdev);
4442
4443 #ifdef CONFIG_PCI_MSI
4444         if (hba[i]->msix_vector)
4445                 pci_disable_msix(hba[i]->pdev);
4446         else if (hba[i]->msi_vector)
4447                 pci_disable_msi(hba[i]->pdev);
4448 #endif                          /* CONFIG_PCI_MSI */
4449
4450         iounmap(hba[i]->vaddr);
4451
4452         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4453                             hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4454         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4455                             hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4456         kfree(hba[i]->cmd_pool_bits);
4457         /* Free up sg elements */
4458         for (j = 0; j < hba[i]->nr_cmds; j++)
4459                 kfree(hba[i]->scatter_list[j]);
4460         kfree(hba[i]->scatter_list);
4461         cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4462         /*
4463          * Deliberately omit pci_disable_device(): it does something nasty to
4464          * Smart Array controllers that pci_enable_device does not undo
4465          */
4466         pci_release_regions(pdev);
4467         pci_set_drvdata(pdev, NULL);
4468         cciss_destroy_hba_sysfs_entry(hba[i]);
4469         mutex_unlock(&hba[i]->busy_shutting_down);
4470         free_hba(i);
4471 }
4472
4473 static struct pci_driver cciss_pci_driver = {
4474         .name = "cciss",
4475         .probe = cciss_init_one,
4476         .remove = __devexit_p(cciss_remove_one),
4477         .id_table = cciss_pci_device_id,        /* id_table */
4478         .shutdown = cciss_shutdown,
4479 };
4480
4481 /*
4482  *  This is it.  Register the PCI driver information for the cards we control
4483  *  the OS will call our registered routines when it finds one of our cards.
4484  */
4485 static int __init cciss_init(void)
4486 {
4487         int err;
4488
4489         /*
4490          * The hardware requires that commands are aligned on a 64-bit
4491          * boundary. Given that we use pci_alloc_consistent() to allocate an
4492          * array of them, the size must be a multiple of 8 bytes.
4493          */
4494         BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4495
4496         printk(KERN_INFO DRIVER_NAME "\n");
4497
4498         err = bus_register(&cciss_bus_type);
4499         if (err)
4500                 return err;
4501
4502         /* Start the scan thread */
4503         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4504         if (IS_ERR(cciss_scan_thread)) {
4505                 err = PTR_ERR(cciss_scan_thread);
4506                 goto err_bus_unregister;
4507         }
4508
4509         /* Register for our PCI devices */
4510         err = pci_register_driver(&cciss_pci_driver);
4511         if (err)
4512                 goto err_thread_stop;
4513
4514         return err;
4515
4516 err_thread_stop:
4517         kthread_stop(cciss_scan_thread);
4518 err_bus_unregister:
4519         bus_unregister(&cciss_bus_type);
4520
4521         return err;
4522 }
4523
4524 static void __exit cciss_cleanup(void)
4525 {
4526         int i;
4527
4528         pci_unregister_driver(&cciss_pci_driver);
4529         /* double check that all controller entrys have been removed */
4530         for (i = 0; i < MAX_CTLR; i++) {
4531                 if (hba[i] != NULL) {
4532                         printk(KERN_WARNING "cciss: had to remove"
4533                                " controller %d\n", i);
4534                         cciss_remove_one(hba[i]->pdev);
4535                 }
4536         }
4537         kthread_stop(cciss_scan_thread);
4538         remove_proc_entry("driver/cciss", NULL);
4539         bus_unregister(&cciss_bus_type);
4540 }
4541
4542 static void fail_all_cmds(unsigned long ctlr)
4543 {
4544         /* If we get here, the board is apparently dead. */
4545         ctlr_info_t *h = hba[ctlr];
4546         CommandList_struct *c;
4547         unsigned long flags;
4548
4549         printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4550         h->alive = 0;           /* the controller apparently died... */
4551
4552         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4553
4554         pci_disable_device(h->pdev);    /* Make sure it is really dead. */
4555
4556         /* move everything off the request queue onto the completed queue */
4557         while (!hlist_empty(&h->reqQ)) {
4558                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4559                 removeQ(c);
4560                 h->Qdepth--;
4561                 addQ(&h->cmpQ, c);
4562         }
4563
4564         /* Now, fail everything on the completed queue with a HW error */
4565         while (!hlist_empty(&h->cmpQ)) {
4566                 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4567                 removeQ(c);
4568                 if (c->cmd_type != CMD_MSG_STALE)
4569                         c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4570                 if (c->cmd_type == CMD_RWREQ) {
4571                         complete_command(h, c, 0);
4572                 } else if (c->cmd_type == CMD_IOCTL_PEND)
4573                         complete(c->waiting);
4574 #ifdef CONFIG_CISS_SCSI_TAPE
4575                 else if (c->cmd_type == CMD_SCSI)
4576                         complete_scsi_command(c, 0, 0);
4577 #endif
4578         }
4579         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4580         return;
4581 }
4582
4583 module_init(cciss_init);
4584 module_exit(cciss_cleanup);