cciss: Rearrange logical drive sysfs code to make the "changing a disk" path work.
[safe/jmp/linux-2.6] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66                         " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67                         " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
74
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
78         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
104         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
105                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111 /*  board_id = Subsystem Device ID & Vendor ID
112  *  product = Marketing Name for the board
113  *  access = Address of the struct of function pointers
114  */
115 static struct board_type products[] = {
116         {0x40700E11, "Smart Array 5300", &SA5_access},
117         {0x40800E11, "Smart Array 5i", &SA5B_access},
118         {0x40820E11, "Smart Array 532", &SA5B_access},
119         {0x40830E11, "Smart Array 5312", &SA5B_access},
120         {0x409A0E11, "Smart Array 641", &SA5_access},
121         {0x409B0E11, "Smart Array 642", &SA5_access},
122         {0x409C0E11, "Smart Array 6400", &SA5_access},
123         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124         {0x40910E11, "Smart Array 6i", &SA5_access},
125         {0x3225103C, "Smart Array P600", &SA5_access},
126         {0x3223103C, "Smart Array P800", &SA5_access},
127         {0x3234103C, "Smart Array P400", &SA5_access},
128         {0x3235103C, "Smart Array P400i", &SA5_access},
129         {0x3211103C, "Smart Array E200i", &SA5_access},
130         {0x3212103C, "Smart Array E200", &SA5_access},
131         {0x3213103C, "Smart Array E200i", &SA5_access},
132         {0x3214103C, "Smart Array E200i", &SA5_access},
133         {0x3215103C, "Smart Array E200i", &SA5_access},
134         {0x3237103C, "Smart Array E500", &SA5_access},
135         {0x323D103C, "Smart Array P700m", &SA5_access},
136         {0x3241103C, "Smart Array P212", &SA5_access},
137         {0x3243103C, "Smart Array P410", &SA5_access},
138         {0x3245103C, "Smart Array P410i", &SA5_access},
139         {0x3247103C, "Smart Array P411", &SA5_access},
140         {0x3249103C, "Smart Array P812", &SA5_access},
141         {0x324A103C, "Smart Array P712m", &SA5_access},
142         {0x324B103C, "Smart Array P711m", &SA5_access},
143         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 };
145
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
149
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
152
153 #define MAX_CTLR        32
154
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG   8
157
158 static ctlr_info_t *hba[MAX_CTLR];
159
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
163
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_release(struct gendisk *disk, fmode_t mode);
168 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169                        unsigned int cmd, unsigned long arg);
170 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171
172 static int cciss_revalidate(struct gendisk *disk);
173 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
174 static int deregister_disk(ctlr_info_t *h, int drv_index,
175                            int clear_all);
176
177 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178                         sector_t *total_size, unsigned int *block_size);
179 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180                         sector_t *total_size, unsigned int *block_size);
181 static void cciss_geometry_inquiry(int ctlr, int logvol,
182                         int withirq, sector_t total_size,
183                         unsigned int block_size, InquiryData_struct *inq_buff,
184                                    drive_info_struct *drv);
185 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186                                            __u32);
187 static void start_io(ctlr_info_t *h);
188 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189                    __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191                         __u8 page_code, unsigned char scsi3addr[],
192                         int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194         int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197 static void fail_all_cmds(unsigned long ctlr);
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201 static void cciss_hba_release(struct device *dev);
202 static void cciss_device_release(struct device *dev);
203
204 #ifdef CONFIG_PROC_FS
205 static void cciss_procinit(int i);
206 #else
207 static void cciss_procinit(int i)
208 {
209 }
210 #endif                          /* CONFIG_PROC_FS */
211
212 #ifdef CONFIG_COMPAT
213 static int cciss_compat_ioctl(struct block_device *, fmode_t,
214                               unsigned, unsigned long);
215 #endif
216
217 static const struct block_device_operations cciss_fops = {
218         .owner = THIS_MODULE,
219         .open = cciss_open,
220         .release = cciss_release,
221         .locked_ioctl = cciss_ioctl,
222         .getgeo = cciss_getgeo,
223 #ifdef CONFIG_COMPAT
224         .compat_ioctl = cciss_compat_ioctl,
225 #endif
226         .revalidate_disk = cciss_revalidate,
227 };
228
229 /*
230  * Enqueuing and dequeuing functions for cmdlists.
231  */
232 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
233 {
234         hlist_add_head(&c->list, list);
235 }
236
237 static inline void removeQ(CommandList_struct *c)
238 {
239         /*
240          * After kexec/dump some commands might still
241          * be in flight, which the firmware will try
242          * to complete. Resetting the firmware doesn't work
243          * with old fw revisions, so we have to mark
244          * them off as 'stale' to prevent the driver from
245          * falling over.
246          */
247         if (WARN_ON(hlist_unhashed(&c->list))) {
248                 c->cmd_type = CMD_MSG_STALE;
249                 return;
250         }
251
252         hlist_del_init(&c->list);
253 }
254
255 #include "cciss_scsi.c"         /* For SCSI tape support */
256
257 #define RAID_UNKNOWN 6
258
259 #ifdef CONFIG_PROC_FS
260
261 /*
262  * Report information about this controller.
263  */
264 #define ENG_GIG 1000000000
265 #define ENG_GIG_FACTOR (ENG_GIG/512)
266 #define ENGAGE_SCSI     "engage scsi"
267 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
268         "UNKNOWN"
269 };
270
271 static struct proc_dir_entry *proc_cciss;
272
273 static void cciss_seq_show_header(struct seq_file *seq)
274 {
275         ctlr_info_t *h = seq->private;
276
277         seq_printf(seq, "%s: HP %s Controller\n"
278                 "Board ID: 0x%08lx\n"
279                 "Firmware Version: %c%c%c%c\n"
280                 "IRQ: %d\n"
281                 "Logical drives: %d\n"
282                 "Current Q depth: %d\n"
283                 "Current # commands on controller: %d\n"
284                 "Max Q depth since init: %d\n"
285                 "Max # commands on controller since init: %d\n"
286                 "Max SG entries since init: %d\n",
287                 h->devname,
288                 h->product_name,
289                 (unsigned long)h->board_id,
290                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
291                 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
292                 h->num_luns,
293                 h->Qdepth, h->commands_outstanding,
294                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
295
296 #ifdef CONFIG_CISS_SCSI_TAPE
297         cciss_seq_tape_report(seq, h->ctlr);
298 #endif /* CONFIG_CISS_SCSI_TAPE */
299 }
300
301 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
302 {
303         ctlr_info_t *h = seq->private;
304         unsigned ctlr = h->ctlr;
305         unsigned long flags;
306
307         /* prevent displaying bogus info during configuration
308          * or deconfiguration of a logical volume
309          */
310         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
311         if (h->busy_configuring) {
312                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
313                 return ERR_PTR(-EBUSY);
314         }
315         h->busy_configuring = 1;
316         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
317
318         if (*pos == 0)
319                 cciss_seq_show_header(seq);
320
321         return pos;
322 }
323
324 static int cciss_seq_show(struct seq_file *seq, void *v)
325 {
326         sector_t vol_sz, vol_sz_frac;
327         ctlr_info_t *h = seq->private;
328         unsigned ctlr = h->ctlr;
329         loff_t *pos = v;
330         drive_info_struct *drv = &h->drv[*pos];
331
332         if (*pos > h->highest_lun)
333                 return 0;
334
335         if (drv->heads == 0)
336                 return 0;
337
338         vol_sz = drv->nr_blocks;
339         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
340         vol_sz_frac *= 100;
341         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
342
343         if (drv->raid_level > 5)
344                 drv->raid_level = RAID_UNKNOWN;
345         seq_printf(seq, "cciss/c%dd%d:"
346                         "\t%4u.%02uGB\tRAID %s\n",
347                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
348                         raid_label[drv->raid_level]);
349         return 0;
350 }
351
352 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
353 {
354         ctlr_info_t *h = seq->private;
355
356         if (*pos > h->highest_lun)
357                 return NULL;
358         *pos += 1;
359
360         return pos;
361 }
362
363 static void cciss_seq_stop(struct seq_file *seq, void *v)
364 {
365         ctlr_info_t *h = seq->private;
366
367         /* Only reset h->busy_configuring if we succeeded in setting
368          * it during cciss_seq_start. */
369         if (v == ERR_PTR(-EBUSY))
370                 return;
371
372         h->busy_configuring = 0;
373 }
374
375 static const struct seq_operations cciss_seq_ops = {
376         .start = cciss_seq_start,
377         .show  = cciss_seq_show,
378         .next  = cciss_seq_next,
379         .stop  = cciss_seq_stop,
380 };
381
382 static int cciss_seq_open(struct inode *inode, struct file *file)
383 {
384         int ret = seq_open(file, &cciss_seq_ops);
385         struct seq_file *seq = file->private_data;
386
387         if (!ret)
388                 seq->private = PDE(inode)->data;
389
390         return ret;
391 }
392
393 static ssize_t
394 cciss_proc_write(struct file *file, const char __user *buf,
395                  size_t length, loff_t *ppos)
396 {
397         int err;
398         char *buffer;
399
400 #ifndef CONFIG_CISS_SCSI_TAPE
401         return -EINVAL;
402 #endif
403
404         if (!buf || length > PAGE_SIZE - 1)
405                 return -EINVAL;
406
407         buffer = (char *)__get_free_page(GFP_KERNEL);
408         if (!buffer)
409                 return -ENOMEM;
410
411         err = -EFAULT;
412         if (copy_from_user(buffer, buf, length))
413                 goto out;
414         buffer[length] = '\0';
415
416 #ifdef CONFIG_CISS_SCSI_TAPE
417         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
418                 struct seq_file *seq = file->private_data;
419                 ctlr_info_t *h = seq->private;
420                 int rc;
421
422                 rc = cciss_engage_scsi(h->ctlr);
423                 if (rc != 0)
424                         err = -rc;
425                 else
426                         err = length;
427         } else
428 #endif /* CONFIG_CISS_SCSI_TAPE */
429                 err = -EINVAL;
430         /* might be nice to have "disengage" too, but it's not
431            safely possible. (only 1 module use count, lock issues.) */
432
433 out:
434         free_page((unsigned long)buffer);
435         return err;
436 }
437
438 static struct file_operations cciss_proc_fops = {
439         .owner   = THIS_MODULE,
440         .open    = cciss_seq_open,
441         .read    = seq_read,
442         .llseek  = seq_lseek,
443         .release = seq_release,
444         .write   = cciss_proc_write,
445 };
446
447 static void __devinit cciss_procinit(int i)
448 {
449         struct proc_dir_entry *pde;
450
451         if (proc_cciss == NULL)
452                 proc_cciss = proc_mkdir("driver/cciss", NULL);
453         if (!proc_cciss)
454                 return;
455         pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
456                                         S_IROTH, proc_cciss,
457                                         &cciss_proc_fops, hba[i]);
458 }
459 #endif                          /* CONFIG_PROC_FS */
460
461 #define MAX_PRODUCT_NAME_LEN 19
462
463 #define to_hba(n) container_of(n, struct ctlr_info, dev)
464
465 static ssize_t host_store_rescan(struct device *dev,
466                                  struct device_attribute *attr,
467                                  const char *buf, size_t count)
468 {
469         struct ctlr_info *h = to_hba(dev);
470
471         add_to_scan_list(h);
472         wake_up_process(cciss_scan_thread);
473         wait_for_completion_interruptible(&h->scan_wait);
474
475         return count;
476 }
477 DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
478
479 static ssize_t dev_show_unique_id(struct device *dev,
480                                  struct device_attribute *attr,
481                                  char *buf)
482 {
483         drive_info_struct *drv = dev_get_drvdata(dev);
484         struct ctlr_info *h = to_hba(drv->dev->parent);
485         __u8 sn[16];
486         unsigned long flags;
487         int ret = 0;
488
489         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
490         if (h->busy_configuring)
491                 ret = -EBUSY;
492         else
493                 memcpy(sn, drv->serial_no, sizeof(sn));
494         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
495
496         if (ret)
497                 return ret;
498         else
499                 return snprintf(buf, 16 * 2 + 2,
500                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
501                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
502                                 sn[0], sn[1], sn[2], sn[3],
503                                 sn[4], sn[5], sn[6], sn[7],
504                                 sn[8], sn[9], sn[10], sn[11],
505                                 sn[12], sn[13], sn[14], sn[15]);
506 }
507 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
508
509 static ssize_t dev_show_vendor(struct device *dev,
510                                struct device_attribute *attr,
511                                char *buf)
512 {
513         drive_info_struct *drv = dev_get_drvdata(dev);
514         struct ctlr_info *h = to_hba(drv->dev->parent);
515         char vendor[VENDOR_LEN + 1];
516         unsigned long flags;
517         int ret = 0;
518
519         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
520         if (h->busy_configuring)
521                 ret = -EBUSY;
522         else
523                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
524         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
525
526         if (ret)
527                 return ret;
528         else
529                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
530 }
531 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
532
533 static ssize_t dev_show_model(struct device *dev,
534                               struct device_attribute *attr,
535                               char *buf)
536 {
537         drive_info_struct *drv = dev_get_drvdata(dev);
538         struct ctlr_info *h = to_hba(drv->dev->parent);
539         char model[MODEL_LEN + 1];
540         unsigned long flags;
541         int ret = 0;
542
543         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
544         if (h->busy_configuring)
545                 ret = -EBUSY;
546         else
547                 memcpy(model, drv->model, MODEL_LEN + 1);
548         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
549
550         if (ret)
551                 return ret;
552         else
553                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
554 }
555 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
556
557 static ssize_t dev_show_rev(struct device *dev,
558                             struct device_attribute *attr,
559                             char *buf)
560 {
561         drive_info_struct *drv = dev_get_drvdata(dev);
562         struct ctlr_info *h = to_hba(drv->dev->parent);
563         char rev[REV_LEN + 1];
564         unsigned long flags;
565         int ret = 0;
566
567         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
568         if (h->busy_configuring)
569                 ret = -EBUSY;
570         else
571                 memcpy(rev, drv->rev, REV_LEN + 1);
572         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
573
574         if (ret)
575                 return ret;
576         else
577                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
578 }
579 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
580
581 static struct attribute *cciss_host_attrs[] = {
582         &dev_attr_rescan.attr,
583         NULL
584 };
585
586 static struct attribute_group cciss_host_attr_group = {
587         .attrs = cciss_host_attrs,
588 };
589
590 static struct attribute_group *cciss_host_attr_groups[] = {
591         &cciss_host_attr_group,
592         NULL
593 };
594
595 static struct device_type cciss_host_type = {
596         .name           = "cciss_host",
597         .groups         = cciss_host_attr_groups,
598         .release        = cciss_hba_release,
599 };
600
601 static struct attribute *cciss_dev_attrs[] = {
602         &dev_attr_unique_id.attr,
603         &dev_attr_model.attr,
604         &dev_attr_vendor.attr,
605         &dev_attr_rev.attr,
606         NULL
607 };
608
609 static struct attribute_group cciss_dev_attr_group = {
610         .attrs = cciss_dev_attrs,
611 };
612
613 static const struct attribute_group *cciss_dev_attr_groups[] = {
614         &cciss_dev_attr_group,
615         NULL
616 };
617
618 static struct device_type cciss_dev_type = {
619         .name           = "cciss_device",
620         .groups         = cciss_dev_attr_groups,
621         .release        = cciss_device_release,
622 };
623
624 static struct bus_type cciss_bus_type = {
625         .name           = "cciss",
626 };
627
628 /*
629  * cciss_hba_release is called when the reference count
630  * of h->dev goes to zero.
631  */
632 static void cciss_hba_release(struct device *dev)
633 {
634         /*
635          * nothing to do, but need this to avoid a warning
636          * about not having a release handler from lib/kref.c.
637          */
638 }
639
640 /*
641  * Initialize sysfs entry for each controller.  This sets up and registers
642  * the 'cciss#' directory for each individual controller under
643  * /sys/bus/pci/devices/<dev>/.
644  */
645 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
646 {
647         device_initialize(&h->dev);
648         h->dev.type = &cciss_host_type;
649         h->dev.bus = &cciss_bus_type;
650         dev_set_name(&h->dev, "%s", h->devname);
651         h->dev.parent = &h->pdev->dev;
652
653         return device_add(&h->dev);
654 }
655
656 /*
657  * Remove sysfs entries for an hba.
658  */
659 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
660 {
661         device_del(&h->dev);
662         put_device(&h->dev); /* final put. */
663 }
664
665 /* cciss_device_release is called when the reference count
666  * of h->drv[x].dev goes to zero.
667  */
668 static void cciss_device_release(struct device *dev)
669 {
670         kfree(dev);
671 }
672
673 /*
674  * Initialize sysfs for each logical drive.  This sets up and registers
675  * the 'c#d#' directory for each individual logical drive under
676  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
677  * /sys/block/cciss!c#d# to this entry.
678  */
679 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
680                                        int drv_index)
681 {
682         struct device *dev;
683
684         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
685         if (!dev)
686                 return -ENOMEM;
687         device_initialize(dev);
688         dev->type = &cciss_dev_type;
689         dev->bus = &cciss_bus_type;
690         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
691         dev->parent = &h->dev;
692         h->drv[drv_index].dev = dev;
693         dev_set_drvdata(dev, &h->drv[drv_index]);
694         return device_add(dev);
695 }
696
697 /*
698  * Remove sysfs entries for a logical drive.
699  */
700 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index)
701 {
702         struct device *dev = h->drv[drv_index].dev;
703         device_del(dev);
704         put_device(dev); /* the "final" put. */
705         h->drv[drv_index].dev = NULL;
706 }
707
708 /*
709  * For operations that cannot sleep, a command block is allocated at init,
710  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
711  * which ones are free or in use.  For operations that can wait for kmalloc
712  * to possible sleep, this routine can be called with get_from_pool set to 0.
713  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
714  */
715 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
716 {
717         CommandList_struct *c;
718         int i;
719         u64bit temp64;
720         dma_addr_t cmd_dma_handle, err_dma_handle;
721
722         if (!get_from_pool) {
723                 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
724                         sizeof(CommandList_struct), &cmd_dma_handle);
725                 if (c == NULL)
726                         return NULL;
727                 memset(c, 0, sizeof(CommandList_struct));
728
729                 c->cmdindex = -1;
730
731                 c->err_info = (ErrorInfo_struct *)
732                     pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
733                             &err_dma_handle);
734
735                 if (c->err_info == NULL) {
736                         pci_free_consistent(h->pdev,
737                                 sizeof(CommandList_struct), c, cmd_dma_handle);
738                         return NULL;
739                 }
740                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
741         } else {                /* get it out of the controllers pool */
742
743                 do {
744                         i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
745                         if (i == h->nr_cmds)
746                                 return NULL;
747                 } while (test_and_set_bit
748                          (i & (BITS_PER_LONG - 1),
749                           h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
750 #ifdef CCISS_DEBUG
751                 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
752 #endif
753                 c = h->cmd_pool + i;
754                 memset(c, 0, sizeof(CommandList_struct));
755                 cmd_dma_handle = h->cmd_pool_dhandle
756                     + i * sizeof(CommandList_struct);
757                 c->err_info = h->errinfo_pool + i;
758                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
759                 err_dma_handle = h->errinfo_pool_dhandle
760                     + i * sizeof(ErrorInfo_struct);
761                 h->nr_allocs++;
762
763                 c->cmdindex = i;
764         }
765
766         INIT_HLIST_NODE(&c->list);
767         c->busaddr = (__u32) cmd_dma_handle;
768         temp64.val = (__u64) err_dma_handle;
769         c->ErrDesc.Addr.lower = temp64.val32.lower;
770         c->ErrDesc.Addr.upper = temp64.val32.upper;
771         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
772
773         c->ctlr = h->ctlr;
774         return c;
775 }
776
777 /*
778  * Frees a command block that was previously allocated with cmd_alloc().
779  */
780 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
781 {
782         int i;
783         u64bit temp64;
784
785         if (!got_from_pool) {
786                 temp64.val32.lower = c->ErrDesc.Addr.lower;
787                 temp64.val32.upper = c->ErrDesc.Addr.upper;
788                 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
789                                     c->err_info, (dma_addr_t) temp64.val);
790                 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
791                                     c, (dma_addr_t) c->busaddr);
792         } else {
793                 i = c - h->cmd_pool;
794                 clear_bit(i & (BITS_PER_LONG - 1),
795                           h->cmd_pool_bits + (i / BITS_PER_LONG));
796                 h->nr_frees++;
797         }
798 }
799
800 static inline ctlr_info_t *get_host(struct gendisk *disk)
801 {
802         return disk->queue->queuedata;
803 }
804
805 static inline drive_info_struct *get_drv(struct gendisk *disk)
806 {
807         return disk->private_data;
808 }
809
810 /*
811  * Open.  Make sure the device is really there.
812  */
813 static int cciss_open(struct block_device *bdev, fmode_t mode)
814 {
815         ctlr_info_t *host = get_host(bdev->bd_disk);
816         drive_info_struct *drv = get_drv(bdev->bd_disk);
817
818 #ifdef CCISS_DEBUG
819         printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
820 #endif                          /* CCISS_DEBUG */
821
822         if (host->busy_initializing || drv->busy_configuring)
823                 return -EBUSY;
824         /*
825          * Root is allowed to open raw volume zero even if it's not configured
826          * so array config can still work. Root is also allowed to open any
827          * volume that has a LUN ID, so it can issue IOCTL to reread the
828          * disk information.  I don't think I really like this
829          * but I'm already using way to many device nodes to claim another one
830          * for "raw controller".
831          */
832         if (drv->heads == 0) {
833                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
834                         /* if not node 0 make sure it is a partition = 0 */
835                         if (MINOR(bdev->bd_dev) & 0x0f) {
836                                 return -ENXIO;
837                                 /* if it is, make sure we have a LUN ID */
838                         } else if (drv->LunID == 0) {
839                                 return -ENXIO;
840                         }
841                 }
842                 if (!capable(CAP_SYS_ADMIN))
843                         return -EPERM;
844         }
845         drv->usage_count++;
846         host->usage_count++;
847         return 0;
848 }
849
850 /*
851  * Close.  Sync first.
852  */
853 static int cciss_release(struct gendisk *disk, fmode_t mode)
854 {
855         ctlr_info_t *host = get_host(disk);
856         drive_info_struct *drv = get_drv(disk);
857
858 #ifdef CCISS_DEBUG
859         printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
860 #endif                          /* CCISS_DEBUG */
861
862         drv->usage_count--;
863         host->usage_count--;
864         return 0;
865 }
866
867 #ifdef CONFIG_COMPAT
868
869 static int do_ioctl(struct block_device *bdev, fmode_t mode,
870                     unsigned cmd, unsigned long arg)
871 {
872         int ret;
873         lock_kernel();
874         ret = cciss_ioctl(bdev, mode, cmd, arg);
875         unlock_kernel();
876         return ret;
877 }
878
879 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
880                                   unsigned cmd, unsigned long arg);
881 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
882                                       unsigned cmd, unsigned long arg);
883
884 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
885                               unsigned cmd, unsigned long arg)
886 {
887         switch (cmd) {
888         case CCISS_GETPCIINFO:
889         case CCISS_GETINTINFO:
890         case CCISS_SETINTINFO:
891         case CCISS_GETNODENAME:
892         case CCISS_SETNODENAME:
893         case CCISS_GETHEARTBEAT:
894         case CCISS_GETBUSTYPES:
895         case CCISS_GETFIRMVER:
896         case CCISS_GETDRIVVER:
897         case CCISS_REVALIDVOLS:
898         case CCISS_DEREGDISK:
899         case CCISS_REGNEWDISK:
900         case CCISS_REGNEWD:
901         case CCISS_RESCANDISK:
902         case CCISS_GETLUNINFO:
903                 return do_ioctl(bdev, mode, cmd, arg);
904
905         case CCISS_PASSTHRU32:
906                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
907         case CCISS_BIG_PASSTHRU32:
908                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
909
910         default:
911                 return -ENOIOCTLCMD;
912         }
913 }
914
915 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
916                                   unsigned cmd, unsigned long arg)
917 {
918         IOCTL32_Command_struct __user *arg32 =
919             (IOCTL32_Command_struct __user *) arg;
920         IOCTL_Command_struct arg64;
921         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
922         int err;
923         u32 cp;
924
925         err = 0;
926         err |=
927             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
928                            sizeof(arg64.LUN_info));
929         err |=
930             copy_from_user(&arg64.Request, &arg32->Request,
931                            sizeof(arg64.Request));
932         err |=
933             copy_from_user(&arg64.error_info, &arg32->error_info,
934                            sizeof(arg64.error_info));
935         err |= get_user(arg64.buf_size, &arg32->buf_size);
936         err |= get_user(cp, &arg32->buf);
937         arg64.buf = compat_ptr(cp);
938         err |= copy_to_user(p, &arg64, sizeof(arg64));
939
940         if (err)
941                 return -EFAULT;
942
943         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
944         if (err)
945                 return err;
946         err |=
947             copy_in_user(&arg32->error_info, &p->error_info,
948                          sizeof(arg32->error_info));
949         if (err)
950                 return -EFAULT;
951         return err;
952 }
953
954 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
955                                       unsigned cmd, unsigned long arg)
956 {
957         BIG_IOCTL32_Command_struct __user *arg32 =
958             (BIG_IOCTL32_Command_struct __user *) arg;
959         BIG_IOCTL_Command_struct arg64;
960         BIG_IOCTL_Command_struct __user *p =
961             compat_alloc_user_space(sizeof(arg64));
962         int err;
963         u32 cp;
964
965         err = 0;
966         err |=
967             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
968                            sizeof(arg64.LUN_info));
969         err |=
970             copy_from_user(&arg64.Request, &arg32->Request,
971                            sizeof(arg64.Request));
972         err |=
973             copy_from_user(&arg64.error_info, &arg32->error_info,
974                            sizeof(arg64.error_info));
975         err |= get_user(arg64.buf_size, &arg32->buf_size);
976         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
977         err |= get_user(cp, &arg32->buf);
978         arg64.buf = compat_ptr(cp);
979         err |= copy_to_user(p, &arg64, sizeof(arg64));
980
981         if (err)
982                 return -EFAULT;
983
984         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
985         if (err)
986                 return err;
987         err |=
988             copy_in_user(&arg32->error_info, &p->error_info,
989                          sizeof(arg32->error_info));
990         if (err)
991                 return -EFAULT;
992         return err;
993 }
994 #endif
995
996 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
997 {
998         drive_info_struct *drv = get_drv(bdev->bd_disk);
999
1000         if (!drv->cylinders)
1001                 return -ENXIO;
1002
1003         geo->heads = drv->heads;
1004         geo->sectors = drv->sectors;
1005         geo->cylinders = drv->cylinders;
1006         return 0;
1007 }
1008
1009 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1010 {
1011         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1012                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1013                 (void)check_for_unit_attention(host, c);
1014 }
1015 /*
1016  * ioctl
1017  */
1018 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1019                        unsigned int cmd, unsigned long arg)
1020 {
1021         struct gendisk *disk = bdev->bd_disk;
1022         ctlr_info_t *host = get_host(disk);
1023         drive_info_struct *drv = get_drv(disk);
1024         int ctlr = host->ctlr;
1025         void __user *argp = (void __user *)arg;
1026
1027 #ifdef CCISS_DEBUG
1028         printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1029 #endif                          /* CCISS_DEBUG */
1030
1031         switch (cmd) {
1032         case CCISS_GETPCIINFO:
1033                 {
1034                         cciss_pci_info_struct pciinfo;
1035
1036                         if (!arg)
1037                                 return -EINVAL;
1038                         pciinfo.domain = pci_domain_nr(host->pdev->bus);
1039                         pciinfo.bus = host->pdev->bus->number;
1040                         pciinfo.dev_fn = host->pdev->devfn;
1041                         pciinfo.board_id = host->board_id;
1042                         if (copy_to_user
1043                             (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1044                                 return -EFAULT;
1045                         return 0;
1046                 }
1047         case CCISS_GETINTINFO:
1048                 {
1049                         cciss_coalint_struct intinfo;
1050                         if (!arg)
1051                                 return -EINVAL;
1052                         intinfo.delay =
1053                             readl(&host->cfgtable->HostWrite.CoalIntDelay);
1054                         intinfo.count =
1055                             readl(&host->cfgtable->HostWrite.CoalIntCount);
1056                         if (copy_to_user
1057                             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1058                                 return -EFAULT;
1059                         return 0;
1060                 }
1061         case CCISS_SETINTINFO:
1062                 {
1063                         cciss_coalint_struct intinfo;
1064                         unsigned long flags;
1065                         int i;
1066
1067                         if (!arg)
1068                                 return -EINVAL;
1069                         if (!capable(CAP_SYS_ADMIN))
1070                                 return -EPERM;
1071                         if (copy_from_user
1072                             (&intinfo, argp, sizeof(cciss_coalint_struct)))
1073                                 return -EFAULT;
1074                         if ((intinfo.delay == 0) && (intinfo.count == 0))
1075                         {
1076 //                      printk("cciss_ioctl: delay and count cannot be 0\n");
1077                                 return -EINVAL;
1078                         }
1079                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1080                         /* Update the field, and then ring the doorbell */
1081                         writel(intinfo.delay,
1082                                &(host->cfgtable->HostWrite.CoalIntDelay));
1083                         writel(intinfo.count,
1084                                &(host->cfgtable->HostWrite.CoalIntCount));
1085                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1086
1087                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1088                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1089                                       & CFGTBL_ChangeReq))
1090                                         break;
1091                                 /* delay and try again */
1092                                 udelay(1000);
1093                         }
1094                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1095                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1096                                 return -EAGAIN;
1097                         return 0;
1098                 }
1099         case CCISS_GETNODENAME:
1100                 {
1101                         NodeName_type NodeName;
1102                         int i;
1103
1104                         if (!arg)
1105                                 return -EINVAL;
1106                         for (i = 0; i < 16; i++)
1107                                 NodeName[i] =
1108                                     readb(&host->cfgtable->ServerName[i]);
1109                         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1110                                 return -EFAULT;
1111                         return 0;
1112                 }
1113         case CCISS_SETNODENAME:
1114                 {
1115                         NodeName_type NodeName;
1116                         unsigned long flags;
1117                         int i;
1118
1119                         if (!arg)
1120                                 return -EINVAL;
1121                         if (!capable(CAP_SYS_ADMIN))
1122                                 return -EPERM;
1123
1124                         if (copy_from_user
1125                             (NodeName, argp, sizeof(NodeName_type)))
1126                                 return -EFAULT;
1127
1128                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1129
1130                         /* Update the field, and then ring the doorbell */
1131                         for (i = 0; i < 16; i++)
1132                                 writeb(NodeName[i],
1133                                        &host->cfgtable->ServerName[i]);
1134
1135                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1136
1137                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1138                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1139                                       & CFGTBL_ChangeReq))
1140                                         break;
1141                                 /* delay and try again */
1142                                 udelay(1000);
1143                         }
1144                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1145                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1146                                 return -EAGAIN;
1147                         return 0;
1148                 }
1149
1150         case CCISS_GETHEARTBEAT:
1151                 {
1152                         Heartbeat_type heartbeat;
1153
1154                         if (!arg)
1155                                 return -EINVAL;
1156                         heartbeat = readl(&host->cfgtable->HeartBeat);
1157                         if (copy_to_user
1158                             (argp, &heartbeat, sizeof(Heartbeat_type)))
1159                                 return -EFAULT;
1160                         return 0;
1161                 }
1162         case CCISS_GETBUSTYPES:
1163                 {
1164                         BusTypes_type BusTypes;
1165
1166                         if (!arg)
1167                                 return -EINVAL;
1168                         BusTypes = readl(&host->cfgtable->BusTypes);
1169                         if (copy_to_user
1170                             (argp, &BusTypes, sizeof(BusTypes_type)))
1171                                 return -EFAULT;
1172                         return 0;
1173                 }
1174         case CCISS_GETFIRMVER:
1175                 {
1176                         FirmwareVer_type firmware;
1177
1178                         if (!arg)
1179                                 return -EINVAL;
1180                         memcpy(firmware, host->firm_ver, 4);
1181
1182                         if (copy_to_user
1183                             (argp, firmware, sizeof(FirmwareVer_type)))
1184                                 return -EFAULT;
1185                         return 0;
1186                 }
1187         case CCISS_GETDRIVVER:
1188                 {
1189                         DriverVer_type DriverVer = DRIVER_VERSION;
1190
1191                         if (!arg)
1192                                 return -EINVAL;
1193
1194                         if (copy_to_user
1195                             (argp, &DriverVer, sizeof(DriverVer_type)))
1196                                 return -EFAULT;
1197                         return 0;
1198                 }
1199
1200         case CCISS_DEREGDISK:
1201         case CCISS_REGNEWD:
1202         case CCISS_REVALIDVOLS:
1203                 return rebuild_lun_table(host, 0);
1204
1205         case CCISS_GETLUNINFO:{
1206                         LogvolInfo_struct luninfo;
1207
1208                         luninfo.LunID = drv->LunID;
1209                         luninfo.num_opens = drv->usage_count;
1210                         luninfo.num_parts = 0;
1211                         if (copy_to_user(argp, &luninfo,
1212                                          sizeof(LogvolInfo_struct)))
1213                                 return -EFAULT;
1214                         return 0;
1215                 }
1216         case CCISS_PASSTHRU:
1217                 {
1218                         IOCTL_Command_struct iocommand;
1219                         CommandList_struct *c;
1220                         char *buff = NULL;
1221                         u64bit temp64;
1222                         unsigned long flags;
1223                         DECLARE_COMPLETION_ONSTACK(wait);
1224
1225                         if (!arg)
1226                                 return -EINVAL;
1227
1228                         if (!capable(CAP_SYS_RAWIO))
1229                                 return -EPERM;
1230
1231                         if (copy_from_user
1232                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1233                                 return -EFAULT;
1234                         if ((iocommand.buf_size < 1) &&
1235                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1236                                 return -EINVAL;
1237                         }
1238 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1239                         /* Check kmalloc limits */
1240                         if (iocommand.buf_size > 128000)
1241                                 return -EINVAL;
1242 #endif
1243                         if (iocommand.buf_size > 0) {
1244                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1245                                 if (buff == NULL)
1246                                         return -EFAULT;
1247                         }
1248                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1249                                 /* Copy the data into the buffer we created */
1250                                 if (copy_from_user
1251                                     (buff, iocommand.buf, iocommand.buf_size)) {
1252                                         kfree(buff);
1253                                         return -EFAULT;
1254                                 }
1255                         } else {
1256                                 memset(buff, 0, iocommand.buf_size);
1257                         }
1258                         if ((c = cmd_alloc(host, 0)) == NULL) {
1259                                 kfree(buff);
1260                                 return -ENOMEM;
1261                         }
1262                         // Fill in the command type
1263                         c->cmd_type = CMD_IOCTL_PEND;
1264                         // Fill in Command Header
1265                         c->Header.ReplyQueue = 0;       // unused in simple mode
1266                         if (iocommand.buf_size > 0)     // buffer to fill
1267                         {
1268                                 c->Header.SGList = 1;
1269                                 c->Header.SGTotal = 1;
1270                         } else  // no buffers to fill
1271                         {
1272                                 c->Header.SGList = 0;
1273                                 c->Header.SGTotal = 0;
1274                         }
1275                         c->Header.LUN = iocommand.LUN_info;
1276                         c->Header.Tag.lower = c->busaddr;       // use the kernel address the cmd block for tag
1277
1278                         // Fill in Request block
1279                         c->Request = iocommand.Request;
1280
1281                         // Fill in the scatter gather information
1282                         if (iocommand.buf_size > 0) {
1283                                 temp64.val = pci_map_single(host->pdev, buff,
1284                                         iocommand.buf_size,
1285                                         PCI_DMA_BIDIRECTIONAL);
1286                                 c->SG[0].Addr.lower = temp64.val32.lower;
1287                                 c->SG[0].Addr.upper = temp64.val32.upper;
1288                                 c->SG[0].Len = iocommand.buf_size;
1289                                 c->SG[0].Ext = 0;       // we are not chaining
1290                         }
1291                         c->waiting = &wait;
1292
1293                         /* Put the request on the tail of the request queue */
1294                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1295                         addQ(&host->reqQ, c);
1296                         host->Qdepth++;
1297                         start_io(host);
1298                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1299
1300                         wait_for_completion(&wait);
1301
1302                         /* unlock the buffers from DMA */
1303                         temp64.val32.lower = c->SG[0].Addr.lower;
1304                         temp64.val32.upper = c->SG[0].Addr.upper;
1305                         pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1306                                          iocommand.buf_size,
1307                                          PCI_DMA_BIDIRECTIONAL);
1308
1309                         check_ioctl_unit_attention(host, c);
1310
1311                         /* Copy the error information out */
1312                         iocommand.error_info = *(c->err_info);
1313                         if (copy_to_user
1314                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1315                                 kfree(buff);
1316                                 cmd_free(host, c, 0);
1317                                 return -EFAULT;
1318                         }
1319
1320                         if (iocommand.Request.Type.Direction == XFER_READ) {
1321                                 /* Copy the data out of the buffer we created */
1322                                 if (copy_to_user
1323                                     (iocommand.buf, buff, iocommand.buf_size)) {
1324                                         kfree(buff);
1325                                         cmd_free(host, c, 0);
1326                                         return -EFAULT;
1327                                 }
1328                         }
1329                         kfree(buff);
1330                         cmd_free(host, c, 0);
1331                         return 0;
1332                 }
1333         case CCISS_BIG_PASSTHRU:{
1334                         BIG_IOCTL_Command_struct *ioc;
1335                         CommandList_struct *c;
1336                         unsigned char **buff = NULL;
1337                         int *buff_size = NULL;
1338                         u64bit temp64;
1339                         unsigned long flags;
1340                         BYTE sg_used = 0;
1341                         int status = 0;
1342                         int i;
1343                         DECLARE_COMPLETION_ONSTACK(wait);
1344                         __u32 left;
1345                         __u32 sz;
1346                         BYTE __user *data_ptr;
1347
1348                         if (!arg)
1349                                 return -EINVAL;
1350                         if (!capable(CAP_SYS_RAWIO))
1351                                 return -EPERM;
1352                         ioc = (BIG_IOCTL_Command_struct *)
1353                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1354                         if (!ioc) {
1355                                 status = -ENOMEM;
1356                                 goto cleanup1;
1357                         }
1358                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1359                                 status = -EFAULT;
1360                                 goto cleanup1;
1361                         }
1362                         if ((ioc->buf_size < 1) &&
1363                             (ioc->Request.Type.Direction != XFER_NONE)) {
1364                                 status = -EINVAL;
1365                                 goto cleanup1;
1366                         }
1367                         /* Check kmalloc limits  using all SGs */
1368                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1369                                 status = -EINVAL;
1370                                 goto cleanup1;
1371                         }
1372                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1373                                 status = -EINVAL;
1374                                 goto cleanup1;
1375                         }
1376                         buff =
1377                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1378                         if (!buff) {
1379                                 status = -ENOMEM;
1380                                 goto cleanup1;
1381                         }
1382                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1383                                                    GFP_KERNEL);
1384                         if (!buff_size) {
1385                                 status = -ENOMEM;
1386                                 goto cleanup1;
1387                         }
1388                         left = ioc->buf_size;
1389                         data_ptr = ioc->buf;
1390                         while (left) {
1391                                 sz = (left >
1392                                       ioc->malloc_size) ? ioc->
1393                                     malloc_size : left;
1394                                 buff_size[sg_used] = sz;
1395                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1396                                 if (buff[sg_used] == NULL) {
1397                                         status = -ENOMEM;
1398                                         goto cleanup1;
1399                                 }
1400                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1401                                         if (copy_from_user
1402                                             (buff[sg_used], data_ptr, sz)) {
1403                                                 status = -EFAULT;
1404                                                 goto cleanup1;
1405                                         }
1406                                 } else {
1407                                         memset(buff[sg_used], 0, sz);
1408                                 }
1409                                 left -= sz;
1410                                 data_ptr += sz;
1411                                 sg_used++;
1412                         }
1413                         if ((c = cmd_alloc(host, 0)) == NULL) {
1414                                 status = -ENOMEM;
1415                                 goto cleanup1;
1416                         }
1417                         c->cmd_type = CMD_IOCTL_PEND;
1418                         c->Header.ReplyQueue = 0;
1419
1420                         if (ioc->buf_size > 0) {
1421                                 c->Header.SGList = sg_used;
1422                                 c->Header.SGTotal = sg_used;
1423                         } else {
1424                                 c->Header.SGList = 0;
1425                                 c->Header.SGTotal = 0;
1426                         }
1427                         c->Header.LUN = ioc->LUN_info;
1428                         c->Header.Tag.lower = c->busaddr;
1429
1430                         c->Request = ioc->Request;
1431                         if (ioc->buf_size > 0) {
1432                                 int i;
1433                                 for (i = 0; i < sg_used; i++) {
1434                                         temp64.val =
1435                                             pci_map_single(host->pdev, buff[i],
1436                                                     buff_size[i],
1437                                                     PCI_DMA_BIDIRECTIONAL);
1438                                         c->SG[i].Addr.lower =
1439                                             temp64.val32.lower;
1440                                         c->SG[i].Addr.upper =
1441                                             temp64.val32.upper;
1442                                         c->SG[i].Len = buff_size[i];
1443                                         c->SG[i].Ext = 0;       /* we are not chaining */
1444                                 }
1445                         }
1446                         c->waiting = &wait;
1447                         /* Put the request on the tail of the request queue */
1448                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1449                         addQ(&host->reqQ, c);
1450                         host->Qdepth++;
1451                         start_io(host);
1452                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1453                         wait_for_completion(&wait);
1454                         /* unlock the buffers from DMA */
1455                         for (i = 0; i < sg_used; i++) {
1456                                 temp64.val32.lower = c->SG[i].Addr.lower;
1457                                 temp64.val32.upper = c->SG[i].Addr.upper;
1458                                 pci_unmap_single(host->pdev,
1459                                         (dma_addr_t) temp64.val, buff_size[i],
1460                                         PCI_DMA_BIDIRECTIONAL);
1461                         }
1462                         check_ioctl_unit_attention(host, c);
1463                         /* Copy the error information out */
1464                         ioc->error_info = *(c->err_info);
1465                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1466                                 cmd_free(host, c, 0);
1467                                 status = -EFAULT;
1468                                 goto cleanup1;
1469                         }
1470                         if (ioc->Request.Type.Direction == XFER_READ) {
1471                                 /* Copy the data out of the buffer we created */
1472                                 BYTE __user *ptr = ioc->buf;
1473                                 for (i = 0; i < sg_used; i++) {
1474                                         if (copy_to_user
1475                                             (ptr, buff[i], buff_size[i])) {
1476                                                 cmd_free(host, c, 0);
1477                                                 status = -EFAULT;
1478                                                 goto cleanup1;
1479                                         }
1480                                         ptr += buff_size[i];
1481                                 }
1482                         }
1483                         cmd_free(host, c, 0);
1484                         status = 0;
1485                       cleanup1:
1486                         if (buff) {
1487                                 for (i = 0; i < sg_used; i++)
1488                                         kfree(buff[i]);
1489                                 kfree(buff);
1490                         }
1491                         kfree(buff_size);
1492                         kfree(ioc);
1493                         return status;
1494                 }
1495
1496         /* scsi_cmd_ioctl handles these, below, though some are not */
1497         /* very meaningful for cciss.  SG_IO is the main one people want. */
1498
1499         case SG_GET_VERSION_NUM:
1500         case SG_SET_TIMEOUT:
1501         case SG_GET_TIMEOUT:
1502         case SG_GET_RESERVED_SIZE:
1503         case SG_SET_RESERVED_SIZE:
1504         case SG_EMULATED_HOST:
1505         case SG_IO:
1506         case SCSI_IOCTL_SEND_COMMAND:
1507                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1508
1509         /* scsi_cmd_ioctl would normally handle these, below, but */
1510         /* they aren't a good fit for cciss, as CD-ROMs are */
1511         /* not supported, and we don't have any bus/target/lun */
1512         /* which we present to the kernel. */
1513
1514         case CDROM_SEND_PACKET:
1515         case CDROMCLOSETRAY:
1516         case CDROMEJECT:
1517         case SCSI_IOCTL_GET_IDLUN:
1518         case SCSI_IOCTL_GET_BUS_NUMBER:
1519         default:
1520                 return -ENOTTY;
1521         }
1522 }
1523
1524 static void cciss_check_queues(ctlr_info_t *h)
1525 {
1526         int start_queue = h->next_to_run;
1527         int i;
1528
1529         /* check to see if we have maxed out the number of commands that can
1530          * be placed on the queue.  If so then exit.  We do this check here
1531          * in case the interrupt we serviced was from an ioctl and did not
1532          * free any new commands.
1533          */
1534         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1535                 return;
1536
1537         /* We have room on the queue for more commands.  Now we need to queue
1538          * them up.  We will also keep track of the next queue to run so
1539          * that every queue gets a chance to be started first.
1540          */
1541         for (i = 0; i < h->highest_lun + 1; i++) {
1542                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1543                 /* make sure the disk has been added and the drive is real
1544                  * because this can be called from the middle of init_one.
1545                  */
1546                 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1547                         continue;
1548                 blk_start_queue(h->gendisk[curr_queue]->queue);
1549
1550                 /* check to see if we have maxed out the number of commands
1551                  * that can be placed on the queue.
1552                  */
1553                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1554                         if (curr_queue == start_queue) {
1555                                 h->next_to_run =
1556                                     (start_queue + 1) % (h->highest_lun + 1);
1557                                 break;
1558                         } else {
1559                                 h->next_to_run = curr_queue;
1560                                 break;
1561                         }
1562                 }
1563         }
1564 }
1565
1566 static void cciss_softirq_done(struct request *rq)
1567 {
1568         CommandList_struct *cmd = rq->completion_data;
1569         ctlr_info_t *h = hba[cmd->ctlr];
1570         unsigned long flags;
1571         u64bit temp64;
1572         int i, ddir;
1573
1574         if (cmd->Request.Type.Direction == XFER_READ)
1575                 ddir = PCI_DMA_FROMDEVICE;
1576         else
1577                 ddir = PCI_DMA_TODEVICE;
1578
1579         /* command did not need to be retried */
1580         /* unmap the DMA mapping for all the scatter gather elements */
1581         for (i = 0; i < cmd->Header.SGList; i++) {
1582                 temp64.val32.lower = cmd->SG[i].Addr.lower;
1583                 temp64.val32.upper = cmd->SG[i].Addr.upper;
1584                 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1585         }
1586
1587 #ifdef CCISS_DEBUG
1588         printk("Done with %p\n", rq);
1589 #endif                          /* CCISS_DEBUG */
1590
1591         /* set the residual count for pc requests */
1592         if (blk_pc_request(rq))
1593                 rq->resid_len = cmd->err_info->ResidualCnt;
1594
1595         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1596
1597         spin_lock_irqsave(&h->lock, flags);
1598         cmd_free(h, cmd, 1);
1599         cciss_check_queues(h);
1600         spin_unlock_irqrestore(&h->lock, flags);
1601 }
1602
1603 static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
1604         uint32_t log_unit)
1605 {
1606         log_unit = h->drv[log_unit].LunID & 0x03fff;
1607         memset(&scsi3addr[4], 0, 4);
1608         memcpy(&scsi3addr[0], &log_unit, 4);
1609         scsi3addr[3] |= 0x40;
1610 }
1611
1612 /* This function gets the SCSI vendor, model, and revision of a logical drive
1613  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1614  * they cannot be read.
1615  */
1616 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1617                                    char *vendor, char *model, char *rev)
1618 {
1619         int rc;
1620         InquiryData_struct *inq_buf;
1621         unsigned char scsi3addr[8];
1622
1623         *vendor = '\0';
1624         *model = '\0';
1625         *rev = '\0';
1626
1627         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1628         if (!inq_buf)
1629                 return;
1630
1631         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1632         if (withirq)
1633                 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1634                              sizeof(InquiryData_struct), 0,
1635                                 scsi3addr, TYPE_CMD);
1636         else
1637                 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1638                              sizeof(InquiryData_struct), 0,
1639                                 scsi3addr, TYPE_CMD);
1640         if (rc == IO_OK) {
1641                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1642                 vendor[VENDOR_LEN] = '\0';
1643                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1644                 model[MODEL_LEN] = '\0';
1645                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1646                 rev[REV_LEN] = '\0';
1647         }
1648
1649         kfree(inq_buf);
1650         return;
1651 }
1652
1653 /* This function gets the serial number of a logical drive via
1654  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1655  * number cannot be had, for whatever reason, 16 bytes of 0xff
1656  * are returned instead.
1657  */
1658 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1659                                 unsigned char *serial_no, int buflen)
1660 {
1661 #define PAGE_83_INQ_BYTES 64
1662         int rc;
1663         unsigned char *buf;
1664         unsigned char scsi3addr[8];
1665
1666         if (buflen > 16)
1667                 buflen = 16;
1668         memset(serial_no, 0xff, buflen);
1669         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1670         if (!buf)
1671                 return;
1672         memset(serial_no, 0, buflen);
1673         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1674         if (withirq)
1675                 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1676                         PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1677         else
1678                 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1679                         PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1680         if (rc == IO_OK)
1681                 memcpy(serial_no, &buf[8], buflen);
1682         kfree(buf);
1683         return;
1684 }
1685
1686 /*
1687  * cciss_add_disk sets up the block device queue for a logical drive
1688  */
1689 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1690                                 int drv_index)
1691 {
1692         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1693         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1694         disk->major = h->major;
1695         disk->first_minor = drv_index << NWD_SHIFT;
1696         disk->fops = &cciss_fops;
1697         if (h->drv[drv_index].dev == NULL) {
1698                 if (cciss_create_ld_sysfs_entry(h, drv_index))
1699                         goto cleanup_queue;
1700         }
1701         disk->private_data = &h->drv[drv_index];
1702         disk->driverfs_dev = h->drv[drv_index].dev;
1703
1704         /* Set up queue information */
1705         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1706
1707         /* This is a hardware imposed limit. */
1708         blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1709
1710         /* This is a limit in the driver and could be eliminated. */
1711         blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1712
1713         blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1714
1715         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1716
1717         disk->queue->queuedata = h;
1718
1719         blk_queue_logical_block_size(disk->queue,
1720                                      h->drv[drv_index].block_size);
1721
1722         /* Make sure all queue data is written out before */
1723         /* setting h->drv[drv_index].queue, as setting this */
1724         /* allows the interrupt handler to start the queue */
1725         wmb();
1726         h->drv[drv_index].queue = disk->queue;
1727         add_disk(disk);
1728         return 0;
1729
1730 cleanup_queue:
1731         blk_cleanup_queue(disk->queue);
1732         disk->queue = NULL;
1733         return -1;
1734 }
1735
1736 /* This function will check the usage_count of the drive to be updated/added.
1737  * If the usage_count is zero and it is a heretofore unknown drive, or,
1738  * the drive's capacity, geometry, or serial number has changed,
1739  * then the drive information will be updated and the disk will be
1740  * re-registered with the kernel.  If these conditions don't hold,
1741  * then it will be left alone for the next reboot.  The exception to this
1742  * is disk 0 which will always be left registered with the kernel since it
1743  * is also the controller node.  Any changes to disk 0 will show up on
1744  * the next reboot.
1745  */
1746 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1747 {
1748         ctlr_info_t *h = hba[ctlr];
1749         struct gendisk *disk;
1750         InquiryData_struct *inq_buff = NULL;
1751         unsigned int block_size;
1752         sector_t total_size;
1753         unsigned long flags = 0;
1754         int ret = 0;
1755         drive_info_struct *drvinfo;
1756
1757         /* Get information about the disk and modify the driver structure */
1758         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1759         drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1760         if (inq_buff == NULL || drvinfo == NULL)
1761                 goto mem_msg;
1762
1763         /* testing to see if 16-byte CDBs are already being used */
1764         if (h->cciss_read == CCISS_READ_16) {
1765                 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1766                         &total_size, &block_size);
1767
1768         } else {
1769                 cciss_read_capacity(ctlr, drv_index, 1,
1770                                     &total_size, &block_size);
1771
1772                 /* if read_capacity returns all F's this volume is >2TB */
1773                 /* in size so we switch to 16-byte CDB's for all */
1774                 /* read/write ops */
1775                 if (total_size == 0xFFFFFFFFULL) {
1776                         cciss_read_capacity_16(ctlr, drv_index, 1,
1777                         &total_size, &block_size);
1778                         h->cciss_read = CCISS_READ_16;
1779                         h->cciss_write = CCISS_WRITE_16;
1780                 } else {
1781                         h->cciss_read = CCISS_READ_10;
1782                         h->cciss_write = CCISS_WRITE_10;
1783                 }
1784         }
1785
1786         cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1787                                inq_buff, drvinfo);
1788         drvinfo->block_size = block_size;
1789         drvinfo->nr_blocks = total_size + 1;
1790
1791         cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1792                                 drvinfo->model, drvinfo->rev);
1793         cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1794                         sizeof(drvinfo->serial_no));
1795
1796         /* Is it the same disk we already know, and nothing's changed? */
1797         if (h->drv[drv_index].raid_level != -1 &&
1798                 ((memcmp(drvinfo->serial_no,
1799                                 h->drv[drv_index].serial_no, 16) == 0) &&
1800                 drvinfo->block_size == h->drv[drv_index].block_size &&
1801                 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1802                 drvinfo->heads == h->drv[drv_index].heads &&
1803                 drvinfo->sectors == h->drv[drv_index].sectors &&
1804                 drvinfo->cylinders == h->drv[drv_index].cylinders))
1805                         /* The disk is unchanged, nothing to update */
1806                         goto freeret;
1807
1808         /* If we get here it's not the same disk, or something's changed,
1809          * so we need to * deregister it, and re-register it, if it's not
1810          * in use.
1811          * If the disk already exists then deregister it before proceeding
1812          * (unless it's the first disk (for the controller node).
1813          */
1814         if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1815                 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1816                 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1817                 h->drv[drv_index].busy_configuring = 1;
1818                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1819
1820                 /* deregister_disk sets h->drv[drv_index].queue = NULL
1821                  * which keeps the interrupt handler from starting
1822                  * the queue.
1823                  */
1824                 ret = deregister_disk(h, drv_index, 0);
1825                 h->drv[drv_index].busy_configuring = 0;
1826         }
1827
1828         /* If the disk is in use return */
1829         if (ret)
1830                 goto freeret;
1831
1832         /* Save the new information from cciss_geometry_inquiry
1833          * and serial number inquiry.
1834          */
1835         h->drv[drv_index].block_size = drvinfo->block_size;
1836         h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1837         h->drv[drv_index].heads = drvinfo->heads;
1838         h->drv[drv_index].sectors = drvinfo->sectors;
1839         h->drv[drv_index].cylinders = drvinfo->cylinders;
1840         h->drv[drv_index].raid_level = drvinfo->raid_level;
1841         memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1842         memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1843         memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1844         memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1845
1846         ++h->num_luns;
1847         disk = h->gendisk[drv_index];
1848         set_capacity(disk, h->drv[drv_index].nr_blocks);
1849
1850         /* If it's not disk 0 (drv_index != 0)
1851          * or if it was disk 0, but there was previously
1852          * no actual corresponding configured logical drive
1853          * (raid_leve == -1) then we want to update the
1854          * logical drive's information.
1855          */
1856         if (drv_index || first_time)
1857                 cciss_add_disk(h, disk, drv_index);
1858
1859 freeret:
1860         kfree(inq_buff);
1861         kfree(drvinfo);
1862         return;
1863 mem_msg:
1864         printk(KERN_ERR "cciss: out of memory\n");
1865         goto freeret;
1866 }
1867
1868 /* This function will find the first index of the controllers drive array
1869  * that has a -1 for the raid_level and will return that index.  This is
1870  * where new drives will be added.  If the index to be returned is greater
1871  * than the highest_lun index for the controller then highest_lun is set
1872  * to this new index.  If there are no available indexes then -1 is returned.
1873  * "controller_node" is used to know if this is a real logical drive, or just
1874  * the controller node, which determines if this counts towards highest_lun.
1875  */
1876 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1877 {
1878         int i;
1879
1880         for (i = 0; i < CISS_MAX_LUN; i++) {
1881                 if (hba[ctlr]->drv[i].raid_level == -1) {
1882                         if (i > hba[ctlr]->highest_lun)
1883                                 if (!controller_node)
1884                                         hba[ctlr]->highest_lun = i;
1885                         return i;
1886                 }
1887         }
1888         return -1;
1889 }
1890
1891 /* cciss_add_gendisk finds a free hba[]->drv structure
1892  * and allocates a gendisk if needed, and sets the lunid
1893  * in the drvinfo structure.   It returns the index into
1894  * the ->drv[] array, or -1 if none are free.
1895  * is_controller_node indicates whether highest_lun should
1896  * count this disk, or if it's only being added to provide
1897  * a means to talk to the controller in case no logical
1898  * drives have yet been configured.
1899  */
1900 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1901 {
1902         int drv_index;
1903
1904         drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1905         if (drv_index == -1)
1906                 return -1;
1907         /*Check if the gendisk needs to be allocated */
1908         if (!h->gendisk[drv_index]) {
1909                 h->gendisk[drv_index] =
1910                         alloc_disk(1 << NWD_SHIFT);
1911                 if (!h->gendisk[drv_index]) {
1912                         printk(KERN_ERR "cciss%d: could not "
1913                                 "allocate a new disk %d\n",
1914                                 h->ctlr, drv_index);
1915                         return -1;
1916                 }
1917         }
1918         h->drv[drv_index].LunID = lunid;
1919         if (h->drv[drv_index].dev == NULL) {
1920                 if (cciss_create_ld_sysfs_entry(h, drv_index))
1921                         goto err_free_disk;
1922         }
1923         /* Don't need to mark this busy because nobody */
1924         /* else knows about this disk yet to contend */
1925         /* for access to it. */
1926         h->drv[drv_index].busy_configuring = 0;
1927         wmb();
1928         return drv_index;
1929
1930 err_free_disk:
1931         put_disk(h->gendisk[drv_index]);
1932         h->gendisk[drv_index] = NULL;
1933         return -1;
1934 }
1935
1936 /* This is for the special case of a controller which
1937  * has no logical drives.  In this case, we still need
1938  * to register a disk so the controller can be accessed
1939  * by the Array Config Utility.
1940  */
1941 static void cciss_add_controller_node(ctlr_info_t *h)
1942 {
1943         struct gendisk *disk;
1944         int drv_index;
1945
1946         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1947                 return;
1948
1949         drv_index = cciss_add_gendisk(h, 0, 1);
1950         if (drv_index == -1) {
1951                 printk(KERN_WARNING "cciss%d: could not "
1952                         "add disk 0.\n", h->ctlr);
1953                 return;
1954         }
1955         h->drv[drv_index].block_size = 512;
1956         h->drv[drv_index].nr_blocks = 0;
1957         h->drv[drv_index].heads = 0;
1958         h->drv[drv_index].sectors = 0;
1959         h->drv[drv_index].cylinders = 0;
1960         h->drv[drv_index].raid_level = -1;
1961         memset(h->drv[drv_index].serial_no, 0, 16);
1962         disk = h->gendisk[drv_index];
1963         cciss_add_disk(h, disk, drv_index);
1964 }
1965
1966 /* This function will add and remove logical drives from the Logical
1967  * drive array of the controller and maintain persistency of ordering
1968  * so that mount points are preserved until the next reboot.  This allows
1969  * for the removal of logical drives in the middle of the drive array
1970  * without a re-ordering of those drives.
1971  * INPUT
1972  * h            = The controller to perform the operations on
1973  */
1974 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1975 {
1976         int ctlr = h->ctlr;
1977         int num_luns;
1978         ReportLunData_struct *ld_buff = NULL;
1979         int return_code;
1980         int listlength = 0;
1981         int i;
1982         int drv_found;
1983         int drv_index = 0;
1984         __u32 lunid = 0;
1985         unsigned long flags;
1986
1987         if (!capable(CAP_SYS_RAWIO))
1988                 return -EPERM;
1989
1990         /* Set busy_configuring flag for this operation */
1991         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1992         if (h->busy_configuring) {
1993                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1994                 return -EBUSY;
1995         }
1996         h->busy_configuring = 1;
1997         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1998
1999         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2000         if (ld_buff == NULL)
2001                 goto mem_msg;
2002
2003         return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2004                                       sizeof(ReportLunData_struct),
2005                                       0, CTLR_LUNID, TYPE_CMD);
2006
2007         if (return_code == IO_OK)
2008                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2009         else {  /* reading number of logical volumes failed */
2010                 printk(KERN_WARNING "cciss: report logical volume"
2011                        " command failed\n");
2012                 listlength = 0;
2013                 goto freeret;
2014         }
2015
2016         num_luns = listlength / 8;      /* 8 bytes per entry */
2017         if (num_luns > CISS_MAX_LUN) {
2018                 num_luns = CISS_MAX_LUN;
2019                 printk(KERN_WARNING "cciss: more luns configured"
2020                        " on controller than can be handled by"
2021                        " this driver.\n");
2022         }
2023
2024         if (num_luns == 0)
2025                 cciss_add_controller_node(h);
2026
2027         /* Compare controller drive array to driver's drive array
2028          * to see if any drives are missing on the controller due
2029          * to action of Array Config Utility (user deletes drive)
2030          * and deregister logical drives which have disappeared.
2031          */
2032         for (i = 0; i <= h->highest_lun; i++) {
2033                 int j;
2034                 drv_found = 0;
2035
2036                 /* skip holes in the array from already deleted drives */
2037                 if (h->drv[i].raid_level == -1)
2038                         continue;
2039
2040                 for (j = 0; j < num_luns; j++) {
2041                         memcpy(&lunid, &ld_buff->LUN[j][0], 4);
2042                         lunid = le32_to_cpu(lunid);
2043                         if (h->drv[i].LunID == lunid) {
2044                                 drv_found = 1;
2045                                 break;
2046                         }
2047                 }
2048                 if (!drv_found) {
2049                         /* Deregister it from the OS, it's gone. */
2050                         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2051                         h->drv[i].busy_configuring = 1;
2052                         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2053                         return_code = deregister_disk(h, i, 1);
2054                         h->drv[i].busy_configuring = 0;
2055                 }
2056         }
2057
2058         /* Compare controller drive array to driver's drive array.
2059          * Check for updates in the drive information and any new drives
2060          * on the controller due to ACU adding logical drives, or changing
2061          * a logical drive's size, etc.  Reregister any new/changed drives
2062          */
2063         for (i = 0; i < num_luns; i++) {
2064                 int j;
2065
2066                 drv_found = 0;
2067
2068                 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
2069                 lunid = le32_to_cpu(lunid);
2070
2071                 /* Find if the LUN is already in the drive array
2072                  * of the driver.  If so then update its info
2073                  * if not in use.  If it does not exist then find
2074                  * the first free index and add it.
2075                  */
2076                 for (j = 0; j <= h->highest_lun; j++) {
2077                         if (h->drv[j].raid_level != -1 &&
2078                                 h->drv[j].LunID == lunid) {
2079                                 drv_index = j;
2080                                 drv_found = 1;
2081                                 break;
2082                         }
2083                 }
2084
2085                 /* check if the drive was found already in the array */
2086                 if (!drv_found) {
2087                         drv_index = cciss_add_gendisk(h, lunid, 0);
2088                         if (drv_index == -1)
2089                                 goto freeret;
2090                 }
2091                 cciss_update_drive_info(ctlr, drv_index, first_time);
2092         }               /* end for */
2093
2094 freeret:
2095         kfree(ld_buff);
2096         h->busy_configuring = 0;
2097         /* We return -1 here to tell the ACU that we have registered/updated
2098          * all of the drives that we can and to keep it from calling us
2099          * additional times.
2100          */
2101         return -1;
2102 mem_msg:
2103         printk(KERN_ERR "cciss: out of memory\n");
2104         h->busy_configuring = 0;
2105         goto freeret;
2106 }
2107
2108 /* This function will deregister the disk and it's queue from the
2109  * kernel.  It must be called with the controller lock held and the
2110  * drv structures busy_configuring flag set.  It's parameters are:
2111  *
2112  * disk = This is the disk to be deregistered
2113  * drv  = This is the drive_info_struct associated with the disk to be
2114  *        deregistered.  It contains information about the disk used
2115  *        by the driver.
2116  * clear_all = This flag determines whether or not the disk information
2117  *             is going to be completely cleared out and the highest_lun
2118  *             reset.  Sometimes we want to clear out information about
2119  *             the disk in preparation for re-adding it.  In this case
2120  *             the highest_lun should be left unchanged and the LunID
2121  *             should not be cleared.
2122 */
2123 static int deregister_disk(ctlr_info_t *h, int drv_index,
2124                            int clear_all)
2125 {
2126         int i;
2127         struct gendisk *disk;
2128         drive_info_struct *drv;
2129
2130         if (!capable(CAP_SYS_RAWIO))
2131                 return -EPERM;
2132
2133         drv = &h->drv[drv_index];
2134         disk = h->gendisk[drv_index];
2135
2136         /* make sure logical volume is NOT is use */
2137         if (clear_all || (h->gendisk[0] == disk)) {
2138                 if (drv->usage_count > 1)
2139                         return -EBUSY;
2140         } else if (drv->usage_count > 0)
2141                 return -EBUSY;
2142
2143         /* invalidate the devices and deregister the disk.  If it is disk
2144          * zero do not deregister it but just zero out it's values.  This
2145          * allows us to delete disk zero but keep the controller registered.
2146          */
2147         if (h->gendisk[0] != disk) {
2148                 struct request_queue *q = disk->queue;
2149                 if (disk->flags & GENHD_FL_UP) {
2150                         cciss_destroy_ld_sysfs_entry(h, drv_index);
2151                         del_gendisk(disk);
2152                 }
2153                 if (q) {
2154                         blk_cleanup_queue(q);
2155                         /* Set drv->queue to NULL so that we do not try
2156                          * to call blk_start_queue on this queue in the
2157                          * interrupt handler
2158                          */
2159                         drv->queue = NULL;
2160                 }
2161                 /* If clear_all is set then we are deleting the logical
2162                  * drive, not just refreshing its info.  For drives
2163                  * other than disk 0 we will call put_disk.  We do not
2164                  * do this for disk 0 as we need it to be able to
2165                  * configure the controller.
2166                  */
2167                 if (clear_all){
2168                         /* This isn't pretty, but we need to find the
2169                          * disk in our array and NULL our the pointer.
2170                          * This is so that we will call alloc_disk if
2171                          * this index is used again later.
2172                          */
2173                         for (i=0; i < CISS_MAX_LUN; i++){
2174                                 if (h->gendisk[i] == disk) {
2175                                         h->gendisk[i] = NULL;
2176                                         break;
2177                                 }
2178                         }
2179                         put_disk(disk);
2180                 }
2181         } else {
2182                 set_capacity(disk, 0);
2183         }
2184
2185         --h->num_luns;
2186         /* zero out the disk size info */
2187         drv->nr_blocks = 0;
2188         drv->block_size = 0;
2189         drv->heads = 0;
2190         drv->sectors = 0;
2191         drv->cylinders = 0;
2192         drv->raid_level = -1;   /* This can be used as a flag variable to
2193                                  * indicate that this element of the drive
2194                                  * array is free.
2195                                  */
2196
2197         if (clear_all) {
2198                 /* check to see if it was the last disk */
2199                 if (drv == h->drv + h->highest_lun) {
2200                         /* if so, find the new hightest lun */
2201                         int i, newhighest = -1;
2202                         for (i = 0; i <= h->highest_lun; i++) {
2203                                 /* if the disk has size > 0, it is available */
2204                                 if (h->drv[i].heads)
2205                                         newhighest = i;
2206                         }
2207                         h->highest_lun = newhighest;
2208                 }
2209
2210                 drv->LunID = 0;
2211         }
2212         return 0;
2213 }
2214
2215 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2216                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2217                 int cmd_type)
2218 {
2219         ctlr_info_t *h = hba[ctlr];
2220         u64bit buff_dma_handle;
2221         int status = IO_OK;
2222
2223         c->cmd_type = CMD_IOCTL_PEND;
2224         c->Header.ReplyQueue = 0;
2225         if (buff != NULL) {
2226                 c->Header.SGList = 1;
2227                 c->Header.SGTotal = 1;
2228         } else {
2229                 c->Header.SGList = 0;
2230                 c->Header.SGTotal = 0;
2231         }
2232         c->Header.Tag.lower = c->busaddr;
2233         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2234
2235         c->Request.Type.Type = cmd_type;
2236         if (cmd_type == TYPE_CMD) {
2237                 switch (cmd) {
2238                 case CISS_INQUIRY:
2239                         /* are we trying to read a vital product page */
2240                         if (page_code != 0) {
2241                                 c->Request.CDB[1] = 0x01;
2242                                 c->Request.CDB[2] = page_code;
2243                         }
2244                         c->Request.CDBLen = 6;
2245                         c->Request.Type.Attribute = ATTR_SIMPLE;
2246                         c->Request.Type.Direction = XFER_READ;
2247                         c->Request.Timeout = 0;
2248                         c->Request.CDB[0] = CISS_INQUIRY;
2249                         c->Request.CDB[4] = size & 0xFF;
2250                         break;
2251                 case CISS_REPORT_LOG:
2252                 case CISS_REPORT_PHYS:
2253                         /* Talking to controller so It's a physical command
2254                            mode = 00 target = 0.  Nothing to write.
2255                          */
2256                         c->Request.CDBLen = 12;
2257                         c->Request.Type.Attribute = ATTR_SIMPLE;
2258                         c->Request.Type.Direction = XFER_READ;
2259                         c->Request.Timeout = 0;
2260                         c->Request.CDB[0] = cmd;
2261                         c->Request.CDB[6] = (size >> 24) & 0xFF;        //MSB
2262                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2263                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2264                         c->Request.CDB[9] = size & 0xFF;
2265                         break;
2266
2267                 case CCISS_READ_CAPACITY:
2268                         c->Request.CDBLen = 10;
2269                         c->Request.Type.Attribute = ATTR_SIMPLE;
2270                         c->Request.Type.Direction = XFER_READ;
2271                         c->Request.Timeout = 0;
2272                         c->Request.CDB[0] = cmd;
2273                         break;
2274                 case CCISS_READ_CAPACITY_16:
2275                         c->Request.CDBLen = 16;
2276                         c->Request.Type.Attribute = ATTR_SIMPLE;
2277                         c->Request.Type.Direction = XFER_READ;
2278                         c->Request.Timeout = 0;
2279                         c->Request.CDB[0] = cmd;
2280                         c->Request.CDB[1] = 0x10;
2281                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2282                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2283                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2284                         c->Request.CDB[13] = size & 0xFF;
2285                         c->Request.Timeout = 0;
2286                         c->Request.CDB[0] = cmd;
2287                         break;
2288                 case CCISS_CACHE_FLUSH:
2289                         c->Request.CDBLen = 12;
2290                         c->Request.Type.Attribute = ATTR_SIMPLE;
2291                         c->Request.Type.Direction = XFER_WRITE;
2292                         c->Request.Timeout = 0;
2293                         c->Request.CDB[0] = BMIC_WRITE;
2294                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2295                         break;
2296                 case TEST_UNIT_READY:
2297                         c->Request.CDBLen = 6;
2298                         c->Request.Type.Attribute = ATTR_SIMPLE;
2299                         c->Request.Type.Direction = XFER_NONE;
2300                         c->Request.Timeout = 0;
2301                         break;
2302                 default:
2303                         printk(KERN_WARNING
2304                                "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2305                         return IO_ERROR;
2306                 }
2307         } else if (cmd_type == TYPE_MSG) {
2308                 switch (cmd) {
2309                 case 0: /* ABORT message */
2310                         c->Request.CDBLen = 12;
2311                         c->Request.Type.Attribute = ATTR_SIMPLE;
2312                         c->Request.Type.Direction = XFER_WRITE;
2313                         c->Request.Timeout = 0;
2314                         c->Request.CDB[0] = cmd;        /* abort */
2315                         c->Request.CDB[1] = 0;  /* abort a command */
2316                         /* buff contains the tag of the command to abort */
2317                         memcpy(&c->Request.CDB[4], buff, 8);
2318                         break;
2319                 case 1: /* RESET message */
2320                         c->Request.CDBLen = 16;
2321                         c->Request.Type.Attribute = ATTR_SIMPLE;
2322                         c->Request.Type.Direction = XFER_NONE;
2323                         c->Request.Timeout = 0;
2324                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2325                         c->Request.CDB[0] = cmd;        /* reset */
2326                         c->Request.CDB[1] = 0x03;       /* reset a target */
2327                         break;
2328                 case 3: /* No-Op message */
2329                         c->Request.CDBLen = 1;
2330                         c->Request.Type.Attribute = ATTR_SIMPLE;
2331                         c->Request.Type.Direction = XFER_WRITE;
2332                         c->Request.Timeout = 0;
2333                         c->Request.CDB[0] = cmd;
2334                         break;
2335                 default:
2336                         printk(KERN_WARNING
2337                                "cciss%d: unknown message type %d\n", ctlr, cmd);
2338                         return IO_ERROR;
2339                 }
2340         } else {
2341                 printk(KERN_WARNING
2342                        "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2343                 return IO_ERROR;
2344         }
2345         /* Fill in the scatter gather information */
2346         if (size > 0) {
2347                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2348                                                              buff, size,
2349                                                              PCI_DMA_BIDIRECTIONAL);
2350                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2351                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2352                 c->SG[0].Len = size;
2353                 c->SG[0].Ext = 0;       /* we are not chaining */
2354         }
2355         return status;
2356 }
2357
2358 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2359 {
2360         switch (c->err_info->ScsiStatus) {
2361         case SAM_STAT_GOOD:
2362                 return IO_OK;
2363         case SAM_STAT_CHECK_CONDITION:
2364                 switch (0xf & c->err_info->SenseInfo[2]) {
2365                 case 0: return IO_OK; /* no sense */
2366                 case 1: return IO_OK; /* recovered error */
2367                 default:
2368                         printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2369                                 "check condition, sense key = 0x%02x\n",
2370                                 h->ctlr, c->Request.CDB[0],
2371                                 c->err_info->SenseInfo[2]);
2372                 }
2373                 break;
2374         default:
2375                 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2376                         "scsi status = 0x%02x\n", h->ctlr,
2377                         c->Request.CDB[0], c->err_info->ScsiStatus);
2378                 break;
2379         }
2380         return IO_ERROR;
2381 }
2382
2383 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2384 {
2385         int return_status = IO_OK;
2386
2387         if (c->err_info->CommandStatus == CMD_SUCCESS)
2388                 return IO_OK;
2389
2390         switch (c->err_info->CommandStatus) {
2391         case CMD_TARGET_STATUS:
2392                 return_status = check_target_status(h, c);
2393                 break;
2394         case CMD_DATA_UNDERRUN:
2395         case CMD_DATA_OVERRUN:
2396                 /* expected for inquiry and report lun commands */
2397                 break;
2398         case CMD_INVALID:
2399                 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2400                        "reported invalid\n", c->Request.CDB[0]);
2401                 return_status = IO_ERROR;
2402                 break;
2403         case CMD_PROTOCOL_ERR:
2404                 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2405                        "protocol error \n", c->Request.CDB[0]);
2406                 return_status = IO_ERROR;
2407                 break;
2408         case CMD_HARDWARE_ERR:
2409                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2410                        " hardware error\n", c->Request.CDB[0]);
2411                 return_status = IO_ERROR;
2412                 break;
2413         case CMD_CONNECTION_LOST:
2414                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2415                        "connection lost\n", c->Request.CDB[0]);
2416                 return_status = IO_ERROR;
2417                 break;
2418         case CMD_ABORTED:
2419                 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2420                        "aborted\n", c->Request.CDB[0]);
2421                 return_status = IO_ERROR;
2422                 break;
2423         case CMD_ABORT_FAILED:
2424                 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2425                        "abort failed\n", c->Request.CDB[0]);
2426                 return_status = IO_ERROR;
2427                 break;
2428         case CMD_UNSOLICITED_ABORT:
2429                 printk(KERN_WARNING
2430                        "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2431                         c->Request.CDB[0]);
2432                 return_status = IO_NEEDS_RETRY;
2433                 break;
2434         default:
2435                 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2436                        "unknown status %x\n", c->Request.CDB[0],
2437                        c->err_info->CommandStatus);
2438                 return_status = IO_ERROR;
2439         }
2440         return return_status;
2441 }
2442
2443 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2444         int attempt_retry)
2445 {
2446         DECLARE_COMPLETION_ONSTACK(wait);
2447         u64bit buff_dma_handle;
2448         unsigned long flags;
2449         int return_status = IO_OK;
2450
2451 resend_cmd2:
2452         c->waiting = &wait;
2453         /* Put the request on the tail of the queue and send it */
2454         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2455         addQ(&h->reqQ, c);
2456         h->Qdepth++;
2457         start_io(h);
2458         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2459
2460         wait_for_completion(&wait);
2461
2462         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2463                 goto command_done;
2464
2465         return_status = process_sendcmd_error(h, c);
2466
2467         if (return_status == IO_NEEDS_RETRY &&
2468                 c->retry_count < MAX_CMD_RETRIES) {
2469                 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2470                         c->Request.CDB[0]);
2471                 c->retry_count++;
2472                 /* erase the old error information */
2473                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2474                 return_status = IO_OK;
2475                 INIT_COMPLETION(wait);
2476                 goto resend_cmd2;
2477         }
2478
2479 command_done:
2480         /* unlock the buffers from DMA */
2481         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2482         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2483         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2484                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2485         return return_status;
2486 }
2487
2488 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2489                            __u8 page_code, unsigned char scsi3addr[],
2490                         int cmd_type)
2491 {
2492         ctlr_info_t *h = hba[ctlr];
2493         CommandList_struct *c;
2494         int return_status;
2495
2496         c = cmd_alloc(h, 0);
2497         if (!c)
2498                 return -ENOMEM;
2499         return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2500                 scsi3addr, cmd_type);
2501         if (return_status == IO_OK)
2502                 return_status = sendcmd_withirq_core(h, c, 1);
2503
2504         cmd_free(h, c, 0);
2505         return return_status;
2506 }
2507
2508 static void cciss_geometry_inquiry(int ctlr, int logvol,
2509                                    int withirq, sector_t total_size,
2510                                    unsigned int block_size,
2511                                    InquiryData_struct *inq_buff,
2512                                    drive_info_struct *drv)
2513 {
2514         int return_code;
2515         unsigned long t;
2516         unsigned char scsi3addr[8];
2517
2518         memset(inq_buff, 0, sizeof(InquiryData_struct));
2519         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2520         if (withirq)
2521                 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2522                                               inq_buff, sizeof(*inq_buff),
2523                                               0xC1, scsi3addr, TYPE_CMD);
2524         else
2525                 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2526                                       sizeof(*inq_buff), 0xC1, scsi3addr,
2527                                       TYPE_CMD);
2528         if (return_code == IO_OK) {
2529                 if (inq_buff->data_byte[8] == 0xFF) {
2530                         printk(KERN_WARNING
2531                                "cciss: reading geometry failed, volume "
2532                                "does not support reading geometry\n");
2533                         drv->heads = 255;
2534                         drv->sectors = 32;      // Sectors per track
2535                         drv->cylinders = total_size + 1;
2536                         drv->raid_level = RAID_UNKNOWN;
2537                 } else {
2538                         drv->heads = inq_buff->data_byte[6];
2539                         drv->sectors = inq_buff->data_byte[7];
2540                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2541                         drv->cylinders += inq_buff->data_byte[5];
2542                         drv->raid_level = inq_buff->data_byte[8];
2543                 }
2544                 drv->block_size = block_size;
2545                 drv->nr_blocks = total_size + 1;
2546                 t = drv->heads * drv->sectors;
2547                 if (t > 1) {
2548                         sector_t real_size = total_size + 1;
2549                         unsigned long rem = sector_div(real_size, t);
2550                         if (rem)
2551                                 real_size++;
2552                         drv->cylinders = real_size;
2553                 }
2554         } else {                /* Get geometry failed */
2555                 printk(KERN_WARNING "cciss: reading geometry failed\n");
2556         }
2557         printk(KERN_INFO "      heads=%d, sectors=%d, cylinders=%d\n\n",
2558                drv->heads, drv->sectors, drv->cylinders);
2559 }
2560
2561 static void
2562 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2563                     unsigned int *block_size)
2564 {
2565         ReadCapdata_struct *buf;
2566         int return_code;
2567         unsigned char scsi3addr[8];
2568
2569         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2570         if (!buf) {
2571                 printk(KERN_WARNING "cciss: out of memory\n");
2572                 return;
2573         }
2574
2575         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2576         if (withirq)
2577                 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2578                                 ctlr, buf, sizeof(ReadCapdata_struct),
2579                                         0, scsi3addr, TYPE_CMD);
2580         else
2581                 return_code = sendcmd(CCISS_READ_CAPACITY,
2582                                 ctlr, buf, sizeof(ReadCapdata_struct),
2583                                         0, scsi3addr, TYPE_CMD);
2584         if (return_code == IO_OK) {
2585                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2586                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2587         } else {                /* read capacity command failed */
2588                 printk(KERN_WARNING "cciss: read capacity failed\n");
2589                 *total_size = 0;
2590                 *block_size = BLOCK_SIZE;
2591         }
2592         if (*total_size != 0)
2593                 printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2594                 (unsigned long long)*total_size+1, *block_size);
2595         kfree(buf);
2596 }
2597
2598 static void
2599 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size,                                 unsigned int *block_size)
2600 {
2601         ReadCapdata_struct_16 *buf;
2602         int return_code;
2603         unsigned char scsi3addr[8];
2604
2605         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2606         if (!buf) {
2607                 printk(KERN_WARNING "cciss: out of memory\n");
2608                 return;
2609         }
2610
2611         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2612         if (withirq) {
2613                 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2614                         ctlr, buf, sizeof(ReadCapdata_struct_16),
2615                                 0, scsi3addr, TYPE_CMD);
2616         }
2617         else {
2618                 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2619                         ctlr, buf, sizeof(ReadCapdata_struct_16),
2620                                 0, scsi3addr, TYPE_CMD);
2621         }
2622         if (return_code == IO_OK) {
2623                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2624                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2625         } else {                /* read capacity command failed */
2626                 printk(KERN_WARNING "cciss: read capacity failed\n");
2627                 *total_size = 0;
2628                 *block_size = BLOCK_SIZE;
2629         }
2630         printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2631                (unsigned long long)*total_size+1, *block_size);
2632         kfree(buf);
2633 }
2634
2635 static int cciss_revalidate(struct gendisk *disk)
2636 {
2637         ctlr_info_t *h = get_host(disk);
2638         drive_info_struct *drv = get_drv(disk);
2639         int logvol;
2640         int FOUND = 0;
2641         unsigned int block_size;
2642         sector_t total_size;
2643         InquiryData_struct *inq_buff = NULL;
2644
2645         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2646                 if (h->drv[logvol].LunID == drv->LunID) {
2647                         FOUND = 1;
2648                         break;
2649                 }
2650         }
2651
2652         if (!FOUND)
2653                 return 1;
2654
2655         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2656         if (inq_buff == NULL) {
2657                 printk(KERN_WARNING "cciss: out of memory\n");
2658                 return 1;
2659         }
2660         if (h->cciss_read == CCISS_READ_10) {
2661                 cciss_read_capacity(h->ctlr, logvol, 1,
2662                                         &total_size, &block_size);
2663         } else {
2664                 cciss_read_capacity_16(h->ctlr, logvol, 1,
2665                                         &total_size, &block_size);
2666         }
2667         cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2668                                inq_buff, drv);
2669
2670         blk_queue_logical_block_size(drv->queue, drv->block_size);
2671         set_capacity(disk, drv->nr_blocks);
2672
2673         kfree(inq_buff);
2674         return 0;
2675 }
2676
2677 /*
2678  *   Wait polling for a command to complete.
2679  *   The memory mapped FIFO is polled for the completion.
2680  *   Used only at init time, interrupts from the HBA are disabled.
2681  */
2682 static unsigned long pollcomplete(int ctlr)
2683 {
2684         unsigned long done;
2685         int i;
2686
2687         /* Wait (up to 20 seconds) for a command to complete */
2688
2689         for (i = 20 * HZ; i > 0; i--) {
2690                 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2691                 if (done == FIFO_EMPTY)
2692                         schedule_timeout_uninterruptible(1);
2693                 else
2694                         return done;
2695         }
2696         /* Invalid address to tell caller we ran out of time */
2697         return 1;
2698 }
2699
2700 /* Send command c to controller h and poll for it to complete.
2701  * Turns interrupts off on the board.  Used at driver init time
2702  * and during SCSI error recovery.
2703  */
2704 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2705 {
2706         int i;
2707         unsigned long complete;
2708         int status = IO_ERROR;
2709         u64bit buff_dma_handle;
2710
2711 resend_cmd1:
2712
2713         /* Disable interrupt on the board. */
2714         h->access.set_intr_mask(h, CCISS_INTR_OFF);
2715
2716         /* Make sure there is room in the command FIFO */
2717         /* Actually it should be completely empty at this time */
2718         /* unless we are in here doing error handling for the scsi */
2719         /* tape side of the driver. */
2720         for (i = 200000; i > 0; i--) {
2721                 /* if fifo isn't full go */
2722                 if (!(h->access.fifo_full(h)))
2723                         break;
2724                 udelay(10);
2725                 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2726                        " waiting!\n", h->ctlr);
2727         }
2728         h->access.submit_command(h, c); /* Send the cmd */
2729         do {
2730                 complete = pollcomplete(h->ctlr);
2731
2732 #ifdef CCISS_DEBUG
2733                 printk(KERN_DEBUG "cciss: command completed\n");
2734 #endif                          /* CCISS_DEBUG */
2735
2736                 if (complete == 1) {
2737                         printk(KERN_WARNING
2738                                "cciss cciss%d: SendCmd Timeout out, "
2739                                "No command list address returned!\n", h->ctlr);
2740                         status = IO_ERROR;
2741                         break;
2742                 }
2743
2744                 /* Make sure it's the command we're expecting. */
2745                 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2746                         printk(KERN_WARNING "cciss%d: Unexpected command "
2747                                 "completion.\n", h->ctlr);
2748                         continue;
2749                 }
2750
2751                 /* It is our command.  If no error, we're done. */
2752                 if (!(complete & CISS_ERROR_BIT)) {
2753                         status = IO_OK;
2754                         break;
2755                 }
2756
2757                 /* There is an error... */
2758
2759                 /* if data overrun or underun on Report command ignore it */
2760                 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2761                      (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2762                      (c->Request.CDB[0] == CISS_INQUIRY)) &&
2763                         ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2764                          (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2765                         complete = c->busaddr;
2766                         status = IO_OK;
2767                         break;
2768                 }
2769
2770                 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2771                         printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2772                                 h->ctlr, c);
2773                         if (c->retry_count < MAX_CMD_RETRIES) {
2774                                 printk(KERN_WARNING "cciss%d: retrying %p\n",
2775                                    h->ctlr, c);
2776                                 c->retry_count++;
2777                                 /* erase the old error information */
2778                                 memset(c->err_info, 0, sizeof(c->err_info));
2779                                 goto resend_cmd1;
2780                         }
2781                         printk(KERN_WARNING "cciss%d: retried %p too many "
2782                                 "times\n", h->ctlr, c);
2783                         status = IO_ERROR;
2784                         break;
2785                 }
2786
2787                 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2788                         printk(KERN_WARNING "cciss%d: command could not be "
2789                                 "aborted.\n", h->ctlr);
2790                         status = IO_ERROR;
2791                         break;
2792                 }
2793
2794                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2795                         status = check_target_status(h, c);
2796                         break;
2797                 }
2798
2799                 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2800                 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2801                         c->Request.CDB[0], c->err_info->CommandStatus);
2802                 status = IO_ERROR;
2803                 break;
2804
2805         } while (1);
2806
2807         /* unlock the data buffer from DMA */
2808         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2809         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2810         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2811                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2812         return status;
2813 }
2814
2815 /*
2816  * Send a command to the controller, and wait for it to complete.
2817  * Used at init time, and during SCSI error recovery.
2818  */
2819 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2820         __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2821 {
2822         CommandList_struct *c;
2823         int status;
2824
2825         c = cmd_alloc(hba[ctlr], 1);
2826         if (!c) {
2827                 printk(KERN_WARNING "cciss: unable to get memory");
2828                 return IO_ERROR;
2829         }
2830         status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2831                 scsi3addr, cmd_type);
2832         if (status == IO_OK)
2833                 status = sendcmd_core(hba[ctlr], c);
2834         cmd_free(hba[ctlr], c, 1);
2835         return status;
2836 }
2837
2838 /*
2839  * Map (physical) PCI mem into (virtual) kernel space
2840  */
2841 static void __iomem *remap_pci_mem(ulong base, ulong size)
2842 {
2843         ulong page_base = ((ulong) base) & PAGE_MASK;
2844         ulong page_offs = ((ulong) base) - page_base;
2845         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2846
2847         return page_remapped ? (page_remapped + page_offs) : NULL;
2848 }
2849
2850 /*
2851  * Takes jobs of the Q and sends them to the hardware, then puts it on
2852  * the Q to wait for completion.
2853  */
2854 static void start_io(ctlr_info_t *h)
2855 {
2856         CommandList_struct *c;
2857
2858         while (!hlist_empty(&h->reqQ)) {
2859                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2860                 /* can't do anything if fifo is full */
2861                 if ((h->access.fifo_full(h))) {
2862                         printk(KERN_WARNING "cciss: fifo full\n");
2863                         break;
2864                 }
2865
2866                 /* Get the first entry from the Request Q */
2867                 removeQ(c);
2868                 h->Qdepth--;
2869
2870                 /* Tell the controller execute command */
2871                 h->access.submit_command(h, c);
2872
2873                 /* Put job onto the completed Q */
2874                 addQ(&h->cmpQ, c);
2875         }
2876 }
2877
2878 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2879 /* Zeros out the error record and then resends the command back */
2880 /* to the controller */
2881 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2882 {
2883         /* erase the old error information */
2884         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2885
2886         /* add it to software queue and then send it to the controller */
2887         addQ(&h->reqQ, c);
2888         h->Qdepth++;
2889         if (h->Qdepth > h->maxQsinceinit)
2890                 h->maxQsinceinit = h->Qdepth;
2891
2892         start_io(h);
2893 }
2894
2895 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2896         unsigned int msg_byte, unsigned int host_byte,
2897         unsigned int driver_byte)
2898 {
2899         /* inverse of macros in scsi.h */
2900         return (scsi_status_byte & 0xff) |
2901                 ((msg_byte & 0xff) << 8) |
2902                 ((host_byte & 0xff) << 16) |
2903                 ((driver_byte & 0xff) << 24);
2904 }
2905
2906 static inline int evaluate_target_status(ctlr_info_t *h,
2907                         CommandList_struct *cmd, int *retry_cmd)
2908 {
2909         unsigned char sense_key;
2910         unsigned char status_byte, msg_byte, host_byte, driver_byte;
2911         int error_value;
2912
2913         *retry_cmd = 0;
2914         /* If we get in here, it means we got "target status", that is, scsi status */
2915         status_byte = cmd->err_info->ScsiStatus;
2916         driver_byte = DRIVER_OK;
2917         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2918
2919         if (blk_pc_request(cmd->rq))
2920                 host_byte = DID_PASSTHROUGH;
2921         else
2922                 host_byte = DID_OK;
2923
2924         error_value = make_status_bytes(status_byte, msg_byte,
2925                 host_byte, driver_byte);
2926
2927         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2928                 if (!blk_pc_request(cmd->rq))
2929                         printk(KERN_WARNING "cciss: cmd %p "
2930                                "has SCSI Status 0x%x\n",
2931                                cmd, cmd->err_info->ScsiStatus);
2932                 return error_value;
2933         }
2934
2935         /* check the sense key */
2936         sense_key = 0xf & cmd->err_info->SenseInfo[2];
2937         /* no status or recovered error */
2938         if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2939                 error_value = 0;
2940
2941         if (check_for_unit_attention(h, cmd)) {
2942                 *retry_cmd = !blk_pc_request(cmd->rq);
2943                 return 0;
2944         }
2945
2946         if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2947                 if (error_value != 0)
2948                         printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2949                                " sense key = 0x%x\n", cmd, sense_key);
2950                 return error_value;
2951         }
2952
2953         /* SG_IO or similar, copy sense data back */
2954         if (cmd->rq->sense) {
2955                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2956                         cmd->rq->sense_len = cmd->err_info->SenseLen;
2957                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2958                         cmd->rq->sense_len);
2959         } else
2960                 cmd->rq->sense_len = 0;
2961
2962         return error_value;
2963 }
2964
2965 /* checks the status of the job and calls complete buffers to mark all
2966  * buffers for the completed job. Note that this function does not need
2967  * to hold the hba/queue lock.
2968  */
2969 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2970                                     int timeout)
2971 {
2972         int retry_cmd = 0;
2973         struct request *rq = cmd->rq;
2974
2975         rq->errors = 0;
2976
2977         if (timeout)
2978                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2979
2980         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
2981                 goto after_error_processing;
2982
2983         switch (cmd->err_info->CommandStatus) {
2984         case CMD_TARGET_STATUS:
2985                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2986                 break;
2987         case CMD_DATA_UNDERRUN:
2988                 if (blk_fs_request(cmd->rq)) {
2989                         printk(KERN_WARNING "cciss: cmd %p has"
2990                                " completed with data underrun "
2991                                "reported\n", cmd);
2992                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2993                 }
2994                 break;
2995         case CMD_DATA_OVERRUN:
2996                 if (blk_fs_request(cmd->rq))
2997                         printk(KERN_WARNING "cciss: cmd %p has"
2998                                " completed with data overrun "
2999                                "reported\n", cmd);
3000                 break;
3001         case CMD_INVALID:
3002                 printk(KERN_WARNING "cciss: cmd %p is "
3003                        "reported invalid\n", cmd);
3004                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3005                         cmd->err_info->CommandStatus, DRIVER_OK,
3006                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3007                 break;
3008         case CMD_PROTOCOL_ERR:
3009                 printk(KERN_WARNING "cciss: cmd %p has "
3010                        "protocol error \n", cmd);
3011                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3012                         cmd->err_info->CommandStatus, DRIVER_OK,
3013                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3014                 break;
3015         case CMD_HARDWARE_ERR:
3016                 printk(KERN_WARNING "cciss: cmd %p had "
3017                        " hardware error\n", cmd);
3018                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3019                         cmd->err_info->CommandStatus, DRIVER_OK,
3020                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3021                 break;
3022         case CMD_CONNECTION_LOST:
3023                 printk(KERN_WARNING "cciss: cmd %p had "
3024                        "connection lost\n", cmd);
3025                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3026                         cmd->err_info->CommandStatus, DRIVER_OK,
3027                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3028                 break;
3029         case CMD_ABORTED:
3030                 printk(KERN_WARNING "cciss: cmd %p was "
3031                        "aborted\n", cmd);
3032                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3033                         cmd->err_info->CommandStatus, DRIVER_OK,
3034                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3035                 break;
3036         case CMD_ABORT_FAILED:
3037                 printk(KERN_WARNING "cciss: cmd %p reports "
3038                        "abort failed\n", cmd);
3039                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3040                         cmd->err_info->CommandStatus, DRIVER_OK,
3041                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3042                 break;
3043         case CMD_UNSOLICITED_ABORT:
3044                 printk(KERN_WARNING "cciss%d: unsolicited "
3045                        "abort %p\n", h->ctlr, cmd);
3046                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3047                         retry_cmd = 1;
3048                         printk(KERN_WARNING
3049                                "cciss%d: retrying %p\n", h->ctlr, cmd);
3050                         cmd->retry_count++;
3051                 } else
3052                         printk(KERN_WARNING
3053                                "cciss%d: %p retried too "
3054                                "many times\n", h->ctlr, cmd);
3055                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3056                         cmd->err_info->CommandStatus, DRIVER_OK,
3057                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3058                 break;
3059         case CMD_TIMEOUT:
3060                 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3061                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3062                         cmd->err_info->CommandStatus, DRIVER_OK,
3063                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3064                 break;
3065         default:
3066                 printk(KERN_WARNING "cciss: cmd %p returned "
3067                        "unknown status %x\n", cmd,
3068                        cmd->err_info->CommandStatus);
3069                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3070                         cmd->err_info->CommandStatus, DRIVER_OK,
3071                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3072         }
3073
3074 after_error_processing:
3075
3076         /* We need to return this command */
3077         if (retry_cmd) {
3078                 resend_cciss_cmd(h, cmd);
3079                 return;
3080         }
3081         cmd->rq->completion_data = cmd;
3082         blk_complete_request(cmd->rq);
3083 }
3084
3085 /*
3086  * Get a request and submit it to the controller.
3087  */
3088 static void do_cciss_request(struct request_queue *q)
3089 {
3090         ctlr_info_t *h = q->queuedata;
3091         CommandList_struct *c;
3092         sector_t start_blk;
3093         int seg;
3094         struct request *creq;
3095         u64bit temp64;
3096         struct scatterlist tmp_sg[MAXSGENTRIES];
3097         drive_info_struct *drv;
3098         int i, dir;
3099
3100         /* We call start_io here in case there is a command waiting on the
3101          * queue that has not been sent.
3102          */
3103         if (blk_queue_plugged(q))
3104                 goto startio;
3105
3106       queue:
3107         creq = blk_peek_request(q);
3108         if (!creq)
3109                 goto startio;
3110
3111         BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3112
3113         if ((c = cmd_alloc(h, 1)) == NULL)
3114                 goto full;
3115
3116         blk_start_request(creq);
3117
3118         spin_unlock_irq(q->queue_lock);
3119
3120         c->cmd_type = CMD_RWREQ;
3121         c->rq = creq;
3122
3123         /* fill in the request */
3124         drv = creq->rq_disk->private_data;
3125         c->Header.ReplyQueue = 0;       // unused in simple mode
3126         /* got command from pool, so use the command block index instead */
3127         /* for direct lookups. */
3128         /* The first 2 bits are reserved for controller error reporting. */
3129         c->Header.Tag.lower = (c->cmdindex << 3);
3130         c->Header.Tag.lower |= 0x04;    /* flag for direct lookup. */
3131         c->Header.LUN.LogDev.VolId = drv->LunID;
3132         c->Header.LUN.LogDev.Mode = 1;
3133         c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3134         c->Request.Type.Type = TYPE_CMD;        // It is a command.
3135         c->Request.Type.Attribute = ATTR_SIMPLE;
3136         c->Request.Type.Direction =
3137             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3138         c->Request.Timeout = 0; // Don't time out
3139         c->Request.CDB[0] =
3140             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3141         start_blk = blk_rq_pos(creq);
3142 #ifdef CCISS_DEBUG
3143         printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3144                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3145 #endif                          /* CCISS_DEBUG */
3146
3147         sg_init_table(tmp_sg, MAXSGENTRIES);
3148         seg = blk_rq_map_sg(q, creq, tmp_sg);
3149
3150         /* get the DMA records for the setup */
3151         if (c->Request.Type.Direction == XFER_READ)
3152                 dir = PCI_DMA_FROMDEVICE;
3153         else
3154                 dir = PCI_DMA_TODEVICE;
3155
3156         for (i = 0; i < seg; i++) {
3157                 c->SG[i].Len = tmp_sg[i].length;
3158                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3159                                                   tmp_sg[i].offset,
3160                                                   tmp_sg[i].length, dir);
3161                 c->SG[i].Addr.lower = temp64.val32.lower;
3162                 c->SG[i].Addr.upper = temp64.val32.upper;
3163                 c->SG[i].Ext = 0;       // we are not chaining
3164         }
3165         /* track how many SG entries we are using */
3166         if (seg > h->maxSG)
3167                 h->maxSG = seg;
3168
3169 #ifdef CCISS_DEBUG
3170         printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3171                blk_rq_sectors(creq), seg);
3172 #endif                          /* CCISS_DEBUG */
3173
3174         c->Header.SGList = c->Header.SGTotal = seg;
3175         if (likely(blk_fs_request(creq))) {
3176                 if(h->cciss_read == CCISS_READ_10) {
3177                         c->Request.CDB[1] = 0;
3178                         c->Request.CDB[2] = (start_blk >> 24) & 0xff;   //MSB
3179                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3180                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3181                         c->Request.CDB[5] = start_blk & 0xff;
3182                         c->Request.CDB[6] = 0;  // (sect >> 24) & 0xff; MSB
3183                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3184                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3185                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3186                 } else {
3187                         u32 upper32 = upper_32_bits(start_blk);
3188
3189                         c->Request.CDBLen = 16;
3190                         c->Request.CDB[1]= 0;
3191                         c->Request.CDB[2]= (upper32 >> 24) & 0xff;      //MSB
3192                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3193                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3194                         c->Request.CDB[5]= upper32 & 0xff;
3195                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3196                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3197                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3198                         c->Request.CDB[9]= start_blk & 0xff;
3199                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3200                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3201                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3202                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3203                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3204                 }
3205         } else if (blk_pc_request(creq)) {
3206                 c->Request.CDBLen = creq->cmd_len;
3207                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3208         } else {
3209                 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3210                 BUG();
3211         }
3212
3213         spin_lock_irq(q->queue_lock);
3214
3215         addQ(&h->reqQ, c);
3216         h->Qdepth++;
3217         if (h->Qdepth > h->maxQsinceinit)
3218                 h->maxQsinceinit = h->Qdepth;
3219
3220         goto queue;
3221 full:
3222         blk_stop_queue(q);
3223 startio:
3224         /* We will already have the driver lock here so not need
3225          * to lock it.
3226          */
3227         start_io(h);
3228 }
3229
3230 static inline unsigned long get_next_completion(ctlr_info_t *h)
3231 {
3232         return h->access.command_completed(h);
3233 }
3234
3235 static inline int interrupt_pending(ctlr_info_t *h)
3236 {
3237         return h->access.intr_pending(h);
3238 }
3239
3240 static inline long interrupt_not_for_us(ctlr_info_t *h)
3241 {
3242         return (((h->access.intr_pending(h) == 0) ||
3243                  (h->interrupts_enabled == 0)));
3244 }
3245
3246 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3247 {
3248         ctlr_info_t *h = dev_id;
3249         CommandList_struct *c;
3250         unsigned long flags;
3251         __u32 a, a1, a2;
3252
3253         if (interrupt_not_for_us(h))
3254                 return IRQ_NONE;
3255         /*
3256          * If there are completed commands in the completion queue,
3257          * we had better do something about it.
3258          */
3259         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3260         while (interrupt_pending(h)) {
3261                 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3262                         a1 = a;
3263                         if ((a & 0x04)) {
3264                                 a2 = (a >> 3);
3265                                 if (a2 >= h->nr_cmds) {
3266                                         printk(KERN_WARNING
3267                                                "cciss: controller cciss%d failed, stopping.\n",
3268                                                h->ctlr);
3269                                         fail_all_cmds(h->ctlr);
3270                                         return IRQ_HANDLED;
3271                                 }
3272
3273                                 c = h->cmd_pool + a2;
3274                                 a = c->busaddr;
3275
3276                         } else {
3277                                 struct hlist_node *tmp;
3278
3279                                 a &= ~3;
3280                                 c = NULL;
3281                                 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3282                                         if (c->busaddr == a)
3283                                                 break;
3284                                 }
3285                         }
3286                         /*
3287                          * If we've found the command, take it off the
3288                          * completion Q and free it
3289                          */
3290                         if (c && c->busaddr == a) {
3291                                 removeQ(c);
3292                                 if (c->cmd_type == CMD_RWREQ) {
3293                                         complete_command(h, c, 0);
3294                                 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3295                                         complete(c->waiting);
3296                                 }
3297 #                               ifdef CONFIG_CISS_SCSI_TAPE
3298                                 else if (c->cmd_type == CMD_SCSI)
3299                                         complete_scsi_command(c, 0, a1);
3300 #                               endif
3301                                 continue;
3302                         }
3303                 }
3304         }
3305
3306         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3307         return IRQ_HANDLED;
3308 }
3309
3310 /**
3311  * add_to_scan_list() - add controller to rescan queue
3312  * @h:                Pointer to the controller.
3313  *
3314  * Adds the controller to the rescan queue if not already on the queue.
3315  *
3316  * returns 1 if added to the queue, 0 if skipped (could be on the
3317  * queue already, or the controller could be initializing or shutting
3318  * down).
3319  **/
3320 static int add_to_scan_list(struct ctlr_info *h)
3321 {
3322         struct ctlr_info *test_h;
3323         int found = 0;
3324         int ret = 0;
3325
3326         if (h->busy_initializing)
3327                 return 0;
3328
3329         if (!mutex_trylock(&h->busy_shutting_down))
3330                 return 0;
3331
3332         mutex_lock(&scan_mutex);
3333         list_for_each_entry(test_h, &scan_q, scan_list) {
3334                 if (test_h == h) {
3335                         found = 1;
3336                         break;
3337                 }
3338         }
3339         if (!found && !h->busy_scanning) {
3340                 INIT_COMPLETION(h->scan_wait);
3341                 list_add_tail(&h->scan_list, &scan_q);
3342                 ret = 1;
3343         }
3344         mutex_unlock(&scan_mutex);
3345         mutex_unlock(&h->busy_shutting_down);
3346
3347         return ret;
3348 }
3349
3350 /**
3351  * remove_from_scan_list() - remove controller from rescan queue
3352  * @h:                     Pointer to the controller.
3353  *
3354  * Removes the controller from the rescan queue if present. Blocks if
3355  * the controller is currently conducting a rescan.
3356  **/
3357 static void remove_from_scan_list(struct ctlr_info *h)
3358 {
3359         struct ctlr_info *test_h, *tmp_h;
3360         int scanning = 0;
3361
3362         mutex_lock(&scan_mutex);
3363         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3364                 if (test_h == h) {
3365                         list_del(&h->scan_list);
3366                         complete_all(&h->scan_wait);
3367                         mutex_unlock(&scan_mutex);
3368                         return;
3369                 }
3370         }
3371         if (&h->busy_scanning)
3372                 scanning = 0;
3373         mutex_unlock(&scan_mutex);
3374
3375         if (scanning)
3376                 wait_for_completion(&h->scan_wait);
3377 }
3378
3379 /**
3380  * scan_thread() - kernel thread used to rescan controllers
3381  * @data:        Ignored.
3382  *
3383  * A kernel thread used scan for drive topology changes on
3384  * controllers. The thread processes only one controller at a time
3385  * using a queue.  Controllers are added to the queue using
3386  * add_to_scan_list() and removed from the queue either after done
3387  * processing or using remove_from_scan_list().
3388  *
3389  * returns 0.
3390  **/
3391 static int scan_thread(void *data)
3392 {
3393         struct ctlr_info *h;
3394
3395         while (1) {
3396                 set_current_state(TASK_INTERRUPTIBLE);
3397                 schedule();
3398                 if (kthread_should_stop())
3399                         break;
3400
3401                 while (1) {
3402                         mutex_lock(&scan_mutex);
3403                         if (list_empty(&scan_q)) {
3404                                 mutex_unlock(&scan_mutex);
3405                                 break;
3406                         }
3407
3408                         h = list_entry(scan_q.next,
3409                                        struct ctlr_info,
3410                                        scan_list);
3411                         list_del(&h->scan_list);
3412                         h->busy_scanning = 1;
3413                         mutex_unlock(&scan_mutex);
3414
3415                         if (h) {
3416                                 rebuild_lun_table(h, 0);
3417                                 complete_all(&h->scan_wait);
3418                                 mutex_lock(&scan_mutex);
3419                                 h->busy_scanning = 0;
3420                                 mutex_unlock(&scan_mutex);
3421                         }
3422                 }
3423         }
3424
3425         return 0;
3426 }
3427
3428 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3429 {
3430         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3431                 return 0;
3432
3433         switch (c->err_info->SenseInfo[12]) {
3434         case STATE_CHANGED:
3435                 printk(KERN_WARNING "cciss%d: a state change "
3436                         "detected, command retried\n", h->ctlr);
3437                 return 1;
3438         break;
3439         case LUN_FAILED:
3440                 printk(KERN_WARNING "cciss%d: LUN failure "
3441                         "detected, action required\n", h->ctlr);
3442                 return 1;
3443         break;
3444         case REPORT_LUNS_CHANGED:
3445                 printk(KERN_WARNING "cciss%d: report LUN data "
3446                         "changed\n", h->ctlr);
3447                 add_to_scan_list(h);
3448                 wake_up_process(cciss_scan_thread);
3449                 return 1;
3450         break;
3451         case POWER_OR_RESET:
3452                 printk(KERN_WARNING "cciss%d: a power on "
3453                         "or device reset detected\n", h->ctlr);
3454                 return 1;
3455         break;
3456         case UNIT_ATTENTION_CLEARED:
3457                 printk(KERN_WARNING "cciss%d: unit attention "
3458                     "cleared by another initiator\n", h->ctlr);
3459                 return 1;
3460         break;
3461         default:
3462                 printk(KERN_WARNING "cciss%d: unknown "
3463                         "unit attention detected\n", h->ctlr);
3464                                 return 1;
3465         }
3466 }
3467
3468 /*
3469  *  We cannot read the structure directly, for portability we must use
3470  *   the io functions.
3471  *   This is for debug only.
3472  */
3473 #ifdef CCISS_DEBUG
3474 static void print_cfg_table(CfgTable_struct *tb)
3475 {
3476         int i;
3477         char temp_name[17];
3478
3479         printk("Controller Configuration information\n");
3480         printk("------------------------------------\n");
3481         for (i = 0; i < 4; i++)
3482                 temp_name[i] = readb(&(tb->Signature[i]));
3483         temp_name[4] = '\0';
3484         printk("   Signature = %s\n", temp_name);
3485         printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3486         printk("   Transport methods supported = 0x%x\n",
3487                readl(&(tb->TransportSupport)));
3488         printk("   Transport methods active = 0x%x\n",
3489                readl(&(tb->TransportActive)));
3490         printk("   Requested transport Method = 0x%x\n",
3491                readl(&(tb->HostWrite.TransportRequest)));
3492         printk("   Coalesce Interrupt Delay = 0x%x\n",
3493                readl(&(tb->HostWrite.CoalIntDelay)));
3494         printk("   Coalesce Interrupt Count = 0x%x\n",
3495                readl(&(tb->HostWrite.CoalIntCount)));
3496         printk("   Max outstanding commands = 0x%d\n",
3497                readl(&(tb->CmdsOutMax)));
3498         printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3499         for (i = 0; i < 16; i++)
3500                 temp_name[i] = readb(&(tb->ServerName[i]));
3501         temp_name[16] = '\0';
3502         printk("   Server Name = %s\n", temp_name);
3503         printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3504 }
3505 #endif                          /* CCISS_DEBUG */
3506
3507 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3508 {
3509         int i, offset, mem_type, bar_type;
3510         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3511                 return 0;
3512         offset = 0;
3513         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3514                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3515                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3516                         offset += 4;
3517                 else {
3518                         mem_type = pci_resource_flags(pdev, i) &
3519                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3520                         switch (mem_type) {
3521                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3522                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3523                                 offset += 4;    /* 32 bit */
3524                                 break;
3525                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3526                                 offset += 8;
3527                                 break;
3528                         default:        /* reserved in PCI 2.2 */
3529                                 printk(KERN_WARNING
3530                                        "Base address is invalid\n");
3531                                 return -1;
3532                                 break;
3533                         }
3534                 }
3535                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3536                         return i + 1;
3537         }
3538         return -1;
3539 }
3540
3541 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3542  * controllers that are capable. If not, we use IO-APIC mode.
3543  */
3544
3545 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3546                                            struct pci_dev *pdev, __u32 board_id)
3547 {
3548 #ifdef CONFIG_PCI_MSI
3549         int err;
3550         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3551         {0, 2}, {0, 3}
3552         };
3553
3554         /* Some boards advertise MSI but don't really support it */
3555         if ((board_id == 0x40700E11) ||
3556             (board_id == 0x40800E11) ||
3557             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3558                 goto default_int_mode;
3559
3560         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3561                 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3562                 if (!err) {
3563                         c->intr[0] = cciss_msix_entries[0].vector;
3564                         c->intr[1] = cciss_msix_entries[1].vector;
3565                         c->intr[2] = cciss_msix_entries[2].vector;
3566                         c->intr[3] = cciss_msix_entries[3].vector;
3567                         c->msix_vector = 1;
3568                         return;
3569                 }
3570                 if (err > 0) {
3571                         printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3572                                "available\n", err);
3573                         goto default_int_mode;
3574                 } else {
3575                         printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3576                                err);
3577                         goto default_int_mode;
3578                 }
3579         }
3580         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3581                 if (!pci_enable_msi(pdev)) {
3582                         c->msi_vector = 1;
3583                 } else {
3584                         printk(KERN_WARNING "cciss: MSI init failed\n");
3585                 }
3586         }
3587 default_int_mode:
3588 #endif                          /* CONFIG_PCI_MSI */
3589         /* if we get here we're going to use the default interrupt mode */
3590         c->intr[SIMPLE_MODE_INT] = pdev->irq;
3591         return;
3592 }
3593
3594 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3595 {
3596         ushort subsystem_vendor_id, subsystem_device_id, command;
3597         __u32 board_id, scratchpad = 0;
3598         __u64 cfg_offset;
3599         __u32 cfg_base_addr;
3600         __u64 cfg_base_addr_index;
3601         int i, err;
3602
3603         /* check to see if controller has been disabled */
3604         /* BEFORE trying to enable it */
3605         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3606         if (!(command & 0x02)) {
3607                 printk(KERN_WARNING
3608                        "cciss: controller appears to be disabled\n");
3609                 return -ENODEV;
3610         }
3611
3612         err = pci_enable_device(pdev);
3613         if (err) {
3614                 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3615                 return err;
3616         }
3617
3618         err = pci_request_regions(pdev, "cciss");
3619         if (err) {
3620                 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3621                        "aborting\n");
3622                 return err;
3623         }
3624
3625         subsystem_vendor_id = pdev->subsystem_vendor;
3626         subsystem_device_id = pdev->subsystem_device;
3627         board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3628                     subsystem_vendor_id);
3629
3630 #ifdef CCISS_DEBUG
3631         printk("command = %x\n", command);
3632         printk("irq = %x\n", pdev->irq);
3633         printk("board_id = %x\n", board_id);
3634 #endif                          /* CCISS_DEBUG */
3635
3636 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3637  * else we use the IO-APIC interrupt assigned to us by system ROM.
3638  */
3639         cciss_interrupt_mode(c, pdev, board_id);
3640
3641         /* find the memory BAR */
3642         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3643                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3644                         break;
3645         }
3646         if (i == DEVICE_COUNT_RESOURCE) {
3647                 printk(KERN_WARNING "cciss: No memory BAR found\n");
3648                 err = -ENODEV;
3649                 goto err_out_free_res;
3650         }
3651
3652         c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3653                                                  * already removed
3654                                                  */
3655
3656 #ifdef CCISS_DEBUG
3657         printk("address 0 = %lx\n", c->paddr);
3658 #endif                          /* CCISS_DEBUG */
3659         c->vaddr = remap_pci_mem(c->paddr, 0x250);
3660
3661         /* Wait for the board to become ready.  (PCI hotplug needs this.)
3662          * We poll for up to 120 secs, once per 100ms. */
3663         for (i = 0; i < 1200; i++) {
3664                 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3665                 if (scratchpad == CCISS_FIRMWARE_READY)
3666                         break;
3667                 set_current_state(TASK_INTERRUPTIBLE);
3668                 schedule_timeout(msecs_to_jiffies(100));        /* wait 100ms */
3669         }
3670         if (scratchpad != CCISS_FIRMWARE_READY) {
3671                 printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3672                 err = -ENODEV;
3673                 goto err_out_free_res;
3674         }
3675
3676         /* get the address index number */
3677         cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3678         cfg_base_addr &= (__u32) 0x0000ffff;
3679 #ifdef CCISS_DEBUG
3680         printk("cfg base address = %x\n", cfg_base_addr);
3681 #endif                          /* CCISS_DEBUG */
3682         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3683 #ifdef CCISS_DEBUG
3684         printk("cfg base address index = %llx\n",
3685                 (unsigned long long)cfg_base_addr_index);
3686 #endif                          /* CCISS_DEBUG */
3687         if (cfg_base_addr_index == -1) {
3688                 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3689                 err = -ENODEV;
3690                 goto err_out_free_res;
3691         }
3692
3693         cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3694 #ifdef CCISS_DEBUG
3695         printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3696 #endif                          /* CCISS_DEBUG */
3697         c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3698                                                        cfg_base_addr_index) +
3699                                     cfg_offset, sizeof(CfgTable_struct));
3700         c->board_id = board_id;
3701
3702 #ifdef CCISS_DEBUG
3703         print_cfg_table(c->cfgtable);
3704 #endif                          /* CCISS_DEBUG */
3705
3706         /* Some controllers support Zero Memory Raid (ZMR).
3707          * When configured in ZMR mode the number of supported
3708          * commands drops to 64. So instead of just setting an
3709          * arbitrary value we make the driver a little smarter.
3710          * We read the config table to tell us how many commands
3711          * are supported on the controller then subtract 4 to
3712          * leave a little room for ioctl calls.
3713          */
3714         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3715         for (i = 0; i < ARRAY_SIZE(products); i++) {
3716                 if (board_id == products[i].board_id) {
3717                         c->product_name = products[i].product_name;
3718                         c->access = *(products[i].access);
3719                         c->nr_cmds = c->max_commands - 4;
3720                         break;
3721                 }
3722         }
3723         if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3724             (readb(&c->cfgtable->Signature[1]) != 'I') ||
3725             (readb(&c->cfgtable->Signature[2]) != 'S') ||
3726             (readb(&c->cfgtable->Signature[3]) != 'S')) {
3727                 printk("Does not appear to be a valid CISS config table\n");
3728                 err = -ENODEV;
3729                 goto err_out_free_res;
3730         }
3731         /* We didn't find the controller in our list. We know the
3732          * signature is valid. If it's an HP device let's try to
3733          * bind to the device and fire it up. Otherwise we bail.
3734          */
3735         if (i == ARRAY_SIZE(products)) {
3736                 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3737                         c->product_name = products[i-1].product_name;
3738                         c->access = *(products[i-1].access);
3739                         c->nr_cmds = c->max_commands - 4;
3740                         printk(KERN_WARNING "cciss: This is an unknown "
3741                                 "Smart Array controller.\n"
3742                                 "cciss: Please update to the latest driver "
3743                                 "available from www.hp.com.\n");
3744                 } else {
3745                         printk(KERN_WARNING "cciss: Sorry, I don't know how"
3746                                 " to access the Smart Array controller %08lx\n"
3747                                         , (unsigned long)board_id);
3748                         err = -ENODEV;
3749                         goto err_out_free_res;
3750                 }
3751         }
3752 #ifdef CONFIG_X86
3753         {
3754                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3755                 __u32 prefetch;
3756                 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3757                 prefetch |= 0x100;
3758                 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3759         }
3760 #endif
3761
3762         /* Disabling DMA prefetch and refetch for the P600.
3763          * An ASIC bug may result in accesses to invalid memory addresses.
3764          * We've disabled prefetch for some time now. Testing with XEN
3765          * kernels revealed a bug in the refetch if dom0 resides on a P600.
3766          */
3767         if(board_id == 0x3225103C) {
3768                 __u32 dma_prefetch;
3769                 __u32 dma_refetch;
3770                 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3771                 dma_prefetch |= 0x8000;
3772                 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3773                 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3774                 dma_refetch |= 0x1;
3775                 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3776         }
3777
3778 #ifdef CCISS_DEBUG
3779         printk("Trying to put board into Simple mode\n");
3780 #endif                          /* CCISS_DEBUG */
3781         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3782         /* Update the field, and then ring the doorbell */
3783         writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3784         writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3785
3786         /* under certain very rare conditions, this can take awhile.
3787          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3788          * as we enter this code.) */
3789         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3790                 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3791                         break;
3792                 /* delay and try again */
3793                 set_current_state(TASK_INTERRUPTIBLE);
3794                 schedule_timeout(msecs_to_jiffies(1));
3795         }
3796
3797 #ifdef CCISS_DEBUG
3798         printk(KERN_DEBUG "I counter got to %d %x\n", i,
3799                readl(c->vaddr + SA5_DOORBELL));
3800 #endif                          /* CCISS_DEBUG */
3801 #ifdef CCISS_DEBUG
3802         print_cfg_table(c->cfgtable);
3803 #endif                          /* CCISS_DEBUG */
3804
3805         if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3806                 printk(KERN_WARNING "cciss: unable to get board into"
3807                        " simple mode\n");
3808                 err = -ENODEV;
3809                 goto err_out_free_res;
3810         }
3811         return 0;
3812
3813 err_out_free_res:
3814         /*
3815          * Deliberately omit pci_disable_device(): it does something nasty to
3816          * Smart Array controllers that pci_enable_device does not undo
3817          */
3818         pci_release_regions(pdev);
3819         return err;
3820 }
3821
3822 /* Function to find the first free pointer into our hba[] array
3823  * Returns -1 if no free entries are left.
3824  */
3825 static int alloc_cciss_hba(void)
3826 {
3827         int i;
3828
3829         for (i = 0; i < MAX_CTLR; i++) {
3830                 if (!hba[i]) {
3831                         ctlr_info_t *p;
3832
3833                         p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3834                         if (!p)
3835                                 goto Enomem;
3836                         hba[i] = p;
3837                         return i;
3838                 }
3839         }
3840         printk(KERN_WARNING "cciss: This driver supports a maximum"
3841                " of %d controllers.\n", MAX_CTLR);
3842         return -1;
3843 Enomem:
3844         printk(KERN_ERR "cciss: out of memory.\n");
3845         return -1;
3846 }
3847
3848 static void free_hba(int i)
3849 {
3850         ctlr_info_t *p = hba[i];
3851         int n;
3852
3853         hba[i] = NULL;
3854         for (n = 0; n < CISS_MAX_LUN; n++)
3855                 put_disk(p->gendisk[n]);
3856         kfree(p);
3857 }
3858
3859 /* Send a message CDB to the firmware. */
3860 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3861 {
3862         typedef struct {
3863                 CommandListHeader_struct CommandHeader;
3864                 RequestBlock_struct Request;
3865                 ErrDescriptor_struct ErrorDescriptor;
3866         } Command;
3867         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3868         Command *cmd;
3869         dma_addr_t paddr64;
3870         uint32_t paddr32, tag;
3871         void __iomem *vaddr;
3872         int i, err;
3873
3874         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3875         if (vaddr == NULL)
3876                 return -ENOMEM;
3877
3878         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3879            CCISS commands, so they must be allocated from the lower 4GiB of
3880            memory. */
3881         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3882         if (err) {
3883                 iounmap(vaddr);
3884                 return -ENOMEM;
3885         }
3886
3887         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3888         if (cmd == NULL) {
3889                 iounmap(vaddr);
3890                 return -ENOMEM;
3891         }
3892
3893         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3894            although there's no guarantee, we assume that the address is at
3895            least 4-byte aligned (most likely, it's page-aligned). */
3896         paddr32 = paddr64;
3897
3898         cmd->CommandHeader.ReplyQueue = 0;
3899         cmd->CommandHeader.SGList = 0;
3900         cmd->CommandHeader.SGTotal = 0;
3901         cmd->CommandHeader.Tag.lower = paddr32;
3902         cmd->CommandHeader.Tag.upper = 0;
3903         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3904
3905         cmd->Request.CDBLen = 16;
3906         cmd->Request.Type.Type = TYPE_MSG;
3907         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3908         cmd->Request.Type.Direction = XFER_NONE;
3909         cmd->Request.Timeout = 0; /* Don't time out */
3910         cmd->Request.CDB[0] = opcode;
3911         cmd->Request.CDB[1] = type;
3912         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3913
3914         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3915         cmd->ErrorDescriptor.Addr.upper = 0;
3916         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3917
3918         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3919
3920         for (i = 0; i < 10; i++) {
3921                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3922                 if ((tag & ~3) == paddr32)
3923                         break;
3924                 schedule_timeout_uninterruptible(HZ);
3925         }
3926
3927         iounmap(vaddr);
3928
3929         /* we leak the DMA buffer here ... no choice since the controller could
3930            still complete the command. */
3931         if (i == 10) {
3932                 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3933                         opcode, type);
3934                 return -ETIMEDOUT;
3935         }
3936
3937         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3938
3939         if (tag & 2) {
3940                 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3941                         opcode, type);
3942                 return -EIO;
3943         }
3944
3945         printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3946                 opcode, type);
3947         return 0;
3948 }
3949
3950 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3951 #define cciss_noop(p) cciss_message(p, 3, 0)
3952
3953 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3954 {
3955 /* the #defines are stolen from drivers/pci/msi.h. */
3956 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3957 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3958
3959         int pos;
3960         u16 control = 0;
3961
3962         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3963         if (pos) {
3964                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3965                 if (control & PCI_MSI_FLAGS_ENABLE) {
3966                         printk(KERN_INFO "cciss: resetting MSI\n");
3967                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3968                 }
3969         }
3970
3971         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3972         if (pos) {
3973                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3974                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3975                         printk(KERN_INFO "cciss: resetting MSI-X\n");
3976                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3977                 }
3978         }
3979
3980         return 0;
3981 }
3982
3983 /* This does a hard reset of the controller using PCI power management
3984  * states. */
3985 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3986 {
3987         u16 pmcsr, saved_config_space[32];
3988         int i, pos;
3989
3990         printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3991
3992         /* This is very nearly the same thing as
3993
3994            pci_save_state(pci_dev);
3995            pci_set_power_state(pci_dev, PCI_D3hot);
3996            pci_set_power_state(pci_dev, PCI_D0);
3997            pci_restore_state(pci_dev);
3998
3999            but we can't use these nice canned kernel routines on
4000            kexec, because they also check the MSI/MSI-X state in PCI
4001            configuration space and do the wrong thing when it is
4002            set/cleared.  Also, the pci_save/restore_state functions
4003            violate the ordering requirements for restoring the
4004            configuration space from the CCISS document (see the
4005            comment below).  So we roll our own .... */
4006
4007         for (i = 0; i < 32; i++)
4008                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4009
4010         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4011         if (pos == 0) {
4012                 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4013                 return -ENODEV;
4014         }
4015
4016         /* Quoting from the Open CISS Specification: "The Power
4017          * Management Control/Status Register (CSR) controls the power
4018          * state of the device.  The normal operating state is D0,
4019          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4020          * the controller, place the interface device in D3 then to
4021          * D0, this causes a secondary PCI reset which will reset the
4022          * controller." */
4023
4024         /* enter the D3hot power management state */
4025         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4026         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4027         pmcsr |= PCI_D3hot;
4028         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4029
4030         schedule_timeout_uninterruptible(HZ >> 1);
4031
4032         /* enter the D0 power management state */
4033         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4034         pmcsr |= PCI_D0;
4035         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4036
4037         schedule_timeout_uninterruptible(HZ >> 1);
4038
4039         /* Restore the PCI configuration space.  The Open CISS
4040          * Specification says, "Restore the PCI Configuration
4041          * Registers, offsets 00h through 60h. It is important to
4042          * restore the command register, 16-bits at offset 04h,
4043          * last. Do not restore the configuration status register,
4044          * 16-bits at offset 06h."  Note that the offset is 2*i. */
4045         for (i = 0; i < 32; i++) {
4046                 if (i == 2 || i == 3)
4047                         continue;
4048                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4049         }
4050         wmb();
4051         pci_write_config_word(pdev, 4, saved_config_space[2]);
4052
4053         return 0;
4054 }
4055
4056 /*
4057  *  This is it.  Find all the controllers and register them.  I really hate
4058  *  stealing all these major device numbers.
4059  *  returns the number of block devices registered.
4060  */
4061 static int __devinit cciss_init_one(struct pci_dev *pdev,
4062                                     const struct pci_device_id *ent)
4063 {
4064         int i;
4065         int j = 0;
4066         int rc;
4067         int dac, return_code;
4068         InquiryData_struct *inq_buff;
4069
4070         if (reset_devices) {
4071                 /* Reset the controller with a PCI power-cycle */
4072                 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4073                         return -ENODEV;
4074
4075                 /* Now try to get the controller to respond to a no-op. Some
4076                    devices (notably the HP Smart Array 5i Controller) need
4077                    up to 30 seconds to respond. */
4078                 for (i=0; i<30; i++) {
4079                         if (cciss_noop(pdev) == 0)
4080                                 break;
4081
4082                         schedule_timeout_uninterruptible(HZ);
4083                 }
4084                 if (i == 30) {
4085                         printk(KERN_ERR "cciss: controller seems dead\n");
4086                         return -EBUSY;
4087                 }
4088         }
4089
4090         i = alloc_cciss_hba();
4091         if (i < 0)
4092                 return -1;
4093
4094         hba[i]->busy_initializing = 1;
4095         INIT_HLIST_HEAD(&hba[i]->cmpQ);
4096         INIT_HLIST_HEAD(&hba[i]->reqQ);
4097         mutex_init(&hba[i]->busy_shutting_down);
4098
4099         if (cciss_pci_init(hba[i], pdev) != 0)
4100                 goto clean0;
4101
4102         sprintf(hba[i]->devname, "cciss%d", i);
4103         hba[i]->ctlr = i;
4104         hba[i]->pdev = pdev;
4105
4106         init_completion(&hba[i]->scan_wait);
4107
4108         if (cciss_create_hba_sysfs_entry(hba[i]))
4109                 goto clean0;
4110
4111         /* configure PCI DMA stuff */
4112         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4113                 dac = 1;
4114         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4115                 dac = 0;
4116         else {
4117                 printk(KERN_ERR "cciss: no suitable DMA available\n");
4118                 goto clean1;
4119         }
4120
4121         /*
4122          * register with the major number, or get a dynamic major number
4123          * by passing 0 as argument.  This is done for greater than
4124          * 8 controller support.
4125          */
4126         if (i < MAX_CTLR_ORIG)
4127                 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4128         rc = register_blkdev(hba[i]->major, hba[i]->devname);
4129         if (rc == -EBUSY || rc == -EINVAL) {
4130                 printk(KERN_ERR
4131                        "cciss:  Unable to get major number %d for %s "
4132                        "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4133                 goto clean1;
4134         } else {
4135                 if (i >= MAX_CTLR_ORIG)
4136                         hba[i]->major = rc;
4137         }
4138
4139         /* make sure the board interrupts are off */
4140         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4141         if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4142                         IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4143                 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4144                        hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4145                 goto clean2;
4146         }
4147
4148         printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4149                hba[i]->devname, pdev->device, pci_name(pdev),
4150                hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4151
4152         hba[i]->cmd_pool_bits =
4153             kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4154                         * sizeof(unsigned long), GFP_KERNEL);
4155         hba[i]->cmd_pool = (CommandList_struct *)
4156             pci_alloc_consistent(hba[i]->pdev,
4157                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4158                     &(hba[i]->cmd_pool_dhandle));
4159         hba[i]->errinfo_pool = (ErrorInfo_struct *)
4160             pci_alloc_consistent(hba[i]->pdev,
4161                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4162                     &(hba[i]->errinfo_pool_dhandle));
4163         if ((hba[i]->cmd_pool_bits == NULL)
4164             || (hba[i]->cmd_pool == NULL)
4165             || (hba[i]->errinfo_pool == NULL)) {
4166                 printk(KERN_ERR "cciss: out of memory");
4167                 goto clean4;
4168         }
4169         spin_lock_init(&hba[i]->lock);
4170
4171         /* Initialize the pdev driver private data.
4172            have it point to hba[i].  */
4173         pci_set_drvdata(pdev, hba[i]);
4174         /* command and error info recs zeroed out before
4175            they are used */
4176         memset(hba[i]->cmd_pool_bits, 0,
4177                DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4178                         * sizeof(unsigned long));
4179
4180         hba[i]->num_luns = 0;
4181         hba[i]->highest_lun = -1;
4182         for (j = 0; j < CISS_MAX_LUN; j++) {
4183                 hba[i]->drv[j].raid_level = -1;
4184                 hba[i]->drv[j].queue = NULL;
4185                 hba[i]->gendisk[j] = NULL;
4186         }
4187
4188         cciss_scsi_setup(i);
4189
4190         /* Turn the interrupts on so we can service requests */
4191         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4192
4193         /* Get the firmware version */
4194         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4195         if (inq_buff == NULL) {
4196                 printk(KERN_ERR "cciss: out of memory\n");
4197                 goto clean4;
4198         }
4199
4200         return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4201                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4202         if (return_code == IO_OK) {
4203                 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4204                 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4205                 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4206                 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4207         } else {         /* send command failed */
4208                 printk(KERN_WARNING "cciss: unable to determine firmware"
4209                         " version of controller\n");
4210         }
4211         kfree(inq_buff);
4212
4213         cciss_procinit(i);
4214
4215         hba[i]->cciss_max_sectors = 2048;
4216
4217         rebuild_lun_table(hba[i], 1);
4218         hba[i]->busy_initializing = 0;
4219         return 1;
4220
4221 clean4:
4222         kfree(hba[i]->cmd_pool_bits);
4223         if (hba[i]->cmd_pool)
4224                 pci_free_consistent(hba[i]->pdev,
4225                                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4226                                     hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4227         if (hba[i]->errinfo_pool)
4228                 pci_free_consistent(hba[i]->pdev,
4229                                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4230                                     hba[i]->errinfo_pool,
4231                                     hba[i]->errinfo_pool_dhandle);
4232         free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4233 clean2:
4234         unregister_blkdev(hba[i]->major, hba[i]->devname);
4235 clean1:
4236         cciss_destroy_hba_sysfs_entry(hba[i]);
4237 clean0:
4238         hba[i]->busy_initializing = 0;
4239         /* cleanup any queues that may have been initialized */
4240         for (j=0; j <= hba[i]->highest_lun; j++){
4241                 drive_info_struct *drv = &(hba[i]->drv[j]);
4242                 if (drv->queue)
4243                         blk_cleanup_queue(drv->queue);
4244         }
4245         /*
4246          * Deliberately omit pci_disable_device(): it does something nasty to
4247          * Smart Array controllers that pci_enable_device does not undo
4248          */
4249         pci_release_regions(pdev);
4250         pci_set_drvdata(pdev, NULL);
4251         free_hba(i);
4252         return -1;
4253 }
4254
4255 static void cciss_shutdown(struct pci_dev *pdev)
4256 {
4257         ctlr_info_t *tmp_ptr;
4258         int i;
4259         char flush_buf[4];
4260         int return_code;
4261
4262         tmp_ptr = pci_get_drvdata(pdev);
4263         if (tmp_ptr == NULL)
4264                 return;
4265         i = tmp_ptr->ctlr;
4266         if (hba[i] == NULL)
4267                 return;
4268
4269         /* Turn board interrupts off  and send the flush cache command */
4270         /* sendcmd will turn off interrupt, and send the flush...
4271          * To write all data in the battery backed cache to disks */
4272         memset(flush_buf, 0, 4);
4273         return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4274                 CTLR_LUNID, TYPE_CMD);
4275         if (return_code == IO_OK) {
4276                 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4277         } else {
4278                 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4279         }
4280         free_irq(hba[i]->intr[2], hba[i]);
4281 }
4282
4283 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4284 {
4285         ctlr_info_t *tmp_ptr;
4286         int i, j;
4287
4288         if (pci_get_drvdata(pdev) == NULL) {
4289                 printk(KERN_ERR "cciss: Unable to remove device \n");
4290                 return;
4291         }
4292
4293         tmp_ptr = pci_get_drvdata(pdev);
4294         i = tmp_ptr->ctlr;
4295         if (hba[i] == NULL) {
4296                 printk(KERN_ERR "cciss: device appears to "
4297                        "already be removed \n");
4298                 return;
4299         }
4300
4301         mutex_lock(&hba[i]->busy_shutting_down);
4302
4303         remove_from_scan_list(hba[i]);
4304         remove_proc_entry(hba[i]->devname, proc_cciss);
4305         unregister_blkdev(hba[i]->major, hba[i]->devname);
4306
4307         /* remove it from the disk list */
4308         for (j = 0; j < CISS_MAX_LUN; j++) {
4309                 struct gendisk *disk = hba[i]->gendisk[j];
4310                 if (disk) {
4311                         struct request_queue *q = disk->queue;
4312
4313                         if (disk->flags & GENHD_FL_UP) {
4314                                 cciss_destroy_ld_sysfs_entry(hba[i], j);
4315                                 del_gendisk(disk);
4316                         }
4317                         if (q)
4318                                 blk_cleanup_queue(q);
4319                 }
4320         }
4321
4322 #ifdef CONFIG_CISS_SCSI_TAPE
4323         cciss_unregister_scsi(i);       /* unhook from SCSI subsystem */
4324 #endif
4325
4326         cciss_shutdown(pdev);
4327
4328 #ifdef CONFIG_PCI_MSI
4329         if (hba[i]->msix_vector)
4330                 pci_disable_msix(hba[i]->pdev);
4331         else if (hba[i]->msi_vector)
4332                 pci_disable_msi(hba[i]->pdev);
4333 #endif                          /* CONFIG_PCI_MSI */
4334
4335         iounmap(hba[i]->vaddr);
4336
4337         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4338                             hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4339         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4340                             hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4341         kfree(hba[i]->cmd_pool_bits);
4342         /*
4343          * Deliberately omit pci_disable_device(): it does something nasty to
4344          * Smart Array controllers that pci_enable_device does not undo
4345          */
4346         pci_release_regions(pdev);
4347         pci_set_drvdata(pdev, NULL);
4348         cciss_destroy_hba_sysfs_entry(hba[i]);
4349         mutex_unlock(&hba[i]->busy_shutting_down);
4350         free_hba(i);
4351 }
4352
4353 static struct pci_driver cciss_pci_driver = {
4354         .name = "cciss",
4355         .probe = cciss_init_one,
4356         .remove = __devexit_p(cciss_remove_one),
4357         .id_table = cciss_pci_device_id,        /* id_table */
4358         .shutdown = cciss_shutdown,
4359 };
4360
4361 /*
4362  *  This is it.  Register the PCI driver information for the cards we control
4363  *  the OS will call our registered routines when it finds one of our cards.
4364  */
4365 static int __init cciss_init(void)
4366 {
4367         int err;
4368
4369         /*
4370          * The hardware requires that commands are aligned on a 64-bit
4371          * boundary. Given that we use pci_alloc_consistent() to allocate an
4372          * array of them, the size must be a multiple of 8 bytes.
4373          */
4374         BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4375
4376         printk(KERN_INFO DRIVER_NAME "\n");
4377
4378         err = bus_register(&cciss_bus_type);
4379         if (err)
4380                 return err;
4381
4382         /* Start the scan thread */
4383         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4384         if (IS_ERR(cciss_scan_thread)) {
4385                 err = PTR_ERR(cciss_scan_thread);
4386                 goto err_bus_unregister;
4387         }
4388
4389         /* Register for our PCI devices */
4390         err = pci_register_driver(&cciss_pci_driver);
4391         if (err)
4392                 goto err_thread_stop;
4393
4394         return err;
4395
4396 err_thread_stop:
4397         kthread_stop(cciss_scan_thread);
4398 err_bus_unregister:
4399         bus_unregister(&cciss_bus_type);
4400
4401         return err;
4402 }
4403
4404 static void __exit cciss_cleanup(void)
4405 {
4406         int i;
4407
4408         pci_unregister_driver(&cciss_pci_driver);
4409         /* double check that all controller entrys have been removed */
4410         for (i = 0; i < MAX_CTLR; i++) {
4411                 if (hba[i] != NULL) {
4412                         printk(KERN_WARNING "cciss: had to remove"
4413                                " controller %d\n", i);
4414                         cciss_remove_one(hba[i]->pdev);
4415                 }
4416         }
4417         kthread_stop(cciss_scan_thread);
4418         remove_proc_entry("driver/cciss", NULL);
4419         bus_unregister(&cciss_bus_type);
4420 }
4421
4422 static void fail_all_cmds(unsigned long ctlr)
4423 {
4424         /* If we get here, the board is apparently dead. */
4425         ctlr_info_t *h = hba[ctlr];
4426         CommandList_struct *c;
4427         unsigned long flags;
4428
4429         printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4430         h->alive = 0;           /* the controller apparently died... */
4431
4432         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4433
4434         pci_disable_device(h->pdev);    /* Make sure it is really dead. */
4435
4436         /* move everything off the request queue onto the completed queue */
4437         while (!hlist_empty(&h->reqQ)) {
4438                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4439                 removeQ(c);
4440                 h->Qdepth--;
4441                 addQ(&h->cmpQ, c);
4442         }
4443
4444         /* Now, fail everything on the completed queue with a HW error */
4445         while (!hlist_empty(&h->cmpQ)) {
4446                 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4447                 removeQ(c);
4448                 if (c->cmd_type != CMD_MSG_STALE)
4449                         c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4450                 if (c->cmd_type == CMD_RWREQ) {
4451                         complete_command(h, c, 0);
4452                 } else if (c->cmd_type == CMD_IOCTL_PEND)
4453                         complete(c->waiting);
4454 #ifdef CONFIG_CISS_SCSI_TAPE
4455                 else if (c->cmd_type == CMD_SCSI)
4456                         complete_scsi_command(c, 0, 0);
4457 #endif
4458         }
4459         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4460         return;
4461 }
4462
4463 module_init(cciss_init);
4464 module_exit(cciss_cleanup);