fb5be2d95d52c57a8ac8aab4f0375579a8852de6
[safe/jmp/linux-2.6] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66                         " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67                         " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 #include "cciss_cmd.h"
72 #include "cciss.h"
73 #include <linux/cciss_ioctl.h>
74
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
78         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
104         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
105                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111 /*  board_id = Subsystem Device ID & Vendor ID
112  *  product = Marketing Name for the board
113  *  access = Address of the struct of function pointers
114  */
115 static struct board_type products[] = {
116         {0x40700E11, "Smart Array 5300", &SA5_access},
117         {0x40800E11, "Smart Array 5i", &SA5B_access},
118         {0x40820E11, "Smart Array 532", &SA5B_access},
119         {0x40830E11, "Smart Array 5312", &SA5B_access},
120         {0x409A0E11, "Smart Array 641", &SA5_access},
121         {0x409B0E11, "Smart Array 642", &SA5_access},
122         {0x409C0E11, "Smart Array 6400", &SA5_access},
123         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124         {0x40910E11, "Smart Array 6i", &SA5_access},
125         {0x3225103C, "Smart Array P600", &SA5_access},
126         {0x3223103C, "Smart Array P800", &SA5_access},
127         {0x3234103C, "Smart Array P400", &SA5_access},
128         {0x3235103C, "Smart Array P400i", &SA5_access},
129         {0x3211103C, "Smart Array E200i", &SA5_access},
130         {0x3212103C, "Smart Array E200", &SA5_access},
131         {0x3213103C, "Smart Array E200i", &SA5_access},
132         {0x3214103C, "Smart Array E200i", &SA5_access},
133         {0x3215103C, "Smart Array E200i", &SA5_access},
134         {0x3237103C, "Smart Array E500", &SA5_access},
135         {0x323D103C, "Smart Array P700m", &SA5_access},
136         {0x3241103C, "Smart Array P212", &SA5_access},
137         {0x3243103C, "Smart Array P410", &SA5_access},
138         {0x3245103C, "Smart Array P410i", &SA5_access},
139         {0x3247103C, "Smart Array P411", &SA5_access},
140         {0x3249103C, "Smart Array P812", &SA5_access},
141         {0x324A103C, "Smart Array P712m", &SA5_access},
142         {0x324B103C, "Smart Array P711m", &SA5_access},
143         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 };
145
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
149
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
152
153 #define MAX_CTLR        32
154
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG   8
157
158 static ctlr_info_t *hba[MAX_CTLR];
159
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
163
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166 static int cciss_open(struct block_device *bdev, fmode_t mode);
167 static int cciss_release(struct gendisk *disk, fmode_t mode);
168 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169                        unsigned int cmd, unsigned long arg);
170 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171
172 static int cciss_revalidate(struct gendisk *disk);
173 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
174 static int deregister_disk(ctlr_info_t *h, int drv_index,
175                            int clear_all, int via_ioctl);
176
177 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178                         sector_t *total_size, unsigned int *block_size);
179 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180                         sector_t *total_size, unsigned int *block_size);
181 static void cciss_geometry_inquiry(int ctlr, int logvol,
182                         int withirq, sector_t total_size,
183                         unsigned int block_size, InquiryData_struct *inq_buff,
184                                    drive_info_struct *drv);
185 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186                                            __u32);
187 static void start_io(ctlr_info_t *h);
188 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189                    __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191                         __u8 page_code, unsigned char scsi3addr[],
192                         int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194         int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197 static void fail_all_cmds(unsigned long ctlr);
198 static int add_to_scan_list(struct ctlr_info *h);
199 static int scan_thread(void *data);
200 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201 static void cciss_hba_release(struct device *dev);
202 static void cciss_device_release(struct device *dev);
203 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
204 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
205
206 #ifdef CONFIG_PROC_FS
207 static void cciss_procinit(int i);
208 #else
209 static void cciss_procinit(int i)
210 {
211 }
212 #endif                          /* CONFIG_PROC_FS */
213
214 #ifdef CONFIG_COMPAT
215 static int cciss_compat_ioctl(struct block_device *, fmode_t,
216                               unsigned, unsigned long);
217 #endif
218
219 static const struct block_device_operations cciss_fops = {
220         .owner = THIS_MODULE,
221         .open = cciss_open,
222         .release = cciss_release,
223         .locked_ioctl = cciss_ioctl,
224         .getgeo = cciss_getgeo,
225 #ifdef CONFIG_COMPAT
226         .compat_ioctl = cciss_compat_ioctl,
227 #endif
228         .revalidate_disk = cciss_revalidate,
229 };
230
231 /*
232  * Enqueuing and dequeuing functions for cmdlists.
233  */
234 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
235 {
236         hlist_add_head(&c->list, list);
237 }
238
239 static inline void removeQ(CommandList_struct *c)
240 {
241         /*
242          * After kexec/dump some commands might still
243          * be in flight, which the firmware will try
244          * to complete. Resetting the firmware doesn't work
245          * with old fw revisions, so we have to mark
246          * them off as 'stale' to prevent the driver from
247          * falling over.
248          */
249         if (WARN_ON(hlist_unhashed(&c->list))) {
250                 c->cmd_type = CMD_MSG_STALE;
251                 return;
252         }
253
254         hlist_del_init(&c->list);
255 }
256
257 #include "cciss_scsi.c"         /* For SCSI tape support */
258
259 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
260         "UNKNOWN"
261 };
262 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
263
264 #ifdef CONFIG_PROC_FS
265
266 /*
267  * Report information about this controller.
268  */
269 #define ENG_GIG 1000000000
270 #define ENG_GIG_FACTOR (ENG_GIG/512)
271 #define ENGAGE_SCSI     "engage scsi"
272
273 static struct proc_dir_entry *proc_cciss;
274
275 static void cciss_seq_show_header(struct seq_file *seq)
276 {
277         ctlr_info_t *h = seq->private;
278
279         seq_printf(seq, "%s: HP %s Controller\n"
280                 "Board ID: 0x%08lx\n"
281                 "Firmware Version: %c%c%c%c\n"
282                 "IRQ: %d\n"
283                 "Logical drives: %d\n"
284                 "Current Q depth: %d\n"
285                 "Current # commands on controller: %d\n"
286                 "Max Q depth since init: %d\n"
287                 "Max # commands on controller since init: %d\n"
288                 "Max SG entries since init: %d\n",
289                 h->devname,
290                 h->product_name,
291                 (unsigned long)h->board_id,
292                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
293                 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
294                 h->num_luns,
295                 h->Qdepth, h->commands_outstanding,
296                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
297
298 #ifdef CONFIG_CISS_SCSI_TAPE
299         cciss_seq_tape_report(seq, h->ctlr);
300 #endif /* CONFIG_CISS_SCSI_TAPE */
301 }
302
303 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
304 {
305         ctlr_info_t *h = seq->private;
306         unsigned ctlr = h->ctlr;
307         unsigned long flags;
308
309         /* prevent displaying bogus info during configuration
310          * or deconfiguration of a logical volume
311          */
312         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
313         if (h->busy_configuring) {
314                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
315                 return ERR_PTR(-EBUSY);
316         }
317         h->busy_configuring = 1;
318         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
319
320         if (*pos == 0)
321                 cciss_seq_show_header(seq);
322
323         return pos;
324 }
325
326 static int cciss_seq_show(struct seq_file *seq, void *v)
327 {
328         sector_t vol_sz, vol_sz_frac;
329         ctlr_info_t *h = seq->private;
330         unsigned ctlr = h->ctlr;
331         loff_t *pos = v;
332         drive_info_struct *drv = h->drv[*pos];
333
334         if (*pos > h->highest_lun)
335                 return 0;
336
337         if (drv->heads == 0)
338                 return 0;
339
340         vol_sz = drv->nr_blocks;
341         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
342         vol_sz_frac *= 100;
343         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
344
345         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
346                 drv->raid_level = RAID_UNKNOWN;
347         seq_printf(seq, "cciss/c%dd%d:"
348                         "\t%4u.%02uGB\tRAID %s\n",
349                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
350                         raid_label[drv->raid_level]);
351         return 0;
352 }
353
354 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
355 {
356         ctlr_info_t *h = seq->private;
357
358         if (*pos > h->highest_lun)
359                 return NULL;
360         *pos += 1;
361
362         return pos;
363 }
364
365 static void cciss_seq_stop(struct seq_file *seq, void *v)
366 {
367         ctlr_info_t *h = seq->private;
368
369         /* Only reset h->busy_configuring if we succeeded in setting
370          * it during cciss_seq_start. */
371         if (v == ERR_PTR(-EBUSY))
372                 return;
373
374         h->busy_configuring = 0;
375 }
376
377 static const struct seq_operations cciss_seq_ops = {
378         .start = cciss_seq_start,
379         .show  = cciss_seq_show,
380         .next  = cciss_seq_next,
381         .stop  = cciss_seq_stop,
382 };
383
384 static int cciss_seq_open(struct inode *inode, struct file *file)
385 {
386         int ret = seq_open(file, &cciss_seq_ops);
387         struct seq_file *seq = file->private_data;
388
389         if (!ret)
390                 seq->private = PDE(inode)->data;
391
392         return ret;
393 }
394
395 static ssize_t
396 cciss_proc_write(struct file *file, const char __user *buf,
397                  size_t length, loff_t *ppos)
398 {
399         int err;
400         char *buffer;
401
402 #ifndef CONFIG_CISS_SCSI_TAPE
403         return -EINVAL;
404 #endif
405
406         if (!buf || length > PAGE_SIZE - 1)
407                 return -EINVAL;
408
409         buffer = (char *)__get_free_page(GFP_KERNEL);
410         if (!buffer)
411                 return -ENOMEM;
412
413         err = -EFAULT;
414         if (copy_from_user(buffer, buf, length))
415                 goto out;
416         buffer[length] = '\0';
417
418 #ifdef CONFIG_CISS_SCSI_TAPE
419         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
420                 struct seq_file *seq = file->private_data;
421                 ctlr_info_t *h = seq->private;
422                 int rc;
423
424                 rc = cciss_engage_scsi(h->ctlr);
425                 if (rc != 0)
426                         err = -rc;
427                 else
428                         err = length;
429         } else
430 #endif /* CONFIG_CISS_SCSI_TAPE */
431                 err = -EINVAL;
432         /* might be nice to have "disengage" too, but it's not
433            safely possible. (only 1 module use count, lock issues.) */
434
435 out:
436         free_page((unsigned long)buffer);
437         return err;
438 }
439
440 static const struct file_operations cciss_proc_fops = {
441         .owner   = THIS_MODULE,
442         .open    = cciss_seq_open,
443         .read    = seq_read,
444         .llseek  = seq_lseek,
445         .release = seq_release,
446         .write   = cciss_proc_write,
447 };
448
449 static void __devinit cciss_procinit(int i)
450 {
451         struct proc_dir_entry *pde;
452
453         if (proc_cciss == NULL)
454                 proc_cciss = proc_mkdir("driver/cciss", NULL);
455         if (!proc_cciss)
456                 return;
457         pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
458                                         S_IROTH, proc_cciss,
459                                         &cciss_proc_fops, hba[i]);
460 }
461 #endif                          /* CONFIG_PROC_FS */
462
463 #define MAX_PRODUCT_NAME_LEN 19
464
465 #define to_hba(n) container_of(n, struct ctlr_info, dev)
466 #define to_drv(n) container_of(n, drive_info_struct, dev)
467
468 static ssize_t host_store_rescan(struct device *dev,
469                                  struct device_attribute *attr,
470                                  const char *buf, size_t count)
471 {
472         struct ctlr_info *h = to_hba(dev);
473
474         add_to_scan_list(h);
475         wake_up_process(cciss_scan_thread);
476         wait_for_completion_interruptible(&h->scan_wait);
477
478         return count;
479 }
480 DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
481
482 static ssize_t dev_show_unique_id(struct device *dev,
483                                  struct device_attribute *attr,
484                                  char *buf)
485 {
486         drive_info_struct *drv = to_drv(dev);
487         struct ctlr_info *h = to_hba(drv->dev.parent);
488         __u8 sn[16];
489         unsigned long flags;
490         int ret = 0;
491
492         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
493         if (h->busy_configuring)
494                 ret = -EBUSY;
495         else
496                 memcpy(sn, drv->serial_no, sizeof(sn));
497         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
498
499         if (ret)
500                 return ret;
501         else
502                 return snprintf(buf, 16 * 2 + 2,
503                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
504                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
505                                 sn[0], sn[1], sn[2], sn[3],
506                                 sn[4], sn[5], sn[6], sn[7],
507                                 sn[8], sn[9], sn[10], sn[11],
508                                 sn[12], sn[13], sn[14], sn[15]);
509 }
510 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
511
512 static ssize_t dev_show_vendor(struct device *dev,
513                                struct device_attribute *attr,
514                                char *buf)
515 {
516         drive_info_struct *drv = to_drv(dev);
517         struct ctlr_info *h = to_hba(drv->dev.parent);
518         char vendor[VENDOR_LEN + 1];
519         unsigned long flags;
520         int ret = 0;
521
522         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
523         if (h->busy_configuring)
524                 ret = -EBUSY;
525         else
526                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
527         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
528
529         if (ret)
530                 return ret;
531         else
532                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
533 }
534 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
535
536 static ssize_t dev_show_model(struct device *dev,
537                               struct device_attribute *attr,
538                               char *buf)
539 {
540         drive_info_struct *drv = to_drv(dev);
541         struct ctlr_info *h = to_hba(drv->dev.parent);
542         char model[MODEL_LEN + 1];
543         unsigned long flags;
544         int ret = 0;
545
546         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
547         if (h->busy_configuring)
548                 ret = -EBUSY;
549         else
550                 memcpy(model, drv->model, MODEL_LEN + 1);
551         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
552
553         if (ret)
554                 return ret;
555         else
556                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
557 }
558 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
559
560 static ssize_t dev_show_rev(struct device *dev,
561                             struct device_attribute *attr,
562                             char *buf)
563 {
564         drive_info_struct *drv = to_drv(dev);
565         struct ctlr_info *h = to_hba(drv->dev.parent);
566         char rev[REV_LEN + 1];
567         unsigned long flags;
568         int ret = 0;
569
570         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
571         if (h->busy_configuring)
572                 ret = -EBUSY;
573         else
574                 memcpy(rev, drv->rev, REV_LEN + 1);
575         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
576
577         if (ret)
578                 return ret;
579         else
580                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
581 }
582 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
583
584 static ssize_t cciss_show_lunid(struct device *dev,
585                                 struct device_attribute *attr, char *buf)
586 {
587         drive_info_struct *drv = to_drv(dev);
588         struct ctlr_info *h = to_hba(drv->dev.parent);
589         unsigned long flags;
590         unsigned char lunid[8];
591
592         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
593         if (h->busy_configuring) {
594                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
595                 return -EBUSY;
596         }
597         if (!drv->heads) {
598                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
599                 return -ENOTTY;
600         }
601         memcpy(lunid, drv->LunID, sizeof(lunid));
602         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
603         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
604                 lunid[0], lunid[1], lunid[2], lunid[3],
605                 lunid[4], lunid[5], lunid[6], lunid[7]);
606 }
607 DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
608
609 static ssize_t cciss_show_raid_level(struct device *dev,
610                                      struct device_attribute *attr, char *buf)
611 {
612         drive_info_struct *drv = to_drv(dev);
613         struct ctlr_info *h = to_hba(drv->dev.parent);
614         int raid;
615         unsigned long flags;
616
617         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
618         if (h->busy_configuring) {
619                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
620                 return -EBUSY;
621         }
622         raid = drv->raid_level;
623         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
624         if (raid < 0 || raid > RAID_UNKNOWN)
625                 raid = RAID_UNKNOWN;
626
627         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
628                         raid_label[raid]);
629 }
630 DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
631
632 static ssize_t cciss_show_usage_count(struct device *dev,
633                                       struct device_attribute *attr, char *buf)
634 {
635         drive_info_struct *drv = to_drv(dev);
636         struct ctlr_info *h = to_hba(drv->dev.parent);
637         unsigned long flags;
638         int count;
639
640         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
641         if (h->busy_configuring) {
642                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
643                 return -EBUSY;
644         }
645         count = drv->usage_count;
646         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
647         return snprintf(buf, 20, "%d\n", count);
648 }
649 DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
650
651 static struct attribute *cciss_host_attrs[] = {
652         &dev_attr_rescan.attr,
653         NULL
654 };
655
656 static struct attribute_group cciss_host_attr_group = {
657         .attrs = cciss_host_attrs,
658 };
659
660 static const struct attribute_group *cciss_host_attr_groups[] = {
661         &cciss_host_attr_group,
662         NULL
663 };
664
665 static struct device_type cciss_host_type = {
666         .name           = "cciss_host",
667         .groups         = cciss_host_attr_groups,
668         .release        = cciss_hba_release,
669 };
670
671 static struct attribute *cciss_dev_attrs[] = {
672         &dev_attr_unique_id.attr,
673         &dev_attr_model.attr,
674         &dev_attr_vendor.attr,
675         &dev_attr_rev.attr,
676         &dev_attr_lunid.attr,
677         &dev_attr_raid_level.attr,
678         &dev_attr_usage_count.attr,
679         NULL
680 };
681
682 static struct attribute_group cciss_dev_attr_group = {
683         .attrs = cciss_dev_attrs,
684 };
685
686 static const struct attribute_group *cciss_dev_attr_groups[] = {
687         &cciss_dev_attr_group,
688         NULL
689 };
690
691 static struct device_type cciss_dev_type = {
692         .name           = "cciss_device",
693         .groups         = cciss_dev_attr_groups,
694         .release        = cciss_device_release,
695 };
696
697 static struct bus_type cciss_bus_type = {
698         .name           = "cciss",
699 };
700
701 /*
702  * cciss_hba_release is called when the reference count
703  * of h->dev goes to zero.
704  */
705 static void cciss_hba_release(struct device *dev)
706 {
707         /*
708          * nothing to do, but need this to avoid a warning
709          * about not having a release handler from lib/kref.c.
710          */
711 }
712
713 /*
714  * Initialize sysfs entry for each controller.  This sets up and registers
715  * the 'cciss#' directory for each individual controller under
716  * /sys/bus/pci/devices/<dev>/.
717  */
718 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
719 {
720         device_initialize(&h->dev);
721         h->dev.type = &cciss_host_type;
722         h->dev.bus = &cciss_bus_type;
723         dev_set_name(&h->dev, "%s", h->devname);
724         h->dev.parent = &h->pdev->dev;
725
726         return device_add(&h->dev);
727 }
728
729 /*
730  * Remove sysfs entries for an hba.
731  */
732 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
733 {
734         device_del(&h->dev);
735         put_device(&h->dev); /* final put. */
736 }
737
738 /* cciss_device_release is called when the reference count
739  * of h->drv[x]dev goes to zero.
740  */
741 static void cciss_device_release(struct device *dev)
742 {
743         drive_info_struct *drv = to_drv(dev);
744         kfree(drv);
745 }
746
747 /*
748  * Initialize sysfs for each logical drive.  This sets up and registers
749  * the 'c#d#' directory for each individual logical drive under
750  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
751  * /sys/block/cciss!c#d# to this entry.
752  */
753 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
754                                        int drv_index)
755 {
756         struct device *dev;
757
758         if (h->drv[drv_index]->device_initialized)
759                 return 0;
760
761         dev = &h->drv[drv_index]->dev;
762         device_initialize(dev);
763         dev->type = &cciss_dev_type;
764         dev->bus = &cciss_bus_type;
765         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
766         dev->parent = &h->dev;
767         h->drv[drv_index]->device_initialized = 1;
768         return device_add(dev);
769 }
770
771 /*
772  * Remove sysfs entries for a logical drive.
773  */
774 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
775         int ctlr_exiting)
776 {
777         struct device *dev = &h->drv[drv_index]->dev;
778
779         /* special case for c*d0, we only destroy it on controller exit */
780         if (drv_index == 0 && !ctlr_exiting)
781                 return;
782
783         device_del(dev);
784         put_device(dev); /* the "final" put. */
785         h->drv[drv_index] = NULL;
786 }
787
788 /*
789  * For operations that cannot sleep, a command block is allocated at init,
790  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
791  * which ones are free or in use.  For operations that can wait for kmalloc
792  * to possible sleep, this routine can be called with get_from_pool set to 0.
793  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
794  */
795 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
796 {
797         CommandList_struct *c;
798         int i;
799         u64bit temp64;
800         dma_addr_t cmd_dma_handle, err_dma_handle;
801
802         if (!get_from_pool) {
803                 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
804                         sizeof(CommandList_struct), &cmd_dma_handle);
805                 if (c == NULL)
806                         return NULL;
807                 memset(c, 0, sizeof(CommandList_struct));
808
809                 c->cmdindex = -1;
810
811                 c->err_info = (ErrorInfo_struct *)
812                     pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
813                             &err_dma_handle);
814
815                 if (c->err_info == NULL) {
816                         pci_free_consistent(h->pdev,
817                                 sizeof(CommandList_struct), c, cmd_dma_handle);
818                         return NULL;
819                 }
820                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
821         } else {                /* get it out of the controllers pool */
822
823                 do {
824                         i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
825                         if (i == h->nr_cmds)
826                                 return NULL;
827                 } while (test_and_set_bit
828                          (i & (BITS_PER_LONG - 1),
829                           h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
830 #ifdef CCISS_DEBUG
831                 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
832 #endif
833                 c = h->cmd_pool + i;
834                 memset(c, 0, sizeof(CommandList_struct));
835                 cmd_dma_handle = h->cmd_pool_dhandle
836                     + i * sizeof(CommandList_struct);
837                 c->err_info = h->errinfo_pool + i;
838                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
839                 err_dma_handle = h->errinfo_pool_dhandle
840                     + i * sizeof(ErrorInfo_struct);
841                 h->nr_allocs++;
842
843                 c->cmdindex = i;
844         }
845
846         INIT_HLIST_NODE(&c->list);
847         c->busaddr = (__u32) cmd_dma_handle;
848         temp64.val = (__u64) err_dma_handle;
849         c->ErrDesc.Addr.lower = temp64.val32.lower;
850         c->ErrDesc.Addr.upper = temp64.val32.upper;
851         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
852
853         c->ctlr = h->ctlr;
854         return c;
855 }
856
857 /*
858  * Frees a command block that was previously allocated with cmd_alloc().
859  */
860 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
861 {
862         int i;
863         u64bit temp64;
864
865         if (!got_from_pool) {
866                 temp64.val32.lower = c->ErrDesc.Addr.lower;
867                 temp64.val32.upper = c->ErrDesc.Addr.upper;
868                 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
869                                     c->err_info, (dma_addr_t) temp64.val);
870                 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
871                                     c, (dma_addr_t) c->busaddr);
872         } else {
873                 i = c - h->cmd_pool;
874                 clear_bit(i & (BITS_PER_LONG - 1),
875                           h->cmd_pool_bits + (i / BITS_PER_LONG));
876                 h->nr_frees++;
877         }
878 }
879
880 static inline ctlr_info_t *get_host(struct gendisk *disk)
881 {
882         return disk->queue->queuedata;
883 }
884
885 static inline drive_info_struct *get_drv(struct gendisk *disk)
886 {
887         return disk->private_data;
888 }
889
890 /*
891  * Open.  Make sure the device is really there.
892  */
893 static int cciss_open(struct block_device *bdev, fmode_t mode)
894 {
895         ctlr_info_t *host = get_host(bdev->bd_disk);
896         drive_info_struct *drv = get_drv(bdev->bd_disk);
897
898 #ifdef CCISS_DEBUG
899         printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
900 #endif                          /* CCISS_DEBUG */
901
902         if (drv->busy_configuring)
903                 return -EBUSY;
904         /*
905          * Root is allowed to open raw volume zero even if it's not configured
906          * so array config can still work. Root is also allowed to open any
907          * volume that has a LUN ID, so it can issue IOCTL to reread the
908          * disk information.  I don't think I really like this
909          * but I'm already using way to many device nodes to claim another one
910          * for "raw controller".
911          */
912         if (drv->heads == 0) {
913                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
914                         /* if not node 0 make sure it is a partition = 0 */
915                         if (MINOR(bdev->bd_dev) & 0x0f) {
916                                 return -ENXIO;
917                                 /* if it is, make sure we have a LUN ID */
918                         } else if (memcmp(drv->LunID, CTLR_LUNID,
919                                 sizeof(drv->LunID))) {
920                                 return -ENXIO;
921                         }
922                 }
923                 if (!capable(CAP_SYS_ADMIN))
924                         return -EPERM;
925         }
926         drv->usage_count++;
927         host->usage_count++;
928         return 0;
929 }
930
931 /*
932  * Close.  Sync first.
933  */
934 static int cciss_release(struct gendisk *disk, fmode_t mode)
935 {
936         ctlr_info_t *host = get_host(disk);
937         drive_info_struct *drv = get_drv(disk);
938
939 #ifdef CCISS_DEBUG
940         printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
941 #endif                          /* CCISS_DEBUG */
942
943         drv->usage_count--;
944         host->usage_count--;
945         return 0;
946 }
947
948 #ifdef CONFIG_COMPAT
949
950 static int do_ioctl(struct block_device *bdev, fmode_t mode,
951                     unsigned cmd, unsigned long arg)
952 {
953         int ret;
954         lock_kernel();
955         ret = cciss_ioctl(bdev, mode, cmd, arg);
956         unlock_kernel();
957         return ret;
958 }
959
960 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
961                                   unsigned cmd, unsigned long arg);
962 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
963                                       unsigned cmd, unsigned long arg);
964
965 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
966                               unsigned cmd, unsigned long arg)
967 {
968         switch (cmd) {
969         case CCISS_GETPCIINFO:
970         case CCISS_GETINTINFO:
971         case CCISS_SETINTINFO:
972         case CCISS_GETNODENAME:
973         case CCISS_SETNODENAME:
974         case CCISS_GETHEARTBEAT:
975         case CCISS_GETBUSTYPES:
976         case CCISS_GETFIRMVER:
977         case CCISS_GETDRIVVER:
978         case CCISS_REVALIDVOLS:
979         case CCISS_DEREGDISK:
980         case CCISS_REGNEWDISK:
981         case CCISS_REGNEWD:
982         case CCISS_RESCANDISK:
983         case CCISS_GETLUNINFO:
984                 return do_ioctl(bdev, mode, cmd, arg);
985
986         case CCISS_PASSTHRU32:
987                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
988         case CCISS_BIG_PASSTHRU32:
989                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
990
991         default:
992                 return -ENOIOCTLCMD;
993         }
994 }
995
996 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
997                                   unsigned cmd, unsigned long arg)
998 {
999         IOCTL32_Command_struct __user *arg32 =
1000             (IOCTL32_Command_struct __user *) arg;
1001         IOCTL_Command_struct arg64;
1002         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1003         int err;
1004         u32 cp;
1005
1006         err = 0;
1007         err |=
1008             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1009                            sizeof(arg64.LUN_info));
1010         err |=
1011             copy_from_user(&arg64.Request, &arg32->Request,
1012                            sizeof(arg64.Request));
1013         err |=
1014             copy_from_user(&arg64.error_info, &arg32->error_info,
1015                            sizeof(arg64.error_info));
1016         err |= get_user(arg64.buf_size, &arg32->buf_size);
1017         err |= get_user(cp, &arg32->buf);
1018         arg64.buf = compat_ptr(cp);
1019         err |= copy_to_user(p, &arg64, sizeof(arg64));
1020
1021         if (err)
1022                 return -EFAULT;
1023
1024         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1025         if (err)
1026                 return err;
1027         err |=
1028             copy_in_user(&arg32->error_info, &p->error_info,
1029                          sizeof(arg32->error_info));
1030         if (err)
1031                 return -EFAULT;
1032         return err;
1033 }
1034
1035 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1036                                       unsigned cmd, unsigned long arg)
1037 {
1038         BIG_IOCTL32_Command_struct __user *arg32 =
1039             (BIG_IOCTL32_Command_struct __user *) arg;
1040         BIG_IOCTL_Command_struct arg64;
1041         BIG_IOCTL_Command_struct __user *p =
1042             compat_alloc_user_space(sizeof(arg64));
1043         int err;
1044         u32 cp;
1045
1046         err = 0;
1047         err |=
1048             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1049                            sizeof(arg64.LUN_info));
1050         err |=
1051             copy_from_user(&arg64.Request, &arg32->Request,
1052                            sizeof(arg64.Request));
1053         err |=
1054             copy_from_user(&arg64.error_info, &arg32->error_info,
1055                            sizeof(arg64.error_info));
1056         err |= get_user(arg64.buf_size, &arg32->buf_size);
1057         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1058         err |= get_user(cp, &arg32->buf);
1059         arg64.buf = compat_ptr(cp);
1060         err |= copy_to_user(p, &arg64, sizeof(arg64));
1061
1062         if (err)
1063                 return -EFAULT;
1064
1065         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1066         if (err)
1067                 return err;
1068         err |=
1069             copy_in_user(&arg32->error_info, &p->error_info,
1070                          sizeof(arg32->error_info));
1071         if (err)
1072                 return -EFAULT;
1073         return err;
1074 }
1075 #endif
1076
1077 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1078 {
1079         drive_info_struct *drv = get_drv(bdev->bd_disk);
1080
1081         if (!drv->cylinders)
1082                 return -ENXIO;
1083
1084         geo->heads = drv->heads;
1085         geo->sectors = drv->sectors;
1086         geo->cylinders = drv->cylinders;
1087         return 0;
1088 }
1089
1090 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1091 {
1092         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1093                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1094                 (void)check_for_unit_attention(host, c);
1095 }
1096 /*
1097  * ioctl
1098  */
1099 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1100                        unsigned int cmd, unsigned long arg)
1101 {
1102         struct gendisk *disk = bdev->bd_disk;
1103         ctlr_info_t *host = get_host(disk);
1104         drive_info_struct *drv = get_drv(disk);
1105         int ctlr = host->ctlr;
1106         void __user *argp = (void __user *)arg;
1107
1108 #ifdef CCISS_DEBUG
1109         printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1110 #endif                          /* CCISS_DEBUG */
1111
1112         switch (cmd) {
1113         case CCISS_GETPCIINFO:
1114                 {
1115                         cciss_pci_info_struct pciinfo;
1116
1117                         if (!arg)
1118                                 return -EINVAL;
1119                         pciinfo.domain = pci_domain_nr(host->pdev->bus);
1120                         pciinfo.bus = host->pdev->bus->number;
1121                         pciinfo.dev_fn = host->pdev->devfn;
1122                         pciinfo.board_id = host->board_id;
1123                         if (copy_to_user
1124                             (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1125                                 return -EFAULT;
1126                         return 0;
1127                 }
1128         case CCISS_GETINTINFO:
1129                 {
1130                         cciss_coalint_struct intinfo;
1131                         if (!arg)
1132                                 return -EINVAL;
1133                         intinfo.delay =
1134                             readl(&host->cfgtable->HostWrite.CoalIntDelay);
1135                         intinfo.count =
1136                             readl(&host->cfgtable->HostWrite.CoalIntCount);
1137                         if (copy_to_user
1138                             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1139                                 return -EFAULT;
1140                         return 0;
1141                 }
1142         case CCISS_SETINTINFO:
1143                 {
1144                         cciss_coalint_struct intinfo;
1145                         unsigned long flags;
1146                         int i;
1147
1148                         if (!arg)
1149                                 return -EINVAL;
1150                         if (!capable(CAP_SYS_ADMIN))
1151                                 return -EPERM;
1152                         if (copy_from_user
1153                             (&intinfo, argp, sizeof(cciss_coalint_struct)))
1154                                 return -EFAULT;
1155                         if ((intinfo.delay == 0) && (intinfo.count == 0))
1156                         {
1157 //                      printk("cciss_ioctl: delay and count cannot be 0\n");
1158                                 return -EINVAL;
1159                         }
1160                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1161                         /* Update the field, and then ring the doorbell */
1162                         writel(intinfo.delay,
1163                                &(host->cfgtable->HostWrite.CoalIntDelay));
1164                         writel(intinfo.count,
1165                                &(host->cfgtable->HostWrite.CoalIntCount));
1166                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1167
1168                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1169                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1170                                       & CFGTBL_ChangeReq))
1171                                         break;
1172                                 /* delay and try again */
1173                                 udelay(1000);
1174                         }
1175                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1176                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1177                                 return -EAGAIN;
1178                         return 0;
1179                 }
1180         case CCISS_GETNODENAME:
1181                 {
1182                         NodeName_type NodeName;
1183                         int i;
1184
1185                         if (!arg)
1186                                 return -EINVAL;
1187                         for (i = 0; i < 16; i++)
1188                                 NodeName[i] =
1189                                     readb(&host->cfgtable->ServerName[i]);
1190                         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1191                                 return -EFAULT;
1192                         return 0;
1193                 }
1194         case CCISS_SETNODENAME:
1195                 {
1196                         NodeName_type NodeName;
1197                         unsigned long flags;
1198                         int i;
1199
1200                         if (!arg)
1201                                 return -EINVAL;
1202                         if (!capable(CAP_SYS_ADMIN))
1203                                 return -EPERM;
1204
1205                         if (copy_from_user
1206                             (NodeName, argp, sizeof(NodeName_type)))
1207                                 return -EFAULT;
1208
1209                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1210
1211                         /* Update the field, and then ring the doorbell */
1212                         for (i = 0; i < 16; i++)
1213                                 writeb(NodeName[i],
1214                                        &host->cfgtable->ServerName[i]);
1215
1216                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1217
1218                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1219                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1220                                       & CFGTBL_ChangeReq))
1221                                         break;
1222                                 /* delay and try again */
1223                                 udelay(1000);
1224                         }
1225                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1226                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1227                                 return -EAGAIN;
1228                         return 0;
1229                 }
1230
1231         case CCISS_GETHEARTBEAT:
1232                 {
1233                         Heartbeat_type heartbeat;
1234
1235                         if (!arg)
1236                                 return -EINVAL;
1237                         heartbeat = readl(&host->cfgtable->HeartBeat);
1238                         if (copy_to_user
1239                             (argp, &heartbeat, sizeof(Heartbeat_type)))
1240                                 return -EFAULT;
1241                         return 0;
1242                 }
1243         case CCISS_GETBUSTYPES:
1244                 {
1245                         BusTypes_type BusTypes;
1246
1247                         if (!arg)
1248                                 return -EINVAL;
1249                         BusTypes = readl(&host->cfgtable->BusTypes);
1250                         if (copy_to_user
1251                             (argp, &BusTypes, sizeof(BusTypes_type)))
1252                                 return -EFAULT;
1253                         return 0;
1254                 }
1255         case CCISS_GETFIRMVER:
1256                 {
1257                         FirmwareVer_type firmware;
1258
1259                         if (!arg)
1260                                 return -EINVAL;
1261                         memcpy(firmware, host->firm_ver, 4);
1262
1263                         if (copy_to_user
1264                             (argp, firmware, sizeof(FirmwareVer_type)))
1265                                 return -EFAULT;
1266                         return 0;
1267                 }
1268         case CCISS_GETDRIVVER:
1269                 {
1270                         DriverVer_type DriverVer = DRIVER_VERSION;
1271
1272                         if (!arg)
1273                                 return -EINVAL;
1274
1275                         if (copy_to_user
1276                             (argp, &DriverVer, sizeof(DriverVer_type)))
1277                                 return -EFAULT;
1278                         return 0;
1279                 }
1280
1281         case CCISS_DEREGDISK:
1282         case CCISS_REGNEWD:
1283         case CCISS_REVALIDVOLS:
1284                 return rebuild_lun_table(host, 0, 1);
1285
1286         case CCISS_GETLUNINFO:{
1287                         LogvolInfo_struct luninfo;
1288
1289                         memcpy(&luninfo.LunID, drv->LunID,
1290                                 sizeof(luninfo.LunID));
1291                         luninfo.num_opens = drv->usage_count;
1292                         luninfo.num_parts = 0;
1293                         if (copy_to_user(argp, &luninfo,
1294                                          sizeof(LogvolInfo_struct)))
1295                                 return -EFAULT;
1296                         return 0;
1297                 }
1298         case CCISS_PASSTHRU:
1299                 {
1300                         IOCTL_Command_struct iocommand;
1301                         CommandList_struct *c;
1302                         char *buff = NULL;
1303                         u64bit temp64;
1304                         unsigned long flags;
1305                         DECLARE_COMPLETION_ONSTACK(wait);
1306
1307                         if (!arg)
1308                                 return -EINVAL;
1309
1310                         if (!capable(CAP_SYS_RAWIO))
1311                                 return -EPERM;
1312
1313                         if (copy_from_user
1314                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1315                                 return -EFAULT;
1316                         if ((iocommand.buf_size < 1) &&
1317                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1318                                 return -EINVAL;
1319                         }
1320 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1321                         /* Check kmalloc limits */
1322                         if (iocommand.buf_size > 128000)
1323                                 return -EINVAL;
1324 #endif
1325                         if (iocommand.buf_size > 0) {
1326                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1327                                 if (buff == NULL)
1328                                         return -EFAULT;
1329                         }
1330                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1331                                 /* Copy the data into the buffer we created */
1332                                 if (copy_from_user
1333                                     (buff, iocommand.buf, iocommand.buf_size)) {
1334                                         kfree(buff);
1335                                         return -EFAULT;
1336                                 }
1337                         } else {
1338                                 memset(buff, 0, iocommand.buf_size);
1339                         }
1340                         if ((c = cmd_alloc(host, 0)) == NULL) {
1341                                 kfree(buff);
1342                                 return -ENOMEM;
1343                         }
1344                         // Fill in the command type
1345                         c->cmd_type = CMD_IOCTL_PEND;
1346                         // Fill in Command Header
1347                         c->Header.ReplyQueue = 0;       // unused in simple mode
1348                         if (iocommand.buf_size > 0)     // buffer to fill
1349                         {
1350                                 c->Header.SGList = 1;
1351                                 c->Header.SGTotal = 1;
1352                         } else  // no buffers to fill
1353                         {
1354                                 c->Header.SGList = 0;
1355                                 c->Header.SGTotal = 0;
1356                         }
1357                         c->Header.LUN = iocommand.LUN_info;
1358                         c->Header.Tag.lower = c->busaddr;       // use the kernel address the cmd block for tag
1359
1360                         // Fill in Request block
1361                         c->Request = iocommand.Request;
1362
1363                         // Fill in the scatter gather information
1364                         if (iocommand.buf_size > 0) {
1365                                 temp64.val = pci_map_single(host->pdev, buff,
1366                                         iocommand.buf_size,
1367                                         PCI_DMA_BIDIRECTIONAL);
1368                                 c->SG[0].Addr.lower = temp64.val32.lower;
1369                                 c->SG[0].Addr.upper = temp64.val32.upper;
1370                                 c->SG[0].Len = iocommand.buf_size;
1371                                 c->SG[0].Ext = 0;       // we are not chaining
1372                         }
1373                         c->waiting = &wait;
1374
1375                         /* Put the request on the tail of the request queue */
1376                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1377                         addQ(&host->reqQ, c);
1378                         host->Qdepth++;
1379                         start_io(host);
1380                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1381
1382                         wait_for_completion(&wait);
1383
1384                         /* unlock the buffers from DMA */
1385                         temp64.val32.lower = c->SG[0].Addr.lower;
1386                         temp64.val32.upper = c->SG[0].Addr.upper;
1387                         pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1388                                          iocommand.buf_size,
1389                                          PCI_DMA_BIDIRECTIONAL);
1390
1391                         check_ioctl_unit_attention(host, c);
1392
1393                         /* Copy the error information out */
1394                         iocommand.error_info = *(c->err_info);
1395                         if (copy_to_user
1396                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1397                                 kfree(buff);
1398                                 cmd_free(host, c, 0);
1399                                 return -EFAULT;
1400                         }
1401
1402                         if (iocommand.Request.Type.Direction == XFER_READ) {
1403                                 /* Copy the data out of the buffer we created */
1404                                 if (copy_to_user
1405                                     (iocommand.buf, buff, iocommand.buf_size)) {
1406                                         kfree(buff);
1407                                         cmd_free(host, c, 0);
1408                                         return -EFAULT;
1409                                 }
1410                         }
1411                         kfree(buff);
1412                         cmd_free(host, c, 0);
1413                         return 0;
1414                 }
1415         case CCISS_BIG_PASSTHRU:{
1416                         BIG_IOCTL_Command_struct *ioc;
1417                         CommandList_struct *c;
1418                         unsigned char **buff = NULL;
1419                         int *buff_size = NULL;
1420                         u64bit temp64;
1421                         unsigned long flags;
1422                         BYTE sg_used = 0;
1423                         int status = 0;
1424                         int i;
1425                         DECLARE_COMPLETION_ONSTACK(wait);
1426                         __u32 left;
1427                         __u32 sz;
1428                         BYTE __user *data_ptr;
1429
1430                         if (!arg)
1431                                 return -EINVAL;
1432                         if (!capable(CAP_SYS_RAWIO))
1433                                 return -EPERM;
1434                         ioc = (BIG_IOCTL_Command_struct *)
1435                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1436                         if (!ioc) {
1437                                 status = -ENOMEM;
1438                                 goto cleanup1;
1439                         }
1440                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1441                                 status = -EFAULT;
1442                                 goto cleanup1;
1443                         }
1444                         if ((ioc->buf_size < 1) &&
1445                             (ioc->Request.Type.Direction != XFER_NONE)) {
1446                                 status = -EINVAL;
1447                                 goto cleanup1;
1448                         }
1449                         /* Check kmalloc limits  using all SGs */
1450                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1451                                 status = -EINVAL;
1452                                 goto cleanup1;
1453                         }
1454                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1455                                 status = -EINVAL;
1456                                 goto cleanup1;
1457                         }
1458                         buff =
1459                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1460                         if (!buff) {
1461                                 status = -ENOMEM;
1462                                 goto cleanup1;
1463                         }
1464                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1465                                                    GFP_KERNEL);
1466                         if (!buff_size) {
1467                                 status = -ENOMEM;
1468                                 goto cleanup1;
1469                         }
1470                         left = ioc->buf_size;
1471                         data_ptr = ioc->buf;
1472                         while (left) {
1473                                 sz = (left >
1474                                       ioc->malloc_size) ? ioc->
1475                                     malloc_size : left;
1476                                 buff_size[sg_used] = sz;
1477                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1478                                 if (buff[sg_used] == NULL) {
1479                                         status = -ENOMEM;
1480                                         goto cleanup1;
1481                                 }
1482                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1483                                         if (copy_from_user
1484                                             (buff[sg_used], data_ptr, sz)) {
1485                                                 status = -EFAULT;
1486                                                 goto cleanup1;
1487                                         }
1488                                 } else {
1489                                         memset(buff[sg_used], 0, sz);
1490                                 }
1491                                 left -= sz;
1492                                 data_ptr += sz;
1493                                 sg_used++;
1494                         }
1495                         if ((c = cmd_alloc(host, 0)) == NULL) {
1496                                 status = -ENOMEM;
1497                                 goto cleanup1;
1498                         }
1499                         c->cmd_type = CMD_IOCTL_PEND;
1500                         c->Header.ReplyQueue = 0;
1501
1502                         if (ioc->buf_size > 0) {
1503                                 c->Header.SGList = sg_used;
1504                                 c->Header.SGTotal = sg_used;
1505                         } else {
1506                                 c->Header.SGList = 0;
1507                                 c->Header.SGTotal = 0;
1508                         }
1509                         c->Header.LUN = ioc->LUN_info;
1510                         c->Header.Tag.lower = c->busaddr;
1511
1512                         c->Request = ioc->Request;
1513                         if (ioc->buf_size > 0) {
1514                                 int i;
1515                                 for (i = 0; i < sg_used; i++) {
1516                                         temp64.val =
1517                                             pci_map_single(host->pdev, buff[i],
1518                                                     buff_size[i],
1519                                                     PCI_DMA_BIDIRECTIONAL);
1520                                         c->SG[i].Addr.lower =
1521                                             temp64.val32.lower;
1522                                         c->SG[i].Addr.upper =
1523                                             temp64.val32.upper;
1524                                         c->SG[i].Len = buff_size[i];
1525                                         c->SG[i].Ext = 0;       /* we are not chaining */
1526                                 }
1527                         }
1528                         c->waiting = &wait;
1529                         /* Put the request on the tail of the request queue */
1530                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1531                         addQ(&host->reqQ, c);
1532                         host->Qdepth++;
1533                         start_io(host);
1534                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1535                         wait_for_completion(&wait);
1536                         /* unlock the buffers from DMA */
1537                         for (i = 0; i < sg_used; i++) {
1538                                 temp64.val32.lower = c->SG[i].Addr.lower;
1539                                 temp64.val32.upper = c->SG[i].Addr.upper;
1540                                 pci_unmap_single(host->pdev,
1541                                         (dma_addr_t) temp64.val, buff_size[i],
1542                                         PCI_DMA_BIDIRECTIONAL);
1543                         }
1544                         check_ioctl_unit_attention(host, c);
1545                         /* Copy the error information out */
1546                         ioc->error_info = *(c->err_info);
1547                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1548                                 cmd_free(host, c, 0);
1549                                 status = -EFAULT;
1550                                 goto cleanup1;
1551                         }
1552                         if (ioc->Request.Type.Direction == XFER_READ) {
1553                                 /* Copy the data out of the buffer we created */
1554                                 BYTE __user *ptr = ioc->buf;
1555                                 for (i = 0; i < sg_used; i++) {
1556                                         if (copy_to_user
1557                                             (ptr, buff[i], buff_size[i])) {
1558                                                 cmd_free(host, c, 0);
1559                                                 status = -EFAULT;
1560                                                 goto cleanup1;
1561                                         }
1562                                         ptr += buff_size[i];
1563                                 }
1564                         }
1565                         cmd_free(host, c, 0);
1566                         status = 0;
1567                       cleanup1:
1568                         if (buff) {
1569                                 for (i = 0; i < sg_used; i++)
1570                                         kfree(buff[i]);
1571                                 kfree(buff);
1572                         }
1573                         kfree(buff_size);
1574                         kfree(ioc);
1575                         return status;
1576                 }
1577
1578         /* scsi_cmd_ioctl handles these, below, though some are not */
1579         /* very meaningful for cciss.  SG_IO is the main one people want. */
1580
1581         case SG_GET_VERSION_NUM:
1582         case SG_SET_TIMEOUT:
1583         case SG_GET_TIMEOUT:
1584         case SG_GET_RESERVED_SIZE:
1585         case SG_SET_RESERVED_SIZE:
1586         case SG_EMULATED_HOST:
1587         case SG_IO:
1588         case SCSI_IOCTL_SEND_COMMAND:
1589                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1590
1591         /* scsi_cmd_ioctl would normally handle these, below, but */
1592         /* they aren't a good fit for cciss, as CD-ROMs are */
1593         /* not supported, and we don't have any bus/target/lun */
1594         /* which we present to the kernel. */
1595
1596         case CDROM_SEND_PACKET:
1597         case CDROMCLOSETRAY:
1598         case CDROMEJECT:
1599         case SCSI_IOCTL_GET_IDLUN:
1600         case SCSI_IOCTL_GET_BUS_NUMBER:
1601         default:
1602                 return -ENOTTY;
1603         }
1604 }
1605
1606 static void cciss_check_queues(ctlr_info_t *h)
1607 {
1608         int start_queue = h->next_to_run;
1609         int i;
1610
1611         /* check to see if we have maxed out the number of commands that can
1612          * be placed on the queue.  If so then exit.  We do this check here
1613          * in case the interrupt we serviced was from an ioctl and did not
1614          * free any new commands.
1615          */
1616         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1617                 return;
1618
1619         /* We have room on the queue for more commands.  Now we need to queue
1620          * them up.  We will also keep track of the next queue to run so
1621          * that every queue gets a chance to be started first.
1622          */
1623         for (i = 0; i < h->highest_lun + 1; i++) {
1624                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1625                 /* make sure the disk has been added and the drive is real
1626                  * because this can be called from the middle of init_one.
1627                  */
1628                 if (!h->drv[curr_queue])
1629                         continue;
1630                 if (!(h->drv[curr_queue]->queue) ||
1631                         !(h->drv[curr_queue]->heads))
1632                         continue;
1633                 blk_start_queue(h->gendisk[curr_queue]->queue);
1634
1635                 /* check to see if we have maxed out the number of commands
1636                  * that can be placed on the queue.
1637                  */
1638                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1639                         if (curr_queue == start_queue) {
1640                                 h->next_to_run =
1641                                     (start_queue + 1) % (h->highest_lun + 1);
1642                                 break;
1643                         } else {
1644                                 h->next_to_run = curr_queue;
1645                                 break;
1646                         }
1647                 }
1648         }
1649 }
1650
1651 static void cciss_softirq_done(struct request *rq)
1652 {
1653         CommandList_struct *cmd = rq->completion_data;
1654         ctlr_info_t *h = hba[cmd->ctlr];
1655         unsigned long flags;
1656         u64bit temp64;
1657         int i, ddir;
1658
1659         if (cmd->Request.Type.Direction == XFER_READ)
1660                 ddir = PCI_DMA_FROMDEVICE;
1661         else
1662                 ddir = PCI_DMA_TODEVICE;
1663
1664         /* command did not need to be retried */
1665         /* unmap the DMA mapping for all the scatter gather elements */
1666         for (i = 0; i < cmd->Header.SGList; i++) {
1667                 temp64.val32.lower = cmd->SG[i].Addr.lower;
1668                 temp64.val32.upper = cmd->SG[i].Addr.upper;
1669                 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1670         }
1671
1672 #ifdef CCISS_DEBUG
1673         printk("Done with %p\n", rq);
1674 #endif                          /* CCISS_DEBUG */
1675
1676         /* set the residual count for pc requests */
1677         if (blk_pc_request(rq))
1678                 rq->resid_len = cmd->err_info->ResidualCnt;
1679
1680         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1681
1682         spin_lock_irqsave(&h->lock, flags);
1683         cmd_free(h, cmd, 1);
1684         cciss_check_queues(h);
1685         spin_unlock_irqrestore(&h->lock, flags);
1686 }
1687
1688 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1689         unsigned char scsi3addr[], uint32_t log_unit)
1690 {
1691         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1692                 sizeof(h->drv[log_unit]->LunID));
1693 }
1694
1695 /* This function gets the SCSI vendor, model, and revision of a logical drive
1696  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1697  * they cannot be read.
1698  */
1699 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1700                                    char *vendor, char *model, char *rev)
1701 {
1702         int rc;
1703         InquiryData_struct *inq_buf;
1704         unsigned char scsi3addr[8];
1705
1706         *vendor = '\0';
1707         *model = '\0';
1708         *rev = '\0';
1709
1710         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1711         if (!inq_buf)
1712                 return;
1713
1714         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1715         if (withirq)
1716                 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1717                              sizeof(InquiryData_struct), 0,
1718                                 scsi3addr, TYPE_CMD);
1719         else
1720                 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1721                              sizeof(InquiryData_struct), 0,
1722                                 scsi3addr, TYPE_CMD);
1723         if (rc == IO_OK) {
1724                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1725                 vendor[VENDOR_LEN] = '\0';
1726                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1727                 model[MODEL_LEN] = '\0';
1728                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1729                 rev[REV_LEN] = '\0';
1730         }
1731
1732         kfree(inq_buf);
1733         return;
1734 }
1735
1736 /* This function gets the serial number of a logical drive via
1737  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1738  * number cannot be had, for whatever reason, 16 bytes of 0xff
1739  * are returned instead.
1740  */
1741 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1742                                 unsigned char *serial_no, int buflen)
1743 {
1744 #define PAGE_83_INQ_BYTES 64
1745         int rc;
1746         unsigned char *buf;
1747         unsigned char scsi3addr[8];
1748
1749         if (buflen > 16)
1750                 buflen = 16;
1751         memset(serial_no, 0xff, buflen);
1752         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1753         if (!buf)
1754                 return;
1755         memset(serial_no, 0, buflen);
1756         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1757         if (withirq)
1758                 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1759                         PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1760         else
1761                 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1762                         PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1763         if (rc == IO_OK)
1764                 memcpy(serial_no, &buf[8], buflen);
1765         kfree(buf);
1766         return;
1767 }
1768
1769 /*
1770  * cciss_add_disk sets up the block device queue for a logical drive
1771  */
1772 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1773                                 int drv_index)
1774 {
1775         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1776         if (!disk->queue)
1777                 goto init_queue_failure;
1778         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1779         disk->major = h->major;
1780         disk->first_minor = drv_index << NWD_SHIFT;
1781         disk->fops = &cciss_fops;
1782         if (cciss_create_ld_sysfs_entry(h, drv_index))
1783                 goto cleanup_queue;
1784         disk->private_data = h->drv[drv_index];
1785         disk->driverfs_dev = &h->drv[drv_index]->dev;
1786
1787         /* Set up queue information */
1788         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1789
1790         /* This is a hardware imposed limit. */
1791         blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1792
1793         /* This is a limit in the driver and could be eliminated. */
1794         blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1795
1796         blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1797
1798         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1799
1800         disk->queue->queuedata = h;
1801
1802         blk_queue_logical_block_size(disk->queue,
1803                                      h->drv[drv_index]->block_size);
1804
1805         /* Make sure all queue data is written out before */
1806         /* setting h->drv[drv_index]->queue, as setting this */
1807         /* allows the interrupt handler to start the queue */
1808         wmb();
1809         h->drv[drv_index]->queue = disk->queue;
1810         add_disk(disk);
1811         return 0;
1812
1813 cleanup_queue:
1814         blk_cleanup_queue(disk->queue);
1815         disk->queue = NULL;
1816 init_queue_failure:
1817         return -1;
1818 }
1819
1820 /* This function will check the usage_count of the drive to be updated/added.
1821  * If the usage_count is zero and it is a heretofore unknown drive, or,
1822  * the drive's capacity, geometry, or serial number has changed,
1823  * then the drive information will be updated and the disk will be
1824  * re-registered with the kernel.  If these conditions don't hold,
1825  * then it will be left alone for the next reboot.  The exception to this
1826  * is disk 0 which will always be left registered with the kernel since it
1827  * is also the controller node.  Any changes to disk 0 will show up on
1828  * the next reboot.
1829  */
1830 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1831         int via_ioctl)
1832 {
1833         ctlr_info_t *h = hba[ctlr];
1834         struct gendisk *disk;
1835         InquiryData_struct *inq_buff = NULL;
1836         unsigned int block_size;
1837         sector_t total_size;
1838         unsigned long flags = 0;
1839         int ret = 0;
1840         drive_info_struct *drvinfo;
1841
1842         /* Get information about the disk and modify the driver structure */
1843         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1844         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1845         if (inq_buff == NULL || drvinfo == NULL)
1846                 goto mem_msg;
1847
1848         /* testing to see if 16-byte CDBs are already being used */
1849         if (h->cciss_read == CCISS_READ_16) {
1850                 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1851                         &total_size, &block_size);
1852
1853         } else {
1854                 cciss_read_capacity(ctlr, drv_index, 1,
1855                                     &total_size, &block_size);
1856
1857                 /* if read_capacity returns all F's this volume is >2TB */
1858                 /* in size so we switch to 16-byte CDB's for all */
1859                 /* read/write ops */
1860                 if (total_size == 0xFFFFFFFFULL) {
1861                         cciss_read_capacity_16(ctlr, drv_index, 1,
1862                         &total_size, &block_size);
1863                         h->cciss_read = CCISS_READ_16;
1864                         h->cciss_write = CCISS_WRITE_16;
1865                 } else {
1866                         h->cciss_read = CCISS_READ_10;
1867                         h->cciss_write = CCISS_WRITE_10;
1868                 }
1869         }
1870
1871         cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1872                                inq_buff, drvinfo);
1873         drvinfo->block_size = block_size;
1874         drvinfo->nr_blocks = total_size + 1;
1875
1876         cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1877                                 drvinfo->model, drvinfo->rev);
1878         cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1879                         sizeof(drvinfo->serial_no));
1880         /* Save the lunid in case we deregister the disk, below. */
1881         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1882                 sizeof(drvinfo->LunID));
1883
1884         /* Is it the same disk we already know, and nothing's changed? */
1885         if (h->drv[drv_index]->raid_level != -1 &&
1886                 ((memcmp(drvinfo->serial_no,
1887                                 h->drv[drv_index]->serial_no, 16) == 0) &&
1888                 drvinfo->block_size == h->drv[drv_index]->block_size &&
1889                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1890                 drvinfo->heads == h->drv[drv_index]->heads &&
1891                 drvinfo->sectors == h->drv[drv_index]->sectors &&
1892                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1893                         /* The disk is unchanged, nothing to update */
1894                         goto freeret;
1895
1896         /* If we get here it's not the same disk, or something's changed,
1897          * so we need to * deregister it, and re-register it, if it's not
1898          * in use.
1899          * If the disk already exists then deregister it before proceeding
1900          * (unless it's the first disk (for the controller node).
1901          */
1902         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1903                 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1904                 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1905                 h->drv[drv_index]->busy_configuring = 1;
1906                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1907
1908                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1909                  * which keeps the interrupt handler from starting
1910                  * the queue.
1911                  */
1912                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1913         }
1914
1915         /* If the disk is in use return */
1916         if (ret)
1917                 goto freeret;
1918
1919         /* Save the new information from cciss_geometry_inquiry
1920          * and serial number inquiry.  If the disk was deregistered
1921          * above, then h->drv[drv_index] will be NULL.
1922          */
1923         if (h->drv[drv_index] == NULL) {
1924                 drvinfo->device_initialized = 0;
1925                 h->drv[drv_index] = drvinfo;
1926                 drvinfo = NULL; /* so it won't be freed below. */
1927         } else {
1928                 /* special case for cxd0 */
1929                 h->drv[drv_index]->block_size = drvinfo->block_size;
1930                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1931                 h->drv[drv_index]->heads = drvinfo->heads;
1932                 h->drv[drv_index]->sectors = drvinfo->sectors;
1933                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1934                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1935                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1936                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1937                         VENDOR_LEN + 1);
1938                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1939                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1940         }
1941
1942         ++h->num_luns;
1943         disk = h->gendisk[drv_index];
1944         set_capacity(disk, h->drv[drv_index]->nr_blocks);
1945
1946         /* If it's not disk 0 (drv_index != 0)
1947          * or if it was disk 0, but there was previously
1948          * no actual corresponding configured logical drive
1949          * (raid_leve == -1) then we want to update the
1950          * logical drive's information.
1951          */
1952         if (drv_index || first_time) {
1953                 if (cciss_add_disk(h, disk, drv_index) != 0) {
1954                         cciss_free_gendisk(h, drv_index);
1955                         cciss_free_drive_info(h, drv_index);
1956                         printk(KERN_WARNING "cciss:%d could not update "
1957                                 "disk %d\n", h->ctlr, drv_index);
1958                         --h->num_luns;
1959                 }
1960         }
1961
1962 freeret:
1963         kfree(inq_buff);
1964         kfree(drvinfo);
1965         return;
1966 mem_msg:
1967         printk(KERN_ERR "cciss: out of memory\n");
1968         goto freeret;
1969 }
1970
1971 /* This function will find the first index of the controllers drive array
1972  * that has a null drv pointer and allocate the drive info struct and
1973  * will return that index   This is where new drives will be added.
1974  * If the index to be returned is greater than the highest_lun index for
1975  * the controller then highest_lun is set * to this new index.
1976  * If there are no available indexes or if tha allocation fails, then -1
1977  * is returned.  * "controller_node" is used to know if this is a real
1978  * logical drive, or just the controller node, which determines if this
1979  * counts towards highest_lun.
1980  */
1981 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1982 {
1983         int i;
1984         drive_info_struct *drv;
1985
1986         /* Search for an empty slot for our drive info */
1987         for (i = 0; i < CISS_MAX_LUN; i++) {
1988
1989                 /* if not cxd0 case, and it's occupied, skip it. */
1990                 if (h->drv[i] && i != 0)
1991                         continue;
1992                 /*
1993                  * If it's cxd0 case, and drv is alloc'ed already, and a
1994                  * disk is configured there, skip it.
1995                  */
1996                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
1997                         continue;
1998
1999                 /*
2000                  * We've found an empty slot.  Update highest_lun
2001                  * provided this isn't just the fake cxd0 controller node.
2002                  */
2003                 if (i > h->highest_lun && !controller_node)
2004                         h->highest_lun = i;
2005
2006                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2007                 if (i == 0 && h->drv[i] != NULL)
2008                         return i;
2009
2010                 /*
2011                  * Found an empty slot, not already alloc'ed.  Allocate it.
2012                  * Mark it with raid_level == -1, so we know it's new later on.
2013                  */
2014                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2015                 if (!drv)
2016                         return -1;
2017                 drv->raid_level = -1; /* so we know it's new */
2018                 h->drv[i] = drv;
2019                 return i;
2020         }
2021         return -1;
2022 }
2023
2024 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2025 {
2026         kfree(h->drv[drv_index]);
2027         h->drv[drv_index] = NULL;
2028 }
2029
2030 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2031 {
2032         put_disk(h->gendisk[drv_index]);
2033         h->gendisk[drv_index] = NULL;
2034 }
2035
2036 /* cciss_add_gendisk finds a free hba[]->drv structure
2037  * and allocates a gendisk if needed, and sets the lunid
2038  * in the drvinfo structure.   It returns the index into
2039  * the ->drv[] array, or -1 if none are free.
2040  * is_controller_node indicates whether highest_lun should
2041  * count this disk, or if it's only being added to provide
2042  * a means to talk to the controller in case no logical
2043  * drives have yet been configured.
2044  */
2045 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2046         int controller_node)
2047 {
2048         int drv_index;
2049
2050         drv_index = cciss_alloc_drive_info(h, controller_node);
2051         if (drv_index == -1)
2052                 return -1;
2053
2054         /*Check if the gendisk needs to be allocated */
2055         if (!h->gendisk[drv_index]) {
2056                 h->gendisk[drv_index] =
2057                         alloc_disk(1 << NWD_SHIFT);
2058                 if (!h->gendisk[drv_index]) {
2059                         printk(KERN_ERR "cciss%d: could not "
2060                                 "allocate a new disk %d\n",
2061                                 h->ctlr, drv_index);
2062                         goto err_free_drive_info;
2063                 }
2064         }
2065         memcpy(h->drv[drv_index]->LunID, lunid,
2066                 sizeof(h->drv[drv_index]->LunID));
2067         if (cciss_create_ld_sysfs_entry(h, drv_index))
2068                 goto err_free_disk;
2069         /* Don't need to mark this busy because nobody */
2070         /* else knows about this disk yet to contend */
2071         /* for access to it. */
2072         h->drv[drv_index]->busy_configuring = 0;
2073         wmb();
2074         return drv_index;
2075
2076 err_free_disk:
2077         cciss_free_gendisk(h, drv_index);
2078 err_free_drive_info:
2079         cciss_free_drive_info(h, drv_index);
2080         return -1;
2081 }
2082
2083 /* This is for the special case of a controller which
2084  * has no logical drives.  In this case, we still need
2085  * to register a disk so the controller can be accessed
2086  * by the Array Config Utility.
2087  */
2088 static void cciss_add_controller_node(ctlr_info_t *h)
2089 {
2090         struct gendisk *disk;
2091         int drv_index;
2092
2093         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2094                 return;
2095
2096         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2097         if (drv_index == -1)
2098                 goto error;
2099         h->drv[drv_index]->block_size = 512;
2100         h->drv[drv_index]->nr_blocks = 0;
2101         h->drv[drv_index]->heads = 0;
2102         h->drv[drv_index]->sectors = 0;
2103         h->drv[drv_index]->cylinders = 0;
2104         h->drv[drv_index]->raid_level = -1;
2105         memset(h->drv[drv_index]->serial_no, 0, 16);
2106         disk = h->gendisk[drv_index];
2107         if (cciss_add_disk(h, disk, drv_index) == 0)
2108                 return;
2109         cciss_free_gendisk(h, drv_index);
2110         cciss_free_drive_info(h, drv_index);
2111 error:
2112         printk(KERN_WARNING "cciss%d: could not "
2113                 "add disk 0.\n", h->ctlr);
2114         return;
2115 }
2116
2117 /* This function will add and remove logical drives from the Logical
2118  * drive array of the controller and maintain persistency of ordering
2119  * so that mount points are preserved until the next reboot.  This allows
2120  * for the removal of logical drives in the middle of the drive array
2121  * without a re-ordering of those drives.
2122  * INPUT
2123  * h            = The controller to perform the operations on
2124  */
2125 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2126         int via_ioctl)
2127 {
2128         int ctlr = h->ctlr;
2129         int num_luns;
2130         ReportLunData_struct *ld_buff = NULL;
2131         int return_code;
2132         int listlength = 0;
2133         int i;
2134         int drv_found;
2135         int drv_index = 0;
2136         unsigned char lunid[8] = CTLR_LUNID;
2137         unsigned long flags;
2138
2139         if (!capable(CAP_SYS_RAWIO))
2140                 return -EPERM;
2141
2142         /* Set busy_configuring flag for this operation */
2143         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2144         if (h->busy_configuring) {
2145                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2146                 return -EBUSY;
2147         }
2148         h->busy_configuring = 1;
2149         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2150
2151         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2152         if (ld_buff == NULL)
2153                 goto mem_msg;
2154
2155         return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2156                                       sizeof(ReportLunData_struct),
2157                                       0, CTLR_LUNID, TYPE_CMD);
2158
2159         if (return_code == IO_OK)
2160                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2161         else {  /* reading number of logical volumes failed */
2162                 printk(KERN_WARNING "cciss: report logical volume"
2163                        " command failed\n");
2164                 listlength = 0;
2165                 goto freeret;
2166         }
2167
2168         num_luns = listlength / 8;      /* 8 bytes per entry */
2169         if (num_luns > CISS_MAX_LUN) {
2170                 num_luns = CISS_MAX_LUN;
2171                 printk(KERN_WARNING "cciss: more luns configured"
2172                        " on controller than can be handled by"
2173                        " this driver.\n");
2174         }
2175
2176         if (num_luns == 0)
2177                 cciss_add_controller_node(h);
2178
2179         /* Compare controller drive array to driver's drive array
2180          * to see if any drives are missing on the controller due
2181          * to action of Array Config Utility (user deletes drive)
2182          * and deregister logical drives which have disappeared.
2183          */
2184         for (i = 0; i <= h->highest_lun; i++) {
2185                 int j;
2186                 drv_found = 0;
2187
2188                 /* skip holes in the array from already deleted drives */
2189                 if (h->drv[i] == NULL)
2190                         continue;
2191
2192                 for (j = 0; j < num_luns; j++) {
2193                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2194                         if (memcmp(h->drv[i]->LunID, lunid,
2195                                 sizeof(lunid)) == 0) {
2196                                 drv_found = 1;
2197                                 break;
2198                         }
2199                 }
2200                 if (!drv_found) {
2201                         /* Deregister it from the OS, it's gone. */
2202                         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2203                         h->drv[i]->busy_configuring = 1;
2204                         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2205                         return_code = deregister_disk(h, i, 1, via_ioctl);
2206                         if (h->drv[i] != NULL)
2207                                 h->drv[i]->busy_configuring = 0;
2208                 }
2209         }
2210
2211         /* Compare controller drive array to driver's drive array.
2212          * Check for updates in the drive information and any new drives
2213          * on the controller due to ACU adding logical drives, or changing
2214          * a logical drive's size, etc.  Reregister any new/changed drives
2215          */
2216         for (i = 0; i < num_luns; i++) {
2217                 int j;
2218
2219                 drv_found = 0;
2220
2221                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2222                 /* Find if the LUN is already in the drive array
2223                  * of the driver.  If so then update its info
2224                  * if not in use.  If it does not exist then find
2225                  * the first free index and add it.
2226                  */
2227                 for (j = 0; j <= h->highest_lun; j++) {
2228                         if (h->drv[j] != NULL &&
2229                                 memcmp(h->drv[j]->LunID, lunid,
2230                                         sizeof(h->drv[j]->LunID)) == 0) {
2231                                 drv_index = j;
2232                                 drv_found = 1;
2233                                 break;
2234                         }
2235                 }
2236
2237                 /* check if the drive was found already in the array */
2238                 if (!drv_found) {
2239                         drv_index = cciss_add_gendisk(h, lunid, 0);
2240                         if (drv_index == -1)
2241                                 goto freeret;
2242                 }
2243                 cciss_update_drive_info(ctlr, drv_index, first_time,
2244                         via_ioctl);
2245         }               /* end for */
2246
2247 freeret:
2248         kfree(ld_buff);
2249         h->busy_configuring = 0;
2250         /* We return -1 here to tell the ACU that we have registered/updated
2251          * all of the drives that we can and to keep it from calling us
2252          * additional times.
2253          */
2254         return -1;
2255 mem_msg:
2256         printk(KERN_ERR "cciss: out of memory\n");
2257         h->busy_configuring = 0;
2258         goto freeret;
2259 }
2260
2261 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2262 {
2263         /* zero out the disk size info */
2264         drive_info->nr_blocks = 0;
2265         drive_info->block_size = 0;
2266         drive_info->heads = 0;
2267         drive_info->sectors = 0;
2268         drive_info->cylinders = 0;
2269         drive_info->raid_level = -1;
2270         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2271         memset(drive_info->model, 0, sizeof(drive_info->model));
2272         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2273         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2274         /*
2275          * don't clear the LUNID though, we need to remember which
2276          * one this one is.
2277          */
2278 }
2279
2280 /* This function will deregister the disk and it's queue from the
2281  * kernel.  It must be called with the controller lock held and the
2282  * drv structures busy_configuring flag set.  It's parameters are:
2283  *
2284  * disk = This is the disk to be deregistered
2285  * drv  = This is the drive_info_struct associated with the disk to be
2286  *        deregistered.  It contains information about the disk used
2287  *        by the driver.
2288  * clear_all = This flag determines whether or not the disk information
2289  *             is going to be completely cleared out and the highest_lun
2290  *             reset.  Sometimes we want to clear out information about
2291  *             the disk in preparation for re-adding it.  In this case
2292  *             the highest_lun should be left unchanged and the LunID
2293  *             should not be cleared.
2294  * via_ioctl
2295  *    This indicates whether we've reached this path via ioctl.
2296  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2297  *    If this path is reached via ioctl(), then the max_usage_count will
2298  *    be 1, as the process calling ioctl() has got to have the device open.
2299  *    If we get here via sysfs, then the max usage count will be zero.
2300 */
2301 static int deregister_disk(ctlr_info_t *h, int drv_index,
2302                            int clear_all, int via_ioctl)
2303 {
2304         int i;
2305         struct gendisk *disk;
2306         drive_info_struct *drv;
2307         int recalculate_highest_lun;
2308
2309         if (!capable(CAP_SYS_RAWIO))
2310                 return -EPERM;
2311
2312         drv = h->drv[drv_index];
2313         disk = h->gendisk[drv_index];
2314
2315         /* make sure logical volume is NOT is use */
2316         if (clear_all || (h->gendisk[0] == disk)) {
2317                 if (drv->usage_count > via_ioctl)
2318                         return -EBUSY;
2319         } else if (drv->usage_count > 0)
2320                 return -EBUSY;
2321
2322         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2323
2324         /* invalidate the devices and deregister the disk.  If it is disk
2325          * zero do not deregister it but just zero out it's values.  This
2326          * allows us to delete disk zero but keep the controller registered.
2327          */
2328         if (h->gendisk[0] != disk) {
2329                 struct request_queue *q = disk->queue;
2330                 if (disk->flags & GENHD_FL_UP) {
2331                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2332                         del_gendisk(disk);
2333                 }
2334                 if (q)
2335                         blk_cleanup_queue(q);
2336                 /* If clear_all is set then we are deleting the logical
2337                  * drive, not just refreshing its info.  For drives
2338                  * other than disk 0 we will call put_disk.  We do not
2339                  * do this for disk 0 as we need it to be able to
2340                  * configure the controller.
2341                  */
2342                 if (clear_all){
2343                         /* This isn't pretty, but we need to find the
2344                          * disk in our array and NULL our the pointer.
2345                          * This is so that we will call alloc_disk if
2346                          * this index is used again later.
2347                          */
2348                         for (i=0; i < CISS_MAX_LUN; i++){
2349                                 if (h->gendisk[i] == disk) {
2350                                         h->gendisk[i] = NULL;
2351                                         break;
2352                                 }
2353                         }
2354                         put_disk(disk);
2355                 }
2356         } else {
2357                 set_capacity(disk, 0);
2358                 cciss_clear_drive_info(drv);
2359         }
2360
2361         --h->num_luns;
2362
2363         /* if it was the last disk, find the new hightest lun */
2364         if (clear_all && recalculate_highest_lun) {
2365                 int i, newhighest = -1;
2366                 for (i = 0; i <= h->highest_lun; i++) {
2367                         /* if the disk has size > 0, it is available */
2368                         if (h->drv[i] && h->drv[i]->heads)
2369                                 newhighest = i;
2370                 }
2371                 h->highest_lun = newhighest;
2372         }
2373         return 0;
2374 }
2375
2376 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2377                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2378                 int cmd_type)
2379 {
2380         ctlr_info_t *h = hba[ctlr];
2381         u64bit buff_dma_handle;
2382         int status = IO_OK;
2383
2384         c->cmd_type = CMD_IOCTL_PEND;
2385         c->Header.ReplyQueue = 0;
2386         if (buff != NULL) {
2387                 c->Header.SGList = 1;
2388                 c->Header.SGTotal = 1;
2389         } else {
2390                 c->Header.SGList = 0;
2391                 c->Header.SGTotal = 0;
2392         }
2393         c->Header.Tag.lower = c->busaddr;
2394         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2395
2396         c->Request.Type.Type = cmd_type;
2397         if (cmd_type == TYPE_CMD) {
2398                 switch (cmd) {
2399                 case CISS_INQUIRY:
2400                         /* are we trying to read a vital product page */
2401                         if (page_code != 0) {
2402                                 c->Request.CDB[1] = 0x01;
2403                                 c->Request.CDB[2] = page_code;
2404                         }
2405                         c->Request.CDBLen = 6;
2406                         c->Request.Type.Attribute = ATTR_SIMPLE;
2407                         c->Request.Type.Direction = XFER_READ;
2408                         c->Request.Timeout = 0;
2409                         c->Request.CDB[0] = CISS_INQUIRY;
2410                         c->Request.CDB[4] = size & 0xFF;
2411                         break;
2412                 case CISS_REPORT_LOG:
2413                 case CISS_REPORT_PHYS:
2414                         /* Talking to controller so It's a physical command
2415                            mode = 00 target = 0.  Nothing to write.
2416                          */
2417                         c->Request.CDBLen = 12;
2418                         c->Request.Type.Attribute = ATTR_SIMPLE;
2419                         c->Request.Type.Direction = XFER_READ;
2420                         c->Request.Timeout = 0;
2421                         c->Request.CDB[0] = cmd;
2422                         c->Request.CDB[6] = (size >> 24) & 0xFF;        //MSB
2423                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2424                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2425                         c->Request.CDB[9] = size & 0xFF;
2426                         break;
2427
2428                 case CCISS_READ_CAPACITY:
2429                         c->Request.CDBLen = 10;
2430                         c->Request.Type.Attribute = ATTR_SIMPLE;
2431                         c->Request.Type.Direction = XFER_READ;
2432                         c->Request.Timeout = 0;
2433                         c->Request.CDB[0] = cmd;
2434                         break;
2435                 case CCISS_READ_CAPACITY_16:
2436                         c->Request.CDBLen = 16;
2437                         c->Request.Type.Attribute = ATTR_SIMPLE;
2438                         c->Request.Type.Direction = XFER_READ;
2439                         c->Request.Timeout = 0;
2440                         c->Request.CDB[0] = cmd;
2441                         c->Request.CDB[1] = 0x10;
2442                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2443                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2444                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2445                         c->Request.CDB[13] = size & 0xFF;
2446                         c->Request.Timeout = 0;
2447                         c->Request.CDB[0] = cmd;
2448                         break;
2449                 case CCISS_CACHE_FLUSH:
2450                         c->Request.CDBLen = 12;
2451                         c->Request.Type.Attribute = ATTR_SIMPLE;
2452                         c->Request.Type.Direction = XFER_WRITE;
2453                         c->Request.Timeout = 0;
2454                         c->Request.CDB[0] = BMIC_WRITE;
2455                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2456                         break;
2457                 case TEST_UNIT_READY:
2458                         c->Request.CDBLen = 6;
2459                         c->Request.Type.Attribute = ATTR_SIMPLE;
2460                         c->Request.Type.Direction = XFER_NONE;
2461                         c->Request.Timeout = 0;
2462                         break;
2463                 default:
2464                         printk(KERN_WARNING
2465                                "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2466                         return IO_ERROR;
2467                 }
2468         } else if (cmd_type == TYPE_MSG) {
2469                 switch (cmd) {
2470                 case 0: /* ABORT message */
2471                         c->Request.CDBLen = 12;
2472                         c->Request.Type.Attribute = ATTR_SIMPLE;
2473                         c->Request.Type.Direction = XFER_WRITE;
2474                         c->Request.Timeout = 0;
2475                         c->Request.CDB[0] = cmd;        /* abort */
2476                         c->Request.CDB[1] = 0;  /* abort a command */
2477                         /* buff contains the tag of the command to abort */
2478                         memcpy(&c->Request.CDB[4], buff, 8);
2479                         break;
2480                 case 1: /* RESET message */
2481                         c->Request.CDBLen = 16;
2482                         c->Request.Type.Attribute = ATTR_SIMPLE;
2483                         c->Request.Type.Direction = XFER_NONE;
2484                         c->Request.Timeout = 0;
2485                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2486                         c->Request.CDB[0] = cmd;        /* reset */
2487                         c->Request.CDB[1] = 0x03;       /* reset a target */
2488                         break;
2489                 case 3: /* No-Op message */
2490                         c->Request.CDBLen = 1;
2491                         c->Request.Type.Attribute = ATTR_SIMPLE;
2492                         c->Request.Type.Direction = XFER_WRITE;
2493                         c->Request.Timeout = 0;
2494                         c->Request.CDB[0] = cmd;
2495                         break;
2496                 default:
2497                         printk(KERN_WARNING
2498                                "cciss%d: unknown message type %d\n", ctlr, cmd);
2499                         return IO_ERROR;
2500                 }
2501         } else {
2502                 printk(KERN_WARNING
2503                        "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2504                 return IO_ERROR;
2505         }
2506         /* Fill in the scatter gather information */
2507         if (size > 0) {
2508                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2509                                                              buff, size,
2510                                                              PCI_DMA_BIDIRECTIONAL);
2511                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2512                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2513                 c->SG[0].Len = size;
2514                 c->SG[0].Ext = 0;       /* we are not chaining */
2515         }
2516         return status;
2517 }
2518
2519 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2520 {
2521         switch (c->err_info->ScsiStatus) {
2522         case SAM_STAT_GOOD:
2523                 return IO_OK;
2524         case SAM_STAT_CHECK_CONDITION:
2525                 switch (0xf & c->err_info->SenseInfo[2]) {
2526                 case 0: return IO_OK; /* no sense */
2527                 case 1: return IO_OK; /* recovered error */
2528                 default:
2529                         printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2530                                 "check condition, sense key = 0x%02x\n",
2531                                 h->ctlr, c->Request.CDB[0],
2532                                 c->err_info->SenseInfo[2]);
2533                 }
2534                 break;
2535         default:
2536                 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2537                         "scsi status = 0x%02x\n", h->ctlr,
2538                         c->Request.CDB[0], c->err_info->ScsiStatus);
2539                 break;
2540         }
2541         return IO_ERROR;
2542 }
2543
2544 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2545 {
2546         int return_status = IO_OK;
2547
2548         if (c->err_info->CommandStatus == CMD_SUCCESS)
2549                 return IO_OK;
2550
2551         switch (c->err_info->CommandStatus) {
2552         case CMD_TARGET_STATUS:
2553                 return_status = check_target_status(h, c);
2554                 break;
2555         case CMD_DATA_UNDERRUN:
2556         case CMD_DATA_OVERRUN:
2557                 /* expected for inquiry and report lun commands */
2558                 break;
2559         case CMD_INVALID:
2560                 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2561                        "reported invalid\n", c->Request.CDB[0]);
2562                 return_status = IO_ERROR;
2563                 break;
2564         case CMD_PROTOCOL_ERR:
2565                 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2566                        "protocol error \n", c->Request.CDB[0]);
2567                 return_status = IO_ERROR;
2568                 break;
2569         case CMD_HARDWARE_ERR:
2570                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2571                        " hardware error\n", c->Request.CDB[0]);
2572                 return_status = IO_ERROR;
2573                 break;
2574         case CMD_CONNECTION_LOST:
2575                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2576                        "connection lost\n", c->Request.CDB[0]);
2577                 return_status = IO_ERROR;
2578                 break;
2579         case CMD_ABORTED:
2580                 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2581                        "aborted\n", c->Request.CDB[0]);
2582                 return_status = IO_ERROR;
2583                 break;
2584         case CMD_ABORT_FAILED:
2585                 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2586                        "abort failed\n", c->Request.CDB[0]);
2587                 return_status = IO_ERROR;
2588                 break;
2589         case CMD_UNSOLICITED_ABORT:
2590                 printk(KERN_WARNING
2591                        "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2592                         c->Request.CDB[0]);
2593                 return_status = IO_NEEDS_RETRY;
2594                 break;
2595         default:
2596                 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2597                        "unknown status %x\n", c->Request.CDB[0],
2598                        c->err_info->CommandStatus);
2599                 return_status = IO_ERROR;
2600         }
2601         return return_status;
2602 }
2603
2604 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2605         int attempt_retry)
2606 {
2607         DECLARE_COMPLETION_ONSTACK(wait);
2608         u64bit buff_dma_handle;
2609         unsigned long flags;
2610         int return_status = IO_OK;
2611
2612 resend_cmd2:
2613         c->waiting = &wait;
2614         /* Put the request on the tail of the queue and send it */
2615         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2616         addQ(&h->reqQ, c);
2617         h->Qdepth++;
2618         start_io(h);
2619         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2620
2621         wait_for_completion(&wait);
2622
2623         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2624                 goto command_done;
2625
2626         return_status = process_sendcmd_error(h, c);
2627
2628         if (return_status == IO_NEEDS_RETRY &&
2629                 c->retry_count < MAX_CMD_RETRIES) {
2630                 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2631                         c->Request.CDB[0]);
2632                 c->retry_count++;
2633                 /* erase the old error information */
2634                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2635                 return_status = IO_OK;
2636                 INIT_COMPLETION(wait);
2637                 goto resend_cmd2;
2638         }
2639
2640 command_done:
2641         /* unlock the buffers from DMA */
2642         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2643         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2644         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2645                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2646         return return_status;
2647 }
2648
2649 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2650                            __u8 page_code, unsigned char scsi3addr[],
2651                         int cmd_type)
2652 {
2653         ctlr_info_t *h = hba[ctlr];
2654         CommandList_struct *c;
2655         int return_status;
2656
2657         c = cmd_alloc(h, 0);
2658         if (!c)
2659                 return -ENOMEM;
2660         return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2661                 scsi3addr, cmd_type);
2662         if (return_status == IO_OK)
2663                 return_status = sendcmd_withirq_core(h, c, 1);
2664
2665         cmd_free(h, c, 0);
2666         return return_status;
2667 }
2668
2669 static void cciss_geometry_inquiry(int ctlr, int logvol,
2670                                    int withirq, sector_t total_size,
2671                                    unsigned int block_size,
2672                                    InquiryData_struct *inq_buff,
2673                                    drive_info_struct *drv)
2674 {
2675         int return_code;
2676         unsigned long t;
2677         unsigned char scsi3addr[8];
2678
2679         memset(inq_buff, 0, sizeof(InquiryData_struct));
2680         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2681         if (withirq)
2682                 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2683                                               inq_buff, sizeof(*inq_buff),
2684                                               0xC1, scsi3addr, TYPE_CMD);
2685         else
2686                 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2687                                       sizeof(*inq_buff), 0xC1, scsi3addr,
2688                                       TYPE_CMD);
2689         if (return_code == IO_OK) {
2690                 if (inq_buff->data_byte[8] == 0xFF) {
2691                         printk(KERN_WARNING
2692                                "cciss: reading geometry failed, volume "
2693                                "does not support reading geometry\n");
2694                         drv->heads = 255;
2695                         drv->sectors = 32;      // Sectors per track
2696                         drv->cylinders = total_size + 1;
2697                         drv->raid_level = RAID_UNKNOWN;
2698                 } else {
2699                         drv->heads = inq_buff->data_byte[6];
2700                         drv->sectors = inq_buff->data_byte[7];
2701                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2702                         drv->cylinders += inq_buff->data_byte[5];
2703                         drv->raid_level = inq_buff->data_byte[8];
2704                 }
2705                 drv->block_size = block_size;
2706                 drv->nr_blocks = total_size + 1;
2707                 t = drv->heads * drv->sectors;
2708                 if (t > 1) {
2709                         sector_t real_size = total_size + 1;
2710                         unsigned long rem = sector_div(real_size, t);
2711                         if (rem)
2712                                 real_size++;
2713                         drv->cylinders = real_size;
2714                 }
2715         } else {                /* Get geometry failed */
2716                 printk(KERN_WARNING "cciss: reading geometry failed\n");
2717         }
2718 }
2719
2720 static void
2721 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2722                     unsigned int *block_size)
2723 {
2724         ReadCapdata_struct *buf;
2725         int return_code;
2726         unsigned char scsi3addr[8];
2727
2728         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2729         if (!buf) {
2730                 printk(KERN_WARNING "cciss: out of memory\n");
2731                 return;
2732         }
2733
2734         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2735         if (withirq)
2736                 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2737                                 ctlr, buf, sizeof(ReadCapdata_struct),
2738                                         0, scsi3addr, TYPE_CMD);
2739         else
2740                 return_code = sendcmd(CCISS_READ_CAPACITY,
2741                                 ctlr, buf, sizeof(ReadCapdata_struct),
2742                                         0, scsi3addr, TYPE_CMD);
2743         if (return_code == IO_OK) {
2744                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2745                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2746         } else {                /* read capacity command failed */
2747                 printk(KERN_WARNING "cciss: read capacity failed\n");
2748                 *total_size = 0;
2749                 *block_size = BLOCK_SIZE;
2750         }
2751         kfree(buf);
2752 }
2753
2754 static void
2755 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size,                                 unsigned int *block_size)
2756 {
2757         ReadCapdata_struct_16 *buf;
2758         int return_code;
2759         unsigned char scsi3addr[8];
2760
2761         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2762         if (!buf) {
2763                 printk(KERN_WARNING "cciss: out of memory\n");
2764                 return;
2765         }
2766
2767         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2768         if (withirq) {
2769                 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2770                         ctlr, buf, sizeof(ReadCapdata_struct_16),
2771                                 0, scsi3addr, TYPE_CMD);
2772         }
2773         else {
2774                 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2775                         ctlr, buf, sizeof(ReadCapdata_struct_16),
2776                                 0, scsi3addr, TYPE_CMD);
2777         }
2778         if (return_code == IO_OK) {
2779                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2780                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2781         } else {                /* read capacity command failed */
2782                 printk(KERN_WARNING "cciss: read capacity failed\n");
2783                 *total_size = 0;
2784                 *block_size = BLOCK_SIZE;
2785         }
2786         printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2787                (unsigned long long)*total_size+1, *block_size);
2788         kfree(buf);
2789 }
2790
2791 static int cciss_revalidate(struct gendisk *disk)
2792 {
2793         ctlr_info_t *h = get_host(disk);
2794         drive_info_struct *drv = get_drv(disk);
2795         int logvol;
2796         int FOUND = 0;
2797         unsigned int block_size;
2798         sector_t total_size;
2799         InquiryData_struct *inq_buff = NULL;
2800
2801         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2802                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2803                         sizeof(drv->LunID)) == 0) {
2804                         FOUND = 1;
2805                         break;
2806                 }
2807         }
2808
2809         if (!FOUND)
2810                 return 1;
2811
2812         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2813         if (inq_buff == NULL) {
2814                 printk(KERN_WARNING "cciss: out of memory\n");
2815                 return 1;
2816         }
2817         if (h->cciss_read == CCISS_READ_10) {
2818                 cciss_read_capacity(h->ctlr, logvol, 1,
2819                                         &total_size, &block_size);
2820         } else {
2821                 cciss_read_capacity_16(h->ctlr, logvol, 1,
2822                                         &total_size, &block_size);
2823         }
2824         cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2825                                inq_buff, drv);
2826
2827         blk_queue_logical_block_size(drv->queue, drv->block_size);
2828         set_capacity(disk, drv->nr_blocks);
2829
2830         kfree(inq_buff);
2831         return 0;
2832 }
2833
2834 /*
2835  *   Wait polling for a command to complete.
2836  *   The memory mapped FIFO is polled for the completion.
2837  *   Used only at init time, interrupts from the HBA are disabled.
2838  */
2839 static unsigned long pollcomplete(int ctlr)
2840 {
2841         unsigned long done;
2842         int i;
2843
2844         /* Wait (up to 20 seconds) for a command to complete */
2845
2846         for (i = 20 * HZ; i > 0; i--) {
2847                 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2848                 if (done == FIFO_EMPTY)
2849                         schedule_timeout_uninterruptible(1);
2850                 else
2851                         return done;
2852         }
2853         /* Invalid address to tell caller we ran out of time */
2854         return 1;
2855 }
2856
2857 /* Send command c to controller h and poll for it to complete.
2858  * Turns interrupts off on the board.  Used at driver init time
2859  * and during SCSI error recovery.
2860  */
2861 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2862 {
2863         int i;
2864         unsigned long complete;
2865         int status = IO_ERROR;
2866         u64bit buff_dma_handle;
2867
2868 resend_cmd1:
2869
2870         /* Disable interrupt on the board. */
2871         h->access.set_intr_mask(h, CCISS_INTR_OFF);
2872
2873         /* Make sure there is room in the command FIFO */
2874         /* Actually it should be completely empty at this time */
2875         /* unless we are in here doing error handling for the scsi */
2876         /* tape side of the driver. */
2877         for (i = 200000; i > 0; i--) {
2878                 /* if fifo isn't full go */
2879                 if (!(h->access.fifo_full(h)))
2880                         break;
2881                 udelay(10);
2882                 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2883                        " waiting!\n", h->ctlr);
2884         }
2885         h->access.submit_command(h, c); /* Send the cmd */
2886         do {
2887                 complete = pollcomplete(h->ctlr);
2888
2889 #ifdef CCISS_DEBUG
2890                 printk(KERN_DEBUG "cciss: command completed\n");
2891 #endif                          /* CCISS_DEBUG */
2892
2893                 if (complete == 1) {
2894                         printk(KERN_WARNING
2895                                "cciss cciss%d: SendCmd Timeout out, "
2896                                "No command list address returned!\n", h->ctlr);
2897                         status = IO_ERROR;
2898                         break;
2899                 }
2900
2901                 /* Make sure it's the command we're expecting. */
2902                 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2903                         printk(KERN_WARNING "cciss%d: Unexpected command "
2904                                 "completion.\n", h->ctlr);
2905                         continue;
2906                 }
2907
2908                 /* It is our command.  If no error, we're done. */
2909                 if (!(complete & CISS_ERROR_BIT)) {
2910                         status = IO_OK;
2911                         break;
2912                 }
2913
2914                 /* There is an error... */
2915
2916                 /* if data overrun or underun on Report command ignore it */
2917                 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2918                      (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2919                      (c->Request.CDB[0] == CISS_INQUIRY)) &&
2920                         ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2921                          (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2922                         complete = c->busaddr;
2923                         status = IO_OK;
2924                         break;
2925                 }
2926
2927                 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2928                         printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2929                                 h->ctlr, c);
2930                         if (c->retry_count < MAX_CMD_RETRIES) {
2931                                 printk(KERN_WARNING "cciss%d: retrying %p\n",
2932                                    h->ctlr, c);
2933                                 c->retry_count++;
2934                                 /* erase the old error information */
2935                                 memset(c->err_info, 0, sizeof(c->err_info));
2936                                 goto resend_cmd1;
2937                         }
2938                         printk(KERN_WARNING "cciss%d: retried %p too many "
2939                                 "times\n", h->ctlr, c);
2940                         status = IO_ERROR;
2941                         break;
2942                 }
2943
2944                 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2945                         printk(KERN_WARNING "cciss%d: command could not be "
2946                                 "aborted.\n", h->ctlr);
2947                         status = IO_ERROR;
2948                         break;
2949                 }
2950
2951                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2952                         status = check_target_status(h, c);
2953                         break;
2954                 }
2955
2956                 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2957                 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2958                         c->Request.CDB[0], c->err_info->CommandStatus);
2959                 status = IO_ERROR;
2960                 break;
2961
2962         } while (1);
2963
2964         /* unlock the data buffer from DMA */
2965         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2966         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2967         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2968                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2969         return status;
2970 }
2971
2972 /*
2973  * Send a command to the controller, and wait for it to complete.
2974  * Used at init time, and during SCSI error recovery.
2975  */
2976 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2977         __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2978 {
2979         CommandList_struct *c;
2980         int status;
2981
2982         c = cmd_alloc(hba[ctlr], 1);
2983         if (!c) {
2984                 printk(KERN_WARNING "cciss: unable to get memory");
2985                 return IO_ERROR;
2986         }
2987         status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2988                 scsi3addr, cmd_type);
2989         if (status == IO_OK)
2990                 status = sendcmd_core(hba[ctlr], c);
2991         cmd_free(hba[ctlr], c, 1);
2992         return status;
2993 }
2994
2995 /*
2996  * Map (physical) PCI mem into (virtual) kernel space
2997  */
2998 static void __iomem *remap_pci_mem(ulong base, ulong size)
2999 {
3000         ulong page_base = ((ulong) base) & PAGE_MASK;
3001         ulong page_offs = ((ulong) base) - page_base;
3002         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3003
3004         return page_remapped ? (page_remapped + page_offs) : NULL;
3005 }
3006
3007 /*
3008  * Takes jobs of the Q and sends them to the hardware, then puts it on
3009  * the Q to wait for completion.
3010  */
3011 static void start_io(ctlr_info_t *h)
3012 {
3013         CommandList_struct *c;
3014
3015         while (!hlist_empty(&h->reqQ)) {
3016                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3017                 /* can't do anything if fifo is full */
3018                 if ((h->access.fifo_full(h))) {
3019                         printk(KERN_WARNING "cciss: fifo full\n");
3020                         break;
3021                 }
3022
3023                 /* Get the first entry from the Request Q */
3024                 removeQ(c);
3025                 h->Qdepth--;
3026
3027                 /* Tell the controller execute command */
3028                 h->access.submit_command(h, c);
3029
3030                 /* Put job onto the completed Q */
3031                 addQ(&h->cmpQ, c);
3032         }
3033 }
3034
3035 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
3036 /* Zeros out the error record and then resends the command back */
3037 /* to the controller */
3038 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3039 {
3040         /* erase the old error information */
3041         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3042
3043         /* add it to software queue and then send it to the controller */
3044         addQ(&h->reqQ, c);
3045         h->Qdepth++;
3046         if (h->Qdepth > h->maxQsinceinit)
3047                 h->maxQsinceinit = h->Qdepth;
3048
3049         start_io(h);
3050 }
3051
3052 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3053         unsigned int msg_byte, unsigned int host_byte,
3054         unsigned int driver_byte)
3055 {
3056         /* inverse of macros in scsi.h */
3057         return (scsi_status_byte & 0xff) |
3058                 ((msg_byte & 0xff) << 8) |
3059                 ((host_byte & 0xff) << 16) |
3060                 ((driver_byte & 0xff) << 24);
3061 }
3062
3063 static inline int evaluate_target_status(ctlr_info_t *h,
3064                         CommandList_struct *cmd, int *retry_cmd)
3065 {
3066         unsigned char sense_key;
3067         unsigned char status_byte, msg_byte, host_byte, driver_byte;
3068         int error_value;
3069
3070         *retry_cmd = 0;
3071         /* If we get in here, it means we got "target status", that is, scsi status */
3072         status_byte = cmd->err_info->ScsiStatus;
3073         driver_byte = DRIVER_OK;
3074         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3075
3076         if (blk_pc_request(cmd->rq))
3077                 host_byte = DID_PASSTHROUGH;
3078         else
3079                 host_byte = DID_OK;
3080
3081         error_value = make_status_bytes(status_byte, msg_byte,
3082                 host_byte, driver_byte);
3083
3084         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3085                 if (!blk_pc_request(cmd->rq))
3086                         printk(KERN_WARNING "cciss: cmd %p "
3087                                "has SCSI Status 0x%x\n",
3088                                cmd, cmd->err_info->ScsiStatus);
3089                 return error_value;
3090         }
3091
3092         /* check the sense key */
3093         sense_key = 0xf & cmd->err_info->SenseInfo[2];
3094         /* no status or recovered error */
3095         if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3096                 error_value = 0;
3097
3098         if (check_for_unit_attention(h, cmd)) {
3099                 *retry_cmd = !blk_pc_request(cmd->rq);
3100                 return 0;
3101         }
3102
3103         if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3104                 if (error_value != 0)
3105                         printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3106                                " sense key = 0x%x\n", cmd, sense_key);
3107                 return error_value;
3108         }
3109
3110         /* SG_IO or similar, copy sense data back */
3111         if (cmd->rq->sense) {
3112                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3113                         cmd->rq->sense_len = cmd->err_info->SenseLen;
3114                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3115                         cmd->rq->sense_len);
3116         } else
3117                 cmd->rq->sense_len = 0;
3118
3119         return error_value;
3120 }
3121
3122 /* checks the status of the job and calls complete buffers to mark all
3123  * buffers for the completed job. Note that this function does not need
3124  * to hold the hba/queue lock.
3125  */
3126 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3127                                     int timeout)
3128 {
3129         int retry_cmd = 0;
3130         struct request *rq = cmd->rq;
3131
3132         rq->errors = 0;
3133
3134         if (timeout)
3135                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3136
3137         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3138                 goto after_error_processing;
3139
3140         switch (cmd->err_info->CommandStatus) {
3141         case CMD_TARGET_STATUS:
3142                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3143                 break;
3144         case CMD_DATA_UNDERRUN:
3145                 if (blk_fs_request(cmd->rq)) {
3146                         printk(KERN_WARNING "cciss: cmd %p has"
3147                                " completed with data underrun "
3148                                "reported\n", cmd);
3149                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3150                 }
3151                 break;
3152         case CMD_DATA_OVERRUN:
3153                 if (blk_fs_request(cmd->rq))
3154                         printk(KERN_WARNING "cciss: cmd %p has"
3155                                " completed with data overrun "
3156                                "reported\n", cmd);
3157                 break;
3158         case CMD_INVALID:
3159                 printk(KERN_WARNING "cciss: cmd %p is "
3160                        "reported invalid\n", cmd);
3161                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3162                         cmd->err_info->CommandStatus, DRIVER_OK,
3163                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3164                 break;
3165         case CMD_PROTOCOL_ERR:
3166                 printk(KERN_WARNING "cciss: cmd %p has "
3167                        "protocol error \n", cmd);
3168                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3169                         cmd->err_info->CommandStatus, DRIVER_OK,
3170                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3171                 break;
3172         case CMD_HARDWARE_ERR:
3173                 printk(KERN_WARNING "cciss: cmd %p had "
3174                        " hardware error\n", cmd);
3175                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3176                         cmd->err_info->CommandStatus, DRIVER_OK,
3177                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3178                 break;
3179         case CMD_CONNECTION_LOST:
3180                 printk(KERN_WARNING "cciss: cmd %p had "
3181                        "connection lost\n", cmd);
3182                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3183                         cmd->err_info->CommandStatus, DRIVER_OK,
3184                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3185                 break;
3186         case CMD_ABORTED:
3187                 printk(KERN_WARNING "cciss: cmd %p was "
3188                        "aborted\n", cmd);
3189                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3190                         cmd->err_info->CommandStatus, DRIVER_OK,
3191                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3192                 break;
3193         case CMD_ABORT_FAILED:
3194                 printk(KERN_WARNING "cciss: cmd %p reports "
3195                        "abort failed\n", cmd);
3196                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197                         cmd->err_info->CommandStatus, DRIVER_OK,
3198                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3199                 break;
3200         case CMD_UNSOLICITED_ABORT:
3201                 printk(KERN_WARNING "cciss%d: unsolicited "
3202                        "abort %p\n", h->ctlr, cmd);
3203                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3204                         retry_cmd = 1;
3205                         printk(KERN_WARNING
3206                                "cciss%d: retrying %p\n", h->ctlr, cmd);
3207                         cmd->retry_count++;
3208                 } else
3209                         printk(KERN_WARNING
3210                                "cciss%d: %p retried too "
3211                                "many times\n", h->ctlr, cmd);
3212                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213                         cmd->err_info->CommandStatus, DRIVER_OK,
3214                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3215                 break;
3216         case CMD_TIMEOUT:
3217                 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3218                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219                         cmd->err_info->CommandStatus, DRIVER_OK,
3220                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3221                 break;
3222         default:
3223                 printk(KERN_WARNING "cciss: cmd %p returned "
3224                        "unknown status %x\n", cmd,
3225                        cmd->err_info->CommandStatus);
3226                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3227                         cmd->err_info->CommandStatus, DRIVER_OK,
3228                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3229         }
3230
3231 after_error_processing:
3232
3233         /* We need to return this command */
3234         if (retry_cmd) {
3235                 resend_cciss_cmd(h, cmd);
3236                 return;
3237         }
3238         cmd->rq->completion_data = cmd;
3239         blk_complete_request(cmd->rq);
3240 }
3241
3242 /*
3243  * Get a request and submit it to the controller.
3244  */
3245 static void do_cciss_request(struct request_queue *q)
3246 {
3247         ctlr_info_t *h = q->queuedata;
3248         CommandList_struct *c;
3249         sector_t start_blk;
3250         int seg;
3251         struct request *creq;
3252         u64bit temp64;
3253         struct scatterlist tmp_sg[MAXSGENTRIES];
3254         drive_info_struct *drv;
3255         int i, dir;
3256
3257         /* We call start_io here in case there is a command waiting on the
3258          * queue that has not been sent.
3259          */
3260         if (blk_queue_plugged(q))
3261                 goto startio;
3262
3263       queue:
3264         creq = blk_peek_request(q);
3265         if (!creq)
3266                 goto startio;
3267
3268         BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3269
3270         if ((c = cmd_alloc(h, 1)) == NULL)
3271                 goto full;
3272
3273         blk_start_request(creq);
3274
3275         spin_unlock_irq(q->queue_lock);
3276
3277         c->cmd_type = CMD_RWREQ;
3278         c->rq = creq;
3279
3280         /* fill in the request */
3281         drv = creq->rq_disk->private_data;
3282         c->Header.ReplyQueue = 0;       // unused in simple mode
3283         /* got command from pool, so use the command block index instead */
3284         /* for direct lookups. */
3285         /* The first 2 bits are reserved for controller error reporting. */
3286         c->Header.Tag.lower = (c->cmdindex << 3);
3287         c->Header.Tag.lower |= 0x04;    /* flag for direct lookup. */
3288         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3289         c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3290         c->Request.Type.Type = TYPE_CMD;        // It is a command.
3291         c->Request.Type.Attribute = ATTR_SIMPLE;
3292         c->Request.Type.Direction =
3293             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3294         c->Request.Timeout = 0; // Don't time out
3295         c->Request.CDB[0] =
3296             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3297         start_blk = blk_rq_pos(creq);
3298 #ifdef CCISS_DEBUG
3299         printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3300                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3301 #endif                          /* CCISS_DEBUG */
3302
3303         sg_init_table(tmp_sg, MAXSGENTRIES);
3304         seg = blk_rq_map_sg(q, creq, tmp_sg);
3305
3306         /* get the DMA records for the setup */
3307         if (c->Request.Type.Direction == XFER_READ)
3308                 dir = PCI_DMA_FROMDEVICE;
3309         else
3310                 dir = PCI_DMA_TODEVICE;
3311
3312         for (i = 0; i < seg; i++) {
3313                 c->SG[i].Len = tmp_sg[i].length;
3314                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3315                                                   tmp_sg[i].offset,
3316                                                   tmp_sg[i].length, dir);
3317                 c->SG[i].Addr.lower = temp64.val32.lower;
3318                 c->SG[i].Addr.upper = temp64.val32.upper;
3319                 c->SG[i].Ext = 0;       // we are not chaining
3320         }
3321         /* track how many SG entries we are using */
3322         if (seg > h->maxSG)
3323                 h->maxSG = seg;
3324
3325 #ifdef CCISS_DEBUG
3326         printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3327                blk_rq_sectors(creq), seg);
3328 #endif                          /* CCISS_DEBUG */
3329
3330         c->Header.SGList = c->Header.SGTotal = seg;
3331         if (likely(blk_fs_request(creq))) {
3332                 if(h->cciss_read == CCISS_READ_10) {
3333                         c->Request.CDB[1] = 0;
3334                         c->Request.CDB[2] = (start_blk >> 24) & 0xff;   //MSB
3335                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3336                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3337                         c->Request.CDB[5] = start_blk & 0xff;
3338                         c->Request.CDB[6] = 0;  // (sect >> 24) & 0xff; MSB
3339                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3340                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3341                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3342                 } else {
3343                         u32 upper32 = upper_32_bits(start_blk);
3344
3345                         c->Request.CDBLen = 16;
3346                         c->Request.CDB[1]= 0;
3347                         c->Request.CDB[2]= (upper32 >> 24) & 0xff;      //MSB
3348                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3349                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3350                         c->Request.CDB[5]= upper32 & 0xff;
3351                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3352                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3353                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3354                         c->Request.CDB[9]= start_blk & 0xff;
3355                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3356                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3357                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3358                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3359                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3360                 }
3361         } else if (blk_pc_request(creq)) {
3362                 c->Request.CDBLen = creq->cmd_len;
3363                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3364         } else {
3365                 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3366                 BUG();
3367         }
3368
3369         spin_lock_irq(q->queue_lock);
3370
3371         addQ(&h->reqQ, c);
3372         h->Qdepth++;
3373         if (h->Qdepth > h->maxQsinceinit)
3374                 h->maxQsinceinit = h->Qdepth;
3375
3376         goto queue;
3377 full:
3378         blk_stop_queue(q);
3379 startio:
3380         /* We will already have the driver lock here so not need
3381          * to lock it.
3382          */
3383         start_io(h);
3384 }
3385
3386 static inline unsigned long get_next_completion(ctlr_info_t *h)
3387 {
3388         return h->access.command_completed(h);
3389 }
3390
3391 static inline int interrupt_pending(ctlr_info_t *h)
3392 {
3393         return h->access.intr_pending(h);
3394 }
3395
3396 static inline long interrupt_not_for_us(ctlr_info_t *h)
3397 {
3398         return (((h->access.intr_pending(h) == 0) ||
3399                  (h->interrupts_enabled == 0)));
3400 }
3401
3402 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3403 {
3404         ctlr_info_t *h = dev_id;
3405         CommandList_struct *c;
3406         unsigned long flags;
3407         __u32 a, a1, a2;
3408
3409         if (interrupt_not_for_us(h))
3410                 return IRQ_NONE;
3411         /*
3412          * If there are completed commands in the completion queue,
3413          * we had better do something about it.
3414          */
3415         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3416         while (interrupt_pending(h)) {
3417                 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3418                         a1 = a;
3419                         if ((a & 0x04)) {
3420                                 a2 = (a >> 3);
3421                                 if (a2 >= h->nr_cmds) {
3422                                         printk(KERN_WARNING
3423                                                "cciss: controller cciss%d failed, stopping.\n",
3424                                                h->ctlr);
3425                                         fail_all_cmds(h->ctlr);
3426                                         return IRQ_HANDLED;
3427                                 }
3428
3429                                 c = h->cmd_pool + a2;
3430                                 a = c->busaddr;
3431
3432                         } else {
3433                                 struct hlist_node *tmp;
3434
3435                                 a &= ~3;
3436                                 c = NULL;
3437                                 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3438                                         if (c->busaddr == a)
3439                                                 break;
3440                                 }
3441                         }
3442                         /*
3443                          * If we've found the command, take it off the
3444                          * completion Q and free it
3445                          */
3446                         if (c && c->busaddr == a) {
3447                                 removeQ(c);
3448                                 if (c->cmd_type == CMD_RWREQ) {
3449                                         complete_command(h, c, 0);
3450                                 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3451                                         complete(c->waiting);
3452                                 }
3453 #                               ifdef CONFIG_CISS_SCSI_TAPE
3454                                 else if (c->cmd_type == CMD_SCSI)
3455                                         complete_scsi_command(c, 0, a1);
3456 #                               endif
3457                                 continue;
3458                         }
3459                 }
3460         }
3461
3462         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3463         return IRQ_HANDLED;
3464 }
3465
3466 /**
3467  * add_to_scan_list() - add controller to rescan queue
3468  * @h:                Pointer to the controller.
3469  *
3470  * Adds the controller to the rescan queue if not already on the queue.
3471  *
3472  * returns 1 if added to the queue, 0 if skipped (could be on the
3473  * queue already, or the controller could be initializing or shutting
3474  * down).
3475  **/
3476 static int add_to_scan_list(struct ctlr_info *h)
3477 {
3478         struct ctlr_info *test_h;
3479         int found = 0;
3480         int ret = 0;
3481
3482         if (h->busy_initializing)
3483                 return 0;
3484
3485         if (!mutex_trylock(&h->busy_shutting_down))
3486                 return 0;
3487
3488         mutex_lock(&scan_mutex);
3489         list_for_each_entry(test_h, &scan_q, scan_list) {
3490                 if (test_h == h) {
3491                         found = 1;
3492                         break;
3493                 }
3494         }
3495         if (!found && !h->busy_scanning) {
3496                 INIT_COMPLETION(h->scan_wait);
3497                 list_add_tail(&h->scan_list, &scan_q);
3498                 ret = 1;
3499         }
3500         mutex_unlock(&scan_mutex);
3501         mutex_unlock(&h->busy_shutting_down);
3502
3503         return ret;
3504 }
3505
3506 /**
3507  * remove_from_scan_list() - remove controller from rescan queue
3508  * @h:                     Pointer to the controller.
3509  *
3510  * Removes the controller from the rescan queue if present. Blocks if
3511  * the controller is currently conducting a rescan.
3512  **/
3513 static void remove_from_scan_list(struct ctlr_info *h)
3514 {
3515         struct ctlr_info *test_h, *tmp_h;
3516         int scanning = 0;
3517
3518         mutex_lock(&scan_mutex);
3519         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3520                 if (test_h == h) {
3521                         list_del(&h->scan_list);
3522                         complete_all(&h->scan_wait);
3523                         mutex_unlock(&scan_mutex);
3524                         return;
3525                 }
3526         }
3527         if (&h->busy_scanning)
3528                 scanning = 0;
3529         mutex_unlock(&scan_mutex);
3530
3531         if (scanning)
3532                 wait_for_completion(&h->scan_wait);
3533 }
3534
3535 /**
3536  * scan_thread() - kernel thread used to rescan controllers
3537  * @data:        Ignored.
3538  *
3539  * A kernel thread used scan for drive topology changes on
3540  * controllers. The thread processes only one controller at a time
3541  * using a queue.  Controllers are added to the queue using
3542  * add_to_scan_list() and removed from the queue either after done
3543  * processing or using remove_from_scan_list().
3544  *
3545  * returns 0.
3546  **/
3547 static int scan_thread(void *data)
3548 {
3549         struct ctlr_info *h;
3550
3551         while (1) {
3552                 set_current_state(TASK_INTERRUPTIBLE);
3553                 schedule();
3554                 if (kthread_should_stop())
3555                         break;
3556
3557                 while (1) {
3558                         mutex_lock(&scan_mutex);
3559                         if (list_empty(&scan_q)) {
3560                                 mutex_unlock(&scan_mutex);
3561                                 break;
3562                         }
3563
3564                         h = list_entry(scan_q.next,
3565                                        struct ctlr_info,
3566                                        scan_list);
3567                         list_del(&h->scan_list);
3568                         h->busy_scanning = 1;
3569                         mutex_unlock(&scan_mutex);
3570
3571                         if (h) {
3572                                 rebuild_lun_table(h, 0, 0);
3573                                 complete_all(&h->scan_wait);
3574                                 mutex_lock(&scan_mutex);
3575                                 h->busy_scanning = 0;
3576                                 mutex_unlock(&scan_mutex);
3577                         }
3578                 }
3579         }
3580
3581         return 0;
3582 }
3583
3584 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3585 {
3586         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3587                 return 0;
3588
3589         switch (c->err_info->SenseInfo[12]) {
3590         case STATE_CHANGED:
3591                 printk(KERN_WARNING "cciss%d: a state change "
3592                         "detected, command retried\n", h->ctlr);
3593                 return 1;
3594         break;
3595         case LUN_FAILED:
3596                 printk(KERN_WARNING "cciss%d: LUN failure "
3597                         "detected, action required\n", h->ctlr);
3598                 return 1;
3599         break;
3600         case REPORT_LUNS_CHANGED:
3601                 printk(KERN_WARNING "cciss%d: report LUN data "
3602                         "changed\n", h->ctlr);
3603                 add_to_scan_list(h);
3604                 wake_up_process(cciss_scan_thread);
3605                 return 1;
3606         break;
3607         case POWER_OR_RESET:
3608                 printk(KERN_WARNING "cciss%d: a power on "
3609                         "or device reset detected\n", h->ctlr);
3610                 return 1;
3611         break;
3612         case UNIT_ATTENTION_CLEARED:
3613                 printk(KERN_WARNING "cciss%d: unit attention "
3614                     "cleared by another initiator\n", h->ctlr);
3615                 return 1;
3616         break;
3617         default:
3618                 printk(KERN_WARNING "cciss%d: unknown "
3619                         "unit attention detected\n", h->ctlr);
3620                                 return 1;
3621         }
3622 }
3623
3624 /*
3625  *  We cannot read the structure directly, for portability we must use
3626  *   the io functions.
3627  *   This is for debug only.
3628  */
3629 #ifdef CCISS_DEBUG
3630 static void print_cfg_table(CfgTable_struct *tb)
3631 {
3632         int i;
3633         char temp_name[17];
3634
3635         printk("Controller Configuration information\n");
3636         printk("------------------------------------\n");
3637         for (i = 0; i < 4; i++)
3638                 temp_name[i] = readb(&(tb->Signature[i]));
3639         temp_name[4] = '\0';
3640         printk("   Signature = %s\n", temp_name);
3641         printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3642         printk("   Transport methods supported = 0x%x\n",
3643                readl(&(tb->TransportSupport)));
3644         printk("   Transport methods active = 0x%x\n",
3645                readl(&(tb->TransportActive)));
3646         printk("   Requested transport Method = 0x%x\n",
3647                readl(&(tb->HostWrite.TransportRequest)));
3648         printk("   Coalesce Interrupt Delay = 0x%x\n",
3649                readl(&(tb->HostWrite.CoalIntDelay)));
3650         printk("   Coalesce Interrupt Count = 0x%x\n",
3651                readl(&(tb->HostWrite.CoalIntCount)));
3652         printk("   Max outstanding commands = 0x%d\n",
3653                readl(&(tb->CmdsOutMax)));
3654         printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3655         for (i = 0; i < 16; i++)
3656                 temp_name[i] = readb(&(tb->ServerName[i]));
3657         temp_name[16] = '\0';
3658         printk("   Server Name = %s\n", temp_name);
3659         printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3660 }
3661 #endif                          /* CCISS_DEBUG */
3662
3663 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3664 {
3665         int i, offset, mem_type, bar_type;
3666         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3667                 return 0;
3668         offset = 0;
3669         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3670                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3671                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3672                         offset += 4;
3673                 else {
3674                         mem_type = pci_resource_flags(pdev, i) &
3675                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3676                         switch (mem_type) {
3677                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3678                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3679                                 offset += 4;    /* 32 bit */
3680                                 break;
3681                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3682                                 offset += 8;
3683                                 break;
3684                         default:        /* reserved in PCI 2.2 */
3685                                 printk(KERN_WARNING
3686                                        "Base address is invalid\n");
3687                                 return -1;
3688                                 break;
3689                         }
3690                 }
3691                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3692                         return i + 1;
3693         }
3694         return -1;
3695 }
3696
3697 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3698  * controllers that are capable. If not, we use IO-APIC mode.
3699  */
3700
3701 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3702                                            struct pci_dev *pdev, __u32 board_id)
3703 {
3704 #ifdef CONFIG_PCI_MSI
3705         int err;
3706         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3707         {0, 2}, {0, 3}
3708         };
3709
3710         /* Some boards advertise MSI but don't really support it */
3711         if ((board_id == 0x40700E11) ||
3712             (board_id == 0x40800E11) ||
3713             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3714                 goto default_int_mode;
3715
3716         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3717                 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3718                 if (!err) {
3719                         c->intr[0] = cciss_msix_entries[0].vector;
3720                         c->intr[1] = cciss_msix_entries[1].vector;
3721                         c->intr[2] = cciss_msix_entries[2].vector;
3722                         c->intr[3] = cciss_msix_entries[3].vector;
3723                         c->msix_vector = 1;
3724                         return;
3725                 }
3726                 if (err > 0) {
3727                         printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3728                                "available\n", err);
3729                         goto default_int_mode;
3730                 } else {
3731                         printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3732                                err);
3733                         goto default_int_mode;
3734                 }
3735         }
3736         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3737                 if (!pci_enable_msi(pdev)) {
3738                         c->msi_vector = 1;
3739                 } else {
3740                         printk(KERN_WARNING "cciss: MSI init failed\n");
3741                 }
3742         }
3743 default_int_mode:
3744 #endif                          /* CONFIG_PCI_MSI */
3745         /* if we get here we're going to use the default interrupt mode */
3746         c->intr[SIMPLE_MODE_INT] = pdev->irq;
3747         return;
3748 }
3749
3750 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3751 {
3752         ushort subsystem_vendor_id, subsystem_device_id, command;
3753         __u32 board_id, scratchpad = 0;
3754         __u64 cfg_offset;
3755         __u32 cfg_base_addr;
3756         __u64 cfg_base_addr_index;
3757         int i, err;
3758
3759         /* check to see if controller has been disabled */
3760         /* BEFORE trying to enable it */
3761         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3762         if (!(command & 0x02)) {
3763                 printk(KERN_WARNING
3764                        "cciss: controller appears to be disabled\n");
3765                 return -ENODEV;
3766         }
3767
3768         err = pci_enable_device(pdev);
3769         if (err) {
3770                 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3771                 return err;
3772         }
3773
3774         err = pci_request_regions(pdev, "cciss");
3775         if (err) {
3776                 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3777                        "aborting\n");
3778                 return err;
3779         }
3780
3781         subsystem_vendor_id = pdev->subsystem_vendor;
3782         subsystem_device_id = pdev->subsystem_device;
3783         board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3784                     subsystem_vendor_id);
3785
3786 #ifdef CCISS_DEBUG
3787         printk("command = %x\n", command);
3788         printk("irq = %x\n", pdev->irq);
3789         printk("board_id = %x\n", board_id);
3790 #endif                          /* CCISS_DEBUG */
3791
3792 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3793  * else we use the IO-APIC interrupt assigned to us by system ROM.
3794  */
3795         cciss_interrupt_mode(c, pdev, board_id);
3796
3797         /* find the memory BAR */
3798         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3799                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3800                         break;
3801         }
3802         if (i == DEVICE_COUNT_RESOURCE) {
3803                 printk(KERN_WARNING "cciss: No memory BAR found\n");
3804                 err = -ENODEV;
3805                 goto err_out_free_res;
3806         }
3807
3808         c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3809                                                  * already removed
3810                                                  */
3811
3812 #ifdef CCISS_DEBUG
3813         printk("address 0 = %lx\n", c->paddr);
3814 #endif                          /* CCISS_DEBUG */
3815         c->vaddr = remap_pci_mem(c->paddr, 0x250);
3816
3817         /* Wait for the board to become ready.  (PCI hotplug needs this.)
3818          * We poll for up to 120 secs, once per 100ms. */
3819         for (i = 0; i < 1200; i++) {
3820                 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3821                 if (scratchpad == CCISS_FIRMWARE_READY)
3822                         break;
3823                 set_current_state(TASK_INTERRUPTIBLE);
3824                 schedule_timeout(msecs_to_jiffies(100));        /* wait 100ms */
3825         }
3826         if (scratchpad != CCISS_FIRMWARE_READY) {
3827                 printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3828                 err = -ENODEV;
3829                 goto err_out_free_res;
3830         }
3831
3832         /* get the address index number */
3833         cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3834         cfg_base_addr &= (__u32) 0x0000ffff;
3835 #ifdef CCISS_DEBUG
3836         printk("cfg base address = %x\n", cfg_base_addr);
3837 #endif                          /* CCISS_DEBUG */
3838         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3839 #ifdef CCISS_DEBUG
3840         printk("cfg base address index = %llx\n",
3841                 (unsigned long long)cfg_base_addr_index);
3842 #endif                          /* CCISS_DEBUG */
3843         if (cfg_base_addr_index == -1) {
3844                 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3845                 err = -ENODEV;
3846                 goto err_out_free_res;
3847         }
3848
3849         cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3850 #ifdef CCISS_DEBUG
3851         printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3852 #endif                          /* CCISS_DEBUG */
3853         c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3854                                                        cfg_base_addr_index) +
3855                                     cfg_offset, sizeof(CfgTable_struct));
3856         c->board_id = board_id;
3857
3858 #ifdef CCISS_DEBUG
3859         print_cfg_table(c->cfgtable);
3860 #endif                          /* CCISS_DEBUG */
3861
3862         /* Some controllers support Zero Memory Raid (ZMR).
3863          * When configured in ZMR mode the number of supported
3864          * commands drops to 64. So instead of just setting an
3865          * arbitrary value we make the driver a little smarter.
3866          * We read the config table to tell us how many commands
3867          * are supported on the controller then subtract 4 to
3868          * leave a little room for ioctl calls.
3869          */
3870         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3871         for (i = 0; i < ARRAY_SIZE(products); i++) {
3872                 if (board_id == products[i].board_id) {
3873                         c->product_name = products[i].product_name;
3874                         c->access = *(products[i].access);
3875                         c->nr_cmds = c->max_commands - 4;
3876                         break;
3877                 }
3878         }
3879         if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3880             (readb(&c->cfgtable->Signature[1]) != 'I') ||
3881             (readb(&c->cfgtable->Signature[2]) != 'S') ||
3882             (readb(&c->cfgtable->Signature[3]) != 'S')) {
3883                 printk("Does not appear to be a valid CISS config table\n");
3884                 err = -ENODEV;
3885                 goto err_out_free_res;
3886         }
3887         /* We didn't find the controller in our list. We know the
3888          * signature is valid. If it's an HP device let's try to
3889          * bind to the device and fire it up. Otherwise we bail.
3890          */
3891         if (i == ARRAY_SIZE(products)) {
3892                 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3893                         c->product_name = products[i-1].product_name;
3894                         c->access = *(products[i-1].access);
3895                         c->nr_cmds = c->max_commands - 4;
3896                         printk(KERN_WARNING "cciss: This is an unknown "
3897                                 "Smart Array controller.\n"
3898                                 "cciss: Please update to the latest driver "
3899                                 "available from www.hp.com.\n");
3900                 } else {
3901                         printk(KERN_WARNING "cciss: Sorry, I don't know how"
3902                                 " to access the Smart Array controller %08lx\n"
3903                                         , (unsigned long)board_id);
3904                         err = -ENODEV;
3905                         goto err_out_free_res;
3906                 }
3907         }
3908 #ifdef CONFIG_X86
3909         {
3910                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3911                 __u32 prefetch;
3912                 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3913                 prefetch |= 0x100;
3914                 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3915         }
3916 #endif
3917
3918         /* Disabling DMA prefetch and refetch for the P600.
3919          * An ASIC bug may result in accesses to invalid memory addresses.
3920          * We've disabled prefetch for some time now. Testing with XEN
3921          * kernels revealed a bug in the refetch if dom0 resides on a P600.
3922          */
3923         if(board_id == 0x3225103C) {
3924                 __u32 dma_prefetch;
3925                 __u32 dma_refetch;
3926                 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3927                 dma_prefetch |= 0x8000;
3928                 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3929                 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3930                 dma_refetch |= 0x1;
3931                 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3932         }
3933
3934 #ifdef CCISS_DEBUG
3935         printk("Trying to put board into Simple mode\n");
3936 #endif                          /* CCISS_DEBUG */
3937         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3938         /* Update the field, and then ring the doorbell */
3939         writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3940         writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3941
3942         /* under certain very rare conditions, this can take awhile.
3943          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3944          * as we enter this code.) */
3945         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3946                 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3947                         break;
3948                 /* delay and try again */
3949                 set_current_state(TASK_INTERRUPTIBLE);
3950                 schedule_timeout(msecs_to_jiffies(1));
3951         }
3952
3953 #ifdef CCISS_DEBUG
3954         printk(KERN_DEBUG "I counter got to %d %x\n", i,
3955                readl(c->vaddr + SA5_DOORBELL));
3956 #endif                          /* CCISS_DEBUG */
3957 #ifdef CCISS_DEBUG
3958         print_cfg_table(c->cfgtable);
3959 #endif                          /* CCISS_DEBUG */
3960
3961         if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3962                 printk(KERN_WARNING "cciss: unable to get board into"
3963                        " simple mode\n");
3964                 err = -ENODEV;
3965                 goto err_out_free_res;
3966         }
3967         return 0;
3968
3969 err_out_free_res:
3970         /*
3971          * Deliberately omit pci_disable_device(): it does something nasty to
3972          * Smart Array controllers that pci_enable_device does not undo
3973          */
3974         pci_release_regions(pdev);
3975         return err;
3976 }
3977
3978 /* Function to find the first free pointer into our hba[] array
3979  * Returns -1 if no free entries are left.
3980  */
3981 static int alloc_cciss_hba(void)
3982 {
3983         int i;
3984
3985         for (i = 0; i < MAX_CTLR; i++) {
3986                 if (!hba[i]) {
3987                         ctlr_info_t *p;
3988
3989                         p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3990                         if (!p)
3991                                 goto Enomem;
3992                         hba[i] = p;
3993                         return i;
3994                 }
3995         }
3996         printk(KERN_WARNING "cciss: This driver supports a maximum"
3997                " of %d controllers.\n", MAX_CTLR);
3998         return -1;
3999 Enomem:
4000         printk(KERN_ERR "cciss: out of memory.\n");
4001         return -1;
4002 }
4003
4004 static void free_hba(int n)
4005 {
4006         ctlr_info_t *h = hba[n];
4007         int i;
4008
4009         hba[n] = NULL;
4010         for (i = 0; i < h->highest_lun + 1; i++)
4011                 if (h->gendisk[i] != NULL)
4012                         put_disk(h->gendisk[i]);
4013         kfree(h);
4014 }
4015
4016 /* Send a message CDB to the firmware. */
4017 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4018 {
4019         typedef struct {
4020                 CommandListHeader_struct CommandHeader;
4021                 RequestBlock_struct Request;
4022                 ErrDescriptor_struct ErrorDescriptor;
4023         } Command;
4024         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4025         Command *cmd;
4026         dma_addr_t paddr64;
4027         uint32_t paddr32, tag;
4028         void __iomem *vaddr;
4029         int i, err;
4030
4031         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4032         if (vaddr == NULL)
4033                 return -ENOMEM;
4034
4035         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4036            CCISS commands, so they must be allocated from the lower 4GiB of
4037            memory. */
4038         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4039         if (err) {
4040                 iounmap(vaddr);
4041                 return -ENOMEM;
4042         }
4043
4044         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4045         if (cmd == NULL) {
4046                 iounmap(vaddr);
4047                 return -ENOMEM;
4048         }
4049
4050         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
4051            although there's no guarantee, we assume that the address is at
4052            least 4-byte aligned (most likely, it's page-aligned). */
4053         paddr32 = paddr64;
4054
4055         cmd->CommandHeader.ReplyQueue = 0;
4056         cmd->CommandHeader.SGList = 0;
4057         cmd->CommandHeader.SGTotal = 0;
4058         cmd->CommandHeader.Tag.lower = paddr32;
4059         cmd->CommandHeader.Tag.upper = 0;
4060         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4061
4062         cmd->Request.CDBLen = 16;
4063         cmd->Request.Type.Type = TYPE_MSG;
4064         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4065         cmd->Request.Type.Direction = XFER_NONE;
4066         cmd->Request.Timeout = 0; /* Don't time out */
4067         cmd->Request.CDB[0] = opcode;
4068         cmd->Request.CDB[1] = type;
4069         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4070
4071         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4072         cmd->ErrorDescriptor.Addr.upper = 0;
4073         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4074
4075         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4076
4077         for (i = 0; i < 10; i++) {
4078                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4079                 if ((tag & ~3) == paddr32)
4080                         break;
4081                 schedule_timeout_uninterruptible(HZ);
4082         }
4083
4084         iounmap(vaddr);
4085
4086         /* we leak the DMA buffer here ... no choice since the controller could
4087            still complete the command. */
4088         if (i == 10) {
4089                 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4090                         opcode, type);
4091                 return -ETIMEDOUT;
4092         }
4093
4094         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4095
4096         if (tag & 2) {
4097                 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4098                         opcode, type);
4099                 return -EIO;
4100         }
4101
4102         printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4103                 opcode, type);
4104         return 0;
4105 }
4106
4107 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4108 #define cciss_noop(p) cciss_message(p, 3, 0)
4109
4110 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4111 {
4112 /* the #defines are stolen from drivers/pci/msi.h. */
4113 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
4114 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
4115
4116         int pos;
4117         u16 control = 0;
4118
4119         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4120         if (pos) {
4121                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4122                 if (control & PCI_MSI_FLAGS_ENABLE) {
4123                         printk(KERN_INFO "cciss: resetting MSI\n");
4124                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4125                 }
4126         }
4127
4128         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4129         if (pos) {
4130                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4131                 if (control & PCI_MSIX_FLAGS_ENABLE) {
4132                         printk(KERN_INFO "cciss: resetting MSI-X\n");
4133                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4134                 }
4135         }
4136
4137         return 0;
4138 }
4139
4140 /* This does a hard reset of the controller using PCI power management
4141  * states. */
4142 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4143 {
4144         u16 pmcsr, saved_config_space[32];
4145         int i, pos;
4146
4147         printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4148
4149         /* This is very nearly the same thing as
4150
4151            pci_save_state(pci_dev);
4152            pci_set_power_state(pci_dev, PCI_D3hot);
4153            pci_set_power_state(pci_dev, PCI_D0);
4154            pci_restore_state(pci_dev);
4155
4156            but we can't use these nice canned kernel routines on
4157            kexec, because they also check the MSI/MSI-X state in PCI
4158            configuration space and do the wrong thing when it is
4159            set/cleared.  Also, the pci_save/restore_state functions
4160            violate the ordering requirements for restoring the
4161            configuration space from the CCISS document (see the
4162            comment below).  So we roll our own .... */
4163
4164         for (i = 0; i < 32; i++)
4165                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4166
4167         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4168         if (pos == 0) {
4169                 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4170                 return -ENODEV;
4171         }
4172
4173         /* Quoting from the Open CISS Specification: "The Power
4174          * Management Control/Status Register (CSR) controls the power
4175          * state of the device.  The normal operating state is D0,
4176          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4177          * the controller, place the interface device in D3 then to
4178          * D0, this causes a secondary PCI reset which will reset the
4179          * controller." */
4180
4181         /* enter the D3hot power management state */
4182         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4183         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4184         pmcsr |= PCI_D3hot;
4185         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4186
4187         schedule_timeout_uninterruptible(HZ >> 1);
4188
4189         /* enter the D0 power management state */
4190         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4191         pmcsr |= PCI_D0;
4192         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4193
4194         schedule_timeout_uninterruptible(HZ >> 1);
4195
4196         /* Restore the PCI configuration space.  The Open CISS
4197          * Specification says, "Restore the PCI Configuration
4198          * Registers, offsets 00h through 60h. It is important to
4199          * restore the command register, 16-bits at offset 04h,
4200          * last. Do not restore the configuration status register,
4201          * 16-bits at offset 06h."  Note that the offset is 2*i. */
4202         for (i = 0; i < 32; i++) {
4203                 if (i == 2 || i == 3)
4204                         continue;
4205                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4206         }
4207         wmb();
4208         pci_write_config_word(pdev, 4, saved_config_space[2]);
4209
4210         return 0;
4211 }
4212
4213 /*
4214  *  This is it.  Find all the controllers and register them.  I really hate
4215  *  stealing all these major device numbers.
4216  *  returns the number of block devices registered.
4217  */
4218 static int __devinit cciss_init_one(struct pci_dev *pdev,
4219                                     const struct pci_device_id *ent)
4220 {
4221         int i;
4222         int j = 0;
4223         int rc;
4224         int dac, return_code;
4225         InquiryData_struct *inq_buff;
4226
4227         if (reset_devices) {
4228                 /* Reset the controller with a PCI power-cycle */
4229                 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4230                         return -ENODEV;
4231
4232                 /* Now try to get the controller to respond to a no-op. Some
4233                    devices (notably the HP Smart Array 5i Controller) need
4234                    up to 30 seconds to respond. */
4235                 for (i=0; i<30; i++) {
4236                         if (cciss_noop(pdev) == 0)
4237                                 break;
4238
4239                         schedule_timeout_uninterruptible(HZ);
4240                 }
4241                 if (i == 30) {
4242                         printk(KERN_ERR "cciss: controller seems dead\n");
4243                         return -EBUSY;
4244                 }
4245         }
4246
4247         i = alloc_cciss_hba();
4248         if (i < 0)
4249                 return -1;
4250
4251         hba[i]->busy_initializing = 1;
4252         INIT_HLIST_HEAD(&hba[i]->cmpQ);
4253         INIT_HLIST_HEAD(&hba[i]->reqQ);
4254         mutex_init(&hba[i]->busy_shutting_down);
4255
4256         if (cciss_pci_init(hba[i], pdev) != 0)
4257                 goto clean0;
4258
4259         sprintf(hba[i]->devname, "cciss%d", i);
4260         hba[i]->ctlr = i;
4261         hba[i]->pdev = pdev;
4262
4263         init_completion(&hba[i]->scan_wait);
4264
4265         if (cciss_create_hba_sysfs_entry(hba[i]))
4266                 goto clean0;
4267
4268         /* configure PCI DMA stuff */
4269         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4270                 dac = 1;
4271         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4272                 dac = 0;
4273         else {
4274                 printk(KERN_ERR "cciss: no suitable DMA available\n");
4275                 goto clean1;
4276         }
4277
4278         /*
4279          * register with the major number, or get a dynamic major number
4280          * by passing 0 as argument.  This is done for greater than
4281          * 8 controller support.
4282          */
4283         if (i < MAX_CTLR_ORIG)
4284                 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4285         rc = register_blkdev(hba[i]->major, hba[i]->devname);
4286         if (rc == -EBUSY || rc == -EINVAL) {
4287                 printk(KERN_ERR
4288                        "cciss:  Unable to get major number %d for %s "
4289                        "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4290                 goto clean1;
4291         } else {
4292                 if (i >= MAX_CTLR_ORIG)
4293                         hba[i]->major = rc;
4294         }
4295
4296         /* make sure the board interrupts are off */
4297         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4298         if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4299                         IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4300                 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4301                        hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4302                 goto clean2;
4303         }
4304
4305         printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4306                hba[i]->devname, pdev->device, pci_name(pdev),
4307                hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4308
4309         hba[i]->cmd_pool_bits =
4310             kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4311                         * sizeof(unsigned long), GFP_KERNEL);
4312         hba[i]->cmd_pool = (CommandList_struct *)
4313             pci_alloc_consistent(hba[i]->pdev,
4314                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4315                     &(hba[i]->cmd_pool_dhandle));
4316         hba[i]->errinfo_pool = (ErrorInfo_struct *)
4317             pci_alloc_consistent(hba[i]->pdev,
4318                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4319                     &(hba[i]->errinfo_pool_dhandle));
4320         if ((hba[i]->cmd_pool_bits == NULL)
4321             || (hba[i]->cmd_pool == NULL)
4322             || (hba[i]->errinfo_pool == NULL)) {
4323                 printk(KERN_ERR "cciss: out of memory");
4324                 goto clean4;
4325         }
4326         spin_lock_init(&hba[i]->lock);
4327
4328         /* Initialize the pdev driver private data.
4329            have it point to hba[i].  */
4330         pci_set_drvdata(pdev, hba[i]);
4331         /* command and error info recs zeroed out before
4332            they are used */
4333         memset(hba[i]->cmd_pool_bits, 0,
4334                DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4335                         * sizeof(unsigned long));
4336
4337         hba[i]->num_luns = 0;
4338         hba[i]->highest_lun = -1;
4339         for (j = 0; j < CISS_MAX_LUN; j++) {
4340                 hba[i]->drv[j] = NULL;
4341                 hba[i]->gendisk[j] = NULL;
4342         }
4343
4344         cciss_scsi_setup(i);
4345
4346         /* Turn the interrupts on so we can service requests */
4347         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4348
4349         /* Get the firmware version */
4350         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4351         if (inq_buff == NULL) {
4352                 printk(KERN_ERR "cciss: out of memory\n");
4353                 goto clean4;
4354         }
4355
4356         return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4357                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4358         if (return_code == IO_OK) {
4359                 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4360                 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4361                 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4362                 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4363         } else {         /* send command failed */
4364                 printk(KERN_WARNING "cciss: unable to determine firmware"
4365                         " version of controller\n");
4366         }
4367         kfree(inq_buff);
4368
4369         cciss_procinit(i);
4370
4371         hba[i]->cciss_max_sectors = 2048;
4372
4373         rebuild_lun_table(hba[i], 1, 0);
4374         hba[i]->busy_initializing = 0;
4375         return 1;
4376
4377 clean4:
4378         kfree(hba[i]->cmd_pool_bits);
4379         if (hba[i]->cmd_pool)
4380                 pci_free_consistent(hba[i]->pdev,
4381                                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4382                                     hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4383         if (hba[i]->errinfo_pool)
4384                 pci_free_consistent(hba[i]->pdev,
4385                                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4386                                     hba[i]->errinfo_pool,
4387                                     hba[i]->errinfo_pool_dhandle);
4388         free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4389 clean2:
4390         unregister_blkdev(hba[i]->major, hba[i]->devname);
4391 clean1:
4392         cciss_destroy_hba_sysfs_entry(hba[i]);
4393 clean0:
4394         hba[i]->busy_initializing = 0;
4395
4396         /*
4397          * Deliberately omit pci_disable_device(): it does something nasty to
4398          * Smart Array controllers that pci_enable_device does not undo
4399          */
4400         pci_release_regions(pdev);
4401         pci_set_drvdata(pdev, NULL);
4402         free_hba(i);
4403         return -1;
4404 }
4405
4406 static void cciss_shutdown(struct pci_dev *pdev)
4407 {
4408         ctlr_info_t *tmp_ptr;
4409         int i;
4410         char flush_buf[4];
4411         int return_code;
4412
4413         tmp_ptr = pci_get_drvdata(pdev);
4414         if (tmp_ptr == NULL)
4415                 return;
4416         i = tmp_ptr->ctlr;
4417         if (hba[i] == NULL)
4418                 return;
4419
4420         /* Turn board interrupts off  and send the flush cache command */
4421         /* sendcmd will turn off interrupt, and send the flush...
4422          * To write all data in the battery backed cache to disks */
4423         memset(flush_buf, 0, 4);
4424         return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4425                 CTLR_LUNID, TYPE_CMD);
4426         if (return_code == IO_OK) {
4427                 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4428         } else {
4429                 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4430         }
4431         free_irq(hba[i]->intr[2], hba[i]);
4432 }
4433
4434 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4435 {
4436         ctlr_info_t *tmp_ptr;
4437         int i, j;
4438
4439         if (pci_get_drvdata(pdev) == NULL) {
4440                 printk(KERN_ERR "cciss: Unable to remove device \n");
4441                 return;
4442         }
4443
4444         tmp_ptr = pci_get_drvdata(pdev);
4445         i = tmp_ptr->ctlr;
4446         if (hba[i] == NULL) {
4447                 printk(KERN_ERR "cciss: device appears to "
4448                        "already be removed \n");
4449                 return;
4450         }
4451
4452         mutex_lock(&hba[i]->busy_shutting_down);
4453
4454         remove_from_scan_list(hba[i]);
4455         remove_proc_entry(hba[i]->devname, proc_cciss);
4456         unregister_blkdev(hba[i]->major, hba[i]->devname);
4457
4458         /* remove it from the disk list */
4459         for (j = 0; j < CISS_MAX_LUN; j++) {
4460                 struct gendisk *disk = hba[i]->gendisk[j];
4461                 if (disk) {
4462                         struct request_queue *q = disk->queue;
4463
4464                         if (disk->flags & GENHD_FL_UP) {
4465                                 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4466                                 del_gendisk(disk);
4467                         }
4468                         if (q)
4469                                 blk_cleanup_queue(q);
4470                 }
4471         }
4472
4473 #ifdef CONFIG_CISS_SCSI_TAPE
4474         cciss_unregister_scsi(i);       /* unhook from SCSI subsystem */
4475 #endif
4476
4477         cciss_shutdown(pdev);
4478
4479 #ifdef CONFIG_PCI_MSI
4480         if (hba[i]->msix_vector)
4481                 pci_disable_msix(hba[i]->pdev);
4482         else if (hba[i]->msi_vector)
4483                 pci_disable_msi(hba[i]->pdev);
4484 #endif                          /* CONFIG_PCI_MSI */
4485
4486         iounmap(hba[i]->vaddr);
4487
4488         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4489                             hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4490         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4491                             hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4492         kfree(hba[i]->cmd_pool_bits);
4493         /*
4494          * Deliberately omit pci_disable_device(): it does something nasty to
4495          * Smart Array controllers that pci_enable_device does not undo
4496          */
4497         pci_release_regions(pdev);
4498         pci_set_drvdata(pdev, NULL);
4499         cciss_destroy_hba_sysfs_entry(hba[i]);
4500         mutex_unlock(&hba[i]->busy_shutting_down);
4501         free_hba(i);
4502 }
4503
4504 static struct pci_driver cciss_pci_driver = {
4505         .name = "cciss",
4506         .probe = cciss_init_one,
4507         .remove = __devexit_p(cciss_remove_one),
4508         .id_table = cciss_pci_device_id,        /* id_table */
4509         .shutdown = cciss_shutdown,
4510 };
4511
4512 /*
4513  *  This is it.  Register the PCI driver information for the cards we control
4514  *  the OS will call our registered routines when it finds one of our cards.
4515  */
4516 static int __init cciss_init(void)
4517 {
4518         int err;
4519
4520         /*
4521          * The hardware requires that commands are aligned on a 64-bit
4522          * boundary. Given that we use pci_alloc_consistent() to allocate an
4523          * array of them, the size must be a multiple of 8 bytes.
4524          */
4525         BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4526
4527         printk(KERN_INFO DRIVER_NAME "\n");
4528
4529         err = bus_register(&cciss_bus_type);
4530         if (err)
4531                 return err;
4532
4533         /* Start the scan thread */
4534         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4535         if (IS_ERR(cciss_scan_thread)) {
4536                 err = PTR_ERR(cciss_scan_thread);
4537                 goto err_bus_unregister;
4538         }
4539
4540         /* Register for our PCI devices */
4541         err = pci_register_driver(&cciss_pci_driver);
4542         if (err)
4543                 goto err_thread_stop;
4544
4545         return err;
4546
4547 err_thread_stop:
4548         kthread_stop(cciss_scan_thread);
4549 err_bus_unregister:
4550         bus_unregister(&cciss_bus_type);
4551
4552         return err;
4553 }
4554
4555 static void __exit cciss_cleanup(void)
4556 {
4557         int i;
4558
4559         pci_unregister_driver(&cciss_pci_driver);
4560         /* double check that all controller entrys have been removed */
4561         for (i = 0; i < MAX_CTLR; i++) {
4562                 if (hba[i] != NULL) {
4563                         printk(KERN_WARNING "cciss: had to remove"
4564                                " controller %d\n", i);
4565                         cciss_remove_one(hba[i]->pdev);
4566                 }
4567         }
4568         kthread_stop(cciss_scan_thread);
4569         remove_proc_entry("driver/cciss", NULL);
4570         bus_unregister(&cciss_bus_type);
4571 }
4572
4573 static void fail_all_cmds(unsigned long ctlr)
4574 {
4575         /* If we get here, the board is apparently dead. */
4576         ctlr_info_t *h = hba[ctlr];
4577         CommandList_struct *c;
4578         unsigned long flags;
4579
4580         printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4581         h->alive = 0;           /* the controller apparently died... */
4582
4583         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4584
4585         pci_disable_device(h->pdev);    /* Make sure it is really dead. */
4586
4587         /* move everything off the request queue onto the completed queue */
4588         while (!hlist_empty(&h->reqQ)) {
4589                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4590                 removeQ(c);
4591                 h->Qdepth--;
4592                 addQ(&h->cmpQ, c);
4593         }
4594
4595         /* Now, fail everything on the completed queue with a HW error */
4596         while (!hlist_empty(&h->cmpQ)) {
4597                 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4598                 removeQ(c);
4599                 if (c->cmd_type != CMD_MSG_STALE)
4600                         c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4601                 if (c->cmd_type == CMD_RWREQ) {
4602                         complete_command(h, c, 0);
4603                 } else if (c->cmd_type == CMD_IOCTL_PEND)
4604                         complete(c->waiting);
4605 #ifdef CONFIG_CISS_SCSI_TAPE
4606                 else if (c->cmd_type == CMD_SCSI)
4607                         complete_scsi_command(c, 0, 0);
4608 #endif
4609         }
4610         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4611         return;
4612 }
4613
4614 module_init(cciss_init);
4615 module_exit(cciss_cleanup);