ACPI: suspend: restore BM_RLD on resume
[safe/jmp/linux-2.6] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER       "power"
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD                     1       /* 1us */
69 #define C3_OVERHEAD                     1       /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82         return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93                 return 0;
94
95         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96                " Override with \"processor.max_cstate=%d\"\n", id->ident,
97                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99         max_cstate = (long)id->driver_data;
100
101         return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107         { set_max_cstate, "Clevo 5600D", {
108           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110          (void *)2},
111         {},
112 };
113
114
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121         current_thread_info()->status &= ~TS_POLLING;
122         /*
123          * TS_POLLING-cleared state must be visible before we
124          * test NEED_RESCHED:
125          */
126         smp_mb();
127         if (!need_resched()) {
128                 safe_halt();
129                 local_irq_disable();
130         }
131         current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143                                    struct acpi_processor_cx *cx)
144 {
145         struct acpi_processor_power *pwr = &pr->power;
146         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149                 return;
150
151         /*
152          * Check, if one of the previous states already marked the lapic
153          * unstable
154          */
155         if (pwr->timer_broadcast_on_state < state)
156                 return;
157
158         if (cx->type >= type)
159                 pr->power.timer_broadcast_on_state = state;
160 }
161
162 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
163 {
164         unsigned long reason;
165
166         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
167                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
168
169         clockevents_notify(reason, &pr->id);
170 }
171
172 /* Power(C) State timer broadcast control */
173 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
174                                        struct acpi_processor_cx *cx,
175                                        int broadcast)
176 {
177         int state = cx - pr->power.states;
178
179         if (state >= pr->power.timer_broadcast_on_state) {
180                 unsigned long reason;
181
182                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
183                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
184                 clockevents_notify(reason, &pr->id);
185         }
186 }
187
188 #else
189
190 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
191                                    struct acpi_processor_cx *cstate) { }
192 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
193 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
194                                        struct acpi_processor_cx *cx,
195                                        int broadcast)
196 {
197 }
198
199 #endif
200
201 /*
202  * Suspend / resume control
203  */
204 static int acpi_idle_suspend;
205 static u32 saved_bm_rld;
206
207 static void acpi_idle_bm_rld_save(void)
208 {
209         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
210 }
211 static void acpi_idle_bm_rld_restore(void)
212 {
213         u32 resumed_bm_rld;
214
215         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
216
217         if (resumed_bm_rld != saved_bm_rld)
218                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
219 }
220
221 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
222 {
223         if (acpi_idle_suspend == 1)
224                 return 0;
225
226         acpi_idle_bm_rld_save();
227         acpi_idle_suspend = 1;
228         return 0;
229 }
230
231 int acpi_processor_resume(struct acpi_device * device)
232 {
233         if (acpi_idle_suspend == 0)
234                 return 0;
235
236         acpi_idle_bm_rld_restore();
237         acpi_idle_suspend = 0;
238         return 0;
239 }
240
241 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
242 static int tsc_halts_in_c(int state)
243 {
244         switch (boot_cpu_data.x86_vendor) {
245         case X86_VENDOR_AMD:
246         case X86_VENDOR_INTEL:
247                 /*
248                  * AMD Fam10h TSC will tick in all
249                  * C/P/S0/S1 states when this bit is set.
250                  */
251                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
252                         return 0;
253
254                 /*FALL THROUGH*/
255         default:
256                 return state > ACPI_STATE_C1;
257         }
258 }
259 #endif
260
261 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
262 {
263
264         if (!pr)
265                 return -EINVAL;
266
267         if (!pr->pblk)
268                 return -ENODEV;
269
270         /* if info is obtained from pblk/fadt, type equals state */
271         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
272         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
273
274 #ifndef CONFIG_HOTPLUG_CPU
275         /*
276          * Check for P_LVL2_UP flag before entering C2 and above on
277          * an SMP system.
278          */
279         if ((num_online_cpus() > 1) &&
280             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
281                 return -ENODEV;
282 #endif
283
284         /* determine C2 and C3 address from pblk */
285         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
286         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
287
288         /* determine latencies from FADT */
289         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
290         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
291
292         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
293                           "lvl2[0x%08x] lvl3[0x%08x]\n",
294                           pr->power.states[ACPI_STATE_C2].address,
295                           pr->power.states[ACPI_STATE_C3].address));
296
297         return 0;
298 }
299
300 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
301 {
302         if (!pr->power.states[ACPI_STATE_C1].valid) {
303                 /* set the first C-State to C1 */
304                 /* all processors need to support C1 */
305                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
306                 pr->power.states[ACPI_STATE_C1].valid = 1;
307                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
308         }
309         /* the C0 state only exists as a filler in our array */
310         pr->power.states[ACPI_STATE_C0].valid = 1;
311         return 0;
312 }
313
314 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
315 {
316         acpi_status status = 0;
317         acpi_integer count;
318         int current_count;
319         int i;
320         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
321         union acpi_object *cst;
322
323
324         if (nocst)
325                 return -ENODEV;
326
327         current_count = 0;
328
329         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
330         if (ACPI_FAILURE(status)) {
331                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
332                 return -ENODEV;
333         }
334
335         cst = buffer.pointer;
336
337         /* There must be at least 2 elements */
338         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
339                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
340                 status = -EFAULT;
341                 goto end;
342         }
343
344         count = cst->package.elements[0].integer.value;
345
346         /* Validate number of power states. */
347         if (count < 1 || count != cst->package.count - 1) {
348                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
349                 status = -EFAULT;
350                 goto end;
351         }
352
353         /* Tell driver that at least _CST is supported. */
354         pr->flags.has_cst = 1;
355
356         for (i = 1; i <= count; i++) {
357                 union acpi_object *element;
358                 union acpi_object *obj;
359                 struct acpi_power_register *reg;
360                 struct acpi_processor_cx cx;
361
362                 memset(&cx, 0, sizeof(cx));
363
364                 element = &(cst->package.elements[i]);
365                 if (element->type != ACPI_TYPE_PACKAGE)
366                         continue;
367
368                 if (element->package.count != 4)
369                         continue;
370
371                 obj = &(element->package.elements[0]);
372
373                 if (obj->type != ACPI_TYPE_BUFFER)
374                         continue;
375
376                 reg = (struct acpi_power_register *)obj->buffer.pointer;
377
378                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
379                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
380                         continue;
381
382                 /* There should be an easy way to extract an integer... */
383                 obj = &(element->package.elements[1]);
384                 if (obj->type != ACPI_TYPE_INTEGER)
385                         continue;
386
387                 cx.type = obj->integer.value;
388                 /*
389                  * Some buggy BIOSes won't list C1 in _CST -
390                  * Let acpi_processor_get_power_info_default() handle them later
391                  */
392                 if (i == 1 && cx.type != ACPI_STATE_C1)
393                         current_count++;
394
395                 cx.address = reg->address;
396                 cx.index = current_count + 1;
397
398                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
399                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
400                         if (acpi_processor_ffh_cstate_probe
401                                         (pr->id, &cx, reg) == 0) {
402                                 cx.entry_method = ACPI_CSTATE_FFH;
403                         } else if (cx.type == ACPI_STATE_C1) {
404                                 /*
405                                  * C1 is a special case where FIXED_HARDWARE
406                                  * can be handled in non-MWAIT way as well.
407                                  * In that case, save this _CST entry info.
408                                  * Otherwise, ignore this info and continue.
409                                  */
410                                 cx.entry_method = ACPI_CSTATE_HALT;
411                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
412                         } else {
413                                 continue;
414                         }
415                         if (cx.type == ACPI_STATE_C1 &&
416                                         (idle_halt || idle_nomwait)) {
417                                 /*
418                                  * In most cases the C1 space_id obtained from
419                                  * _CST object is FIXED_HARDWARE access mode.
420                                  * But when the option of idle=halt is added,
421                                  * the entry_method type should be changed from
422                                  * CSTATE_FFH to CSTATE_HALT.
423                                  * When the option of idle=nomwait is added,
424                                  * the C1 entry_method type should be
425                                  * CSTATE_HALT.
426                                  */
427                                 cx.entry_method = ACPI_CSTATE_HALT;
428                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
429                         }
430                 } else {
431                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
432                                  cx.address);
433                 }
434
435                 if (cx.type == ACPI_STATE_C1) {
436                         cx.valid = 1;
437                 }
438
439                 obj = &(element->package.elements[2]);
440                 if (obj->type != ACPI_TYPE_INTEGER)
441                         continue;
442
443                 cx.latency = obj->integer.value;
444
445                 obj = &(element->package.elements[3]);
446                 if (obj->type != ACPI_TYPE_INTEGER)
447                         continue;
448
449                 cx.power = obj->integer.value;
450
451                 current_count++;
452                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
453
454                 /*
455                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
456                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
457                  */
458                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
459                         printk(KERN_WARNING
460                                "Limiting number of power states to max (%d)\n",
461                                ACPI_PROCESSOR_MAX_POWER);
462                         printk(KERN_WARNING
463                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
464                         break;
465                 }
466         }
467
468         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
469                           current_count));
470
471         /* Validate number of power states discovered */
472         if (current_count < 2)
473                 status = -EFAULT;
474
475       end:
476         kfree(buffer.pointer);
477
478         return status;
479 }
480
481 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
482 {
483
484         if (!cx->address)
485                 return;
486
487         /*
488          * C2 latency must be less than or equal to 100
489          * microseconds.
490          */
491         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
492                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
493                                   "latency too large [%d]\n", cx->latency));
494                 return;
495         }
496
497         /*
498          * Otherwise we've met all of our C2 requirements.
499          * Normalize the C2 latency to expidite policy
500          */
501         cx->valid = 1;
502
503         cx->latency_ticks = cx->latency;
504
505         return;
506 }
507
508 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
509                                            struct acpi_processor_cx *cx)
510 {
511         static int bm_check_flag;
512
513
514         if (!cx->address)
515                 return;
516
517         /*
518          * C3 latency must be less than or equal to 1000
519          * microseconds.
520          */
521         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
522                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
523                                   "latency too large [%d]\n", cx->latency));
524                 return;
525         }
526
527         /*
528          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
529          * DMA transfers are used by any ISA device to avoid livelock.
530          * Note that we could disable Type-F DMA (as recommended by
531          * the erratum), but this is known to disrupt certain ISA
532          * devices thus we take the conservative approach.
533          */
534         else if (errata.piix4.fdma) {
535                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
536                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
537                 return;
538         }
539
540         /* All the logic here assumes flags.bm_check is same across all CPUs */
541         if (!bm_check_flag) {
542                 /* Determine whether bm_check is needed based on CPU  */
543                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
544                 bm_check_flag = pr->flags.bm_check;
545         } else {
546                 pr->flags.bm_check = bm_check_flag;
547         }
548
549         if (pr->flags.bm_check) {
550                 if (!pr->flags.bm_control) {
551                         if (pr->flags.has_cst != 1) {
552                                 /* bus mastering control is necessary */
553                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
554                                         "C3 support requires BM control\n"));
555                                 return;
556                         } else {
557                                 /* Here we enter C3 without bus mastering */
558                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
559                                         "C3 support without BM control\n"));
560                         }
561                 }
562         } else {
563                 /*
564                  * WBINVD should be set in fadt, for C3 state to be
565                  * supported on when bm_check is not required.
566                  */
567                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
568                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
569                                           "Cache invalidation should work properly"
570                                           " for C3 to be enabled on SMP systems\n"));
571                         return;
572                 }
573         }
574
575         /*
576          * Otherwise we've met all of our C3 requirements.
577          * Normalize the C3 latency to expidite policy.  Enable
578          * checking of bus mastering status (bm_check) so we can
579          * use this in our C3 policy
580          */
581         cx->valid = 1;
582
583         cx->latency_ticks = cx->latency;
584         /*
585          * On older chipsets, BM_RLD needs to be set
586          * in order for Bus Master activity to wake the
587          * system from C3.  Newer chipsets handle DMA
588          * during C3 automatically and BM_RLD is a NOP.
589          * In either case, the proper way to
590          * handle BM_RLD is to set it and leave it set.
591          */
592         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
593
594         return;
595 }
596
597 static int acpi_processor_power_verify(struct acpi_processor *pr)
598 {
599         unsigned int i;
600         unsigned int working = 0;
601
602         pr->power.timer_broadcast_on_state = INT_MAX;
603
604         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
605                 struct acpi_processor_cx *cx = &pr->power.states[i];
606
607 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
608                 /* TSC could halt in idle, so notify users */
609                 if (tsc_halts_in_c(cx->type))
610                         mark_tsc_unstable("TSC halts in idle");;
611 #endif
612                 switch (cx->type) {
613                 case ACPI_STATE_C1:
614                         cx->valid = 1;
615                         break;
616
617                 case ACPI_STATE_C2:
618                         acpi_processor_power_verify_c2(cx);
619                         if (cx->valid)
620                                 acpi_timer_check_state(i, pr, cx);
621                         break;
622
623                 case ACPI_STATE_C3:
624                         acpi_processor_power_verify_c3(pr, cx);
625                         if (cx->valid)
626                                 acpi_timer_check_state(i, pr, cx);
627                         break;
628                 }
629
630                 if (cx->valid)
631                         working++;
632         }
633
634         acpi_propagate_timer_broadcast(pr);
635
636         return (working);
637 }
638
639 static int acpi_processor_get_power_info(struct acpi_processor *pr)
640 {
641         unsigned int i;
642         int result;
643
644
645         /* NOTE: the idle thread may not be running while calling
646          * this function */
647
648         /* Zero initialize all the C-states info. */
649         memset(pr->power.states, 0, sizeof(pr->power.states));
650
651         result = acpi_processor_get_power_info_cst(pr);
652         if (result == -ENODEV)
653                 result = acpi_processor_get_power_info_fadt(pr);
654
655         if (result)
656                 return result;
657
658         acpi_processor_get_power_info_default(pr);
659
660         pr->power.count = acpi_processor_power_verify(pr);
661
662         /*
663          * if one state of type C2 or C3 is available, mark this
664          * CPU as being "idle manageable"
665          */
666         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
667                 if (pr->power.states[i].valid) {
668                         pr->power.count = i;
669                         if (pr->power.states[i].type >= ACPI_STATE_C2)
670                                 pr->flags.power = 1;
671                 }
672         }
673
674         return 0;
675 }
676
677 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
678 {
679         struct acpi_processor *pr = seq->private;
680         unsigned int i;
681
682
683         if (!pr)
684                 goto end;
685
686         seq_printf(seq, "active state:            C%zd\n"
687                    "max_cstate:              C%d\n"
688                    "maximum allowed latency: %d usec\n",
689                    pr->power.state ? pr->power.state - pr->power.states : 0,
690                    max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
691
692         seq_puts(seq, "states:\n");
693
694         for (i = 1; i <= pr->power.count; i++) {
695                 seq_printf(seq, "   %cC%d:                  ",
696                            (&pr->power.states[i] ==
697                             pr->power.state ? '*' : ' '), i);
698
699                 if (!pr->power.states[i].valid) {
700                         seq_puts(seq, "<not supported>\n");
701                         continue;
702                 }
703
704                 switch (pr->power.states[i].type) {
705                 case ACPI_STATE_C1:
706                         seq_printf(seq, "type[C1] ");
707                         break;
708                 case ACPI_STATE_C2:
709                         seq_printf(seq, "type[C2] ");
710                         break;
711                 case ACPI_STATE_C3:
712                         seq_printf(seq, "type[C3] ");
713                         break;
714                 default:
715                         seq_printf(seq, "type[--] ");
716                         break;
717                 }
718
719                 if (pr->power.states[i].promotion.state)
720                         seq_printf(seq, "promotion[C%zd] ",
721                                    (pr->power.states[i].promotion.state -
722                                     pr->power.states));
723                 else
724                         seq_puts(seq, "promotion[--] ");
725
726                 if (pr->power.states[i].demotion.state)
727                         seq_printf(seq, "demotion[C%zd] ",
728                                    (pr->power.states[i].demotion.state -
729                                     pr->power.states));
730                 else
731                         seq_puts(seq, "demotion[--] ");
732
733                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
734                            pr->power.states[i].latency,
735                            pr->power.states[i].usage,
736                            (unsigned long long)pr->power.states[i].time);
737         }
738
739       end:
740         return 0;
741 }
742
743 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
744 {
745         return single_open(file, acpi_processor_power_seq_show,
746                            PDE(inode)->data);
747 }
748
749 static const struct file_operations acpi_processor_power_fops = {
750         .owner = THIS_MODULE,
751         .open = acpi_processor_power_open_fs,
752         .read = seq_read,
753         .llseek = seq_lseek,
754         .release = single_release,
755 };
756
757
758 /**
759  * acpi_idle_bm_check - checks if bus master activity was detected
760  */
761 static int acpi_idle_bm_check(void)
762 {
763         u32 bm_status = 0;
764
765         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
766         if (bm_status)
767                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
768         /*
769          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
770          * the true state of bus mastering activity; forcing us to
771          * manually check the BMIDEA bit of each IDE channel.
772          */
773         else if (errata.piix4.bmisx) {
774                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
775                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
776                         bm_status = 1;
777         }
778         return bm_status;
779 }
780
781 /**
782  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
783  * @cx: cstate data
784  *
785  * Caller disables interrupt before call and enables interrupt after return.
786  */
787 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
788 {
789         /* Don't trace irqs off for idle */
790         stop_critical_timings();
791         if (cx->entry_method == ACPI_CSTATE_FFH) {
792                 /* Call into architectural FFH based C-state */
793                 acpi_processor_ffh_cstate_enter(cx);
794         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
795                 acpi_safe_halt();
796         } else {
797                 int unused;
798                 /* IO port based C-state */
799                 inb(cx->address);
800                 /* Dummy wait op - must do something useless after P_LVL2 read
801                    because chipsets cannot guarantee that STPCLK# signal
802                    gets asserted in time to freeze execution properly. */
803                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
804         }
805         start_critical_timings();
806 }
807
808 /**
809  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
810  * @dev: the target CPU
811  * @state: the state data
812  *
813  * This is equivalent to the HALT instruction.
814  */
815 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
816                               struct cpuidle_state *state)
817 {
818         ktime_t  kt1, kt2;
819         s64 idle_time;
820         struct acpi_processor *pr;
821         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
822
823         pr = __get_cpu_var(processors);
824
825         if (unlikely(!pr))
826                 return 0;
827
828         local_irq_disable();
829
830         /* Do not access any ACPI IO ports in suspend path */
831         if (acpi_idle_suspend) {
832                 acpi_safe_halt();
833                 local_irq_enable();
834                 return 0;
835         }
836
837         kt1 = ktime_get_real();
838         acpi_idle_do_entry(cx);
839         kt2 = ktime_get_real();
840         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
841
842         local_irq_enable();
843         cx->usage++;
844
845         return idle_time;
846 }
847
848 /**
849  * acpi_idle_enter_simple - enters an ACPI state without BM handling
850  * @dev: the target CPU
851  * @state: the state data
852  */
853 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
854                                   struct cpuidle_state *state)
855 {
856         struct acpi_processor *pr;
857         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
858         ktime_t  kt1, kt2;
859         s64 idle_time;
860         s64 sleep_ticks = 0;
861
862         pr = __get_cpu_var(processors);
863
864         if (unlikely(!pr))
865                 return 0;
866
867         if (acpi_idle_suspend)
868                 return(acpi_idle_enter_c1(dev, state));
869
870         local_irq_disable();
871         current_thread_info()->status &= ~TS_POLLING;
872         /*
873          * TS_POLLING-cleared state must be visible before we test
874          * NEED_RESCHED:
875          */
876         smp_mb();
877
878         if (unlikely(need_resched())) {
879                 current_thread_info()->status |= TS_POLLING;
880                 local_irq_enable();
881                 return 0;
882         }
883
884         /*
885          * Must be done before busmaster disable as we might need to
886          * access HPET !
887          */
888         acpi_state_timer_broadcast(pr, cx, 1);
889
890         if (cx->type == ACPI_STATE_C3)
891                 ACPI_FLUSH_CPU_CACHE();
892
893         kt1 = ktime_get_real();
894         /* Tell the scheduler that we are going deep-idle: */
895         sched_clock_idle_sleep_event();
896         acpi_idle_do_entry(cx);
897         kt2 = ktime_get_real();
898         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
899
900         sleep_ticks = us_to_pm_timer_ticks(idle_time);
901
902         /* Tell the scheduler how much we idled: */
903         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
904
905         local_irq_enable();
906         current_thread_info()->status |= TS_POLLING;
907
908         cx->usage++;
909
910         acpi_state_timer_broadcast(pr, cx, 0);
911         cx->time += sleep_ticks;
912         return idle_time;
913 }
914
915 static int c3_cpu_count;
916 static DEFINE_SPINLOCK(c3_lock);
917
918 /**
919  * acpi_idle_enter_bm - enters C3 with proper BM handling
920  * @dev: the target CPU
921  * @state: the state data
922  *
923  * If BM is detected, the deepest non-C3 idle state is entered instead.
924  */
925 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
926                               struct cpuidle_state *state)
927 {
928         struct acpi_processor *pr;
929         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
930         ktime_t  kt1, kt2;
931         s64 idle_time;
932         s64 sleep_ticks = 0;
933
934
935         pr = __get_cpu_var(processors);
936
937         if (unlikely(!pr))
938                 return 0;
939
940         if (acpi_idle_suspend)
941                 return(acpi_idle_enter_c1(dev, state));
942
943         if (acpi_idle_bm_check()) {
944                 if (dev->safe_state) {
945                         dev->last_state = dev->safe_state;
946                         return dev->safe_state->enter(dev, dev->safe_state);
947                 } else {
948                         local_irq_disable();
949                         acpi_safe_halt();
950                         local_irq_enable();
951                         return 0;
952                 }
953         }
954
955         local_irq_disable();
956         current_thread_info()->status &= ~TS_POLLING;
957         /*
958          * TS_POLLING-cleared state must be visible before we test
959          * NEED_RESCHED:
960          */
961         smp_mb();
962
963         if (unlikely(need_resched())) {
964                 current_thread_info()->status |= TS_POLLING;
965                 local_irq_enable();
966                 return 0;
967         }
968
969         acpi_unlazy_tlb(smp_processor_id());
970
971         /* Tell the scheduler that we are going deep-idle: */
972         sched_clock_idle_sleep_event();
973         /*
974          * Must be done before busmaster disable as we might need to
975          * access HPET !
976          */
977         acpi_state_timer_broadcast(pr, cx, 1);
978
979         kt1 = ktime_get_real();
980         /*
981          * disable bus master
982          * bm_check implies we need ARB_DIS
983          * !bm_check implies we need cache flush
984          * bm_control implies whether we can do ARB_DIS
985          *
986          * That leaves a case where bm_check is set and bm_control is
987          * not set. In that case we cannot do much, we enter C3
988          * without doing anything.
989          */
990         if (pr->flags.bm_check && pr->flags.bm_control) {
991                 spin_lock(&c3_lock);
992                 c3_cpu_count++;
993                 /* Disable bus master arbitration when all CPUs are in C3 */
994                 if (c3_cpu_count == num_online_cpus())
995                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
996                 spin_unlock(&c3_lock);
997         } else if (!pr->flags.bm_check) {
998                 ACPI_FLUSH_CPU_CACHE();
999         }
1000
1001         acpi_idle_do_entry(cx);
1002
1003         /* Re-enable bus master arbitration */
1004         if (pr->flags.bm_check && pr->flags.bm_control) {
1005                 spin_lock(&c3_lock);
1006                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1007                 c3_cpu_count--;
1008                 spin_unlock(&c3_lock);
1009         }
1010         kt2 = ktime_get_real();
1011         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1012
1013         sleep_ticks = us_to_pm_timer_ticks(idle_time);
1014         /* Tell the scheduler how much we idled: */
1015         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1016
1017         local_irq_enable();
1018         current_thread_info()->status |= TS_POLLING;
1019
1020         cx->usage++;
1021
1022         acpi_state_timer_broadcast(pr, cx, 0);
1023         cx->time += sleep_ticks;
1024         return idle_time;
1025 }
1026
1027 struct cpuidle_driver acpi_idle_driver = {
1028         .name =         "acpi_idle",
1029         .owner =        THIS_MODULE,
1030 };
1031
1032 /**
1033  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1034  * @pr: the ACPI processor
1035  */
1036 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1037 {
1038         int i, count = CPUIDLE_DRIVER_STATE_START;
1039         struct acpi_processor_cx *cx;
1040         struct cpuidle_state *state;
1041         struct cpuidle_device *dev = &pr->power.dev;
1042
1043         if (!pr->flags.power_setup_done)
1044                 return -EINVAL;
1045
1046         if (pr->flags.power == 0) {
1047                 return -EINVAL;
1048         }
1049
1050         dev->cpu = pr->id;
1051         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1052                 dev->states[i].name[0] = '\0';
1053                 dev->states[i].desc[0] = '\0';
1054         }
1055
1056         if (max_cstate == 0)
1057                 max_cstate = 1;
1058
1059         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1060                 cx = &pr->power.states[i];
1061                 state = &dev->states[count];
1062
1063                 if (!cx->valid)
1064                         continue;
1065
1066 #ifdef CONFIG_HOTPLUG_CPU
1067                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1068                     !pr->flags.has_cst &&
1069                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1070                         continue;
1071 #endif
1072                 cpuidle_set_statedata(state, cx);
1073
1074                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1075                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1076                 state->exit_latency = cx->latency;
1077                 state->target_residency = cx->latency * latency_factor;
1078                 state->power_usage = cx->power;
1079
1080                 state->flags = 0;
1081                 switch (cx->type) {
1082                         case ACPI_STATE_C1:
1083                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1084                         if (cx->entry_method == ACPI_CSTATE_FFH)
1085                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1086
1087                         state->enter = acpi_idle_enter_c1;
1088                         dev->safe_state = state;
1089                         break;
1090
1091                         case ACPI_STATE_C2:
1092                         state->flags |= CPUIDLE_FLAG_BALANCED;
1093                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1094                         state->enter = acpi_idle_enter_simple;
1095                         dev->safe_state = state;
1096                         break;
1097
1098                         case ACPI_STATE_C3:
1099                         state->flags |= CPUIDLE_FLAG_DEEP;
1100                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1101                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1102                         state->enter = pr->flags.bm_check ?
1103                                         acpi_idle_enter_bm :
1104                                         acpi_idle_enter_simple;
1105                         break;
1106                 }
1107
1108                 count++;
1109                 if (count == CPUIDLE_STATE_MAX)
1110                         break;
1111         }
1112
1113         dev->state_count = count;
1114
1115         if (!count)
1116                 return -EINVAL;
1117
1118         return 0;
1119 }
1120
1121 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1122 {
1123         int ret = 0;
1124
1125         if (boot_option_idle_override)
1126                 return 0;
1127
1128         if (!pr)
1129                 return -EINVAL;
1130
1131         if (nocst) {
1132                 return -ENODEV;
1133         }
1134
1135         if (!pr->flags.power_setup_done)
1136                 return -ENODEV;
1137
1138         cpuidle_pause_and_lock();
1139         cpuidle_disable_device(&pr->power.dev);
1140         acpi_processor_get_power_info(pr);
1141         if (pr->flags.power) {
1142                 acpi_processor_setup_cpuidle(pr);
1143                 ret = cpuidle_enable_device(&pr->power.dev);
1144         }
1145         cpuidle_resume_and_unlock();
1146
1147         return ret;
1148 }
1149
1150 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1151                               struct acpi_device *device)
1152 {
1153         acpi_status status = 0;
1154         static int first_run;
1155         struct proc_dir_entry *entry = NULL;
1156         unsigned int i;
1157
1158         if (boot_option_idle_override)
1159                 return 0;
1160
1161         if (!first_run) {
1162                 if (idle_halt) {
1163                         /*
1164                          * When the boot option of "idle=halt" is added, halt
1165                          * is used for CPU IDLE.
1166                          * In such case C2/C3 is meaningless. So the max_cstate
1167                          * is set to one.
1168                          */
1169                         max_cstate = 1;
1170                 }
1171                 dmi_check_system(processor_power_dmi_table);
1172                 max_cstate = acpi_processor_cstate_check(max_cstate);
1173                 if (max_cstate < ACPI_C_STATES_MAX)
1174                         printk(KERN_NOTICE
1175                                "ACPI: processor limited to max C-state %d\n",
1176                                max_cstate);
1177                 first_run++;
1178         }
1179
1180         if (!pr)
1181                 return -EINVAL;
1182
1183         if (acpi_gbl_FADT.cst_control && !nocst) {
1184                 status =
1185                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1186                 if (ACPI_FAILURE(status)) {
1187                         ACPI_EXCEPTION((AE_INFO, status,
1188                                         "Notifying BIOS of _CST ability failed"));
1189                 }
1190         }
1191
1192         acpi_processor_get_power_info(pr);
1193         pr->flags.power_setup_done = 1;
1194
1195         /*
1196          * Install the idle handler if processor power management is supported.
1197          * Note that we use previously set idle handler will be used on
1198          * platforms that only support C1.
1199          */
1200         if (pr->flags.power) {
1201                 acpi_processor_setup_cpuidle(pr);
1202                 if (cpuidle_register_device(&pr->power.dev))
1203                         return -EIO;
1204
1205                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1206                 for (i = 1; i <= pr->power.count; i++)
1207                         if (pr->power.states[i].valid)
1208                                 printk(" C%d[C%d]", i,
1209                                        pr->power.states[i].type);
1210                 printk(")\n");
1211         }
1212
1213         /* 'power' [R] */
1214         entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1215                                  S_IRUGO, acpi_device_dir(device),
1216                                  &acpi_processor_power_fops,
1217                                  acpi_driver_data(device));
1218         if (!entry)
1219                 return -EIO;
1220         return 0;
1221 }
1222
1223 int acpi_processor_power_exit(struct acpi_processor *pr,
1224                               struct acpi_device *device)
1225 {
1226         if (boot_option_idle_override)
1227                 return 0;
1228
1229         cpuidle_unregister_device(&pr->power.dev);
1230         pr->flags.power_setup_done = 0;
1231
1232         if (acpi_device_dir(device))
1233                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1234                                   acpi_device_dir(device));
1235
1236         return 0;
1237 }