ACPI: idle: fix init-time TSC check regression
[safe/jmp/linux-2.6] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER       "power"
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD                     1       /* 1us */
69 #define C3_OVERHEAD                     1       /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82         return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93                 return 0;
94
95         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96                " Override with \"processor.max_cstate=%d\"\n", id->ident,
97                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99         max_cstate = (long)id->driver_data;
100
101         return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107         { set_max_cstate, "Clevo 5600D", {
108           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110          (void *)2},
111         {},
112 };
113
114
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121         current_thread_info()->status &= ~TS_POLLING;
122         /*
123          * TS_POLLING-cleared state must be visible before we
124          * test NEED_RESCHED:
125          */
126         smp_mb();
127         if (!need_resched()) {
128                 safe_halt();
129                 local_irq_disable();
130         }
131         current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143                                    struct acpi_processor_cx *cx)
144 {
145         struct acpi_processor_power *pwr = &pr->power;
146         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149                 return;
150
151         /*
152          * Check, if one of the previous states already marked the lapic
153          * unstable
154          */
155         if (pwr->timer_broadcast_on_state < state)
156                 return;
157
158         if (cx->type >= type)
159                 pr->power.timer_broadcast_on_state = state;
160 }
161
162 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
163 {
164         unsigned long reason;
165
166         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
167                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
168
169         clockevents_notify(reason, &pr->id);
170 }
171
172 /* Power(C) State timer broadcast control */
173 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
174                                        struct acpi_processor_cx *cx,
175                                        int broadcast)
176 {
177         int state = cx - pr->power.states;
178
179         if (state >= pr->power.timer_broadcast_on_state) {
180                 unsigned long reason;
181
182                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
183                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
184                 clockevents_notify(reason, &pr->id);
185         }
186 }
187
188 #else
189
190 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
191                                    struct acpi_processor_cx *cstate) { }
192 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
193 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
194                                        struct acpi_processor_cx *cx,
195                                        int broadcast)
196 {
197 }
198
199 #endif
200
201 /*
202  * Suspend / resume control
203  */
204 static int acpi_idle_suspend;
205
206 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
207 {
208         acpi_idle_suspend = 1;
209         return 0;
210 }
211
212 int acpi_processor_resume(struct acpi_device * device)
213 {
214         acpi_idle_suspend = 0;
215         return 0;
216 }
217
218 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
219 static void tsc_check_state(int state)
220 {
221         switch (boot_cpu_data.x86_vendor) {
222         case X86_VENDOR_AMD:
223         case X86_VENDOR_INTEL:
224                 /*
225                  * AMD Fam10h TSC will tick in all
226                  * C/P/S0/S1 states when this bit is set.
227                  */
228                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
229                         return;
230
231                 /*FALL THROUGH*/
232         default:
233                 /* TSC could halt in idle, so notify users */
234                 if (state > ACPI_STATE_C1)
235                         mark_tsc_unstable("TSC halts in idle");
236         }
237 }
238 #else
239 static void tsc_check_state(int state) { return; }
240 #endif
241
242 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
243 {
244
245         if (!pr)
246                 return -EINVAL;
247
248         if (!pr->pblk)
249                 return -ENODEV;
250
251         /* if info is obtained from pblk/fadt, type equals state */
252         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
253         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
254
255 #ifndef CONFIG_HOTPLUG_CPU
256         /*
257          * Check for P_LVL2_UP flag before entering C2 and above on
258          * an SMP system.
259          */
260         if ((num_online_cpus() > 1) &&
261             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
262                 return -ENODEV;
263 #endif
264
265         /* determine C2 and C3 address from pblk */
266         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
267         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
268
269         /* determine latencies from FADT */
270         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
271         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
272
273         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
274                           "lvl2[0x%08x] lvl3[0x%08x]\n",
275                           pr->power.states[ACPI_STATE_C2].address,
276                           pr->power.states[ACPI_STATE_C3].address));
277
278         return 0;
279 }
280
281 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
282 {
283         if (!pr->power.states[ACPI_STATE_C1].valid) {
284                 /* set the first C-State to C1 */
285                 /* all processors need to support C1 */
286                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
287                 pr->power.states[ACPI_STATE_C1].valid = 1;
288                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
289         }
290         /* the C0 state only exists as a filler in our array */
291         pr->power.states[ACPI_STATE_C0].valid = 1;
292         return 0;
293 }
294
295 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
296 {
297         acpi_status status = 0;
298         acpi_integer count;
299         int current_count;
300         int i;
301         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
302         union acpi_object *cst;
303
304
305         if (nocst)
306                 return -ENODEV;
307
308         current_count = 0;
309
310         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
311         if (ACPI_FAILURE(status)) {
312                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
313                 return -ENODEV;
314         }
315
316         cst = buffer.pointer;
317
318         /* There must be at least 2 elements */
319         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
320                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
321                 status = -EFAULT;
322                 goto end;
323         }
324
325         count = cst->package.elements[0].integer.value;
326
327         /* Validate number of power states. */
328         if (count < 1 || count != cst->package.count - 1) {
329                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
330                 status = -EFAULT;
331                 goto end;
332         }
333
334         /* Tell driver that at least _CST is supported. */
335         pr->flags.has_cst = 1;
336
337         for (i = 1; i <= count; i++) {
338                 union acpi_object *element;
339                 union acpi_object *obj;
340                 struct acpi_power_register *reg;
341                 struct acpi_processor_cx cx;
342
343                 memset(&cx, 0, sizeof(cx));
344
345                 element = &(cst->package.elements[i]);
346                 if (element->type != ACPI_TYPE_PACKAGE)
347                         continue;
348
349                 if (element->package.count != 4)
350                         continue;
351
352                 obj = &(element->package.elements[0]);
353
354                 if (obj->type != ACPI_TYPE_BUFFER)
355                         continue;
356
357                 reg = (struct acpi_power_register *)obj->buffer.pointer;
358
359                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
360                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
361                         continue;
362
363                 /* There should be an easy way to extract an integer... */
364                 obj = &(element->package.elements[1]);
365                 if (obj->type != ACPI_TYPE_INTEGER)
366                         continue;
367
368                 cx.type = obj->integer.value;
369                 /*
370                  * Some buggy BIOSes won't list C1 in _CST -
371                  * Let acpi_processor_get_power_info_default() handle them later
372                  */
373                 if (i == 1 && cx.type != ACPI_STATE_C1)
374                         current_count++;
375
376                 cx.address = reg->address;
377                 cx.index = current_count + 1;
378
379                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
380                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
381                         if (acpi_processor_ffh_cstate_probe
382                                         (pr->id, &cx, reg) == 0) {
383                                 cx.entry_method = ACPI_CSTATE_FFH;
384                         } else if (cx.type == ACPI_STATE_C1) {
385                                 /*
386                                  * C1 is a special case where FIXED_HARDWARE
387                                  * can be handled in non-MWAIT way as well.
388                                  * In that case, save this _CST entry info.
389                                  * Otherwise, ignore this info and continue.
390                                  */
391                                 cx.entry_method = ACPI_CSTATE_HALT;
392                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
393                         } else {
394                                 continue;
395                         }
396                         if (cx.type == ACPI_STATE_C1 &&
397                                         (idle_halt || idle_nomwait)) {
398                                 /*
399                                  * In most cases the C1 space_id obtained from
400                                  * _CST object is FIXED_HARDWARE access mode.
401                                  * But when the option of idle=halt is added,
402                                  * the entry_method type should be changed from
403                                  * CSTATE_FFH to CSTATE_HALT.
404                                  * When the option of idle=nomwait is added,
405                                  * the C1 entry_method type should be
406                                  * CSTATE_HALT.
407                                  */
408                                 cx.entry_method = ACPI_CSTATE_HALT;
409                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
410                         }
411                 } else {
412                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
413                                  cx.address);
414                 }
415
416                 if (cx.type == ACPI_STATE_C1) {
417                         cx.valid = 1;
418                 }
419
420                 obj = &(element->package.elements[2]);
421                 if (obj->type != ACPI_TYPE_INTEGER)
422                         continue;
423
424                 cx.latency = obj->integer.value;
425
426                 obj = &(element->package.elements[3]);
427                 if (obj->type != ACPI_TYPE_INTEGER)
428                         continue;
429
430                 cx.power = obj->integer.value;
431
432                 current_count++;
433                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
434
435                 /*
436                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
437                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
438                  */
439                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
440                         printk(KERN_WARNING
441                                "Limiting number of power states to max (%d)\n",
442                                ACPI_PROCESSOR_MAX_POWER);
443                         printk(KERN_WARNING
444                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
445                         break;
446                 }
447         }
448
449         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
450                           current_count));
451
452         /* Validate number of power states discovered */
453         if (current_count < 2)
454                 status = -EFAULT;
455
456       end:
457         kfree(buffer.pointer);
458
459         return status;
460 }
461
462 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
463 {
464
465         if (!cx->address)
466                 return;
467
468         /*
469          * C2 latency must be less than or equal to 100
470          * microseconds.
471          */
472         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
473                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
474                                   "latency too large [%d]\n", cx->latency));
475                 return;
476         }
477
478         /*
479          * Otherwise we've met all of our C2 requirements.
480          * Normalize the C2 latency to expidite policy
481          */
482         cx->valid = 1;
483
484         cx->latency_ticks = cx->latency;
485
486         return;
487 }
488
489 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
490                                            struct acpi_processor_cx *cx)
491 {
492         static int bm_check_flag;
493
494
495         if (!cx->address)
496                 return;
497
498         /*
499          * C3 latency must be less than or equal to 1000
500          * microseconds.
501          */
502         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
503                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
504                                   "latency too large [%d]\n", cx->latency));
505                 return;
506         }
507
508         /*
509          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
510          * DMA transfers are used by any ISA device to avoid livelock.
511          * Note that we could disable Type-F DMA (as recommended by
512          * the erratum), but this is known to disrupt certain ISA
513          * devices thus we take the conservative approach.
514          */
515         else if (errata.piix4.fdma) {
516                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
517                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
518                 return;
519         }
520
521         /* All the logic here assumes flags.bm_check is same across all CPUs */
522         if (!bm_check_flag) {
523                 /* Determine whether bm_check is needed based on CPU  */
524                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
525                 bm_check_flag = pr->flags.bm_check;
526         } else {
527                 pr->flags.bm_check = bm_check_flag;
528         }
529
530         if (pr->flags.bm_check) {
531                 if (!pr->flags.bm_control) {
532                         if (pr->flags.has_cst != 1) {
533                                 /* bus mastering control is necessary */
534                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
535                                         "C3 support requires BM control\n"));
536                                 return;
537                         } else {
538                                 /* Here we enter C3 without bus mastering */
539                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
540                                         "C3 support without BM control\n"));
541                         }
542                 }
543         } else {
544                 /*
545                  * WBINVD should be set in fadt, for C3 state to be
546                  * supported on when bm_check is not required.
547                  */
548                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
549                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
550                                           "Cache invalidation should work properly"
551                                           " for C3 to be enabled on SMP systems\n"));
552                         return;
553                 }
554         }
555
556         /*
557          * Otherwise we've met all of our C3 requirements.
558          * Normalize the C3 latency to expidite policy.  Enable
559          * checking of bus mastering status (bm_check) so we can
560          * use this in our C3 policy
561          */
562         cx->valid = 1;
563
564         cx->latency_ticks = cx->latency;
565         /*
566          * On older chipsets, BM_RLD needs to be set
567          * in order for Bus Master activity to wake the
568          * system from C3.  Newer chipsets handle DMA
569          * during C3 automatically and BM_RLD is a NOP.
570          * In either case, the proper way to
571          * handle BM_RLD is to set it and leave it set.
572          */
573         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
574
575         return;
576 }
577
578 static int acpi_processor_power_verify(struct acpi_processor *pr)
579 {
580         unsigned int i;
581         unsigned int working = 0;
582
583         pr->power.timer_broadcast_on_state = INT_MAX;
584
585         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
586                 struct acpi_processor_cx *cx = &pr->power.states[i];
587
588                 switch (cx->type) {
589                 case ACPI_STATE_C1:
590                         cx->valid = 1;
591                         break;
592
593                 case ACPI_STATE_C2:
594                         acpi_processor_power_verify_c2(cx);
595                         if (cx->valid)
596                                 acpi_timer_check_state(i, pr, cx);
597                         break;
598
599                 case ACPI_STATE_C3:
600                         acpi_processor_power_verify_c3(pr, cx);
601                         if (cx->valid)
602                                 acpi_timer_check_state(i, pr, cx);
603                         break;
604                 }
605                 if (cx->valid)
606                         tsc_check_state(cx->type);
607
608                 if (cx->valid)
609                         working++;
610         }
611
612         acpi_propagate_timer_broadcast(pr);
613
614         return (working);
615 }
616
617 static int acpi_processor_get_power_info(struct acpi_processor *pr)
618 {
619         unsigned int i;
620         int result;
621
622
623         /* NOTE: the idle thread may not be running while calling
624          * this function */
625
626         /* Zero initialize all the C-states info. */
627         memset(pr->power.states, 0, sizeof(pr->power.states));
628
629         result = acpi_processor_get_power_info_cst(pr);
630         if (result == -ENODEV)
631                 result = acpi_processor_get_power_info_fadt(pr);
632
633         if (result)
634                 return result;
635
636         acpi_processor_get_power_info_default(pr);
637
638         pr->power.count = acpi_processor_power_verify(pr);
639
640         /*
641          * if one state of type C2 or C3 is available, mark this
642          * CPU as being "idle manageable"
643          */
644         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
645                 if (pr->power.states[i].valid) {
646                         pr->power.count = i;
647                         if (pr->power.states[i].type >= ACPI_STATE_C2)
648                                 pr->flags.power = 1;
649                 }
650         }
651
652         return 0;
653 }
654
655 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
656 {
657         struct acpi_processor *pr = seq->private;
658         unsigned int i;
659
660
661         if (!pr)
662                 goto end;
663
664         seq_printf(seq, "active state:            C%zd\n"
665                    "max_cstate:              C%d\n"
666                    "maximum allowed latency: %d usec\n",
667                    pr->power.state ? pr->power.state - pr->power.states : 0,
668                    max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
669
670         seq_puts(seq, "states:\n");
671
672         for (i = 1; i <= pr->power.count; i++) {
673                 seq_printf(seq, "   %cC%d:                  ",
674                            (&pr->power.states[i] ==
675                             pr->power.state ? '*' : ' '), i);
676
677                 if (!pr->power.states[i].valid) {
678                         seq_puts(seq, "<not supported>\n");
679                         continue;
680                 }
681
682                 switch (pr->power.states[i].type) {
683                 case ACPI_STATE_C1:
684                         seq_printf(seq, "type[C1] ");
685                         break;
686                 case ACPI_STATE_C2:
687                         seq_printf(seq, "type[C2] ");
688                         break;
689                 case ACPI_STATE_C3:
690                         seq_printf(seq, "type[C3] ");
691                         break;
692                 default:
693                         seq_printf(seq, "type[--] ");
694                         break;
695                 }
696
697                 if (pr->power.states[i].promotion.state)
698                         seq_printf(seq, "promotion[C%zd] ",
699                                    (pr->power.states[i].promotion.state -
700                                     pr->power.states));
701                 else
702                         seq_puts(seq, "promotion[--] ");
703
704                 if (pr->power.states[i].demotion.state)
705                         seq_printf(seq, "demotion[C%zd] ",
706                                    (pr->power.states[i].demotion.state -
707                                     pr->power.states));
708                 else
709                         seq_puts(seq, "demotion[--] ");
710
711                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
712                            pr->power.states[i].latency,
713                            pr->power.states[i].usage,
714                            (unsigned long long)pr->power.states[i].time);
715         }
716
717       end:
718         return 0;
719 }
720
721 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
722 {
723         return single_open(file, acpi_processor_power_seq_show,
724                            PDE(inode)->data);
725 }
726
727 static const struct file_operations acpi_processor_power_fops = {
728         .owner = THIS_MODULE,
729         .open = acpi_processor_power_open_fs,
730         .read = seq_read,
731         .llseek = seq_lseek,
732         .release = single_release,
733 };
734
735
736 /**
737  * acpi_idle_bm_check - checks if bus master activity was detected
738  */
739 static int acpi_idle_bm_check(void)
740 {
741         u32 bm_status = 0;
742
743         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
744         if (bm_status)
745                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
746         /*
747          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
748          * the true state of bus mastering activity; forcing us to
749          * manually check the BMIDEA bit of each IDE channel.
750          */
751         else if (errata.piix4.bmisx) {
752                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
753                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
754                         bm_status = 1;
755         }
756         return bm_status;
757 }
758
759 /**
760  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
761  * @cx: cstate data
762  *
763  * Caller disables interrupt before call and enables interrupt after return.
764  */
765 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
766 {
767         /* Don't trace irqs off for idle */
768         stop_critical_timings();
769         if (cx->entry_method == ACPI_CSTATE_FFH) {
770                 /* Call into architectural FFH based C-state */
771                 acpi_processor_ffh_cstate_enter(cx);
772         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
773                 acpi_safe_halt();
774         } else {
775                 int unused;
776                 /* IO port based C-state */
777                 inb(cx->address);
778                 /* Dummy wait op - must do something useless after P_LVL2 read
779                    because chipsets cannot guarantee that STPCLK# signal
780                    gets asserted in time to freeze execution properly. */
781                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
782         }
783         start_critical_timings();
784 }
785
786 /**
787  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
788  * @dev: the target CPU
789  * @state: the state data
790  *
791  * This is equivalent to the HALT instruction.
792  */
793 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
794                               struct cpuidle_state *state)
795 {
796         ktime_t  kt1, kt2;
797         s64 idle_time;
798         struct acpi_processor *pr;
799         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
800
801         pr = __get_cpu_var(processors);
802
803         if (unlikely(!pr))
804                 return 0;
805
806         local_irq_disable();
807
808         /* Do not access any ACPI IO ports in suspend path */
809         if (acpi_idle_suspend) {
810                 acpi_safe_halt();
811                 local_irq_enable();
812                 return 0;
813         }
814
815         kt1 = ktime_get_real();
816         acpi_idle_do_entry(cx);
817         kt2 = ktime_get_real();
818         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
819
820         local_irq_enable();
821         cx->usage++;
822
823         return idle_time;
824 }
825
826 /**
827  * acpi_idle_enter_simple - enters an ACPI state without BM handling
828  * @dev: the target CPU
829  * @state: the state data
830  */
831 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
832                                   struct cpuidle_state *state)
833 {
834         struct acpi_processor *pr;
835         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
836         ktime_t  kt1, kt2;
837         s64 idle_time;
838         s64 sleep_ticks = 0;
839
840         pr = __get_cpu_var(processors);
841
842         if (unlikely(!pr))
843                 return 0;
844
845         if (acpi_idle_suspend)
846                 return(acpi_idle_enter_c1(dev, state));
847
848         local_irq_disable();
849         current_thread_info()->status &= ~TS_POLLING;
850         /*
851          * TS_POLLING-cleared state must be visible before we test
852          * NEED_RESCHED:
853          */
854         smp_mb();
855
856         if (unlikely(need_resched())) {
857                 current_thread_info()->status |= TS_POLLING;
858                 local_irq_enable();
859                 return 0;
860         }
861
862         /*
863          * Must be done before busmaster disable as we might need to
864          * access HPET !
865          */
866         acpi_state_timer_broadcast(pr, cx, 1);
867
868         if (cx->type == ACPI_STATE_C3)
869                 ACPI_FLUSH_CPU_CACHE();
870
871         kt1 = ktime_get_real();
872         /* Tell the scheduler that we are going deep-idle: */
873         sched_clock_idle_sleep_event();
874         acpi_idle_do_entry(cx);
875         kt2 = ktime_get_real();
876         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
877
878         sleep_ticks = us_to_pm_timer_ticks(idle_time);
879
880         /* Tell the scheduler how much we idled: */
881         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
882
883         local_irq_enable();
884         current_thread_info()->status |= TS_POLLING;
885
886         cx->usage++;
887
888         acpi_state_timer_broadcast(pr, cx, 0);
889         cx->time += sleep_ticks;
890         return idle_time;
891 }
892
893 static int c3_cpu_count;
894 static DEFINE_SPINLOCK(c3_lock);
895
896 /**
897  * acpi_idle_enter_bm - enters C3 with proper BM handling
898  * @dev: the target CPU
899  * @state: the state data
900  *
901  * If BM is detected, the deepest non-C3 idle state is entered instead.
902  */
903 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
904                               struct cpuidle_state *state)
905 {
906         struct acpi_processor *pr;
907         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
908         ktime_t  kt1, kt2;
909         s64 idle_time;
910         s64 sleep_ticks = 0;
911
912
913         pr = __get_cpu_var(processors);
914
915         if (unlikely(!pr))
916                 return 0;
917
918         if (acpi_idle_suspend)
919                 return(acpi_idle_enter_c1(dev, state));
920
921         if (acpi_idle_bm_check()) {
922                 if (dev->safe_state) {
923                         dev->last_state = dev->safe_state;
924                         return dev->safe_state->enter(dev, dev->safe_state);
925                 } else {
926                         local_irq_disable();
927                         acpi_safe_halt();
928                         local_irq_enable();
929                         return 0;
930                 }
931         }
932
933         local_irq_disable();
934         current_thread_info()->status &= ~TS_POLLING;
935         /*
936          * TS_POLLING-cleared state must be visible before we test
937          * NEED_RESCHED:
938          */
939         smp_mb();
940
941         if (unlikely(need_resched())) {
942                 current_thread_info()->status |= TS_POLLING;
943                 local_irq_enable();
944                 return 0;
945         }
946
947         acpi_unlazy_tlb(smp_processor_id());
948
949         /* Tell the scheduler that we are going deep-idle: */
950         sched_clock_idle_sleep_event();
951         /*
952          * Must be done before busmaster disable as we might need to
953          * access HPET !
954          */
955         acpi_state_timer_broadcast(pr, cx, 1);
956
957         kt1 = ktime_get_real();
958         /*
959          * disable bus master
960          * bm_check implies we need ARB_DIS
961          * !bm_check implies we need cache flush
962          * bm_control implies whether we can do ARB_DIS
963          *
964          * That leaves a case where bm_check is set and bm_control is
965          * not set. In that case we cannot do much, we enter C3
966          * without doing anything.
967          */
968         if (pr->flags.bm_check && pr->flags.bm_control) {
969                 spin_lock(&c3_lock);
970                 c3_cpu_count++;
971                 /* Disable bus master arbitration when all CPUs are in C3 */
972                 if (c3_cpu_count == num_online_cpus())
973                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
974                 spin_unlock(&c3_lock);
975         } else if (!pr->flags.bm_check) {
976                 ACPI_FLUSH_CPU_CACHE();
977         }
978
979         acpi_idle_do_entry(cx);
980
981         /* Re-enable bus master arbitration */
982         if (pr->flags.bm_check && pr->flags.bm_control) {
983                 spin_lock(&c3_lock);
984                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
985                 c3_cpu_count--;
986                 spin_unlock(&c3_lock);
987         }
988         kt2 = ktime_get_real();
989         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
990
991         sleep_ticks = us_to_pm_timer_ticks(idle_time);
992         /* Tell the scheduler how much we idled: */
993         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
994
995         local_irq_enable();
996         current_thread_info()->status |= TS_POLLING;
997
998         cx->usage++;
999
1000         acpi_state_timer_broadcast(pr, cx, 0);
1001         cx->time += sleep_ticks;
1002         return idle_time;
1003 }
1004
1005 struct cpuidle_driver acpi_idle_driver = {
1006         .name =         "acpi_idle",
1007         .owner =        THIS_MODULE,
1008 };
1009
1010 /**
1011  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1012  * @pr: the ACPI processor
1013  */
1014 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1015 {
1016         int i, count = CPUIDLE_DRIVER_STATE_START;
1017         struct acpi_processor_cx *cx;
1018         struct cpuidle_state *state;
1019         struct cpuidle_device *dev = &pr->power.dev;
1020
1021         if (!pr->flags.power_setup_done)
1022                 return -EINVAL;
1023
1024         if (pr->flags.power == 0) {
1025                 return -EINVAL;
1026         }
1027
1028         dev->cpu = pr->id;
1029         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1030                 dev->states[i].name[0] = '\0';
1031                 dev->states[i].desc[0] = '\0';
1032         }
1033
1034         if (max_cstate == 0)
1035                 max_cstate = 1;
1036
1037         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1038                 cx = &pr->power.states[i];
1039                 state = &dev->states[count];
1040
1041                 if (!cx->valid)
1042                         continue;
1043
1044 #ifdef CONFIG_HOTPLUG_CPU
1045                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1046                     !pr->flags.has_cst &&
1047                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1048                         continue;
1049 #endif
1050                 cpuidle_set_statedata(state, cx);
1051
1052                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1053                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1054                 state->exit_latency = cx->latency;
1055                 state->target_residency = cx->latency * latency_factor;
1056                 state->power_usage = cx->power;
1057
1058                 state->flags = 0;
1059                 switch (cx->type) {
1060                         case ACPI_STATE_C1:
1061                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1062                         if (cx->entry_method == ACPI_CSTATE_FFH)
1063                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1064
1065                         state->enter = acpi_idle_enter_c1;
1066                         dev->safe_state = state;
1067                         break;
1068
1069                         case ACPI_STATE_C2:
1070                         state->flags |= CPUIDLE_FLAG_BALANCED;
1071                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1072                         state->enter = acpi_idle_enter_simple;
1073                         dev->safe_state = state;
1074                         break;
1075
1076                         case ACPI_STATE_C3:
1077                         state->flags |= CPUIDLE_FLAG_DEEP;
1078                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1079                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1080                         state->enter = pr->flags.bm_check ?
1081                                         acpi_idle_enter_bm :
1082                                         acpi_idle_enter_simple;
1083                         break;
1084                 }
1085
1086                 count++;
1087                 if (count == CPUIDLE_STATE_MAX)
1088                         break;
1089         }
1090
1091         dev->state_count = count;
1092
1093         if (!count)
1094                 return -EINVAL;
1095
1096         return 0;
1097 }
1098
1099 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1100 {
1101         int ret = 0;
1102
1103         if (boot_option_idle_override)
1104                 return 0;
1105
1106         if (!pr)
1107                 return -EINVAL;
1108
1109         if (nocst) {
1110                 return -ENODEV;
1111         }
1112
1113         if (!pr->flags.power_setup_done)
1114                 return -ENODEV;
1115
1116         cpuidle_pause_and_lock();
1117         cpuidle_disable_device(&pr->power.dev);
1118         acpi_processor_get_power_info(pr);
1119         if (pr->flags.power) {
1120                 acpi_processor_setup_cpuidle(pr);
1121                 ret = cpuidle_enable_device(&pr->power.dev);
1122         }
1123         cpuidle_resume_and_unlock();
1124
1125         return ret;
1126 }
1127
1128 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1129                               struct acpi_device *device)
1130 {
1131         acpi_status status = 0;
1132         static int first_run;
1133         struct proc_dir_entry *entry = NULL;
1134         unsigned int i;
1135
1136         if (boot_option_idle_override)
1137                 return 0;
1138
1139         if (!first_run) {
1140                 if (idle_halt) {
1141                         /*
1142                          * When the boot option of "idle=halt" is added, halt
1143                          * is used for CPU IDLE.
1144                          * In such case C2/C3 is meaningless. So the max_cstate
1145                          * is set to one.
1146                          */
1147                         max_cstate = 1;
1148                 }
1149                 dmi_check_system(processor_power_dmi_table);
1150                 max_cstate = acpi_processor_cstate_check(max_cstate);
1151                 if (max_cstate < ACPI_C_STATES_MAX)
1152                         printk(KERN_NOTICE
1153                                "ACPI: processor limited to max C-state %d\n",
1154                                max_cstate);
1155                 first_run++;
1156         }
1157
1158         if (!pr)
1159                 return -EINVAL;
1160
1161         if (acpi_gbl_FADT.cst_control && !nocst) {
1162                 status =
1163                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1164                 if (ACPI_FAILURE(status)) {
1165                         ACPI_EXCEPTION((AE_INFO, status,
1166                                         "Notifying BIOS of _CST ability failed"));
1167                 }
1168         }
1169
1170         acpi_processor_get_power_info(pr);
1171         pr->flags.power_setup_done = 1;
1172
1173         /*
1174          * Install the idle handler if processor power management is supported.
1175          * Note that we use previously set idle handler will be used on
1176          * platforms that only support C1.
1177          */
1178         if (pr->flags.power) {
1179                 acpi_processor_setup_cpuidle(pr);
1180                 if (cpuidle_register_device(&pr->power.dev))
1181                         return -EIO;
1182
1183                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1184                 for (i = 1; i <= pr->power.count; i++)
1185                         if (pr->power.states[i].valid)
1186                                 printk(" C%d[C%d]", i,
1187                                        pr->power.states[i].type);
1188                 printk(")\n");
1189         }
1190
1191         /* 'power' [R] */
1192         entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1193                                  S_IRUGO, acpi_device_dir(device),
1194                                  &acpi_processor_power_fops,
1195                                  acpi_driver_data(device));
1196         if (!entry)
1197                 return -EIO;
1198         return 0;
1199 }
1200
1201 int acpi_processor_power_exit(struct acpi_processor *pr,
1202                               struct acpi_device *device)
1203 {
1204         if (boot_option_idle_override)
1205                 return 0;
1206
1207         cpuidle_unregister_device(&pr->power.dev);
1208         pr->flags.power_setup_done = 0;
1209
1210         if (acpi_device_dir(device))
1211                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1212                                   acpi_device_dir(device));
1213
1214         return 0;
1215 }