[PATCH] cfq-iosched: check busy queues before deciding we are idle
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8  */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16
17 /*
18  * tunables
19  */
20 static const int cfq_quantum = 4;               /* max queue in one round of service */
21 static const int cfq_queued = 8;                /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
25
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
30
31 #define CFQ_IDLE_GRACE          (HZ / 10)
32 #define CFQ_SLICE_SCALE         (5)
33
34 #define CFQ_KEY_ASYNC           (0)
35
36 static DEFINE_SPINLOCK(cfq_exit_lock);
37
38 /*
39  * for the hash of cfqq inside the cfqd
40  */
41 #define CFQ_QHASH_SHIFT         6
42 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
44
45 /*
46  * for the hash of crq inside the cfqq
47  */
48 #define CFQ_MHASH_SHIFT         6
49 #define CFQ_MHASH_BLOCK(sec)    ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES       (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec)       hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr)    hlist_entry((ptr), struct cfq_rq, hash)
54
55 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr)    list_entry((ptr), struct request, queuelist)
57
58 #define RQ_DATA(rq)             (rq)->elevator_private
59
60 /*
61  * rb-tree defines
62  */
63 #define RB_NONE                 (2)
64 #define RB_EMPTY(node)          ((node)->rb_node == NULL)
65 #define RB_CLEAR_COLOR(node)    (node)->rb_color = RB_NONE
66 #define RB_CLEAR(node)          do {    \
67         (node)->rb_parent = NULL;       \
68         RB_CLEAR_COLOR((node));         \
69         (node)->rb_right = NULL;        \
70         (node)->rb_left = NULL;         \
71 } while (0)
72 #define RB_CLEAR_ROOT(root)     ((root)->rb_node = NULL)
73 #define rb_entry_crq(node)      rb_entry((node), struct cfq_rq, rb_node)
74 #define rq_rb_key(rq)           (rq)->sector
75
76 static kmem_cache_t *crq_pool;
77 static kmem_cache_t *cfq_pool;
78 static kmem_cache_t *cfq_ioc_pool;
79
80 static atomic_t ioc_count = ATOMIC_INIT(0);
81 static struct completion *ioc_gone;
82
83 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
84 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
85 #define cfq_class_be(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
86 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
87
88 #define ASYNC                   (0)
89 #define SYNC                    (1)
90
91 #define cfq_cfqq_dispatched(cfqq)       \
92         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
93
94 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
95
96 #define cfq_cfqq_sync(cfqq)             \
97         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
98
99 #define sample_valid(samples)   ((samples) > 80)
100
101 /*
102  * Per block device queue structure
103  */
104 struct cfq_data {
105         request_queue_t *queue;
106
107         /*
108          * rr list of queues with requests and the count of them
109          */
110         struct list_head rr_list[CFQ_PRIO_LISTS];
111         struct list_head busy_rr;
112         struct list_head cur_rr;
113         struct list_head idle_rr;
114         unsigned int busy_queues;
115
116         /*
117          * non-ordered list of empty cfqq's
118          */
119         struct list_head empty_list;
120
121         /*
122          * cfqq lookup hash
123          */
124         struct hlist_head *cfq_hash;
125
126         /*
127          * global crq hash for all queues
128          */
129         struct hlist_head *crq_hash;
130
131         unsigned int max_queued;
132
133         mempool_t *crq_pool;
134
135         int rq_in_driver;
136
137         /*
138          * schedule slice state info
139          */
140         /*
141          * idle window management
142          */
143         struct timer_list idle_slice_timer;
144         struct work_struct unplug_work;
145
146         struct cfq_queue *active_queue;
147         struct cfq_io_context *active_cic;
148         int cur_prio, cur_end_prio;
149         unsigned int dispatch_slice;
150
151         struct timer_list idle_class_timer;
152
153         sector_t last_sector;
154         unsigned long last_end_request;
155
156         unsigned int rq_starved;
157
158         /*
159          * tunables, see top of file
160          */
161         unsigned int cfq_quantum;
162         unsigned int cfq_queued;
163         unsigned int cfq_fifo_expire[2];
164         unsigned int cfq_back_penalty;
165         unsigned int cfq_back_max;
166         unsigned int cfq_slice[2];
167         unsigned int cfq_slice_async_rq;
168         unsigned int cfq_slice_idle;
169
170         struct list_head cic_list;
171 };
172
173 /*
174  * Per process-grouping structure
175  */
176 struct cfq_queue {
177         /* reference count */
178         atomic_t ref;
179         /* parent cfq_data */
180         struct cfq_data *cfqd;
181         /* cfqq lookup hash */
182         struct hlist_node cfq_hash;
183         /* hash key */
184         unsigned int key;
185         /* on either rr or empty list of cfqd */
186         struct list_head cfq_list;
187         /* sorted list of pending requests */
188         struct rb_root sort_list;
189         /* if fifo isn't expired, next request to serve */
190         struct cfq_rq *next_crq;
191         /* requests queued in sort_list */
192         int queued[2];
193         /* currently allocated requests */
194         int allocated[2];
195         /* fifo list of requests in sort_list */
196         struct list_head fifo;
197
198         unsigned long slice_start;
199         unsigned long slice_end;
200         unsigned long slice_left;
201         unsigned long service_last;
202
203         /* number of requests that are on the dispatch list */
204         int on_dispatch[2];
205
206         /* io prio of this group */
207         unsigned short ioprio, org_ioprio;
208         unsigned short ioprio_class, org_ioprio_class;
209
210         /* various state flags, see below */
211         unsigned int flags;
212 };
213
214 struct cfq_rq {
215         struct rb_node rb_node;
216         sector_t rb_key;
217         struct request *request;
218         struct hlist_node hash;
219
220         struct cfq_queue *cfq_queue;
221         struct cfq_io_context *io_context;
222
223         unsigned int crq_flags;
224 };
225
226 enum cfqq_state_flags {
227         CFQ_CFQQ_FLAG_on_rr = 0,
228         CFQ_CFQQ_FLAG_wait_request,
229         CFQ_CFQQ_FLAG_must_alloc,
230         CFQ_CFQQ_FLAG_must_alloc_slice,
231         CFQ_CFQQ_FLAG_must_dispatch,
232         CFQ_CFQQ_FLAG_fifo_expire,
233         CFQ_CFQQ_FLAG_idle_window,
234         CFQ_CFQQ_FLAG_prio_changed,
235 };
236
237 #define CFQ_CFQQ_FNS(name)                                              \
238 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
239 {                                                                       \
240         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
241 }                                                                       \
242 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
243 {                                                                       \
244         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
245 }                                                                       \
246 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
247 {                                                                       \
248         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
249 }
250
251 CFQ_CFQQ_FNS(on_rr);
252 CFQ_CFQQ_FNS(wait_request);
253 CFQ_CFQQ_FNS(must_alloc);
254 CFQ_CFQQ_FNS(must_alloc_slice);
255 CFQ_CFQQ_FNS(must_dispatch);
256 CFQ_CFQQ_FNS(fifo_expire);
257 CFQ_CFQQ_FNS(idle_window);
258 CFQ_CFQQ_FNS(prio_changed);
259 #undef CFQ_CFQQ_FNS
260
261 enum cfq_rq_state_flags {
262         CFQ_CRQ_FLAG_is_sync = 0,
263 };
264
265 #define CFQ_CRQ_FNS(name)                                               \
266 static inline void cfq_mark_crq_##name(struct cfq_rq *crq)              \
267 {                                                                       \
268         crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name);                   \
269 }                                                                       \
270 static inline void cfq_clear_crq_##name(struct cfq_rq *crq)             \
271 {                                                                       \
272         crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name);                  \
273 }                                                                       \
274 static inline int cfq_crq_##name(const struct cfq_rq *crq)              \
275 {                                                                       \
276         return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0;      \
277 }
278
279 CFQ_CRQ_FNS(is_sync);
280 #undef CFQ_CRQ_FNS
281
282 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
283 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
284 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
285
286 #define process_sync(tsk)       ((tsk)->flags & PF_SYNCWRITE)
287
288 /*
289  * lots of deadline iosched dupes, can be abstracted later...
290  */
291 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
292 {
293         hlist_del_init(&crq->hash);
294 }
295
296 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
297 {
298         const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
299
300         hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
301 }
302
303 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
304 {
305         struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
306         struct hlist_node *entry, *next;
307
308         hlist_for_each_safe(entry, next, hash_list) {
309                 struct cfq_rq *crq = list_entry_hash(entry);
310                 struct request *__rq = crq->request;
311
312                 if (!rq_mergeable(__rq)) {
313                         cfq_del_crq_hash(crq);
314                         continue;
315                 }
316
317                 if (rq_hash_key(__rq) == offset)
318                         return __rq;
319         }
320
321         return NULL;
322 }
323
324 /*
325  * scheduler run of queue, if there are requests pending and no one in the
326  * driver that will restart queueing
327  */
328 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
329 {
330         if (cfqd->busy_queues)
331                 kblockd_schedule_work(&cfqd->unplug_work);
332 }
333
334 static int cfq_queue_empty(request_queue_t *q)
335 {
336         struct cfq_data *cfqd = q->elevator->elevator_data;
337
338         return !cfqd->busy_queues;
339 }
340
341 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
342 {
343         if (rw == READ || process_sync(task))
344                 return task->pid;
345
346         return CFQ_KEY_ASYNC;
347 }
348
349 /*
350  * Lifted from AS - choose which of crq1 and crq2 that is best served now.
351  * We choose the request that is closest to the head right now. Distance
352  * behind the head is penalized and only allowed to a certain extent.
353  */
354 static struct cfq_rq *
355 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
356 {
357         sector_t last, s1, s2, d1 = 0, d2 = 0;
358         unsigned long back_max;
359 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
360 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
361         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
362
363         if (crq1 == NULL || crq1 == crq2)
364                 return crq2;
365         if (crq2 == NULL)
366                 return crq1;
367
368         if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
369                 return crq1;
370         else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
371                 return crq2;
372
373         s1 = crq1->request->sector;
374         s2 = crq2->request->sector;
375
376         last = cfqd->last_sector;
377
378         /*
379          * by definition, 1KiB is 2 sectors
380          */
381         back_max = cfqd->cfq_back_max * 2;
382
383         /*
384          * Strict one way elevator _except_ in the case where we allow
385          * short backward seeks which are biased as twice the cost of a
386          * similar forward seek.
387          */
388         if (s1 >= last)
389                 d1 = s1 - last;
390         else if (s1 + back_max >= last)
391                 d1 = (last - s1) * cfqd->cfq_back_penalty;
392         else
393                 wrap |= CFQ_RQ1_WRAP;
394
395         if (s2 >= last)
396                 d2 = s2 - last;
397         else if (s2 + back_max >= last)
398                 d2 = (last - s2) * cfqd->cfq_back_penalty;
399         else
400                 wrap |= CFQ_RQ2_WRAP;
401
402         /* Found required data */
403
404         /*
405          * By doing switch() on the bit mask "wrap" we avoid having to
406          * check two variables for all permutations: --> faster!
407          */
408         switch (wrap) {
409         case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
410                 if (d1 < d2)
411                         return crq1;
412                 else if (d2 < d1)
413                         return crq2;
414                 else {
415                         if (s1 >= s2)
416                                 return crq1;
417                         else
418                                 return crq2;
419                 }
420
421         case CFQ_RQ2_WRAP:
422                 return crq1;
423         case CFQ_RQ1_WRAP:
424                 return crq2;
425         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
426         default:
427                 /*
428                  * Since both rqs are wrapped,
429                  * start with the one that's further behind head
430                  * (--> only *one* back seek required),
431                  * since back seek takes more time than forward.
432                  */
433                 if (s1 <= s2)
434                         return crq1;
435                 else
436                         return crq2;
437         }
438 }
439
440 /*
441  * would be nice to take fifo expire time into account as well
442  */
443 static struct cfq_rq *
444 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
445                   struct cfq_rq *last)
446 {
447         struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
448         struct rb_node *rbnext, *rbprev;
449
450         if (!(rbnext = rb_next(&last->rb_node))) {
451                 rbnext = rb_first(&cfqq->sort_list);
452                 if (rbnext == &last->rb_node)
453                         rbnext = NULL;
454         }
455
456         rbprev = rb_prev(&last->rb_node);
457
458         if (rbprev)
459                 crq_prev = rb_entry_crq(rbprev);
460         if (rbnext)
461                 crq_next = rb_entry_crq(rbnext);
462
463         return cfq_choose_req(cfqd, crq_next, crq_prev);
464 }
465
466 static void cfq_update_next_crq(struct cfq_rq *crq)
467 {
468         struct cfq_queue *cfqq = crq->cfq_queue;
469
470         if (cfqq->next_crq == crq)
471                 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
472 }
473
474 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
475 {
476         struct cfq_data *cfqd = cfqq->cfqd;
477         struct list_head *list, *entry;
478
479         BUG_ON(!cfq_cfqq_on_rr(cfqq));
480
481         list_del(&cfqq->cfq_list);
482
483         if (cfq_class_rt(cfqq))
484                 list = &cfqd->cur_rr;
485         else if (cfq_class_idle(cfqq))
486                 list = &cfqd->idle_rr;
487         else {
488                 /*
489                  * if cfqq has requests in flight, don't allow it to be
490                  * found in cfq_set_active_queue before it has finished them.
491                  * this is done to increase fairness between a process that
492                  * has lots of io pending vs one that only generates one
493                  * sporadically or synchronously
494                  */
495                 if (cfq_cfqq_dispatched(cfqq))
496                         list = &cfqd->busy_rr;
497                 else
498                         list = &cfqd->rr_list[cfqq->ioprio];
499         }
500
501         /*
502          * if queue was preempted, just add to front to be fair. busy_rr
503          * isn't sorted.
504          */
505         if (preempted || list == &cfqd->busy_rr) {
506                 list_add(&cfqq->cfq_list, list);
507                 return;
508         }
509
510         /*
511          * sort by when queue was last serviced
512          */
513         entry = list;
514         while ((entry = entry->prev) != list) {
515                 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
516
517                 if (!__cfqq->service_last)
518                         break;
519                 if (time_before(__cfqq->service_last, cfqq->service_last))
520                         break;
521         }
522
523         list_add(&cfqq->cfq_list, entry);
524 }
525
526 /*
527  * add to busy list of queues for service, trying to be fair in ordering
528  * the pending list according to last request service
529  */
530 static inline void
531 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
532 {
533         BUG_ON(cfq_cfqq_on_rr(cfqq));
534         cfq_mark_cfqq_on_rr(cfqq);
535         cfqd->busy_queues++;
536
537         cfq_resort_rr_list(cfqq, 0);
538 }
539
540 static inline void
541 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
542 {
543         BUG_ON(!cfq_cfqq_on_rr(cfqq));
544         cfq_clear_cfqq_on_rr(cfqq);
545         list_move(&cfqq->cfq_list, &cfqd->empty_list);
546
547         BUG_ON(!cfqd->busy_queues);
548         cfqd->busy_queues--;
549 }
550
551 /*
552  * rb tree support functions
553  */
554 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
555 {
556         struct cfq_queue *cfqq = crq->cfq_queue;
557         struct cfq_data *cfqd = cfqq->cfqd;
558         const int sync = cfq_crq_is_sync(crq);
559
560         BUG_ON(!cfqq->queued[sync]);
561         cfqq->queued[sync]--;
562
563         cfq_update_next_crq(crq);
564
565         rb_erase(&crq->rb_node, &cfqq->sort_list);
566         RB_CLEAR_COLOR(&crq->rb_node);
567
568         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
569                 cfq_del_cfqq_rr(cfqd, cfqq);
570 }
571
572 static struct cfq_rq *
573 __cfq_add_crq_rb(struct cfq_rq *crq)
574 {
575         struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
576         struct rb_node *parent = NULL;
577         struct cfq_rq *__crq;
578
579         while (*p) {
580                 parent = *p;
581                 __crq = rb_entry_crq(parent);
582
583                 if (crq->rb_key < __crq->rb_key)
584                         p = &(*p)->rb_left;
585                 else if (crq->rb_key > __crq->rb_key)
586                         p = &(*p)->rb_right;
587                 else
588                         return __crq;
589         }
590
591         rb_link_node(&crq->rb_node, parent, p);
592         return NULL;
593 }
594
595 static void cfq_add_crq_rb(struct cfq_rq *crq)
596 {
597         struct cfq_queue *cfqq = crq->cfq_queue;
598         struct cfq_data *cfqd = cfqq->cfqd;
599         struct request *rq = crq->request;
600         struct cfq_rq *__alias;
601
602         crq->rb_key = rq_rb_key(rq);
603         cfqq->queued[cfq_crq_is_sync(crq)]++;
604
605         /*
606          * looks a little odd, but the first insert might return an alias.
607          * if that happens, put the alias on the dispatch list
608          */
609         while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
610                 cfq_dispatch_insert(cfqd->queue, __alias);
611
612         rb_insert_color(&crq->rb_node, &cfqq->sort_list);
613
614         if (!cfq_cfqq_on_rr(cfqq))
615                 cfq_add_cfqq_rr(cfqd, cfqq);
616
617         /*
618          * check if this request is a better next-serve candidate
619          */
620         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
621 }
622
623 static inline void
624 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
625 {
626         rb_erase(&crq->rb_node, &cfqq->sort_list);
627         cfqq->queued[cfq_crq_is_sync(crq)]--;
628
629         cfq_add_crq_rb(crq);
630 }
631
632 static struct request *
633 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
634 {
635         struct task_struct *tsk = current;
636         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
637         struct cfq_queue *cfqq;
638         struct rb_node *n;
639         sector_t sector;
640
641         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
642         if (!cfqq)
643                 goto out;
644
645         sector = bio->bi_sector + bio_sectors(bio);
646         n = cfqq->sort_list.rb_node;
647         while (n) {
648                 struct cfq_rq *crq = rb_entry_crq(n);
649
650                 if (sector < crq->rb_key)
651                         n = n->rb_left;
652                 else if (sector > crq->rb_key)
653                         n = n->rb_right;
654                 else
655                         return crq->request;
656         }
657
658 out:
659         return NULL;
660 }
661
662 static void cfq_activate_request(request_queue_t *q, struct request *rq)
663 {
664         struct cfq_data *cfqd = q->elevator->elevator_data;
665
666         cfqd->rq_in_driver++;
667 }
668
669 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
670 {
671         struct cfq_data *cfqd = q->elevator->elevator_data;
672
673         WARN_ON(!cfqd->rq_in_driver);
674         cfqd->rq_in_driver--;
675 }
676
677 static void cfq_remove_request(struct request *rq)
678 {
679         struct cfq_rq *crq = RQ_DATA(rq);
680
681         list_del_init(&rq->queuelist);
682         cfq_del_crq_rb(crq);
683         cfq_del_crq_hash(crq);
684 }
685
686 static int
687 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
688 {
689         struct cfq_data *cfqd = q->elevator->elevator_data;
690         struct request *__rq;
691         int ret;
692
693         __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
694         if (__rq && elv_rq_merge_ok(__rq, bio)) {
695                 ret = ELEVATOR_BACK_MERGE;
696                 goto out;
697         }
698
699         __rq = cfq_find_rq_fmerge(cfqd, bio);
700         if (__rq && elv_rq_merge_ok(__rq, bio)) {
701                 ret = ELEVATOR_FRONT_MERGE;
702                 goto out;
703         }
704
705         return ELEVATOR_NO_MERGE;
706 out:
707         *req = __rq;
708         return ret;
709 }
710
711 static void cfq_merged_request(request_queue_t *q, struct request *req)
712 {
713         struct cfq_data *cfqd = q->elevator->elevator_data;
714         struct cfq_rq *crq = RQ_DATA(req);
715
716         cfq_del_crq_hash(crq);
717         cfq_add_crq_hash(cfqd, crq);
718
719         if (rq_rb_key(req) != crq->rb_key) {
720                 struct cfq_queue *cfqq = crq->cfq_queue;
721
722                 cfq_update_next_crq(crq);
723                 cfq_reposition_crq_rb(cfqq, crq);
724         }
725 }
726
727 static void
728 cfq_merged_requests(request_queue_t *q, struct request *rq,
729                     struct request *next)
730 {
731         cfq_merged_request(q, rq);
732
733         /*
734          * reposition in fifo if next is older than rq
735          */
736         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
737             time_before(next->start_time, rq->start_time))
738                 list_move(&rq->queuelist, &next->queuelist);
739
740         cfq_remove_request(next);
741 }
742
743 static inline void
744 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
745 {
746         if (cfqq) {
747                 /*
748                  * stop potential idle class queues waiting service
749                  */
750                 del_timer(&cfqd->idle_class_timer);
751
752                 cfqq->slice_start = jiffies;
753                 cfqq->slice_end = 0;
754                 cfqq->slice_left = 0;
755                 cfq_clear_cfqq_must_alloc_slice(cfqq);
756                 cfq_clear_cfqq_fifo_expire(cfqq);
757         }
758
759         cfqd->active_queue = cfqq;
760 }
761
762 /*
763  * current cfqq expired its slice (or was too idle), select new one
764  */
765 static void
766 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767                     int preempted)
768 {
769         unsigned long now = jiffies;
770
771         if (cfq_cfqq_wait_request(cfqq))
772                 del_timer(&cfqd->idle_slice_timer);
773
774         if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
775                 cfqq->service_last = now;
776                 cfq_schedule_dispatch(cfqd);
777         }
778
779         cfq_clear_cfqq_must_dispatch(cfqq);
780         cfq_clear_cfqq_wait_request(cfqq);
781
782         /*
783          * store what was left of this slice, if the queue idled out
784          * or was preempted
785          */
786         if (time_after(cfqq->slice_end, now))
787                 cfqq->slice_left = cfqq->slice_end - now;
788         else
789                 cfqq->slice_left = 0;
790
791         if (cfq_cfqq_on_rr(cfqq))
792                 cfq_resort_rr_list(cfqq, preempted);
793
794         if (cfqq == cfqd->active_queue)
795                 cfqd->active_queue = NULL;
796
797         if (cfqd->active_cic) {
798                 put_io_context(cfqd->active_cic->ioc);
799                 cfqd->active_cic = NULL;
800         }
801
802         cfqd->dispatch_slice = 0;
803 }
804
805 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
806 {
807         struct cfq_queue *cfqq = cfqd->active_queue;
808
809         if (cfqq)
810                 __cfq_slice_expired(cfqd, cfqq, preempted);
811 }
812
813 /*
814  * 0
815  * 0,1
816  * 0,1,2
817  * 0,1,2,3
818  * 0,1,2,3,4
819  * 0,1,2,3,4,5
820  * 0,1,2,3,4,5,6
821  * 0,1,2,3,4,5,6,7
822  */
823 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
824 {
825         int prio, wrap;
826
827         prio = -1;
828         wrap = 0;
829         do {
830                 int p;
831
832                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
833                         if (!list_empty(&cfqd->rr_list[p])) {
834                                 prio = p;
835                                 break;
836                         }
837                 }
838
839                 if (prio != -1)
840                         break;
841                 cfqd->cur_prio = 0;
842                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
843                         cfqd->cur_end_prio = 0;
844                         if (wrap)
845                                 break;
846                         wrap = 1;
847                 }
848         } while (1);
849
850         if (unlikely(prio == -1))
851                 return -1;
852
853         BUG_ON(prio >= CFQ_PRIO_LISTS);
854
855         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
856
857         cfqd->cur_prio = prio + 1;
858         if (cfqd->cur_prio > cfqd->cur_end_prio) {
859                 cfqd->cur_end_prio = cfqd->cur_prio;
860                 cfqd->cur_prio = 0;
861         }
862         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
863                 cfqd->cur_prio = 0;
864                 cfqd->cur_end_prio = 0;
865         }
866
867         return prio;
868 }
869
870 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
871 {
872         struct cfq_queue *cfqq = NULL;
873
874         /*
875          * if current list is non-empty, grab first entry. if it is empty,
876          * get next prio level and grab first entry then if any are spliced
877          */
878         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
879                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
880
881         /*
882          * If no new queues are available, check if the busy list has some
883          * before falling back to idle io.
884          */
885         if (!cfqq && !list_empty(&cfqd->busy_rr))
886                 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
887
888         /*
889          * if we have idle queues and no rt or be queues had pending
890          * requests, either allow immediate service if the grace period
891          * has passed or arm the idle grace timer
892          */
893         if (!cfqq && !list_empty(&cfqd->idle_rr)) {
894                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
895
896                 if (time_after_eq(jiffies, end))
897                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
898                 else
899                         mod_timer(&cfqd->idle_class_timer, end);
900         }
901
902         __cfq_set_active_queue(cfqd, cfqq);
903         return cfqq;
904 }
905
906 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
907
908 {
909         struct cfq_io_context *cic;
910         unsigned long sl;
911
912         WARN_ON(!RB_EMPTY(&cfqq->sort_list));
913         WARN_ON(cfqq != cfqd->active_queue);
914
915         /*
916          * idle is disabled, either manually or by past process history
917          */
918         if (!cfqd->cfq_slice_idle)
919                 return 0;
920         if (!cfq_cfqq_idle_window(cfqq))
921                 return 0;
922         /*
923          * task has exited, don't wait
924          */
925         cic = cfqd->active_cic;
926         if (!cic || !cic->ioc->task)
927                 return 0;
928
929         cfq_mark_cfqq_must_dispatch(cfqq);
930         cfq_mark_cfqq_wait_request(cfqq);
931
932         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
933
934         /*
935          * we don't want to idle for seeks, but we do want to allow
936          * fair distribution of slice time for a process doing back-to-back
937          * seeks. so allow a little bit of time for him to submit a new rq
938          */
939         if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
940                 sl = 2;
941
942         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
943         return 1;
944 }
945
946 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
947 {
948         struct cfq_data *cfqd = q->elevator->elevator_data;
949         struct cfq_queue *cfqq = crq->cfq_queue;
950
951         cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
952         cfq_remove_request(crq->request);
953         cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
954         elv_dispatch_sort(q, crq->request);
955 }
956
957 /*
958  * return expired entry, or NULL to just start from scratch in rbtree
959  */
960 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
961 {
962         struct cfq_data *cfqd = cfqq->cfqd;
963         struct request *rq;
964         struct cfq_rq *crq;
965
966         if (cfq_cfqq_fifo_expire(cfqq))
967                 return NULL;
968
969         if (!list_empty(&cfqq->fifo)) {
970                 int fifo = cfq_cfqq_class_sync(cfqq);
971
972                 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
973                 rq = crq->request;
974                 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
975                         cfq_mark_cfqq_fifo_expire(cfqq);
976                         return crq;
977                 }
978         }
979
980         return NULL;
981 }
982
983 /*
984  * Scale schedule slice based on io priority. Use the sync time slice only
985  * if a queue is marked sync and has sync io queued. A sync queue with async
986  * io only, should not get full sync slice length.
987  */
988 static inline int
989 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
990 {
991         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
992
993         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
994
995         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
996 }
997
998 static inline void
999 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1000 {
1001         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1002 }
1003
1004 static inline int
1005 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1006 {
1007         const int base_rq = cfqd->cfq_slice_async_rq;
1008
1009         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1010
1011         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1012 }
1013
1014 /*
1015  * get next queue for service
1016  */
1017 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1018 {
1019         unsigned long now = jiffies;
1020         struct cfq_queue *cfqq;
1021
1022         cfqq = cfqd->active_queue;
1023         if (!cfqq)
1024                 goto new_queue;
1025
1026         /*
1027          * slice has expired
1028          */
1029         if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1030                 goto expire;
1031
1032         /*
1033          * if queue has requests, dispatch one. if not, check if
1034          * enough slice is left to wait for one
1035          */
1036         if (!RB_EMPTY(&cfqq->sort_list))
1037                 goto keep_queue;
1038         else if (cfq_cfqq_class_sync(cfqq) &&
1039                  time_before(now, cfqq->slice_end)) {
1040                 if (cfq_arm_slice_timer(cfqd, cfqq))
1041                         return NULL;
1042         }
1043
1044 expire:
1045         cfq_slice_expired(cfqd, 0);
1046 new_queue:
1047         cfqq = cfq_set_active_queue(cfqd);
1048 keep_queue:
1049         return cfqq;
1050 }
1051
1052 static int
1053 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1054                         int max_dispatch)
1055 {
1056         int dispatched = 0;
1057
1058         BUG_ON(RB_EMPTY(&cfqq->sort_list));
1059
1060         do {
1061                 struct cfq_rq *crq;
1062
1063                 /*
1064                  * follow expired path, else get first next available
1065                  */
1066                 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1067                         crq = cfqq->next_crq;
1068
1069                 /*
1070                  * finally, insert request into driver dispatch list
1071                  */
1072                 cfq_dispatch_insert(cfqd->queue, crq);
1073
1074                 cfqd->dispatch_slice++;
1075                 dispatched++;
1076
1077                 if (!cfqd->active_cic) {
1078                         atomic_inc(&crq->io_context->ioc->refcount);
1079                         cfqd->active_cic = crq->io_context;
1080                 }
1081
1082                 if (RB_EMPTY(&cfqq->sort_list))
1083                         break;
1084
1085         } while (dispatched < max_dispatch);
1086
1087         /*
1088          * if slice end isn't set yet, set it. if at least one request was
1089          * sync, use the sync time slice value
1090          */
1091         if (!cfqq->slice_end)
1092                 cfq_set_prio_slice(cfqd, cfqq);
1093
1094         /*
1095          * expire an async queue immediately if it has used up its slice. idle
1096          * queue always expire after 1 dispatch round.
1097          */
1098         if ((!cfq_cfqq_sync(cfqq) &&
1099             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1100             cfq_class_idle(cfqq))
1101                 cfq_slice_expired(cfqd, 0);
1102
1103         return dispatched;
1104 }
1105
1106 static int
1107 cfq_forced_dispatch_cfqqs(struct list_head *list)
1108 {
1109         int dispatched = 0;
1110         struct cfq_queue *cfqq, *next;
1111         struct cfq_rq *crq;
1112
1113         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1114                 while ((crq = cfqq->next_crq)) {
1115                         cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1116                         dispatched++;
1117                 }
1118                 BUG_ON(!list_empty(&cfqq->fifo));
1119         }
1120         return dispatched;
1121 }
1122
1123 static int
1124 cfq_forced_dispatch(struct cfq_data *cfqd)
1125 {
1126         int i, dispatched = 0;
1127
1128         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1129                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1130
1131         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1132         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1133         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1134
1135         cfq_slice_expired(cfqd, 0);
1136
1137         BUG_ON(cfqd->busy_queues);
1138
1139         return dispatched;
1140 }
1141
1142 static int
1143 cfq_dispatch_requests(request_queue_t *q, int force)
1144 {
1145         struct cfq_data *cfqd = q->elevator->elevator_data;
1146         struct cfq_queue *cfqq;
1147
1148         if (!cfqd->busy_queues)
1149                 return 0;
1150
1151         if (unlikely(force))
1152                 return cfq_forced_dispatch(cfqd);
1153
1154         cfqq = cfq_select_queue(cfqd);
1155         if (cfqq) {
1156                 int max_dispatch;
1157
1158                 cfq_clear_cfqq_must_dispatch(cfqq);
1159                 cfq_clear_cfqq_wait_request(cfqq);
1160                 del_timer(&cfqd->idle_slice_timer);
1161
1162                 max_dispatch = cfqd->cfq_quantum;
1163                 if (cfq_class_idle(cfqq))
1164                         max_dispatch = 1;
1165
1166                 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1167         }
1168
1169         return 0;
1170 }
1171
1172 /*
1173  * task holds one reference to the queue, dropped when task exits. each crq
1174  * in-flight on this queue also holds a reference, dropped when crq is freed.
1175  *
1176  * queue lock must be held here.
1177  */
1178 static void cfq_put_queue(struct cfq_queue *cfqq)
1179 {
1180         struct cfq_data *cfqd = cfqq->cfqd;
1181
1182         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1183
1184         if (!atomic_dec_and_test(&cfqq->ref))
1185                 return;
1186
1187         BUG_ON(rb_first(&cfqq->sort_list));
1188         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1189         BUG_ON(cfq_cfqq_on_rr(cfqq));
1190
1191         if (unlikely(cfqd->active_queue == cfqq))
1192                 __cfq_slice_expired(cfqd, cfqq, 0);
1193
1194         /*
1195          * it's on the empty list and still hashed
1196          */
1197         list_del(&cfqq->cfq_list);
1198         hlist_del(&cfqq->cfq_hash);
1199         kmem_cache_free(cfq_pool, cfqq);
1200 }
1201
1202 static inline struct cfq_queue *
1203 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1204                     const int hashval)
1205 {
1206         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1207         struct hlist_node *entry;
1208         struct cfq_queue *__cfqq;
1209
1210         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1211                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1212
1213                 if (__cfqq->key == key && (__p == prio || !prio))
1214                         return __cfqq;
1215         }
1216
1217         return NULL;
1218 }
1219
1220 static struct cfq_queue *
1221 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1222 {
1223         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1224 }
1225
1226 static void cfq_free_io_context(struct io_context *ioc)
1227 {
1228         struct cfq_io_context *__cic;
1229         struct rb_node *n;
1230         int freed = 0;
1231
1232         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1233                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1234                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1235                 kmem_cache_free(cfq_ioc_pool, __cic);
1236                 freed++;
1237         }
1238
1239         if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1240                 complete(ioc_gone);
1241 }
1242
1243 static void cfq_trim(struct io_context *ioc)
1244 {
1245         ioc->set_ioprio = NULL;
1246         cfq_free_io_context(ioc);
1247 }
1248
1249 /*
1250  * Called with interrupts disabled
1251  */
1252 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1253 {
1254         struct cfq_data *cfqd = cic->key;
1255         request_queue_t *q;
1256
1257         if (!cfqd)
1258                 return;
1259
1260         q = cfqd->queue;
1261
1262         WARN_ON(!irqs_disabled());
1263
1264         spin_lock(q->queue_lock);
1265
1266         if (cic->cfqq[ASYNC]) {
1267                 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1268                         __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1269                 cfq_put_queue(cic->cfqq[ASYNC]);
1270                 cic->cfqq[ASYNC] = NULL;
1271         }
1272
1273         if (cic->cfqq[SYNC]) {
1274                 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1275                         __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1276                 cfq_put_queue(cic->cfqq[SYNC]);
1277                 cic->cfqq[SYNC] = NULL;
1278         }
1279
1280         cic->key = NULL;
1281         list_del_init(&cic->queue_list);
1282         spin_unlock(q->queue_lock);
1283 }
1284
1285 static void cfq_exit_io_context(struct io_context *ioc)
1286 {
1287         struct cfq_io_context *__cic;
1288         unsigned long flags;
1289         struct rb_node *n;
1290
1291         /*
1292          * put the reference this task is holding to the various queues
1293          */
1294         spin_lock_irqsave(&cfq_exit_lock, flags);
1295
1296         n = rb_first(&ioc->cic_root);
1297         while (n != NULL) {
1298                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1299
1300                 cfq_exit_single_io_context(__cic);
1301                 n = rb_next(n);
1302         }
1303
1304         spin_unlock_irqrestore(&cfq_exit_lock, flags);
1305 }
1306
1307 static struct cfq_io_context *
1308 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1309 {
1310         struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1311
1312         if (cic) {
1313                 RB_CLEAR(&cic->rb_node);
1314                 cic->key = NULL;
1315                 cic->cfqq[ASYNC] = NULL;
1316                 cic->cfqq[SYNC] = NULL;
1317                 cic->last_end_request = jiffies;
1318                 cic->ttime_total = 0;
1319                 cic->ttime_samples = 0;
1320                 cic->ttime_mean = 0;
1321                 cic->dtor = cfq_free_io_context;
1322                 cic->exit = cfq_exit_io_context;
1323                 INIT_LIST_HEAD(&cic->queue_list);
1324                 atomic_inc(&ioc_count);
1325         }
1326
1327         return cic;
1328 }
1329
1330 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1331 {
1332         struct task_struct *tsk = current;
1333         int ioprio_class;
1334
1335         if (!cfq_cfqq_prio_changed(cfqq))
1336                 return;
1337
1338         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1339         switch (ioprio_class) {
1340                 default:
1341                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1342                 case IOPRIO_CLASS_NONE:
1343                         /*
1344                          * no prio set, place us in the middle of the BE classes
1345                          */
1346                         cfqq->ioprio = task_nice_ioprio(tsk);
1347                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1348                         break;
1349                 case IOPRIO_CLASS_RT:
1350                         cfqq->ioprio = task_ioprio(tsk);
1351                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1352                         break;
1353                 case IOPRIO_CLASS_BE:
1354                         cfqq->ioprio = task_ioprio(tsk);
1355                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1356                         break;
1357                 case IOPRIO_CLASS_IDLE:
1358                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1359                         cfqq->ioprio = 7;
1360                         cfq_clear_cfqq_idle_window(cfqq);
1361                         break;
1362         }
1363
1364         /*
1365          * keep track of original prio settings in case we have to temporarily
1366          * elevate the priority of this queue
1367          */
1368         cfqq->org_ioprio = cfqq->ioprio;
1369         cfqq->org_ioprio_class = cfqq->ioprio_class;
1370
1371         if (cfq_cfqq_on_rr(cfqq))
1372                 cfq_resort_rr_list(cfqq, 0);
1373
1374         cfq_clear_cfqq_prio_changed(cfqq);
1375 }
1376
1377 static inline void changed_ioprio(struct cfq_io_context *cic)
1378 {
1379         struct cfq_data *cfqd = cic->key;
1380         struct cfq_queue *cfqq;
1381         if (cfqd) {
1382                 spin_lock(cfqd->queue->queue_lock);
1383                 cfqq = cic->cfqq[ASYNC];
1384                 if (cfqq) {
1385                         struct cfq_queue *new_cfqq;
1386                         new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1387                                                 cic->ioc->task, GFP_ATOMIC);
1388                         if (new_cfqq) {
1389                                 cic->cfqq[ASYNC] = new_cfqq;
1390                                 cfq_put_queue(cfqq);
1391                         }
1392                 }
1393                 cfqq = cic->cfqq[SYNC];
1394                 if (cfqq) {
1395                         cfq_mark_cfqq_prio_changed(cfqq);
1396                         cfq_init_prio_data(cfqq);
1397                 }
1398                 spin_unlock(cfqd->queue->queue_lock);
1399         }
1400 }
1401
1402 /*
1403  * callback from sys_ioprio_set, irqs are disabled
1404  */
1405 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1406 {
1407         struct cfq_io_context *cic;
1408         struct rb_node *n;
1409
1410         spin_lock(&cfq_exit_lock);
1411
1412         n = rb_first(&ioc->cic_root);
1413         while (n != NULL) {
1414                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1415
1416                 changed_ioprio(cic);
1417                 n = rb_next(n);
1418         }
1419
1420         spin_unlock(&cfq_exit_lock);
1421
1422         return 0;
1423 }
1424
1425 static struct cfq_queue *
1426 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1427               gfp_t gfp_mask)
1428 {
1429         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1430         struct cfq_queue *cfqq, *new_cfqq = NULL;
1431         unsigned short ioprio;
1432
1433 retry:
1434         ioprio = tsk->ioprio;
1435         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1436
1437         if (!cfqq) {
1438                 if (new_cfqq) {
1439                         cfqq = new_cfqq;
1440                         new_cfqq = NULL;
1441                 } else if (gfp_mask & __GFP_WAIT) {
1442                         spin_unlock_irq(cfqd->queue->queue_lock);
1443                         new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1444                         spin_lock_irq(cfqd->queue->queue_lock);
1445                         goto retry;
1446                 } else {
1447                         cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1448                         if (!cfqq)
1449                                 goto out;
1450                 }
1451
1452                 memset(cfqq, 0, sizeof(*cfqq));
1453
1454                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1455                 INIT_LIST_HEAD(&cfqq->cfq_list);
1456                 RB_CLEAR_ROOT(&cfqq->sort_list);
1457                 INIT_LIST_HEAD(&cfqq->fifo);
1458
1459                 cfqq->key = key;
1460                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1461                 atomic_set(&cfqq->ref, 0);
1462                 cfqq->cfqd = cfqd;
1463                 cfqq->service_last = 0;
1464                 /*
1465                  * set ->slice_left to allow preemption for a new process
1466                  */
1467                 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1468                 cfq_mark_cfqq_idle_window(cfqq);
1469                 cfq_mark_cfqq_prio_changed(cfqq);
1470                 cfq_init_prio_data(cfqq);
1471         }
1472
1473         if (new_cfqq)
1474                 kmem_cache_free(cfq_pool, new_cfqq);
1475
1476         atomic_inc(&cfqq->ref);
1477 out:
1478         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1479         return cfqq;
1480 }
1481
1482 static void
1483 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1484 {
1485         spin_lock(&cfq_exit_lock);
1486         rb_erase(&cic->rb_node, &ioc->cic_root);
1487         list_del_init(&cic->queue_list);
1488         spin_unlock(&cfq_exit_lock);
1489         kmem_cache_free(cfq_ioc_pool, cic);
1490         atomic_dec(&ioc_count);
1491 }
1492
1493 static struct cfq_io_context *
1494 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1495 {
1496         struct rb_node *n;
1497         struct cfq_io_context *cic;
1498         void *k, *key = cfqd;
1499
1500 restart:
1501         n = ioc->cic_root.rb_node;
1502         while (n) {
1503                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1504                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1505                 k = cic->key;
1506                 if (unlikely(!k)) {
1507                         cfq_drop_dead_cic(ioc, cic);
1508                         goto restart;
1509                 }
1510
1511                 if (key < k)
1512                         n = n->rb_left;
1513                 else if (key > k)
1514                         n = n->rb_right;
1515                 else
1516                         return cic;
1517         }
1518
1519         return NULL;
1520 }
1521
1522 static inline void
1523 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1524              struct cfq_io_context *cic)
1525 {
1526         struct rb_node **p;
1527         struct rb_node *parent;
1528         struct cfq_io_context *__cic;
1529         void *k;
1530
1531         cic->ioc = ioc;
1532         cic->key = cfqd;
1533
1534         ioc->set_ioprio = cfq_ioc_set_ioprio;
1535 restart:
1536         parent = NULL;
1537         p = &ioc->cic_root.rb_node;
1538         while (*p) {
1539                 parent = *p;
1540                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1541                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1542                 k = __cic->key;
1543                 if (unlikely(!k)) {
1544                         cfq_drop_dead_cic(ioc, cic);
1545                         goto restart;
1546                 }
1547
1548                 if (cic->key < k)
1549                         p = &(*p)->rb_left;
1550                 else if (cic->key > k)
1551                         p = &(*p)->rb_right;
1552                 else
1553                         BUG();
1554         }
1555
1556         spin_lock(&cfq_exit_lock);
1557         rb_link_node(&cic->rb_node, parent, p);
1558         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1559         list_add(&cic->queue_list, &cfqd->cic_list);
1560         spin_unlock(&cfq_exit_lock);
1561 }
1562
1563 /*
1564  * Setup general io context and cfq io context. There can be several cfq
1565  * io contexts per general io context, if this process is doing io to more
1566  * than one device managed by cfq.
1567  */
1568 static struct cfq_io_context *
1569 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1570 {
1571         struct io_context *ioc = NULL;
1572         struct cfq_io_context *cic;
1573
1574         might_sleep_if(gfp_mask & __GFP_WAIT);
1575
1576         ioc = get_io_context(gfp_mask);
1577         if (!ioc)
1578                 return NULL;
1579
1580         cic = cfq_cic_rb_lookup(cfqd, ioc);
1581         if (cic)
1582                 goto out;
1583
1584         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1585         if (cic == NULL)
1586                 goto err;
1587
1588         cfq_cic_link(cfqd, ioc, cic);
1589 out:
1590         return cic;
1591 err:
1592         put_io_context(ioc);
1593         return NULL;
1594 }
1595
1596 static void
1597 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1598 {
1599         unsigned long elapsed, ttime;
1600
1601         /*
1602          * if this context already has stuff queued, thinktime is from
1603          * last queue not last end
1604          */
1605 #if 0
1606         if (time_after(cic->last_end_request, cic->last_queue))
1607                 elapsed = jiffies - cic->last_end_request;
1608         else
1609                 elapsed = jiffies - cic->last_queue;
1610 #else
1611                 elapsed = jiffies - cic->last_end_request;
1612 #endif
1613
1614         ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1615
1616         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1617         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1618         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1619 }
1620
1621 static void
1622 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1623                        struct cfq_rq *crq)
1624 {
1625         sector_t sdist;
1626         u64 total;
1627
1628         if (cic->last_request_pos < crq->request->sector)
1629                 sdist = crq->request->sector - cic->last_request_pos;
1630         else
1631                 sdist = cic->last_request_pos - crq->request->sector;
1632
1633         /*
1634          * Don't allow the seek distance to get too large from the
1635          * odd fragment, pagein, etc
1636          */
1637         if (cic->seek_samples <= 60) /* second&third seek */
1638                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1639         else
1640                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1641
1642         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1643         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1644         total = cic->seek_total + (cic->seek_samples/2);
1645         do_div(total, cic->seek_samples);
1646         cic->seek_mean = (sector_t)total;
1647 }
1648
1649 /*
1650  * Disable idle window if the process thinks too long or seeks so much that
1651  * it doesn't matter
1652  */
1653 static void
1654 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1655                        struct cfq_io_context *cic)
1656 {
1657         int enable_idle = cfq_cfqq_idle_window(cfqq);
1658
1659         if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1660                 enable_idle = 0;
1661         else if (sample_valid(cic->ttime_samples)) {
1662                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1663                         enable_idle = 0;
1664                 else
1665                         enable_idle = 1;
1666         }
1667
1668         if (enable_idle)
1669                 cfq_mark_cfqq_idle_window(cfqq);
1670         else
1671                 cfq_clear_cfqq_idle_window(cfqq);
1672 }
1673
1674
1675 /*
1676  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1677  * no or if we aren't sure, a 1 will cause a preempt.
1678  */
1679 static int
1680 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1681                    struct cfq_rq *crq)
1682 {
1683         struct cfq_queue *cfqq = cfqd->active_queue;
1684
1685         if (cfq_class_idle(new_cfqq))
1686                 return 0;
1687
1688         if (!cfqq)
1689                 return 1;
1690
1691         if (cfq_class_idle(cfqq))
1692                 return 1;
1693         if (!cfq_cfqq_wait_request(new_cfqq))
1694                 return 0;
1695         /*
1696          * if it doesn't have slice left, forget it
1697          */
1698         if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1699                 return 0;
1700         if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1701                 return 1;
1702
1703         return 0;
1704 }
1705
1706 /*
1707  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1708  * let it have half of its nominal slice.
1709  */
1710 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1711 {
1712         struct cfq_queue *__cfqq, *next;
1713
1714         list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1715                 cfq_resort_rr_list(__cfqq, 1);
1716
1717         if (!cfqq->slice_left)
1718                 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1719
1720         cfqq->slice_end = cfqq->slice_left + jiffies;
1721         __cfq_slice_expired(cfqd, cfqq, 1);
1722         __cfq_set_active_queue(cfqd, cfqq);
1723 }
1724
1725 /*
1726  * should really be a ll_rw_blk.c helper
1727  */
1728 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1729 {
1730         request_queue_t *q = cfqd->queue;
1731
1732         if (!blk_queue_plugged(q))
1733                 q->request_fn(q);
1734         else
1735                 __generic_unplug_device(q);
1736 }
1737
1738 /*
1739  * Called when a new fs request (crq) is added (to cfqq). Check if there's
1740  * something we should do about it
1741  */
1742 static void
1743 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1744                  struct cfq_rq *crq)
1745 {
1746         struct cfq_io_context *cic;
1747
1748         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1749
1750         /*
1751          * we never wait for an async request and we don't allow preemption
1752          * of an async request. so just return early
1753          */
1754         if (!cfq_crq_is_sync(crq))
1755                 return;
1756
1757         cic = crq->io_context;
1758
1759         cfq_update_io_thinktime(cfqd, cic);
1760         cfq_update_io_seektime(cfqd, cic, crq);
1761         cfq_update_idle_window(cfqd, cfqq, cic);
1762
1763         cic->last_queue = jiffies;
1764         cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1765
1766         if (cfqq == cfqd->active_queue) {
1767                 /*
1768                  * if we are waiting for a request for this queue, let it rip
1769                  * immediately and flag that we must not expire this queue
1770                  * just now
1771                  */
1772                 if (cfq_cfqq_wait_request(cfqq)) {
1773                         cfq_mark_cfqq_must_dispatch(cfqq);
1774                         del_timer(&cfqd->idle_slice_timer);
1775                         cfq_start_queueing(cfqd, cfqq);
1776                 }
1777         } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1778                 /*
1779                  * not the active queue - expire current slice if it is
1780                  * idle and has expired it's mean thinktime or this new queue
1781                  * has some old slice time left and is of higher priority
1782                  */
1783                 cfq_preempt_queue(cfqd, cfqq);
1784                 cfq_mark_cfqq_must_dispatch(cfqq);
1785                 cfq_start_queueing(cfqd, cfqq);
1786         }
1787 }
1788
1789 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1790 {
1791         struct cfq_data *cfqd = q->elevator->elevator_data;
1792         struct cfq_rq *crq = RQ_DATA(rq);
1793         struct cfq_queue *cfqq = crq->cfq_queue;
1794
1795         cfq_init_prio_data(cfqq);
1796
1797         cfq_add_crq_rb(crq);
1798
1799         list_add_tail(&rq->queuelist, &cfqq->fifo);
1800
1801         if (rq_mergeable(rq))
1802                 cfq_add_crq_hash(cfqd, crq);
1803
1804         cfq_crq_enqueued(cfqd, cfqq, crq);
1805 }
1806
1807 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1808 {
1809         struct cfq_rq *crq = RQ_DATA(rq);
1810         struct cfq_queue *cfqq = crq->cfq_queue;
1811         struct cfq_data *cfqd = cfqq->cfqd;
1812         const int sync = cfq_crq_is_sync(crq);
1813         unsigned long now;
1814
1815         now = jiffies;
1816
1817         WARN_ON(!cfqd->rq_in_driver);
1818         WARN_ON(!cfqq->on_dispatch[sync]);
1819         cfqd->rq_in_driver--;
1820         cfqq->on_dispatch[sync]--;
1821
1822         if (!cfq_class_idle(cfqq))
1823                 cfqd->last_end_request = now;
1824
1825         if (!cfq_cfqq_dispatched(cfqq)) {
1826                 if (cfq_cfqq_on_rr(cfqq)) {
1827                         cfqq->service_last = now;
1828                         cfq_resort_rr_list(cfqq, 0);
1829                 }
1830                 cfq_schedule_dispatch(cfqd);
1831         }
1832
1833         if (cfq_crq_is_sync(crq))
1834                 crq->io_context->last_end_request = now;
1835 }
1836
1837 static struct request *
1838 cfq_former_request(request_queue_t *q, struct request *rq)
1839 {
1840         struct cfq_rq *crq = RQ_DATA(rq);
1841         struct rb_node *rbprev = rb_prev(&crq->rb_node);
1842
1843         if (rbprev)
1844                 return rb_entry_crq(rbprev)->request;
1845
1846         return NULL;
1847 }
1848
1849 static struct request *
1850 cfq_latter_request(request_queue_t *q, struct request *rq)
1851 {
1852         struct cfq_rq *crq = RQ_DATA(rq);
1853         struct rb_node *rbnext = rb_next(&crq->rb_node);
1854
1855         if (rbnext)
1856                 return rb_entry_crq(rbnext)->request;
1857
1858         return NULL;
1859 }
1860
1861 /*
1862  * we temporarily boost lower priority queues if they are holding fs exclusive
1863  * resources. they are boosted to normal prio (CLASS_BE/4)
1864  */
1865 static void cfq_prio_boost(struct cfq_queue *cfqq)
1866 {
1867         const int ioprio_class = cfqq->ioprio_class;
1868         const int ioprio = cfqq->ioprio;
1869
1870         if (has_fs_excl()) {
1871                 /*
1872                  * boost idle prio on transactions that would lock out other
1873                  * users of the filesystem
1874                  */
1875                 if (cfq_class_idle(cfqq))
1876                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1877                 if (cfqq->ioprio > IOPRIO_NORM)
1878                         cfqq->ioprio = IOPRIO_NORM;
1879         } else {
1880                 /*
1881                  * check if we need to unboost the queue
1882                  */
1883                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1884                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1885                 if (cfqq->ioprio != cfqq->org_ioprio)
1886                         cfqq->ioprio = cfqq->org_ioprio;
1887         }
1888
1889         /*
1890          * refile between round-robin lists if we moved the priority class
1891          */
1892         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1893             cfq_cfqq_on_rr(cfqq))
1894                 cfq_resort_rr_list(cfqq, 0);
1895 }
1896
1897 static inline int
1898 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1899                 struct task_struct *task, int rw)
1900 {
1901 #if 1
1902         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1903             !cfq_cfqq_must_alloc_slice(cfqq)) {
1904                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1905                 return ELV_MQUEUE_MUST;
1906         }
1907
1908         return ELV_MQUEUE_MAY;
1909 #else
1910         if (!cfqq || task->flags & PF_MEMALLOC)
1911                 return ELV_MQUEUE_MAY;
1912         if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1913                 if (cfq_cfqq_wait_request(cfqq))
1914                         return ELV_MQUEUE_MUST;
1915
1916                 /*
1917                  * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1918                  * can quickly flood the queue with writes from a single task
1919                  */
1920                 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1921                         cfq_mark_cfqq_must_alloc_slice(cfqq);
1922                         return ELV_MQUEUE_MUST;
1923                 }
1924
1925                 return ELV_MQUEUE_MAY;
1926         }
1927         if (cfq_class_idle(cfqq))
1928                 return ELV_MQUEUE_NO;
1929         if (cfqq->allocated[rw] >= cfqd->max_queued) {
1930                 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1931                 int ret = ELV_MQUEUE_NO;
1932
1933                 if (ioc && ioc->nr_batch_requests)
1934                         ret = ELV_MQUEUE_MAY;
1935
1936                 put_io_context(ioc);
1937                 return ret;
1938         }
1939
1940         return ELV_MQUEUE_MAY;
1941 #endif
1942 }
1943
1944 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1945 {
1946         struct cfq_data *cfqd = q->elevator->elevator_data;
1947         struct task_struct *tsk = current;
1948         struct cfq_queue *cfqq;
1949
1950         /*
1951          * don't force setup of a queue from here, as a call to may_queue
1952          * does not necessarily imply that a request actually will be queued.
1953          * so just lookup a possibly existing queue, or return 'may queue'
1954          * if that fails
1955          */
1956         cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1957         if (cfqq) {
1958                 cfq_init_prio_data(cfqq);
1959                 cfq_prio_boost(cfqq);
1960
1961                 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1962         }
1963
1964         return ELV_MQUEUE_MAY;
1965 }
1966
1967 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1968 {
1969         struct cfq_data *cfqd = q->elevator->elevator_data;
1970         struct request_list *rl = &q->rq;
1971
1972         if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1973                 smp_mb();
1974                 if (waitqueue_active(&rl->wait[READ]))
1975                         wake_up(&rl->wait[READ]);
1976         }
1977
1978         if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1979                 smp_mb();
1980                 if (waitqueue_active(&rl->wait[WRITE]))
1981                         wake_up(&rl->wait[WRITE]);
1982         }
1983 }
1984
1985 /*
1986  * queue lock held here
1987  */
1988 static void cfq_put_request(request_queue_t *q, struct request *rq)
1989 {
1990         struct cfq_data *cfqd = q->elevator->elevator_data;
1991         struct cfq_rq *crq = RQ_DATA(rq);
1992
1993         if (crq) {
1994                 struct cfq_queue *cfqq = crq->cfq_queue;
1995                 const int rw = rq_data_dir(rq);
1996
1997                 BUG_ON(!cfqq->allocated[rw]);
1998                 cfqq->allocated[rw]--;
1999
2000                 put_io_context(crq->io_context->ioc);
2001
2002                 mempool_free(crq, cfqd->crq_pool);
2003                 rq->elevator_private = NULL;
2004
2005                 cfq_check_waiters(q, cfqq);
2006                 cfq_put_queue(cfqq);
2007         }
2008 }
2009
2010 /*
2011  * Allocate cfq data structures associated with this request.
2012  */
2013 static int
2014 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2015                 gfp_t gfp_mask)
2016 {
2017         struct cfq_data *cfqd = q->elevator->elevator_data;
2018         struct task_struct *tsk = current;
2019         struct cfq_io_context *cic;
2020         const int rw = rq_data_dir(rq);
2021         pid_t key = cfq_queue_pid(tsk, rw);
2022         struct cfq_queue *cfqq;
2023         struct cfq_rq *crq;
2024         unsigned long flags;
2025         int is_sync = key != CFQ_KEY_ASYNC;
2026
2027         might_sleep_if(gfp_mask & __GFP_WAIT);
2028
2029         cic = cfq_get_io_context(cfqd, gfp_mask);
2030
2031         spin_lock_irqsave(q->queue_lock, flags);
2032
2033         if (!cic)
2034                 goto queue_fail;
2035
2036         if (!cic->cfqq[is_sync]) {
2037                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2038                 if (!cfqq)
2039                         goto queue_fail;
2040
2041                 cic->cfqq[is_sync] = cfqq;
2042         } else
2043                 cfqq = cic->cfqq[is_sync];
2044
2045         cfqq->allocated[rw]++;
2046         cfq_clear_cfqq_must_alloc(cfqq);
2047         cfqd->rq_starved = 0;
2048         atomic_inc(&cfqq->ref);
2049         spin_unlock_irqrestore(q->queue_lock, flags);
2050
2051         crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2052         if (crq) {
2053                 RB_CLEAR(&crq->rb_node);
2054                 crq->rb_key = 0;
2055                 crq->request = rq;
2056                 INIT_HLIST_NODE(&crq->hash);
2057                 crq->cfq_queue = cfqq;
2058                 crq->io_context = cic;
2059
2060                 if (is_sync)
2061                         cfq_mark_crq_is_sync(crq);
2062                 else
2063                         cfq_clear_crq_is_sync(crq);
2064
2065                 rq->elevator_private = crq;
2066                 return 0;
2067         }
2068
2069         spin_lock_irqsave(q->queue_lock, flags);
2070         cfqq->allocated[rw]--;
2071         if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2072                 cfq_mark_cfqq_must_alloc(cfqq);
2073         cfq_put_queue(cfqq);
2074 queue_fail:
2075         if (cic)
2076                 put_io_context(cic->ioc);
2077         /*
2078          * mark us rq allocation starved. we need to kickstart the process
2079          * ourselves if there are no pending requests that can do it for us.
2080          * that would be an extremely rare OOM situation
2081          */
2082         cfqd->rq_starved = 1;
2083         cfq_schedule_dispatch(cfqd);
2084         spin_unlock_irqrestore(q->queue_lock, flags);
2085         return 1;
2086 }
2087
2088 static void cfq_kick_queue(void *data)
2089 {
2090         request_queue_t *q = data;
2091         struct cfq_data *cfqd = q->elevator->elevator_data;
2092         unsigned long flags;
2093
2094         spin_lock_irqsave(q->queue_lock, flags);
2095
2096         if (cfqd->rq_starved) {
2097                 struct request_list *rl = &q->rq;
2098
2099                 /*
2100                  * we aren't guaranteed to get a request after this, but we
2101                  * have to be opportunistic
2102                  */
2103                 smp_mb();
2104                 if (waitqueue_active(&rl->wait[READ]))
2105                         wake_up(&rl->wait[READ]);
2106                 if (waitqueue_active(&rl->wait[WRITE]))
2107                         wake_up(&rl->wait[WRITE]);
2108         }
2109
2110         blk_remove_plug(q);
2111         q->request_fn(q);
2112         spin_unlock_irqrestore(q->queue_lock, flags);
2113 }
2114
2115 /*
2116  * Timer running if the active_queue is currently idling inside its time slice
2117  */
2118 static void cfq_idle_slice_timer(unsigned long data)
2119 {
2120         struct cfq_data *cfqd = (struct cfq_data *) data;
2121         struct cfq_queue *cfqq;
2122         unsigned long flags;
2123
2124         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2125
2126         if ((cfqq = cfqd->active_queue) != NULL) {
2127                 unsigned long now = jiffies;
2128
2129                 /*
2130                  * expired
2131                  */
2132                 if (time_after(now, cfqq->slice_end))
2133                         goto expire;
2134
2135                 /*
2136                  * only expire and reinvoke request handler, if there are
2137                  * other queues with pending requests
2138                  */
2139                 if (!cfqd->busy_queues) {
2140                         cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2141                         add_timer(&cfqd->idle_slice_timer);
2142                         goto out_cont;
2143                 }
2144
2145                 /*
2146                  * not expired and it has a request pending, let it dispatch
2147                  */
2148                 if (!RB_EMPTY(&cfqq->sort_list)) {
2149                         cfq_mark_cfqq_must_dispatch(cfqq);
2150                         goto out_kick;
2151                 }
2152         }
2153 expire:
2154         cfq_slice_expired(cfqd, 0);
2155 out_kick:
2156         cfq_schedule_dispatch(cfqd);
2157 out_cont:
2158         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2159 }
2160
2161 /*
2162  * Timer running if an idle class queue is waiting for service
2163  */
2164 static void cfq_idle_class_timer(unsigned long data)
2165 {
2166         struct cfq_data *cfqd = (struct cfq_data *) data;
2167         unsigned long flags, end;
2168
2169         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2170
2171         /*
2172          * race with a non-idle queue, reset timer
2173          */
2174         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2175         if (!time_after_eq(jiffies, end)) {
2176                 cfqd->idle_class_timer.expires = end;
2177                 add_timer(&cfqd->idle_class_timer);
2178         } else
2179                 cfq_schedule_dispatch(cfqd);
2180
2181         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2182 }
2183
2184 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2185 {
2186         del_timer_sync(&cfqd->idle_slice_timer);
2187         del_timer_sync(&cfqd->idle_class_timer);
2188         blk_sync_queue(cfqd->queue);
2189 }
2190
2191 static void cfq_exit_queue(elevator_t *e)
2192 {
2193         struct cfq_data *cfqd = e->elevator_data;
2194         request_queue_t *q = cfqd->queue;
2195
2196         cfq_shutdown_timer_wq(cfqd);
2197
2198         spin_lock(&cfq_exit_lock);
2199         spin_lock_irq(q->queue_lock);
2200
2201         if (cfqd->active_queue)
2202                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2203
2204         while (!list_empty(&cfqd->cic_list)) {
2205                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2206                                                         struct cfq_io_context,
2207                                                         queue_list);
2208                 if (cic->cfqq[ASYNC]) {
2209                         cfq_put_queue(cic->cfqq[ASYNC]);
2210                         cic->cfqq[ASYNC] = NULL;
2211                 }
2212                 if (cic->cfqq[SYNC]) {
2213                         cfq_put_queue(cic->cfqq[SYNC]);
2214                         cic->cfqq[SYNC] = NULL;
2215                 }
2216                 cic->key = NULL;
2217                 list_del_init(&cic->queue_list);
2218         }
2219
2220         spin_unlock_irq(q->queue_lock);
2221         spin_unlock(&cfq_exit_lock);
2222
2223         cfq_shutdown_timer_wq(cfqd);
2224
2225         mempool_destroy(cfqd->crq_pool);
2226         kfree(cfqd->crq_hash);
2227         kfree(cfqd->cfq_hash);
2228         kfree(cfqd);
2229 }
2230
2231 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2232 {
2233         struct cfq_data *cfqd;
2234         int i;
2235
2236         cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2237         if (!cfqd)
2238                 return -ENOMEM;
2239
2240         memset(cfqd, 0, sizeof(*cfqd));
2241
2242         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2243                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2244
2245         INIT_LIST_HEAD(&cfqd->busy_rr);
2246         INIT_LIST_HEAD(&cfqd->cur_rr);
2247         INIT_LIST_HEAD(&cfqd->idle_rr);
2248         INIT_LIST_HEAD(&cfqd->empty_list);
2249         INIT_LIST_HEAD(&cfqd->cic_list);
2250
2251         cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2252         if (!cfqd->crq_hash)
2253                 goto out_crqhash;
2254
2255         cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2256         if (!cfqd->cfq_hash)
2257                 goto out_cfqhash;
2258
2259         cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2260         if (!cfqd->crq_pool)
2261                 goto out_crqpool;
2262
2263         for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2264                 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2265         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2266                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2267
2268         e->elevator_data = cfqd;
2269
2270         cfqd->queue = q;
2271
2272         cfqd->max_queued = q->nr_requests / 4;
2273         q->nr_batching = cfq_queued;
2274
2275         init_timer(&cfqd->idle_slice_timer);
2276         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2277         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2278
2279         init_timer(&cfqd->idle_class_timer);
2280         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2281         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2282
2283         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2284
2285         cfqd->cfq_queued = cfq_queued;
2286         cfqd->cfq_quantum = cfq_quantum;
2287         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2288         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2289         cfqd->cfq_back_max = cfq_back_max;
2290         cfqd->cfq_back_penalty = cfq_back_penalty;
2291         cfqd->cfq_slice[0] = cfq_slice_async;
2292         cfqd->cfq_slice[1] = cfq_slice_sync;
2293         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2294         cfqd->cfq_slice_idle = cfq_slice_idle;
2295
2296         return 0;
2297 out_crqpool:
2298         kfree(cfqd->cfq_hash);
2299 out_cfqhash:
2300         kfree(cfqd->crq_hash);
2301 out_crqhash:
2302         kfree(cfqd);
2303         return -ENOMEM;
2304 }
2305
2306 static void cfq_slab_kill(void)
2307 {
2308         if (crq_pool)
2309                 kmem_cache_destroy(crq_pool);
2310         if (cfq_pool)
2311                 kmem_cache_destroy(cfq_pool);
2312         if (cfq_ioc_pool)
2313                 kmem_cache_destroy(cfq_ioc_pool);
2314 }
2315
2316 static int __init cfq_slab_setup(void)
2317 {
2318         crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2319                                         NULL, NULL);
2320         if (!crq_pool)
2321                 goto fail;
2322
2323         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2324                                         NULL, NULL);
2325         if (!cfq_pool)
2326                 goto fail;
2327
2328         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2329                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2330         if (!cfq_ioc_pool)
2331                 goto fail;
2332
2333         return 0;
2334 fail:
2335         cfq_slab_kill();
2336         return -ENOMEM;
2337 }
2338
2339 /*
2340  * sysfs parts below -->
2341  */
2342
2343 static ssize_t
2344 cfq_var_show(unsigned int var, char *page)
2345 {
2346         return sprintf(page, "%d\n", var);
2347 }
2348
2349 static ssize_t
2350 cfq_var_store(unsigned int *var, const char *page, size_t count)
2351 {
2352         char *p = (char *) page;
2353
2354         *var = simple_strtoul(p, &p, 10);
2355         return count;
2356 }
2357
2358 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2359 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2360 {                                                                       \
2361         struct cfq_data *cfqd = e->elevator_data;                       \
2362         unsigned int __data = __VAR;                                    \
2363         if (__CONV)                                                     \
2364                 __data = jiffies_to_msecs(__data);                      \
2365         return cfq_var_show(__data, (page));                            \
2366 }
2367 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2368 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2369 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2370 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2371 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2372 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2373 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2374 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2375 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2376 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2377 #undef SHOW_FUNCTION
2378
2379 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2380 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2381 {                                                                       \
2382         struct cfq_data *cfqd = e->elevator_data;                       \
2383         unsigned int __data;                                            \
2384         int ret = cfq_var_store(&__data, (page), count);                \
2385         if (__data < (MIN))                                             \
2386                 __data = (MIN);                                         \
2387         else if (__data > (MAX))                                        \
2388                 __data = (MAX);                                         \
2389         if (__CONV)                                                     \
2390                 *(__PTR) = msecs_to_jiffies(__data);                    \
2391         else                                                            \
2392                 *(__PTR) = __data;                                      \
2393         return ret;                                                     \
2394 }
2395 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2396 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2397 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2398 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2399 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2400 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2401 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2402 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2403 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2404 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2405 #undef STORE_FUNCTION
2406
2407 #define CFQ_ATTR(name) \
2408         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2409
2410 static struct elv_fs_entry cfq_attrs[] = {
2411         CFQ_ATTR(quantum),
2412         CFQ_ATTR(queued),
2413         CFQ_ATTR(fifo_expire_sync),
2414         CFQ_ATTR(fifo_expire_async),
2415         CFQ_ATTR(back_seek_max),
2416         CFQ_ATTR(back_seek_penalty),
2417         CFQ_ATTR(slice_sync),
2418         CFQ_ATTR(slice_async),
2419         CFQ_ATTR(slice_async_rq),
2420         CFQ_ATTR(slice_idle),
2421         __ATTR_NULL
2422 };
2423
2424 static struct elevator_type iosched_cfq = {
2425         .ops = {
2426                 .elevator_merge_fn =            cfq_merge,
2427                 .elevator_merged_fn =           cfq_merged_request,
2428                 .elevator_merge_req_fn =        cfq_merged_requests,
2429                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2430                 .elevator_add_req_fn =          cfq_insert_request,
2431                 .elevator_activate_req_fn =     cfq_activate_request,
2432                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2433                 .elevator_queue_empty_fn =      cfq_queue_empty,
2434                 .elevator_completed_req_fn =    cfq_completed_request,
2435                 .elevator_former_req_fn =       cfq_former_request,
2436                 .elevator_latter_req_fn =       cfq_latter_request,
2437                 .elevator_set_req_fn =          cfq_set_request,
2438                 .elevator_put_req_fn =          cfq_put_request,
2439                 .elevator_may_queue_fn =        cfq_may_queue,
2440                 .elevator_init_fn =             cfq_init_queue,
2441                 .elevator_exit_fn =             cfq_exit_queue,
2442                 .trim =                         cfq_trim,
2443         },
2444         .elevator_attrs =       cfq_attrs,
2445         .elevator_name =        "cfq",
2446         .elevator_owner =       THIS_MODULE,
2447 };
2448
2449 static int __init cfq_init(void)
2450 {
2451         int ret;
2452
2453         /*
2454          * could be 0 on HZ < 1000 setups
2455          */
2456         if (!cfq_slice_async)
2457                 cfq_slice_async = 1;
2458         if (!cfq_slice_idle)
2459                 cfq_slice_idle = 1;
2460
2461         if (cfq_slab_setup())
2462                 return -ENOMEM;
2463
2464         ret = elv_register(&iosched_cfq);
2465         if (ret)
2466                 cfq_slab_kill();
2467
2468         return ret;
2469 }
2470
2471 static void __exit cfq_exit(void)
2472 {
2473         DECLARE_COMPLETION(all_gone);
2474         elv_unregister(&iosched_cfq);
2475         ioc_gone = &all_gone;
2476         /* ioc_gone's update must be visible before reading ioc_count */
2477         smp_wmb();
2478         if (atomic_read(&ioc_count))
2479                 wait_for_completion(ioc_gone);
2480         synchronize_rcu();
2481         cfq_slab_kill();
2482 }
2483
2484 module_init(cfq_init);
2485 module_exit(cfq_exit);
2486
2487 MODULE_AUTHOR("Jens Axboe");
2488 MODULE_LICENSE("GPL");
2489 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");