[PATCH] fix cfq_get_queue()/ioprio_set(2) races
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8  */
9 #include <linux/kernel.h>
10 #include <linux/fs.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/bio.h>
14 #include <linux/config.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/compiler.h>
19 #include <linux/hash.h>
20 #include <linux/rbtree.h>
21 #include <linux/mempool.h>
22 #include <linux/ioprio.h>
23 #include <linux/writeback.h>
24
25 /*
26  * tunables
27  */
28 static const int cfq_quantum = 4;               /* max queue in one round of service */
29 static const int cfq_queued = 8;                /* minimum rq allocate limit per-queue*/
30 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
31 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
32 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
33
34 static const int cfq_slice_sync = HZ / 10;
35 static int cfq_slice_async = HZ / 25;
36 static const int cfq_slice_async_rq = 2;
37 static int cfq_slice_idle = HZ / 100;
38
39 #define CFQ_IDLE_GRACE          (HZ / 10)
40 #define CFQ_SLICE_SCALE         (5)
41
42 #define CFQ_KEY_ASYNC           (0)
43 #define CFQ_KEY_ANY             (0xffff)
44
45 /*
46  * disable queueing at the driver/hardware level
47  */
48 static const int cfq_max_depth = 2;
49
50 static DEFINE_RWLOCK(cfq_exit_lock);
51
52 /*
53  * for the hash of cfqq inside the cfqd
54  */
55 #define CFQ_QHASH_SHIFT         6
56 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
57 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
58
59 /*
60  * for the hash of crq inside the cfqq
61  */
62 #define CFQ_MHASH_SHIFT         6
63 #define CFQ_MHASH_BLOCK(sec)    ((sec) >> 3)
64 #define CFQ_MHASH_ENTRIES       (1 << CFQ_MHASH_SHIFT)
65 #define CFQ_MHASH_FN(sec)       hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
66 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
67 #define list_entry_hash(ptr)    hlist_entry((ptr), struct cfq_rq, hash)
68
69 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
70 #define list_entry_fifo(ptr)    list_entry((ptr), struct request, queuelist)
71
72 #define RQ_DATA(rq)             (rq)->elevator_private
73
74 /*
75  * rb-tree defines
76  */
77 #define RB_NONE                 (2)
78 #define RB_EMPTY(node)          ((node)->rb_node == NULL)
79 #define RB_CLEAR_COLOR(node)    (node)->rb_color = RB_NONE
80 #define RB_CLEAR(node)          do {    \
81         (node)->rb_parent = NULL;       \
82         RB_CLEAR_COLOR((node));         \
83         (node)->rb_right = NULL;        \
84         (node)->rb_left = NULL;         \
85 } while (0)
86 #define RB_CLEAR_ROOT(root)     ((root)->rb_node = NULL)
87 #define rb_entry_crq(node)      rb_entry((node), struct cfq_rq, rb_node)
88 #define rq_rb_key(rq)           (rq)->sector
89
90 static kmem_cache_t *crq_pool;
91 static kmem_cache_t *cfq_pool;
92 static kmem_cache_t *cfq_ioc_pool;
93
94 static atomic_t ioc_count = ATOMIC_INIT(0);
95 static struct completion *ioc_gone;
96
97 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
98 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
99 #define cfq_class_be(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
100 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
101
102 #define ASYNC                   (0)
103 #define SYNC                    (1)
104
105 #define cfq_cfqq_dispatched(cfqq)       \
106         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
107
108 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
109
110 #define cfq_cfqq_sync(cfqq)             \
111         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
112
113 /*
114  * Per block device queue structure
115  */
116 struct cfq_data {
117         atomic_t ref;
118         request_queue_t *queue;
119
120         /*
121          * rr list of queues with requests and the count of them
122          */
123         struct list_head rr_list[CFQ_PRIO_LISTS];
124         struct list_head busy_rr;
125         struct list_head cur_rr;
126         struct list_head idle_rr;
127         unsigned int busy_queues;
128
129         /*
130          * non-ordered list of empty cfqq's
131          */
132         struct list_head empty_list;
133
134         /*
135          * cfqq lookup hash
136          */
137         struct hlist_head *cfq_hash;
138
139         /*
140          * global crq hash for all queues
141          */
142         struct hlist_head *crq_hash;
143
144         unsigned int max_queued;
145
146         mempool_t *crq_pool;
147
148         int rq_in_driver;
149
150         /*
151          * schedule slice state info
152          */
153         /*
154          * idle window management
155          */
156         struct timer_list idle_slice_timer;
157         struct work_struct unplug_work;
158
159         struct cfq_queue *active_queue;
160         struct cfq_io_context *active_cic;
161         int cur_prio, cur_end_prio;
162         unsigned int dispatch_slice;
163
164         struct timer_list idle_class_timer;
165
166         sector_t last_sector;
167         unsigned long last_end_request;
168
169         unsigned int rq_starved;
170
171         /*
172          * tunables, see top of file
173          */
174         unsigned int cfq_quantum;
175         unsigned int cfq_queued;
176         unsigned int cfq_fifo_expire[2];
177         unsigned int cfq_back_penalty;
178         unsigned int cfq_back_max;
179         unsigned int cfq_slice[2];
180         unsigned int cfq_slice_async_rq;
181         unsigned int cfq_slice_idle;
182         unsigned int cfq_max_depth;
183
184         struct list_head cic_list;
185 };
186
187 /*
188  * Per process-grouping structure
189  */
190 struct cfq_queue {
191         /* reference count */
192         atomic_t ref;
193         /* parent cfq_data */
194         struct cfq_data *cfqd;
195         /* cfqq lookup hash */
196         struct hlist_node cfq_hash;
197         /* hash key */
198         unsigned int key;
199         /* on either rr or empty list of cfqd */
200         struct list_head cfq_list;
201         /* sorted list of pending requests */
202         struct rb_root sort_list;
203         /* if fifo isn't expired, next request to serve */
204         struct cfq_rq *next_crq;
205         /* requests queued in sort_list */
206         int queued[2];
207         /* currently allocated requests */
208         int allocated[2];
209         /* fifo list of requests in sort_list */
210         struct list_head fifo;
211
212         unsigned long slice_start;
213         unsigned long slice_end;
214         unsigned long slice_left;
215         unsigned long service_last;
216
217         /* number of requests that are on the dispatch list */
218         int on_dispatch[2];
219
220         /* io prio of this group */
221         unsigned short ioprio, org_ioprio;
222         unsigned short ioprio_class, org_ioprio_class;
223
224         /* various state flags, see below */
225         unsigned int flags;
226 };
227
228 struct cfq_rq {
229         struct rb_node rb_node;
230         sector_t rb_key;
231         struct request *request;
232         struct hlist_node hash;
233
234         struct cfq_queue *cfq_queue;
235         struct cfq_io_context *io_context;
236
237         unsigned int crq_flags;
238 };
239
240 enum cfqq_state_flags {
241         CFQ_CFQQ_FLAG_on_rr = 0,
242         CFQ_CFQQ_FLAG_wait_request,
243         CFQ_CFQQ_FLAG_must_alloc,
244         CFQ_CFQQ_FLAG_must_alloc_slice,
245         CFQ_CFQQ_FLAG_must_dispatch,
246         CFQ_CFQQ_FLAG_fifo_expire,
247         CFQ_CFQQ_FLAG_idle_window,
248         CFQ_CFQQ_FLAG_prio_changed,
249 };
250
251 #define CFQ_CFQQ_FNS(name)                                              \
252 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
253 {                                                                       \
254         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
255 }                                                                       \
256 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
257 {                                                                       \
258         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
259 }                                                                       \
260 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
261 {                                                                       \
262         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
263 }
264
265 CFQ_CFQQ_FNS(on_rr);
266 CFQ_CFQQ_FNS(wait_request);
267 CFQ_CFQQ_FNS(must_alloc);
268 CFQ_CFQQ_FNS(must_alloc_slice);
269 CFQ_CFQQ_FNS(must_dispatch);
270 CFQ_CFQQ_FNS(fifo_expire);
271 CFQ_CFQQ_FNS(idle_window);
272 CFQ_CFQQ_FNS(prio_changed);
273 #undef CFQ_CFQQ_FNS
274
275 enum cfq_rq_state_flags {
276         CFQ_CRQ_FLAG_is_sync = 0,
277 };
278
279 #define CFQ_CRQ_FNS(name)                                               \
280 static inline void cfq_mark_crq_##name(struct cfq_rq *crq)              \
281 {                                                                       \
282         crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name);                   \
283 }                                                                       \
284 static inline void cfq_clear_crq_##name(struct cfq_rq *crq)             \
285 {                                                                       \
286         crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name);                  \
287 }                                                                       \
288 static inline int cfq_crq_##name(const struct cfq_rq *crq)              \
289 {                                                                       \
290         return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0;      \
291 }
292
293 CFQ_CRQ_FNS(is_sync);
294 #undef CFQ_CRQ_FNS
295
296 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
297 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
298 static void cfq_put_cfqd(struct cfq_data *cfqd);
299 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
300
301 #define process_sync(tsk)       ((tsk)->flags & PF_SYNCWRITE)
302
303 /*
304  * lots of deadline iosched dupes, can be abstracted later...
305  */
306 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
307 {
308         hlist_del_init(&crq->hash);
309 }
310
311 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
312 {
313         const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
314
315         hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
316 }
317
318 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
319 {
320         struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
321         struct hlist_node *entry, *next;
322
323         hlist_for_each_safe(entry, next, hash_list) {
324                 struct cfq_rq *crq = list_entry_hash(entry);
325                 struct request *__rq = crq->request;
326
327                 if (!rq_mergeable(__rq)) {
328                         cfq_del_crq_hash(crq);
329                         continue;
330                 }
331
332                 if (rq_hash_key(__rq) == offset)
333                         return __rq;
334         }
335
336         return NULL;
337 }
338
339 /*
340  * scheduler run of queue, if there are requests pending and no one in the
341  * driver that will restart queueing
342  */
343 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
344 {
345         if (cfqd->busy_queues)
346                 kblockd_schedule_work(&cfqd->unplug_work);
347 }
348
349 static int cfq_queue_empty(request_queue_t *q)
350 {
351         struct cfq_data *cfqd = q->elevator->elevator_data;
352
353         return !cfqd->busy_queues;
354 }
355
356 /*
357  * Lifted from AS - choose which of crq1 and crq2 that is best served now.
358  * We choose the request that is closest to the head right now. Distance
359  * behind the head are penalized and only allowed to a certain extent.
360  */
361 static struct cfq_rq *
362 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
363 {
364         sector_t last, s1, s2, d1 = 0, d2 = 0;
365         int r1_wrap = 0, r2_wrap = 0;   /* requests are behind the disk head */
366         unsigned long back_max;
367
368         if (crq1 == NULL || crq1 == crq2)
369                 return crq2;
370         if (crq2 == NULL)
371                 return crq1;
372
373         if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
374                 return crq1;
375         else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
376                 return crq2;
377
378         s1 = crq1->request->sector;
379         s2 = crq2->request->sector;
380
381         last = cfqd->last_sector;
382
383         /*
384          * by definition, 1KiB is 2 sectors
385          */
386         back_max = cfqd->cfq_back_max * 2;
387
388         /*
389          * Strict one way elevator _except_ in the case where we allow
390          * short backward seeks which are biased as twice the cost of a
391          * similar forward seek.
392          */
393         if (s1 >= last)
394                 d1 = s1 - last;
395         else if (s1 + back_max >= last)
396                 d1 = (last - s1) * cfqd->cfq_back_penalty;
397         else
398                 r1_wrap = 1;
399
400         if (s2 >= last)
401                 d2 = s2 - last;
402         else if (s2 + back_max >= last)
403                 d2 = (last - s2) * cfqd->cfq_back_penalty;
404         else
405                 r2_wrap = 1;
406
407         /* Found required data */
408         if (!r1_wrap && r2_wrap)
409                 return crq1;
410         else if (!r2_wrap && r1_wrap)
411                 return crq2;
412         else if (r1_wrap && r2_wrap) {
413                 /* both behind the head */
414                 if (s1 <= s2)
415                         return crq1;
416                 else
417                         return crq2;
418         }
419
420         /* Both requests in front of the head */
421         if (d1 < d2)
422                 return crq1;
423         else if (d2 < d1)
424                 return crq2;
425         else {
426                 if (s1 >= s2)
427                         return crq1;
428                 else
429                         return crq2;
430         }
431 }
432
433 /*
434  * would be nice to take fifo expire time into account as well
435  */
436 static struct cfq_rq *
437 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
438                   struct cfq_rq *last)
439 {
440         struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
441         struct rb_node *rbnext, *rbprev;
442
443         if (!(rbnext = rb_next(&last->rb_node))) {
444                 rbnext = rb_first(&cfqq->sort_list);
445                 if (rbnext == &last->rb_node)
446                         rbnext = NULL;
447         }
448
449         rbprev = rb_prev(&last->rb_node);
450
451         if (rbprev)
452                 crq_prev = rb_entry_crq(rbprev);
453         if (rbnext)
454                 crq_next = rb_entry_crq(rbnext);
455
456         return cfq_choose_req(cfqd, crq_next, crq_prev);
457 }
458
459 static void cfq_update_next_crq(struct cfq_rq *crq)
460 {
461         struct cfq_queue *cfqq = crq->cfq_queue;
462
463         if (cfqq->next_crq == crq)
464                 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
465 }
466
467 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
468 {
469         struct cfq_data *cfqd = cfqq->cfqd;
470         struct list_head *list, *entry;
471
472         BUG_ON(!cfq_cfqq_on_rr(cfqq));
473
474         list_del(&cfqq->cfq_list);
475
476         if (cfq_class_rt(cfqq))
477                 list = &cfqd->cur_rr;
478         else if (cfq_class_idle(cfqq))
479                 list = &cfqd->idle_rr;
480         else {
481                 /*
482                  * if cfqq has requests in flight, don't allow it to be
483                  * found in cfq_set_active_queue before it has finished them.
484                  * this is done to increase fairness between a process that
485                  * has lots of io pending vs one that only generates one
486                  * sporadically or synchronously
487                  */
488                 if (cfq_cfqq_dispatched(cfqq))
489                         list = &cfqd->busy_rr;
490                 else
491                         list = &cfqd->rr_list[cfqq->ioprio];
492         }
493
494         /*
495          * if queue was preempted, just add to front to be fair. busy_rr
496          * isn't sorted.
497          */
498         if (preempted || list == &cfqd->busy_rr) {
499                 list_add(&cfqq->cfq_list, list);
500                 return;
501         }
502
503         /*
504          * sort by when queue was last serviced
505          */
506         entry = list;
507         while ((entry = entry->prev) != list) {
508                 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
509
510                 if (!__cfqq->service_last)
511                         break;
512                 if (time_before(__cfqq->service_last, cfqq->service_last))
513                         break;
514         }
515
516         list_add(&cfqq->cfq_list, entry);
517 }
518
519 /*
520  * add to busy list of queues for service, trying to be fair in ordering
521  * the pending list according to last request service
522  */
523 static inline void
524 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
525 {
526         BUG_ON(cfq_cfqq_on_rr(cfqq));
527         cfq_mark_cfqq_on_rr(cfqq);
528         cfqd->busy_queues++;
529
530         cfq_resort_rr_list(cfqq, 0);
531 }
532
533 static inline void
534 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
535 {
536         BUG_ON(!cfq_cfqq_on_rr(cfqq));
537         cfq_clear_cfqq_on_rr(cfqq);
538         list_move(&cfqq->cfq_list, &cfqd->empty_list);
539
540         BUG_ON(!cfqd->busy_queues);
541         cfqd->busy_queues--;
542 }
543
544 /*
545  * rb tree support functions
546  */
547 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
548 {
549         struct cfq_queue *cfqq = crq->cfq_queue;
550         struct cfq_data *cfqd = cfqq->cfqd;
551         const int sync = cfq_crq_is_sync(crq);
552
553         BUG_ON(!cfqq->queued[sync]);
554         cfqq->queued[sync]--;
555
556         cfq_update_next_crq(crq);
557
558         rb_erase(&crq->rb_node, &cfqq->sort_list);
559         RB_CLEAR_COLOR(&crq->rb_node);
560
561         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
562                 cfq_del_cfqq_rr(cfqd, cfqq);
563 }
564
565 static struct cfq_rq *
566 __cfq_add_crq_rb(struct cfq_rq *crq)
567 {
568         struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
569         struct rb_node *parent = NULL;
570         struct cfq_rq *__crq;
571
572         while (*p) {
573                 parent = *p;
574                 __crq = rb_entry_crq(parent);
575
576                 if (crq->rb_key < __crq->rb_key)
577                         p = &(*p)->rb_left;
578                 else if (crq->rb_key > __crq->rb_key)
579                         p = &(*p)->rb_right;
580                 else
581                         return __crq;
582         }
583
584         rb_link_node(&crq->rb_node, parent, p);
585         return NULL;
586 }
587
588 static void cfq_add_crq_rb(struct cfq_rq *crq)
589 {
590         struct cfq_queue *cfqq = crq->cfq_queue;
591         struct cfq_data *cfqd = cfqq->cfqd;
592         struct request *rq = crq->request;
593         struct cfq_rq *__alias;
594
595         crq->rb_key = rq_rb_key(rq);
596         cfqq->queued[cfq_crq_is_sync(crq)]++;
597
598         /*
599          * looks a little odd, but the first insert might return an alias.
600          * if that happens, put the alias on the dispatch list
601          */
602         while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
603                 cfq_dispatch_insert(cfqd->queue, __alias);
604
605         rb_insert_color(&crq->rb_node, &cfqq->sort_list);
606
607         if (!cfq_cfqq_on_rr(cfqq))
608                 cfq_add_cfqq_rr(cfqd, cfqq);
609
610         /*
611          * check if this request is a better next-serve candidate
612          */
613         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
614 }
615
616 static inline void
617 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
618 {
619         rb_erase(&crq->rb_node, &cfqq->sort_list);
620         cfqq->queued[cfq_crq_is_sync(crq)]--;
621
622         cfq_add_crq_rb(crq);
623 }
624
625 static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
626
627 {
628         struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
629         struct rb_node *n;
630
631         if (!cfqq)
632                 goto out;
633
634         n = cfqq->sort_list.rb_node;
635         while (n) {
636                 struct cfq_rq *crq = rb_entry_crq(n);
637
638                 if (sector < crq->rb_key)
639                         n = n->rb_left;
640                 else if (sector > crq->rb_key)
641                         n = n->rb_right;
642                 else
643                         return crq->request;
644         }
645
646 out:
647         return NULL;
648 }
649
650 static void cfq_activate_request(request_queue_t *q, struct request *rq)
651 {
652         struct cfq_data *cfqd = q->elevator->elevator_data;
653
654         cfqd->rq_in_driver++;
655 }
656
657 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
658 {
659         struct cfq_data *cfqd = q->elevator->elevator_data;
660
661         WARN_ON(!cfqd->rq_in_driver);
662         cfqd->rq_in_driver--;
663 }
664
665 static void cfq_remove_request(struct request *rq)
666 {
667         struct cfq_rq *crq = RQ_DATA(rq);
668
669         list_del_init(&rq->queuelist);
670         cfq_del_crq_rb(crq);
671         cfq_del_crq_hash(crq);
672 }
673
674 static int
675 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
676 {
677         struct cfq_data *cfqd = q->elevator->elevator_data;
678         struct request *__rq;
679         int ret;
680
681         __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
682         if (__rq && elv_rq_merge_ok(__rq, bio)) {
683                 ret = ELEVATOR_BACK_MERGE;
684                 goto out;
685         }
686
687         __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
688         if (__rq && elv_rq_merge_ok(__rq, bio)) {
689                 ret = ELEVATOR_FRONT_MERGE;
690                 goto out;
691         }
692
693         return ELEVATOR_NO_MERGE;
694 out:
695         *req = __rq;
696         return ret;
697 }
698
699 static void cfq_merged_request(request_queue_t *q, struct request *req)
700 {
701         struct cfq_data *cfqd = q->elevator->elevator_data;
702         struct cfq_rq *crq = RQ_DATA(req);
703
704         cfq_del_crq_hash(crq);
705         cfq_add_crq_hash(cfqd, crq);
706
707         if (rq_rb_key(req) != crq->rb_key) {
708                 struct cfq_queue *cfqq = crq->cfq_queue;
709
710                 cfq_update_next_crq(crq);
711                 cfq_reposition_crq_rb(cfqq, crq);
712         }
713 }
714
715 static void
716 cfq_merged_requests(request_queue_t *q, struct request *rq,
717                     struct request *next)
718 {
719         cfq_merged_request(q, rq);
720
721         /*
722          * reposition in fifo if next is older than rq
723          */
724         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
725             time_before(next->start_time, rq->start_time))
726                 list_move(&rq->queuelist, &next->queuelist);
727
728         cfq_remove_request(next);
729 }
730
731 static inline void
732 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
733 {
734         if (cfqq) {
735                 /*
736                  * stop potential idle class queues waiting service
737                  */
738                 del_timer(&cfqd->idle_class_timer);
739
740                 cfqq->slice_start = jiffies;
741                 cfqq->slice_end = 0;
742                 cfqq->slice_left = 0;
743                 cfq_clear_cfqq_must_alloc_slice(cfqq);
744                 cfq_clear_cfqq_fifo_expire(cfqq);
745         }
746
747         cfqd->active_queue = cfqq;
748 }
749
750 /*
751  * current cfqq expired its slice (or was too idle), select new one
752  */
753 static void
754 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755                     int preempted)
756 {
757         unsigned long now = jiffies;
758
759         if (cfq_cfqq_wait_request(cfqq))
760                 del_timer(&cfqd->idle_slice_timer);
761
762         if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
763                 cfqq->service_last = now;
764                 cfq_schedule_dispatch(cfqd);
765         }
766
767         cfq_clear_cfqq_must_dispatch(cfqq);
768         cfq_clear_cfqq_wait_request(cfqq);
769
770         /*
771          * store what was left of this slice, if the queue idled out
772          * or was preempted
773          */
774         if (time_after(cfqq->slice_end, now))
775                 cfqq->slice_left = cfqq->slice_end - now;
776         else
777                 cfqq->slice_left = 0;
778
779         if (cfq_cfqq_on_rr(cfqq))
780                 cfq_resort_rr_list(cfqq, preempted);
781
782         if (cfqq == cfqd->active_queue)
783                 cfqd->active_queue = NULL;
784
785         if (cfqd->active_cic) {
786                 put_io_context(cfqd->active_cic->ioc);
787                 cfqd->active_cic = NULL;
788         }
789
790         cfqd->dispatch_slice = 0;
791 }
792
793 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
794 {
795         struct cfq_queue *cfqq = cfqd->active_queue;
796
797         if (cfqq)
798                 __cfq_slice_expired(cfqd, cfqq, preempted);
799 }
800
801 /*
802  * 0
803  * 0,1
804  * 0,1,2
805  * 0,1,2,3
806  * 0,1,2,3,4
807  * 0,1,2,3,4,5
808  * 0,1,2,3,4,5,6
809  * 0,1,2,3,4,5,6,7
810  */
811 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
812 {
813         int prio, wrap;
814
815         prio = -1;
816         wrap = 0;
817         do {
818                 int p;
819
820                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
821                         if (!list_empty(&cfqd->rr_list[p])) {
822                                 prio = p;
823                                 break;
824                         }
825                 }
826
827                 if (prio != -1)
828                         break;
829                 cfqd->cur_prio = 0;
830                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
831                         cfqd->cur_end_prio = 0;
832                         if (wrap)
833                                 break;
834                         wrap = 1;
835                 }
836         } while (1);
837
838         if (unlikely(prio == -1))
839                 return -1;
840
841         BUG_ON(prio >= CFQ_PRIO_LISTS);
842
843         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
844
845         cfqd->cur_prio = prio + 1;
846         if (cfqd->cur_prio > cfqd->cur_end_prio) {
847                 cfqd->cur_end_prio = cfqd->cur_prio;
848                 cfqd->cur_prio = 0;
849         }
850         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
851                 cfqd->cur_prio = 0;
852                 cfqd->cur_end_prio = 0;
853         }
854
855         return prio;
856 }
857
858 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
859 {
860         struct cfq_queue *cfqq = NULL;
861
862         /*
863          * if current list is non-empty, grab first entry. if it is empty,
864          * get next prio level and grab first entry then if any are spliced
865          */
866         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
867                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
868
869         /*
870          * if we have idle queues and no rt or be queues had pending
871          * requests, either allow immediate service if the grace period
872          * has passed or arm the idle grace timer
873          */
874         if (!cfqq && !list_empty(&cfqd->idle_rr)) {
875                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
876
877                 if (time_after_eq(jiffies, end))
878                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
879                 else
880                         mod_timer(&cfqd->idle_class_timer, end);
881         }
882
883         __cfq_set_active_queue(cfqd, cfqq);
884         return cfqq;
885 }
886
887 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
888
889 {
890         unsigned long sl;
891
892         WARN_ON(!RB_EMPTY(&cfqq->sort_list));
893         WARN_ON(cfqq != cfqd->active_queue);
894
895         /*
896          * idle is disabled, either manually or by past process history
897          */
898         if (!cfqd->cfq_slice_idle)
899                 return 0;
900         if (!cfq_cfqq_idle_window(cfqq))
901                 return 0;
902         /*
903          * task has exited, don't wait
904          */
905         if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
906                 return 0;
907
908         cfq_mark_cfqq_must_dispatch(cfqq);
909         cfq_mark_cfqq_wait_request(cfqq);
910
911         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
912         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
913         return 1;
914 }
915
916 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
917 {
918         struct cfq_data *cfqd = q->elevator->elevator_data;
919         struct cfq_queue *cfqq = crq->cfq_queue;
920
921         cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
922         cfq_remove_request(crq->request);
923         cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
924         elv_dispatch_sort(q, crq->request);
925 }
926
927 /*
928  * return expired entry, or NULL to just start from scratch in rbtree
929  */
930 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
931 {
932         struct cfq_data *cfqd = cfqq->cfqd;
933         struct request *rq;
934         struct cfq_rq *crq;
935
936         if (cfq_cfqq_fifo_expire(cfqq))
937                 return NULL;
938
939         if (!list_empty(&cfqq->fifo)) {
940                 int fifo = cfq_cfqq_class_sync(cfqq);
941
942                 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
943                 rq = crq->request;
944                 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
945                         cfq_mark_cfqq_fifo_expire(cfqq);
946                         return crq;
947                 }
948         }
949
950         return NULL;
951 }
952
953 /*
954  * Scale schedule slice based on io priority. Use the sync time slice only
955  * if a queue is marked sync and has sync io queued. A sync queue with async
956  * io only, should not get full sync slice length.
957  */
958 static inline int
959 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
960 {
961         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
962
963         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
964
965         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
966 }
967
968 static inline void
969 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
970 {
971         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
972 }
973
974 static inline int
975 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
976 {
977         const int base_rq = cfqd->cfq_slice_async_rq;
978
979         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
980
981         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
982 }
983
984 /*
985  * get next queue for service
986  */
987 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
988 {
989         unsigned long now = jiffies;
990         struct cfq_queue *cfqq;
991
992         cfqq = cfqd->active_queue;
993         if (!cfqq)
994                 goto new_queue;
995
996         /*
997          * slice has expired
998          */
999         if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1000                 goto expire;
1001
1002         /*
1003          * if queue has requests, dispatch one. if not, check if
1004          * enough slice is left to wait for one
1005          */
1006         if (!RB_EMPTY(&cfqq->sort_list))
1007                 goto keep_queue;
1008         else if (cfq_cfqq_class_sync(cfqq) &&
1009                  time_before(now, cfqq->slice_end)) {
1010                 if (cfq_arm_slice_timer(cfqd, cfqq))
1011                         return NULL;
1012         }
1013
1014 expire:
1015         cfq_slice_expired(cfqd, 0);
1016 new_queue:
1017         cfqq = cfq_set_active_queue(cfqd);
1018 keep_queue:
1019         return cfqq;
1020 }
1021
1022 static int
1023 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1024                         int max_dispatch)
1025 {
1026         int dispatched = 0;
1027
1028         BUG_ON(RB_EMPTY(&cfqq->sort_list));
1029
1030         do {
1031                 struct cfq_rq *crq;
1032
1033                 /*
1034                  * follow expired path, else get first next available
1035                  */
1036                 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1037                         crq = cfqq->next_crq;
1038
1039                 /*
1040                  * finally, insert request into driver dispatch list
1041                  */
1042                 cfq_dispatch_insert(cfqd->queue, crq);
1043
1044                 cfqd->dispatch_slice++;
1045                 dispatched++;
1046
1047                 if (!cfqd->active_cic) {
1048                         atomic_inc(&crq->io_context->ioc->refcount);
1049                         cfqd->active_cic = crq->io_context;
1050                 }
1051
1052                 if (RB_EMPTY(&cfqq->sort_list))
1053                         break;
1054
1055         } while (dispatched < max_dispatch);
1056
1057         /*
1058          * if slice end isn't set yet, set it. if at least one request was
1059          * sync, use the sync time slice value
1060          */
1061         if (!cfqq->slice_end)
1062                 cfq_set_prio_slice(cfqd, cfqq);
1063
1064         /*
1065          * expire an async queue immediately if it has used up its slice. idle
1066          * queue always expire after 1 dispatch round.
1067          */
1068         if ((!cfq_cfqq_sync(cfqq) &&
1069             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1070             cfq_class_idle(cfqq))
1071                 cfq_slice_expired(cfqd, 0);
1072
1073         return dispatched;
1074 }
1075
1076 static int
1077 cfq_forced_dispatch_cfqqs(struct list_head *list)
1078 {
1079         int dispatched = 0;
1080         struct cfq_queue *cfqq, *next;
1081         struct cfq_rq *crq;
1082
1083         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1084                 while ((crq = cfqq->next_crq)) {
1085                         cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1086                         dispatched++;
1087                 }
1088                 BUG_ON(!list_empty(&cfqq->fifo));
1089         }
1090         return dispatched;
1091 }
1092
1093 static int
1094 cfq_forced_dispatch(struct cfq_data *cfqd)
1095 {
1096         int i, dispatched = 0;
1097
1098         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1099                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1100
1101         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1102         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1103         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1104
1105         cfq_slice_expired(cfqd, 0);
1106
1107         BUG_ON(cfqd->busy_queues);
1108
1109         return dispatched;
1110 }
1111
1112 static int
1113 cfq_dispatch_requests(request_queue_t *q, int force)
1114 {
1115         struct cfq_data *cfqd = q->elevator->elevator_data;
1116         struct cfq_queue *cfqq;
1117
1118         if (!cfqd->busy_queues)
1119                 return 0;
1120
1121         if (unlikely(force))
1122                 return cfq_forced_dispatch(cfqd);
1123
1124         cfqq = cfq_select_queue(cfqd);
1125         if (cfqq) {
1126                 int max_dispatch;
1127
1128                 /*
1129                  * if idle window is disabled, allow queue buildup
1130                  */
1131                 if (!cfq_cfqq_idle_window(cfqq) &&
1132                     cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1133                         return 0;
1134
1135                 cfq_clear_cfqq_must_dispatch(cfqq);
1136                 cfq_clear_cfqq_wait_request(cfqq);
1137                 del_timer(&cfqd->idle_slice_timer);
1138
1139                 max_dispatch = cfqd->cfq_quantum;
1140                 if (cfq_class_idle(cfqq))
1141                         max_dispatch = 1;
1142
1143                 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1144         }
1145
1146         return 0;
1147 }
1148
1149 /*
1150  * task holds one reference to the queue, dropped when task exits. each crq
1151  * in-flight on this queue also holds a reference, dropped when crq is freed.
1152  *
1153  * queue lock must be held here.
1154  */
1155 static void cfq_put_queue(struct cfq_queue *cfqq)
1156 {
1157         struct cfq_data *cfqd = cfqq->cfqd;
1158
1159         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1160
1161         if (!atomic_dec_and_test(&cfqq->ref))
1162                 return;
1163
1164         BUG_ON(rb_first(&cfqq->sort_list));
1165         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1166         BUG_ON(cfq_cfqq_on_rr(cfqq));
1167
1168         if (unlikely(cfqd->active_queue == cfqq))
1169                 __cfq_slice_expired(cfqd, cfqq, 0);
1170
1171         cfq_put_cfqd(cfqq->cfqd);
1172
1173         /*
1174          * it's on the empty list and still hashed
1175          */
1176         list_del(&cfqq->cfq_list);
1177         hlist_del(&cfqq->cfq_hash);
1178         kmem_cache_free(cfq_pool, cfqq);
1179 }
1180
1181 static inline struct cfq_queue *
1182 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1183                     const int hashval)
1184 {
1185         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1186         struct hlist_node *entry, *next;
1187
1188         hlist_for_each_safe(entry, next, hash_list) {
1189                 struct cfq_queue *__cfqq = list_entry_qhash(entry);
1190                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1191
1192                 if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1193                         return __cfqq;
1194         }
1195
1196         return NULL;
1197 }
1198
1199 static struct cfq_queue *
1200 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1201 {
1202         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1203 }
1204
1205 static void cfq_free_io_context(struct cfq_io_context *cic)
1206 {
1207         struct cfq_io_context *__cic;
1208         struct list_head *entry, *next;
1209         int freed = 1;
1210
1211         list_for_each_safe(entry, next, &cic->list) {
1212                 __cic = list_entry(entry, struct cfq_io_context, list);
1213                 kmem_cache_free(cfq_ioc_pool, __cic);
1214                 freed++;
1215         }
1216
1217         kmem_cache_free(cfq_ioc_pool, cic);
1218         if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1219                 complete(ioc_gone);
1220 }
1221
1222 static void cfq_trim(struct io_context *ioc)
1223 {
1224         ioc->set_ioprio = NULL;
1225         if (ioc->cic)
1226                 cfq_free_io_context(ioc->cic);
1227 }
1228
1229 /*
1230  * Called with interrupts disabled
1231  */
1232 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1233 {
1234         struct cfq_data *cfqd = cic->key;
1235         request_queue_t *q;
1236
1237         if (!cfqd)
1238                 return;
1239
1240         q = cfqd->queue;
1241
1242         WARN_ON(!irqs_disabled());
1243
1244         spin_lock(q->queue_lock);
1245
1246         if (cic->cfqq[ASYNC]) {
1247                 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1248                         __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1249                 cfq_put_queue(cic->cfqq[ASYNC]);
1250                 cic->cfqq[ASYNC] = NULL;
1251         }
1252
1253         if (cic->cfqq[SYNC]) {
1254                 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1255                         __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1256                 cfq_put_queue(cic->cfqq[SYNC]);
1257                 cic->cfqq[SYNC] = NULL;
1258         }
1259
1260         cic->key = NULL;
1261         list_del_init(&cic->queue_list);
1262         spin_unlock(q->queue_lock);
1263 }
1264
1265 /*
1266  * Another task may update the task cic list, if it is doing a queue lookup
1267  * on its behalf. cfq_cic_lock excludes such concurrent updates
1268  */
1269 static void cfq_exit_io_context(struct cfq_io_context *cic)
1270 {
1271         struct cfq_io_context *__cic;
1272         struct list_head *entry;
1273         unsigned long flags;
1274
1275         local_irq_save(flags);
1276
1277         /*
1278          * put the reference this task is holding to the various queues
1279          */
1280         read_lock(&cfq_exit_lock);
1281         list_for_each(entry, &cic->list) {
1282                 __cic = list_entry(entry, struct cfq_io_context, list);
1283                 cfq_exit_single_io_context(__cic);
1284         }
1285
1286         cfq_exit_single_io_context(cic);
1287         read_unlock(&cfq_exit_lock);
1288         local_irq_restore(flags);
1289 }
1290
1291 static struct cfq_io_context *
1292 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1293 {
1294         struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1295
1296         if (cic) {
1297                 INIT_LIST_HEAD(&cic->list);
1298                 cic->cfqq[ASYNC] = NULL;
1299                 cic->cfqq[SYNC] = NULL;
1300                 cic->key = NULL;
1301                 cic->last_end_request = jiffies;
1302                 cic->ttime_total = 0;
1303                 cic->ttime_samples = 0;
1304                 cic->ttime_mean = 0;
1305                 cic->dtor = cfq_free_io_context;
1306                 cic->exit = cfq_exit_io_context;
1307                 INIT_LIST_HEAD(&cic->queue_list);
1308                 atomic_inc(&ioc_count);
1309         }
1310
1311         return cic;
1312 }
1313
1314 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1315 {
1316         struct task_struct *tsk = current;
1317         int ioprio_class;
1318
1319         if (!cfq_cfqq_prio_changed(cfqq))
1320                 return;
1321
1322         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1323         switch (ioprio_class) {
1324                 default:
1325                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1326                 case IOPRIO_CLASS_NONE:
1327                         /*
1328                          * no prio set, place us in the middle of the BE classes
1329                          */
1330                         cfqq->ioprio = task_nice_ioprio(tsk);
1331                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1332                         break;
1333                 case IOPRIO_CLASS_RT:
1334                         cfqq->ioprio = task_ioprio(tsk);
1335                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1336                         break;
1337                 case IOPRIO_CLASS_BE:
1338                         cfqq->ioprio = task_ioprio(tsk);
1339                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1340                         break;
1341                 case IOPRIO_CLASS_IDLE:
1342                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1343                         cfqq->ioprio = 7;
1344                         cfq_clear_cfqq_idle_window(cfqq);
1345                         break;
1346         }
1347
1348         /*
1349          * keep track of original prio settings in case we have to temporarily
1350          * elevate the priority of this queue
1351          */
1352         cfqq->org_ioprio = cfqq->ioprio;
1353         cfqq->org_ioprio_class = cfqq->ioprio_class;
1354
1355         if (cfq_cfqq_on_rr(cfqq))
1356                 cfq_resort_rr_list(cfqq, 0);
1357
1358         cfq_clear_cfqq_prio_changed(cfqq);
1359 }
1360
1361 static inline void changed_ioprio(struct cfq_io_context *cic)
1362 {
1363         struct cfq_data *cfqd = cic->key;
1364         struct cfq_queue *cfqq;
1365         if (cfqd) {
1366                 spin_lock(cfqd->queue->queue_lock);
1367                 cfqq = cic->cfqq[ASYNC];
1368                 if (cfqq) {
1369                         struct cfq_queue *new_cfqq;
1370                         new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1371                                                 cic->ioc->task, GFP_ATOMIC);
1372                         if (new_cfqq) {
1373                                 cic->cfqq[ASYNC] = new_cfqq;
1374                                 cfq_put_queue(cfqq);
1375                         }
1376                 }
1377                 cfqq = cic->cfqq[SYNC];
1378                 if (cfqq) {
1379                         cfq_mark_cfqq_prio_changed(cfqq);
1380                         cfq_init_prio_data(cfqq);
1381                 }
1382                 spin_unlock(cfqd->queue->queue_lock);
1383         }
1384 }
1385
1386 /*
1387  * callback from sys_ioprio_set, irqs are disabled
1388  */
1389 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1390 {
1391         struct cfq_io_context *cic;
1392
1393         write_lock(&cfq_exit_lock);
1394
1395         cic = ioc->cic;
1396
1397         changed_ioprio(cic);
1398
1399         list_for_each_entry(cic, &cic->list, list)
1400                 changed_ioprio(cic);
1401
1402         write_unlock(&cfq_exit_lock);
1403
1404         return 0;
1405 }
1406
1407 static struct cfq_queue *
1408 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1409               gfp_t gfp_mask)
1410 {
1411         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1412         struct cfq_queue *cfqq, *new_cfqq = NULL;
1413         unsigned short ioprio;
1414
1415 retry:
1416         ioprio = tsk->ioprio;
1417         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1418
1419         if (!cfqq) {
1420                 if (new_cfqq) {
1421                         cfqq = new_cfqq;
1422                         new_cfqq = NULL;
1423                 } else if (gfp_mask & __GFP_WAIT) {
1424                         spin_unlock_irq(cfqd->queue->queue_lock);
1425                         new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1426                         spin_lock_irq(cfqd->queue->queue_lock);
1427                         goto retry;
1428                 } else {
1429                         cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1430                         if (!cfqq)
1431                                 goto out;
1432                 }
1433
1434                 memset(cfqq, 0, sizeof(*cfqq));
1435
1436                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1437                 INIT_LIST_HEAD(&cfqq->cfq_list);
1438                 RB_CLEAR_ROOT(&cfqq->sort_list);
1439                 INIT_LIST_HEAD(&cfqq->fifo);
1440
1441                 cfqq->key = key;
1442                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1443                 atomic_set(&cfqq->ref, 0);
1444                 cfqq->cfqd = cfqd;
1445                 atomic_inc(&cfqd->ref);
1446                 cfqq->service_last = 0;
1447                 /*
1448                  * set ->slice_left to allow preemption for a new process
1449                  */
1450                 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1451                 cfq_mark_cfqq_idle_window(cfqq);
1452                 cfq_mark_cfqq_prio_changed(cfqq);
1453                 cfq_init_prio_data(cfqq);
1454         }
1455
1456         if (new_cfqq)
1457                 kmem_cache_free(cfq_pool, new_cfqq);
1458
1459         atomic_inc(&cfqq->ref);
1460 out:
1461         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1462         return cfqq;
1463 }
1464
1465 /*
1466  * Setup general io context and cfq io context. There can be several cfq
1467  * io contexts per general io context, if this process is doing io to more
1468  * than one device managed by cfq. Note that caller is holding a reference to
1469  * cfqq, so we don't need to worry about it disappearing
1470  */
1471 static struct cfq_io_context *
1472 cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask)
1473 {
1474         struct io_context *ioc = NULL;
1475         struct cfq_io_context *cic;
1476
1477         might_sleep_if(gfp_mask & __GFP_WAIT);
1478
1479         ioc = get_io_context(gfp_mask);
1480         if (!ioc)
1481                 return NULL;
1482
1483 restart:
1484         if ((cic = ioc->cic) == NULL) {
1485                 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1486
1487                 if (cic == NULL)
1488                         goto err;
1489
1490                 /*
1491                  * manually increment generic io_context usage count, it
1492                  * cannot go away since we are already holding one ref to it
1493                  */
1494                 cic->ioc = ioc;
1495                 cic->key = cfqd;
1496                 read_lock(&cfq_exit_lock);
1497                 ioc->set_ioprio = cfq_ioc_set_ioprio;
1498                 ioc->cic = cic;
1499                 list_add(&cic->queue_list, &cfqd->cic_list);
1500                 read_unlock(&cfq_exit_lock);
1501         } else {
1502                 struct cfq_io_context *__cic;
1503
1504                 /*
1505                  * the first cic on the list is actually the head itself
1506                  */
1507                 if (cic->key == cfqd)
1508                         goto out;
1509
1510                 if (unlikely(!cic->key)) {
1511                         read_lock(&cfq_exit_lock);
1512                         if (list_empty(&cic->list))
1513                                 ioc->cic = NULL;
1514                         else
1515                                 ioc->cic = list_entry(cic->list.next,
1516                                                       struct cfq_io_context,
1517                                                       list);
1518                         read_unlock(&cfq_exit_lock);
1519                         kmem_cache_free(cfq_ioc_pool, cic);
1520                         atomic_dec(&ioc_count);
1521                         goto restart;
1522                 }
1523
1524                 /*
1525                  * cic exists, check if we already are there. linear search
1526                  * should be ok here, the list will usually not be more than
1527                  * 1 or a few entries long
1528                  */
1529                 list_for_each_entry(__cic, &cic->list, list) {
1530                         /*
1531                          * this process is already holding a reference to
1532                          * this queue, so no need to get one more
1533                          */
1534                         if (__cic->key == cfqd) {
1535                                 cic = __cic;
1536                                 goto out;
1537                         }
1538                         if (unlikely(!__cic->key)) {
1539                                 read_lock(&cfq_exit_lock);
1540                                 list_del(&__cic->list);
1541                                 read_unlock(&cfq_exit_lock);
1542                                 kmem_cache_free(cfq_ioc_pool, __cic);
1543                                 atomic_dec(&ioc_count);
1544                                 goto restart;
1545                         }
1546                 }
1547
1548                 /*
1549                  * nope, process doesn't have a cic assoicated with this
1550                  * cfqq yet. get a new one and add to list
1551                  */
1552                 __cic = cfq_alloc_io_context(cfqd, gfp_mask);
1553                 if (__cic == NULL)
1554                         goto err;
1555
1556                 __cic->ioc = ioc;
1557                 __cic->key = cfqd;
1558                 read_lock(&cfq_exit_lock);
1559                 list_add(&__cic->list, &cic->list);
1560                 list_add(&__cic->queue_list, &cfqd->cic_list);
1561                 read_unlock(&cfq_exit_lock);
1562                 cic = __cic;
1563         }
1564
1565 out:
1566         return cic;
1567 err:
1568         put_io_context(ioc);
1569         return NULL;
1570 }
1571
1572 static void
1573 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1574 {
1575         unsigned long elapsed, ttime;
1576
1577         /*
1578          * if this context already has stuff queued, thinktime is from
1579          * last queue not last end
1580          */
1581 #if 0
1582         if (time_after(cic->last_end_request, cic->last_queue))
1583                 elapsed = jiffies - cic->last_end_request;
1584         else
1585                 elapsed = jiffies - cic->last_queue;
1586 #else
1587                 elapsed = jiffies - cic->last_end_request;
1588 #endif
1589
1590         ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1591
1592         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1593         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1594         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1595 }
1596
1597 #define sample_valid(samples)   ((samples) > 80)
1598
1599 /*
1600  * Disable idle window if the process thinks too long or seeks so much that
1601  * it doesn't matter
1602  */
1603 static void
1604 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1605                        struct cfq_io_context *cic)
1606 {
1607         int enable_idle = cfq_cfqq_idle_window(cfqq);
1608
1609         if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1610                 enable_idle = 0;
1611         else if (sample_valid(cic->ttime_samples)) {
1612                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1613                         enable_idle = 0;
1614                 else
1615                         enable_idle = 1;
1616         }
1617
1618         if (enable_idle)
1619                 cfq_mark_cfqq_idle_window(cfqq);
1620         else
1621                 cfq_clear_cfqq_idle_window(cfqq);
1622 }
1623
1624
1625 /*
1626  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1627  * no or if we aren't sure, a 1 will cause a preempt.
1628  */
1629 static int
1630 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1631                    struct cfq_rq *crq)
1632 {
1633         struct cfq_queue *cfqq = cfqd->active_queue;
1634
1635         if (cfq_class_idle(new_cfqq))
1636                 return 0;
1637
1638         if (!cfqq)
1639                 return 1;
1640
1641         if (cfq_class_idle(cfqq))
1642                 return 1;
1643         if (!cfq_cfqq_wait_request(new_cfqq))
1644                 return 0;
1645         /*
1646          * if it doesn't have slice left, forget it
1647          */
1648         if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1649                 return 0;
1650         if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1651                 return 1;
1652
1653         return 0;
1654 }
1655
1656 /*
1657  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1658  * let it have half of its nominal slice.
1659  */
1660 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1661 {
1662         struct cfq_queue *__cfqq, *next;
1663
1664         list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1665                 cfq_resort_rr_list(__cfqq, 1);
1666
1667         if (!cfqq->slice_left)
1668                 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1669
1670         cfqq->slice_end = cfqq->slice_left + jiffies;
1671         __cfq_slice_expired(cfqd, cfqq, 1);
1672         __cfq_set_active_queue(cfqd, cfqq);
1673 }
1674
1675 /*
1676  * should really be a ll_rw_blk.c helper
1677  */
1678 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1679 {
1680         request_queue_t *q = cfqd->queue;
1681
1682         if (!blk_queue_plugged(q))
1683                 q->request_fn(q);
1684         else
1685                 __generic_unplug_device(q);
1686 }
1687
1688 /*
1689  * Called when a new fs request (crq) is added (to cfqq). Check if there's
1690  * something we should do about it
1691  */
1692 static void
1693 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1694                  struct cfq_rq *crq)
1695 {
1696         struct cfq_io_context *cic;
1697
1698         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1699
1700         /*
1701          * we never wait for an async request and we don't allow preemption
1702          * of an async request. so just return early
1703          */
1704         if (!cfq_crq_is_sync(crq))
1705                 return;
1706
1707         cic = crq->io_context;
1708
1709         cfq_update_io_thinktime(cfqd, cic);
1710         cfq_update_idle_window(cfqd, cfqq, cic);
1711
1712         cic->last_queue = jiffies;
1713
1714         if (cfqq == cfqd->active_queue) {
1715                 /*
1716                  * if we are waiting for a request for this queue, let it rip
1717                  * immediately and flag that we must not expire this queue
1718                  * just now
1719                  */
1720                 if (cfq_cfqq_wait_request(cfqq)) {
1721                         cfq_mark_cfqq_must_dispatch(cfqq);
1722                         del_timer(&cfqd->idle_slice_timer);
1723                         cfq_start_queueing(cfqd, cfqq);
1724                 }
1725         } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1726                 /*
1727                  * not the active queue - expire current slice if it is
1728                  * idle and has expired it's mean thinktime or this new queue
1729                  * has some old slice time left and is of higher priority
1730                  */
1731                 cfq_preempt_queue(cfqd, cfqq);
1732                 cfq_mark_cfqq_must_dispatch(cfqq);
1733                 cfq_start_queueing(cfqd, cfqq);
1734         }
1735 }
1736
1737 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1738 {
1739         struct cfq_data *cfqd = q->elevator->elevator_data;
1740         struct cfq_rq *crq = RQ_DATA(rq);
1741         struct cfq_queue *cfqq = crq->cfq_queue;
1742
1743         cfq_init_prio_data(cfqq);
1744
1745         cfq_add_crq_rb(crq);
1746
1747         list_add_tail(&rq->queuelist, &cfqq->fifo);
1748
1749         if (rq_mergeable(rq))
1750                 cfq_add_crq_hash(cfqd, crq);
1751
1752         cfq_crq_enqueued(cfqd, cfqq, crq);
1753 }
1754
1755 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1756 {
1757         struct cfq_rq *crq = RQ_DATA(rq);
1758         struct cfq_queue *cfqq = crq->cfq_queue;
1759         struct cfq_data *cfqd = cfqq->cfqd;
1760         const int sync = cfq_crq_is_sync(crq);
1761         unsigned long now;
1762
1763         now = jiffies;
1764
1765         WARN_ON(!cfqd->rq_in_driver);
1766         WARN_ON(!cfqq->on_dispatch[sync]);
1767         cfqd->rq_in_driver--;
1768         cfqq->on_dispatch[sync]--;
1769
1770         if (!cfq_class_idle(cfqq))
1771                 cfqd->last_end_request = now;
1772
1773         if (!cfq_cfqq_dispatched(cfqq)) {
1774                 if (cfq_cfqq_on_rr(cfqq)) {
1775                         cfqq->service_last = now;
1776                         cfq_resort_rr_list(cfqq, 0);
1777                 }
1778                 cfq_schedule_dispatch(cfqd);
1779         }
1780
1781         if (cfq_crq_is_sync(crq))
1782                 crq->io_context->last_end_request = now;
1783 }
1784
1785 static struct request *
1786 cfq_former_request(request_queue_t *q, struct request *rq)
1787 {
1788         struct cfq_rq *crq = RQ_DATA(rq);
1789         struct rb_node *rbprev = rb_prev(&crq->rb_node);
1790
1791         if (rbprev)
1792                 return rb_entry_crq(rbprev)->request;
1793
1794         return NULL;
1795 }
1796
1797 static struct request *
1798 cfq_latter_request(request_queue_t *q, struct request *rq)
1799 {
1800         struct cfq_rq *crq = RQ_DATA(rq);
1801         struct rb_node *rbnext = rb_next(&crq->rb_node);
1802
1803         if (rbnext)
1804                 return rb_entry_crq(rbnext)->request;
1805
1806         return NULL;
1807 }
1808
1809 /*
1810  * we temporarily boost lower priority queues if they are holding fs exclusive
1811  * resources. they are boosted to normal prio (CLASS_BE/4)
1812  */
1813 static void cfq_prio_boost(struct cfq_queue *cfqq)
1814 {
1815         const int ioprio_class = cfqq->ioprio_class;
1816         const int ioprio = cfqq->ioprio;
1817
1818         if (has_fs_excl()) {
1819                 /*
1820                  * boost idle prio on transactions that would lock out other
1821                  * users of the filesystem
1822                  */
1823                 if (cfq_class_idle(cfqq))
1824                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1825                 if (cfqq->ioprio > IOPRIO_NORM)
1826                         cfqq->ioprio = IOPRIO_NORM;
1827         } else {
1828                 /*
1829                  * check if we need to unboost the queue
1830                  */
1831                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1832                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1833                 if (cfqq->ioprio != cfqq->org_ioprio)
1834                         cfqq->ioprio = cfqq->org_ioprio;
1835         }
1836
1837         /*
1838          * refile between round-robin lists if we moved the priority class
1839          */
1840         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1841             cfq_cfqq_on_rr(cfqq))
1842                 cfq_resort_rr_list(cfqq, 0);
1843 }
1844
1845 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1846 {
1847         if (rw == READ || process_sync(task))
1848                 return task->pid;
1849
1850         return CFQ_KEY_ASYNC;
1851 }
1852
1853 static inline int
1854 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1855                 struct task_struct *task, int rw)
1856 {
1857 #if 1
1858         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1859             !cfq_cfqq_must_alloc_slice(cfqq)) {
1860                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1861                 return ELV_MQUEUE_MUST;
1862         }
1863
1864         return ELV_MQUEUE_MAY;
1865 #else
1866         if (!cfqq || task->flags & PF_MEMALLOC)
1867                 return ELV_MQUEUE_MAY;
1868         if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1869                 if (cfq_cfqq_wait_request(cfqq))
1870                         return ELV_MQUEUE_MUST;
1871
1872                 /*
1873                  * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1874                  * can quickly flood the queue with writes from a single task
1875                  */
1876                 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1877                         cfq_mark_cfqq_must_alloc_slice(cfqq);
1878                         return ELV_MQUEUE_MUST;
1879                 }
1880
1881                 return ELV_MQUEUE_MAY;
1882         }
1883         if (cfq_class_idle(cfqq))
1884                 return ELV_MQUEUE_NO;
1885         if (cfqq->allocated[rw] >= cfqd->max_queued) {
1886                 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1887                 int ret = ELV_MQUEUE_NO;
1888
1889                 if (ioc && ioc->nr_batch_requests)
1890                         ret = ELV_MQUEUE_MAY;
1891
1892                 put_io_context(ioc);
1893                 return ret;
1894         }
1895
1896         return ELV_MQUEUE_MAY;
1897 #endif
1898 }
1899
1900 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1901 {
1902         struct cfq_data *cfqd = q->elevator->elevator_data;
1903         struct task_struct *tsk = current;
1904         struct cfq_queue *cfqq;
1905
1906         /*
1907          * don't force setup of a queue from here, as a call to may_queue
1908          * does not necessarily imply that a request actually will be queued.
1909          * so just lookup a possibly existing queue, or return 'may queue'
1910          * if that fails
1911          */
1912         cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1913         if (cfqq) {
1914                 cfq_init_prio_data(cfqq);
1915                 cfq_prio_boost(cfqq);
1916
1917                 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1918         }
1919
1920         return ELV_MQUEUE_MAY;
1921 }
1922
1923 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1924 {
1925         struct cfq_data *cfqd = q->elevator->elevator_data;
1926         struct request_list *rl = &q->rq;
1927
1928         if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1929                 smp_mb();
1930                 if (waitqueue_active(&rl->wait[READ]))
1931                         wake_up(&rl->wait[READ]);
1932         }
1933
1934         if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1935                 smp_mb();
1936                 if (waitqueue_active(&rl->wait[WRITE]))
1937                         wake_up(&rl->wait[WRITE]);
1938         }
1939 }
1940
1941 /*
1942  * queue lock held here
1943  */
1944 static void cfq_put_request(request_queue_t *q, struct request *rq)
1945 {
1946         struct cfq_data *cfqd = q->elevator->elevator_data;
1947         struct cfq_rq *crq = RQ_DATA(rq);
1948
1949         if (crq) {
1950                 struct cfq_queue *cfqq = crq->cfq_queue;
1951                 const int rw = rq_data_dir(rq);
1952
1953                 BUG_ON(!cfqq->allocated[rw]);
1954                 cfqq->allocated[rw]--;
1955
1956                 put_io_context(crq->io_context->ioc);
1957
1958                 mempool_free(crq, cfqd->crq_pool);
1959                 rq->elevator_private = NULL;
1960
1961                 cfq_check_waiters(q, cfqq);
1962                 cfq_put_queue(cfqq);
1963         }
1964 }
1965
1966 /*
1967  * Allocate cfq data structures associated with this request.
1968  */
1969 static int
1970 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1971                 gfp_t gfp_mask)
1972 {
1973         struct cfq_data *cfqd = q->elevator->elevator_data;
1974         struct task_struct *tsk = current;
1975         struct cfq_io_context *cic;
1976         const int rw = rq_data_dir(rq);
1977         pid_t key = cfq_queue_pid(tsk, rw);
1978         struct cfq_queue *cfqq;
1979         struct cfq_rq *crq;
1980         unsigned long flags;
1981         int is_sync = key != CFQ_KEY_ASYNC;
1982
1983         might_sleep_if(gfp_mask & __GFP_WAIT);
1984
1985         cic = cfq_get_io_context(cfqd, key, gfp_mask);
1986
1987         spin_lock_irqsave(q->queue_lock, flags);
1988
1989         if (!cic)
1990                 goto queue_fail;
1991
1992         if (!cic->cfqq[is_sync]) {
1993                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1994                 if (!cfqq)
1995                         goto queue_fail;
1996
1997                 cic->cfqq[is_sync] = cfqq;
1998         } else
1999                 cfqq = cic->cfqq[is_sync];
2000
2001         cfqq->allocated[rw]++;
2002         cfq_clear_cfqq_must_alloc(cfqq);
2003         cfqd->rq_starved = 0;
2004         atomic_inc(&cfqq->ref);
2005         spin_unlock_irqrestore(q->queue_lock, flags);
2006
2007         crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2008         if (crq) {
2009                 RB_CLEAR(&crq->rb_node);
2010                 crq->rb_key = 0;
2011                 crq->request = rq;
2012                 INIT_HLIST_NODE(&crq->hash);
2013                 crq->cfq_queue = cfqq;
2014                 crq->io_context = cic;
2015
2016                 if (is_sync)
2017                         cfq_mark_crq_is_sync(crq);
2018                 else
2019                         cfq_clear_crq_is_sync(crq);
2020
2021                 rq->elevator_private = crq;
2022                 return 0;
2023         }
2024
2025         spin_lock_irqsave(q->queue_lock, flags);
2026         cfqq->allocated[rw]--;
2027         if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2028                 cfq_mark_cfqq_must_alloc(cfqq);
2029         cfq_put_queue(cfqq);
2030 queue_fail:
2031         if (cic)
2032                 put_io_context(cic->ioc);
2033         /*
2034          * mark us rq allocation starved. we need to kickstart the process
2035          * ourselves if there are no pending requests that can do it for us.
2036          * that would be an extremely rare OOM situation
2037          */
2038         cfqd->rq_starved = 1;
2039         cfq_schedule_dispatch(cfqd);
2040         spin_unlock_irqrestore(q->queue_lock, flags);
2041         return 1;
2042 }
2043
2044 static void cfq_kick_queue(void *data)
2045 {
2046         request_queue_t *q = data;
2047         struct cfq_data *cfqd = q->elevator->elevator_data;
2048         unsigned long flags;
2049
2050         spin_lock_irqsave(q->queue_lock, flags);
2051
2052         if (cfqd->rq_starved) {
2053                 struct request_list *rl = &q->rq;
2054
2055                 /*
2056                  * we aren't guaranteed to get a request after this, but we
2057                  * have to be opportunistic
2058                  */
2059                 smp_mb();
2060                 if (waitqueue_active(&rl->wait[READ]))
2061                         wake_up(&rl->wait[READ]);
2062                 if (waitqueue_active(&rl->wait[WRITE]))
2063                         wake_up(&rl->wait[WRITE]);
2064         }
2065
2066         blk_remove_plug(q);
2067         q->request_fn(q);
2068         spin_unlock_irqrestore(q->queue_lock, flags);
2069 }
2070
2071 /*
2072  * Timer running if the active_queue is currently idling inside its time slice
2073  */
2074 static void cfq_idle_slice_timer(unsigned long data)
2075 {
2076         struct cfq_data *cfqd = (struct cfq_data *) data;
2077         struct cfq_queue *cfqq;
2078         unsigned long flags;
2079
2080         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2081
2082         if ((cfqq = cfqd->active_queue) != NULL) {
2083                 unsigned long now = jiffies;
2084
2085                 /*
2086                  * expired
2087                  */
2088                 if (time_after(now, cfqq->slice_end))
2089                         goto expire;
2090
2091                 /*
2092                  * only expire and reinvoke request handler, if there are
2093                  * other queues with pending requests
2094                  */
2095                 if (!cfqd->busy_queues) {
2096                         cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2097                         add_timer(&cfqd->idle_slice_timer);
2098                         goto out_cont;
2099                 }
2100
2101                 /*
2102                  * not expired and it has a request pending, let it dispatch
2103                  */
2104                 if (!RB_EMPTY(&cfqq->sort_list)) {
2105                         cfq_mark_cfqq_must_dispatch(cfqq);
2106                         goto out_kick;
2107                 }
2108         }
2109 expire:
2110         cfq_slice_expired(cfqd, 0);
2111 out_kick:
2112         cfq_schedule_dispatch(cfqd);
2113 out_cont:
2114         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2115 }
2116
2117 /*
2118  * Timer running if an idle class queue is waiting for service
2119  */
2120 static void cfq_idle_class_timer(unsigned long data)
2121 {
2122         struct cfq_data *cfqd = (struct cfq_data *) data;
2123         unsigned long flags, end;
2124
2125         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2126
2127         /*
2128          * race with a non-idle queue, reset timer
2129          */
2130         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2131         if (!time_after_eq(jiffies, end)) {
2132                 cfqd->idle_class_timer.expires = end;
2133                 add_timer(&cfqd->idle_class_timer);
2134         } else
2135                 cfq_schedule_dispatch(cfqd);
2136
2137         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2138 }
2139
2140 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2141 {
2142         del_timer_sync(&cfqd->idle_slice_timer);
2143         del_timer_sync(&cfqd->idle_class_timer);
2144         blk_sync_queue(cfqd->queue);
2145 }
2146
2147 static void cfq_put_cfqd(struct cfq_data *cfqd)
2148 {
2149         if (!atomic_dec_and_test(&cfqd->ref))
2150                 return;
2151
2152         cfq_shutdown_timer_wq(cfqd);
2153
2154         mempool_destroy(cfqd->crq_pool);
2155         kfree(cfqd->crq_hash);
2156         kfree(cfqd->cfq_hash);
2157         kfree(cfqd);
2158 }
2159
2160 static void cfq_exit_queue(elevator_t *e)
2161 {
2162         struct cfq_data *cfqd = e->elevator_data;
2163         request_queue_t *q = cfqd->queue;
2164
2165         cfq_shutdown_timer_wq(cfqd);
2166         write_lock(&cfq_exit_lock);
2167         spin_lock_irq(q->queue_lock);
2168         if (cfqd->active_queue)
2169                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2170         while(!list_empty(&cfqd->cic_list)) {
2171                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2172                                                         struct cfq_io_context,
2173                                                         queue_list);
2174                 if (cic->cfqq[ASYNC]) {
2175                         cfq_put_queue(cic->cfqq[ASYNC]);
2176                         cic->cfqq[ASYNC] = NULL;
2177                 }
2178                 if (cic->cfqq[SYNC]) {
2179                         cfq_put_queue(cic->cfqq[SYNC]);
2180                         cic->cfqq[SYNC] = NULL;
2181                 }
2182                 cic->key = NULL;
2183                 list_del_init(&cic->queue_list);
2184         }
2185         spin_unlock_irq(q->queue_lock);
2186         write_unlock(&cfq_exit_lock);
2187         cfq_put_cfqd(cfqd);
2188 }
2189
2190 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2191 {
2192         struct cfq_data *cfqd;
2193         int i;
2194
2195         cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2196         if (!cfqd)
2197                 return -ENOMEM;
2198
2199         memset(cfqd, 0, sizeof(*cfqd));
2200
2201         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2202                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2203
2204         INIT_LIST_HEAD(&cfqd->busy_rr);
2205         INIT_LIST_HEAD(&cfqd->cur_rr);
2206         INIT_LIST_HEAD(&cfqd->idle_rr);
2207         INIT_LIST_HEAD(&cfqd->empty_list);
2208         INIT_LIST_HEAD(&cfqd->cic_list);
2209
2210         cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2211         if (!cfqd->crq_hash)
2212                 goto out_crqhash;
2213
2214         cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2215         if (!cfqd->cfq_hash)
2216                 goto out_cfqhash;
2217
2218         cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
2219         if (!cfqd->crq_pool)
2220                 goto out_crqpool;
2221
2222         for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2223                 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2224         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2225                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2226
2227         e->elevator_data = cfqd;
2228
2229         cfqd->queue = q;
2230
2231         cfqd->max_queued = q->nr_requests / 4;
2232         q->nr_batching = cfq_queued;
2233
2234         init_timer(&cfqd->idle_slice_timer);
2235         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2236         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2237
2238         init_timer(&cfqd->idle_class_timer);
2239         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2240         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2241
2242         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2243
2244         atomic_set(&cfqd->ref, 1);
2245
2246         cfqd->cfq_queued = cfq_queued;
2247         cfqd->cfq_quantum = cfq_quantum;
2248         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2249         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2250         cfqd->cfq_back_max = cfq_back_max;
2251         cfqd->cfq_back_penalty = cfq_back_penalty;
2252         cfqd->cfq_slice[0] = cfq_slice_async;
2253         cfqd->cfq_slice[1] = cfq_slice_sync;
2254         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2255         cfqd->cfq_slice_idle = cfq_slice_idle;
2256         cfqd->cfq_max_depth = cfq_max_depth;
2257
2258         return 0;
2259 out_crqpool:
2260         kfree(cfqd->cfq_hash);
2261 out_cfqhash:
2262         kfree(cfqd->crq_hash);
2263 out_crqhash:
2264         kfree(cfqd);
2265         return -ENOMEM;
2266 }
2267
2268 static void cfq_slab_kill(void)
2269 {
2270         if (crq_pool)
2271                 kmem_cache_destroy(crq_pool);
2272         if (cfq_pool)
2273                 kmem_cache_destroy(cfq_pool);
2274         if (cfq_ioc_pool)
2275                 kmem_cache_destroy(cfq_ioc_pool);
2276 }
2277
2278 static int __init cfq_slab_setup(void)
2279 {
2280         crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2281                                         NULL, NULL);
2282         if (!crq_pool)
2283                 goto fail;
2284
2285         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2286                                         NULL, NULL);
2287         if (!cfq_pool)
2288                 goto fail;
2289
2290         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2291                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2292         if (!cfq_ioc_pool)
2293                 goto fail;
2294
2295         return 0;
2296 fail:
2297         cfq_slab_kill();
2298         return -ENOMEM;
2299 }
2300
2301 /*
2302  * sysfs parts below -->
2303  */
2304 struct cfq_fs_entry {
2305         struct attribute attr;
2306         ssize_t (*show)(struct cfq_data *, char *);
2307         ssize_t (*store)(struct cfq_data *, const char *, size_t);
2308 };
2309
2310 static ssize_t
2311 cfq_var_show(unsigned int var, char *page)
2312 {
2313         return sprintf(page, "%d\n", var);
2314 }
2315
2316 static ssize_t
2317 cfq_var_store(unsigned int *var, const char *page, size_t count)
2318 {
2319         char *p = (char *) page;
2320
2321         *var = simple_strtoul(p, &p, 10);
2322         return count;
2323 }
2324
2325 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2326 static ssize_t __FUNC(struct cfq_data *cfqd, char *page)                \
2327 {                                                                       \
2328         unsigned int __data = __VAR;                                    \
2329         if (__CONV)                                                     \
2330                 __data = jiffies_to_msecs(__data);                      \
2331         return cfq_var_show(__data, (page));                            \
2332 }
2333 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2334 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2335 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2336 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2337 SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
2338 SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
2339 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2340 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2341 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2342 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2343 SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2344 #undef SHOW_FUNCTION
2345
2346 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2347 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count)    \
2348 {                                                                       \
2349         unsigned int __data;                                            \
2350         int ret = cfq_var_store(&__data, (page), count);                \
2351         if (__data < (MIN))                                             \
2352                 __data = (MIN);                                         \
2353         else if (__data > (MAX))                                        \
2354                 __data = (MAX);                                         \
2355         if (__CONV)                                                     \
2356                 *(__PTR) = msecs_to_jiffies(__data);                    \
2357         else                                                            \
2358                 *(__PTR) = __data;                                      \
2359         return ret;                                                     \
2360 }
2361 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2362 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2363 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2364 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2365 STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2366 STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2367 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2368 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2369 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2370 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2371 STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2372 #undef STORE_FUNCTION
2373
2374 static struct cfq_fs_entry cfq_quantum_entry = {
2375         .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
2376         .show = cfq_quantum_show,
2377         .store = cfq_quantum_store,
2378 };
2379 static struct cfq_fs_entry cfq_queued_entry = {
2380         .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
2381         .show = cfq_queued_show,
2382         .store = cfq_queued_store,
2383 };
2384 static struct cfq_fs_entry cfq_fifo_expire_sync_entry = {
2385         .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
2386         .show = cfq_fifo_expire_sync_show,
2387         .store = cfq_fifo_expire_sync_store,
2388 };
2389 static struct cfq_fs_entry cfq_fifo_expire_async_entry = {
2390         .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
2391         .show = cfq_fifo_expire_async_show,
2392         .store = cfq_fifo_expire_async_store,
2393 };
2394 static struct cfq_fs_entry cfq_back_max_entry = {
2395         .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
2396         .show = cfq_back_max_show,
2397         .store = cfq_back_max_store,
2398 };
2399 static struct cfq_fs_entry cfq_back_penalty_entry = {
2400         .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
2401         .show = cfq_back_penalty_show,
2402         .store = cfq_back_penalty_store,
2403 };
2404 static struct cfq_fs_entry cfq_slice_sync_entry = {
2405         .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR },
2406         .show = cfq_slice_sync_show,
2407         .store = cfq_slice_sync_store,
2408 };
2409 static struct cfq_fs_entry cfq_slice_async_entry = {
2410         .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR },
2411         .show = cfq_slice_async_show,
2412         .store = cfq_slice_async_store,
2413 };
2414 static struct cfq_fs_entry cfq_slice_async_rq_entry = {
2415         .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR },
2416         .show = cfq_slice_async_rq_show,
2417         .store = cfq_slice_async_rq_store,
2418 };
2419 static struct cfq_fs_entry cfq_slice_idle_entry = {
2420         .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR },
2421         .show = cfq_slice_idle_show,
2422         .store = cfq_slice_idle_store,
2423 };
2424 static struct cfq_fs_entry cfq_max_depth_entry = {
2425         .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR },
2426         .show = cfq_max_depth_show,
2427         .store = cfq_max_depth_store,
2428 };
2429
2430 static struct attribute *default_attrs[] = {
2431         &cfq_quantum_entry.attr,
2432         &cfq_queued_entry.attr,
2433         &cfq_fifo_expire_sync_entry.attr,
2434         &cfq_fifo_expire_async_entry.attr,
2435         &cfq_back_max_entry.attr,
2436         &cfq_back_penalty_entry.attr,
2437         &cfq_slice_sync_entry.attr,
2438         &cfq_slice_async_entry.attr,
2439         &cfq_slice_async_rq_entry.attr,
2440         &cfq_slice_idle_entry.attr,
2441         &cfq_max_depth_entry.attr,
2442         NULL,
2443 };
2444
2445 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2446
2447 static ssize_t
2448 cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2449 {
2450         elevator_t *e = container_of(kobj, elevator_t, kobj);
2451         struct cfq_fs_entry *entry = to_cfq(attr);
2452
2453         if (!entry->show)
2454                 return -EIO;
2455
2456         return entry->show(e->elevator_data, page);
2457 }
2458
2459 static ssize_t
2460 cfq_attr_store(struct kobject *kobj, struct attribute *attr,
2461                const char *page, size_t length)
2462 {
2463         elevator_t *e = container_of(kobj, elevator_t, kobj);
2464         struct cfq_fs_entry *entry = to_cfq(attr);
2465
2466         if (!entry->store)
2467                 return -EIO;
2468
2469         return entry->store(e->elevator_data, page, length);
2470 }
2471
2472 static struct sysfs_ops cfq_sysfs_ops = {
2473         .show   = cfq_attr_show,
2474         .store  = cfq_attr_store,
2475 };
2476
2477 static struct kobj_type cfq_ktype = {
2478         .sysfs_ops      = &cfq_sysfs_ops,
2479         .default_attrs  = default_attrs,
2480 };
2481
2482 static struct elevator_type iosched_cfq = {
2483         .ops = {
2484                 .elevator_merge_fn =            cfq_merge,
2485                 .elevator_merged_fn =           cfq_merged_request,
2486                 .elevator_merge_req_fn =        cfq_merged_requests,
2487                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2488                 .elevator_add_req_fn =          cfq_insert_request,
2489                 .elevator_activate_req_fn =     cfq_activate_request,
2490                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2491                 .elevator_queue_empty_fn =      cfq_queue_empty,
2492                 .elevator_completed_req_fn =    cfq_completed_request,
2493                 .elevator_former_req_fn =       cfq_former_request,
2494                 .elevator_latter_req_fn =       cfq_latter_request,
2495                 .elevator_set_req_fn =          cfq_set_request,
2496                 .elevator_put_req_fn =          cfq_put_request,
2497                 .elevator_may_queue_fn =        cfq_may_queue,
2498                 .elevator_init_fn =             cfq_init_queue,
2499                 .elevator_exit_fn =             cfq_exit_queue,
2500                 .trim =                         cfq_trim,
2501         },
2502         .elevator_ktype =       &cfq_ktype,
2503         .elevator_name =        "cfq",
2504         .elevator_owner =       THIS_MODULE,
2505 };
2506
2507 static int __init cfq_init(void)
2508 {
2509         int ret;
2510
2511         /*
2512          * could be 0 on HZ < 1000 setups
2513          */
2514         if (!cfq_slice_async)
2515                 cfq_slice_async = 1;
2516         if (!cfq_slice_idle)
2517                 cfq_slice_idle = 1;
2518
2519         if (cfq_slab_setup())
2520                 return -ENOMEM;
2521
2522         ret = elv_register(&iosched_cfq);
2523         if (ret)
2524                 cfq_slab_kill();
2525
2526         return ret;
2527 }
2528
2529 static void __exit cfq_exit(void)
2530 {
2531         DECLARE_COMPLETION(all_gone);
2532         elv_unregister(&iosched_cfq);
2533         ioc_gone = &all_gone;
2534         barrier();
2535         if (atomic_read(&ioc_count))
2536                 complete(ioc_gone);
2537         synchronize_rcu();
2538         cfq_slab_kill();
2539 }
2540
2541 module_init(cfq_init);
2542 module_exit(cfq_exit);
2543
2544 MODULE_AUTHOR("Jens Axboe");
2545 MODULE_LICENSE("GPL");
2546 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");