d44402a4c5cd99b5eec4d3fc8f9ca8c6531a2615
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE          (HZ / 10)
30 #define CFQ_SLICE_SCALE         (5)
31
32 #define CFQ_KEY_ASYNC           (0)
33
34 /*
35  * for the hash of cfqq inside the cfqd
36  */
37 #define CFQ_QHASH_SHIFT         6
38 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC                   (0)
57 #define SYNC                    (1)
58
59 #define cfq_cfqq_dispatched(cfqq)       \
60         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq)             \
65         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Per block device queue structure
71  */
72 struct cfq_data {
73         request_queue_t *queue;
74
75         /*
76          * rr list of queues with requests and the count of them
77          */
78         struct list_head rr_list[CFQ_PRIO_LISTS];
79         struct list_head busy_rr;
80         struct list_head cur_rr;
81         struct list_head idle_rr;
82         unsigned int busy_queues;
83
84         /*
85          * cfqq lookup hash
86          */
87         struct hlist_head *cfq_hash;
88
89         int rq_in_driver;
90         int hw_tag;
91
92         /*
93          * idle window management
94          */
95         struct timer_list idle_slice_timer;
96         struct work_struct unplug_work;
97
98         struct cfq_queue *active_queue;
99         struct cfq_io_context *active_cic;
100         int cur_prio, cur_end_prio;
101         unsigned int dispatch_slice;
102
103         struct timer_list idle_class_timer;
104
105         sector_t last_sector;
106         unsigned long last_end_request;
107
108         /*
109          * tunables, see top of file
110          */
111         unsigned int cfq_quantum;
112         unsigned int cfq_fifo_expire[2];
113         unsigned int cfq_back_penalty;
114         unsigned int cfq_back_max;
115         unsigned int cfq_slice[2];
116         unsigned int cfq_slice_async_rq;
117         unsigned int cfq_slice_idle;
118
119         struct list_head cic_list;
120 };
121
122 /*
123  * Per process-grouping structure
124  */
125 struct cfq_queue {
126         /* reference count */
127         atomic_t ref;
128         /* parent cfq_data */
129         struct cfq_data *cfqd;
130         /* cfqq lookup hash */
131         struct hlist_node cfq_hash;
132         /* hash key */
133         unsigned int key;
134         /* member of the rr/busy/cur/idle cfqd list */
135         struct list_head cfq_list;
136         /* sorted list of pending requests */
137         struct rb_root sort_list;
138         /* if fifo isn't expired, next request to serve */
139         struct request *next_rq;
140         /* requests queued in sort_list */
141         int queued[2];
142         /* currently allocated requests */
143         int allocated[2];
144         /* pending metadata requests */
145         int meta_pending;
146         /* fifo list of requests in sort_list */
147         struct list_head fifo;
148
149         unsigned long slice_end;
150         unsigned long slice_left;
151         unsigned long service_last;
152
153         /* number of requests that are on the dispatch list */
154         int on_dispatch[2];
155
156         /* io prio of this group */
157         unsigned short ioprio, org_ioprio;
158         unsigned short ioprio_class, org_ioprio_class;
159
160         /* various state flags, see below */
161         unsigned int flags;
162 };
163
164 enum cfqq_state_flags {
165         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
166         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
167         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
168         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
169         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
170         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
171         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
172         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
173         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
174         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
175 };
176
177 #define CFQ_CFQQ_FNS(name)                                              \
178 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
179 {                                                                       \
180         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
181 }                                                                       \
182 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
183 {                                                                       \
184         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
185 }                                                                       \
186 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
187 {                                                                       \
188         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
189 }
190
191 CFQ_CFQQ_FNS(on_rr);
192 CFQ_CFQQ_FNS(wait_request);
193 CFQ_CFQQ_FNS(must_alloc);
194 CFQ_CFQQ_FNS(must_alloc_slice);
195 CFQ_CFQQ_FNS(must_dispatch);
196 CFQ_CFQQ_FNS(fifo_expire);
197 CFQ_CFQQ_FNS(idle_window);
198 CFQ_CFQQ_FNS(prio_changed);
199 CFQ_CFQQ_FNS(queue_new);
200 CFQ_CFQQ_FNS(slice_new);
201 #undef CFQ_CFQQ_FNS
202
203 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
204 static void cfq_dispatch_insert(request_queue_t *, struct request *);
205 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206
207 /*
208  * scheduler run of queue, if there are requests pending and no one in the
209  * driver that will restart queueing
210  */
211 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
212 {
213         if (cfqd->busy_queues)
214                 kblockd_schedule_work(&cfqd->unplug_work);
215 }
216
217 static int cfq_queue_empty(request_queue_t *q)
218 {
219         struct cfq_data *cfqd = q->elevator->elevator_data;
220
221         return !cfqd->busy_queues;
222 }
223
224 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
225 {
226         /*
227          * Use the per-process queue, for read requests and syncronous writes
228          */
229         if (!(rw & REQ_RW) || is_sync)
230                 return task->pid;
231
232         return CFQ_KEY_ASYNC;
233 }
234
235 /*
236  * Scale schedule slice based on io priority. Use the sync time slice only
237  * if a queue is marked sync and has sync io queued. A sync queue with async
238  * io only, should not get full sync slice length.
239  */
240 static inline int
241 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
242 {
243         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
244
245         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
246
247         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
248 }
249
250 static inline void
251 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
252 {
253         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
254 }
255
256 /*
257  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
258  * isn't valid until the first request from the dispatch is activated
259  * and the slice time set.
260  */
261 static inline int cfq_slice_used(struct cfq_queue *cfqq)
262 {
263         if (cfq_cfqq_slice_new(cfqq))
264                 return 0;
265         if (time_before(jiffies, cfqq->slice_end))
266                 return 0;
267
268         return 1;
269 }
270
271 /*
272  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
273  * We choose the request that is closest to the head right now. Distance
274  * behind the head is penalized and only allowed to a certain extent.
275  */
276 static struct request *
277 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
278 {
279         sector_t last, s1, s2, d1 = 0, d2 = 0;
280         unsigned long back_max;
281 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
282 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
283         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
284
285         if (rq1 == NULL || rq1 == rq2)
286                 return rq2;
287         if (rq2 == NULL)
288                 return rq1;
289
290         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
291                 return rq1;
292         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
293                 return rq2;
294         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
295                 return rq1;
296         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
297                 return rq2;
298
299         s1 = rq1->sector;
300         s2 = rq2->sector;
301
302         last = cfqd->last_sector;
303
304         /*
305          * by definition, 1KiB is 2 sectors
306          */
307         back_max = cfqd->cfq_back_max * 2;
308
309         /*
310          * Strict one way elevator _except_ in the case where we allow
311          * short backward seeks which are biased as twice the cost of a
312          * similar forward seek.
313          */
314         if (s1 >= last)
315                 d1 = s1 - last;
316         else if (s1 + back_max >= last)
317                 d1 = (last - s1) * cfqd->cfq_back_penalty;
318         else
319                 wrap |= CFQ_RQ1_WRAP;
320
321         if (s2 >= last)
322                 d2 = s2 - last;
323         else if (s2 + back_max >= last)
324                 d2 = (last - s2) * cfqd->cfq_back_penalty;
325         else
326                 wrap |= CFQ_RQ2_WRAP;
327
328         /* Found required data */
329
330         /*
331          * By doing switch() on the bit mask "wrap" we avoid having to
332          * check two variables for all permutations: --> faster!
333          */
334         switch (wrap) {
335         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
336                 if (d1 < d2)
337                         return rq1;
338                 else if (d2 < d1)
339                         return rq2;
340                 else {
341                         if (s1 >= s2)
342                                 return rq1;
343                         else
344                                 return rq2;
345                 }
346
347         case CFQ_RQ2_WRAP:
348                 return rq1;
349         case CFQ_RQ1_WRAP:
350                 return rq2;
351         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
352         default:
353                 /*
354                  * Since both rqs are wrapped,
355                  * start with the one that's further behind head
356                  * (--> only *one* back seek required),
357                  * since back seek takes more time than forward.
358                  */
359                 if (s1 <= s2)
360                         return rq1;
361                 else
362                         return rq2;
363         }
364 }
365
366 /*
367  * would be nice to take fifo expire time into account as well
368  */
369 static struct request *
370 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
371                   struct request *last)
372 {
373         struct rb_node *rbnext = rb_next(&last->rb_node);
374         struct rb_node *rbprev = rb_prev(&last->rb_node);
375         struct request *next = NULL, *prev = NULL;
376
377         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
378
379         if (rbprev)
380                 prev = rb_entry_rq(rbprev);
381
382         if (rbnext)
383                 next = rb_entry_rq(rbnext);
384         else {
385                 rbnext = rb_first(&cfqq->sort_list);
386                 if (rbnext && rbnext != &last->rb_node)
387                         next = rb_entry_rq(rbnext);
388         }
389
390         return cfq_choose_req(cfqd, next, prev);
391 }
392
393 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
394 {
395         struct cfq_data *cfqd = cfqq->cfqd;
396         struct list_head *list, *n;
397         struct cfq_queue *__cfqq;
398
399         /*
400          * Resorting requires the cfqq to be on the RR list already.
401          */
402         if (!cfq_cfqq_on_rr(cfqq))
403                 return;
404
405         list_del(&cfqq->cfq_list);
406
407         if (cfq_class_rt(cfqq))
408                 list = &cfqd->cur_rr;
409         else if (cfq_class_idle(cfqq))
410                 list = &cfqd->idle_rr;
411         else {
412                 /*
413                  * if cfqq has requests in flight, don't allow it to be
414                  * found in cfq_set_active_queue before it has finished them.
415                  * this is done to increase fairness between a process that
416                  * has lots of io pending vs one that only generates one
417                  * sporadically or synchronously
418                  */
419                 if (cfq_cfqq_dispatched(cfqq))
420                         list = &cfqd->busy_rr;
421                 else
422                         list = &cfqd->rr_list[cfqq->ioprio];
423         }
424
425         if (preempted || cfq_cfqq_queue_new(cfqq)) {
426                 /*
427                  * If this queue was preempted or is new (never been serviced),
428                  * let it be added first for fairness but beind other new
429                  * queues.
430                  */
431                 n = list;
432                 while (n->next != list) {
433                         __cfqq = list_entry_cfqq(n->next);
434                         if (!cfq_cfqq_queue_new(__cfqq))
435                                 break;
436
437                         n = n->next;
438                 }
439                 list_add_tail(&cfqq->cfq_list, n);
440         } else if (!cfq_cfqq_class_sync(cfqq)) {
441                 /*
442                  * async queue always goes to the end. this wont be overly
443                  * unfair to writes, as the sort of the sync queue wont be
444                  * allowed to pass the async queue again.
445                  */
446                 list_add_tail(&cfqq->cfq_list, list);
447         } else {
448                 /*
449                  * sort by last service, but don't cross a new or async
450                  * queue. we don't cross a new queue because it hasn't been
451                  * service before, and we don't cross an async queue because
452                  * it gets added to the end on expire.
453                  */
454                 n = list;
455                 while ((n = n->prev) != list) {
456                         struct cfq_queue *__cfqq = list_entry_cfqq(n);
457
458                         if (!cfq_cfqq_class_sync(cfqq) || !__cfqq->service_last)
459                                 break;
460                         if (time_before(__cfqq->service_last, cfqq->service_last))
461                                 break;
462                 }
463                 list_add(&cfqq->cfq_list, n);
464         }
465 }
466
467 /*
468  * add to busy list of queues for service, trying to be fair in ordering
469  * the pending list according to last request service
470  */
471 static inline void
472 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
473 {
474         BUG_ON(cfq_cfqq_on_rr(cfqq));
475         cfq_mark_cfqq_on_rr(cfqq);
476         cfqd->busy_queues++;
477
478         cfq_resort_rr_list(cfqq, 0);
479 }
480
481 static inline void
482 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
483 {
484         BUG_ON(!cfq_cfqq_on_rr(cfqq));
485         cfq_clear_cfqq_on_rr(cfqq);
486         list_del_init(&cfqq->cfq_list);
487
488         BUG_ON(!cfqd->busy_queues);
489         cfqd->busy_queues--;
490 }
491
492 /*
493  * rb tree support functions
494  */
495 static inline void cfq_del_rq_rb(struct request *rq)
496 {
497         struct cfq_queue *cfqq = RQ_CFQQ(rq);
498         struct cfq_data *cfqd = cfqq->cfqd;
499         const int sync = rq_is_sync(rq);
500
501         BUG_ON(!cfqq->queued[sync]);
502         cfqq->queued[sync]--;
503
504         elv_rb_del(&cfqq->sort_list, rq);
505
506         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
507                 cfq_del_cfqq_rr(cfqd, cfqq);
508 }
509
510 static void cfq_add_rq_rb(struct request *rq)
511 {
512         struct cfq_queue *cfqq = RQ_CFQQ(rq);
513         struct cfq_data *cfqd = cfqq->cfqd;
514         struct request *__alias;
515
516         cfqq->queued[rq_is_sync(rq)]++;
517
518         /*
519          * looks a little odd, but the first insert might return an alias.
520          * if that happens, put the alias on the dispatch list
521          */
522         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
523                 cfq_dispatch_insert(cfqd->queue, __alias);
524
525         if (!cfq_cfqq_on_rr(cfqq))
526                 cfq_add_cfqq_rr(cfqd, cfqq);
527 }
528
529 static inline void
530 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
531 {
532         elv_rb_del(&cfqq->sort_list, rq);
533         cfqq->queued[rq_is_sync(rq)]--;
534         cfq_add_rq_rb(rq);
535 }
536
537 static struct request *
538 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
539 {
540         struct task_struct *tsk = current;
541         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
542         struct cfq_queue *cfqq;
543
544         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
545         if (cfqq) {
546                 sector_t sector = bio->bi_sector + bio_sectors(bio);
547
548                 return elv_rb_find(&cfqq->sort_list, sector);
549         }
550
551         return NULL;
552 }
553
554 static void cfq_activate_request(request_queue_t *q, struct request *rq)
555 {
556         struct cfq_data *cfqd = q->elevator->elevator_data;
557
558         cfqd->rq_in_driver++;
559
560         /*
561          * If the depth is larger 1, it really could be queueing. But lets
562          * make the mark a little higher - idling could still be good for
563          * low queueing, and a low queueing number could also just indicate
564          * a SCSI mid layer like behaviour where limit+1 is often seen.
565          */
566         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
567                 cfqd->hw_tag = 1;
568 }
569
570 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
571 {
572         struct cfq_data *cfqd = q->elevator->elevator_data;
573
574         WARN_ON(!cfqd->rq_in_driver);
575         cfqd->rq_in_driver--;
576 }
577
578 static void cfq_remove_request(struct request *rq)
579 {
580         struct cfq_queue *cfqq = RQ_CFQQ(rq);
581
582         if (cfqq->next_rq == rq)
583                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
584
585         list_del_init(&rq->queuelist);
586         cfq_del_rq_rb(rq);
587
588         if (rq_is_meta(rq)) {
589                 WARN_ON(!cfqq->meta_pending);
590                 cfqq->meta_pending--;
591         }
592 }
593
594 static int
595 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
596 {
597         struct cfq_data *cfqd = q->elevator->elevator_data;
598         struct request *__rq;
599
600         __rq = cfq_find_rq_fmerge(cfqd, bio);
601         if (__rq && elv_rq_merge_ok(__rq, bio)) {
602                 *req = __rq;
603                 return ELEVATOR_FRONT_MERGE;
604         }
605
606         return ELEVATOR_NO_MERGE;
607 }
608
609 static void cfq_merged_request(request_queue_t *q, struct request *req,
610                                int type)
611 {
612         if (type == ELEVATOR_FRONT_MERGE) {
613                 struct cfq_queue *cfqq = RQ_CFQQ(req);
614
615                 cfq_reposition_rq_rb(cfqq, req);
616         }
617 }
618
619 static void
620 cfq_merged_requests(request_queue_t *q, struct request *rq,
621                     struct request *next)
622 {
623         /*
624          * reposition in fifo if next is older than rq
625          */
626         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
627             time_before(next->start_time, rq->start_time))
628                 list_move(&rq->queuelist, &next->queuelist);
629
630         cfq_remove_request(next);
631 }
632
633 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
634                            struct bio *bio)
635 {
636         struct cfq_data *cfqd = q->elevator->elevator_data;
637         const int rw = bio_data_dir(bio);
638         struct cfq_queue *cfqq;
639         pid_t key;
640
641         /*
642          * Disallow merge of a sync bio into an async request.
643          */
644         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
645                 return 0;
646
647         /*
648          * Lookup the cfqq that this bio will be queued with. Allow
649          * merge only if rq is queued there.
650          */
651         key = cfq_queue_pid(current, rw, bio_sync(bio));
652         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
653
654         if (cfqq == RQ_CFQQ(rq))
655                 return 1;
656
657         return 0;
658 }
659
660 static inline void
661 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
662 {
663         if (cfqq) {
664                 /*
665                  * stop potential idle class queues waiting service
666                  */
667                 del_timer(&cfqd->idle_class_timer);
668
669                 cfqq->slice_end = 0;
670                 cfqq->slice_left = 0;
671                 cfq_clear_cfqq_must_alloc_slice(cfqq);
672                 cfq_clear_cfqq_fifo_expire(cfqq);
673                 cfq_mark_cfqq_slice_new(cfqq);
674         }
675
676         cfqd->active_queue = cfqq;
677 }
678
679 /*
680  * current cfqq expired its slice (or was too idle), select new one
681  */
682 static void
683 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
684                     int preempted)
685 {
686         unsigned long now = jiffies;
687
688         if (cfq_cfqq_wait_request(cfqq))
689                 del_timer(&cfqd->idle_slice_timer);
690
691         if (!preempted && !cfq_cfqq_dispatched(cfqq))
692                 cfq_schedule_dispatch(cfqd);
693
694         cfq_clear_cfqq_must_dispatch(cfqq);
695         cfq_clear_cfqq_wait_request(cfqq);
696         cfq_clear_cfqq_queue_new(cfqq);
697
698         /*
699          * store what was left of this slice, if the queue idled out
700          * or was preempted
701          */
702         if (cfq_slice_used(cfqq))
703                 cfqq->slice_left = cfqq->slice_end - now;
704         else
705                 cfqq->slice_left = 0;
706
707         cfq_resort_rr_list(cfqq, preempted);
708
709         if (cfqq == cfqd->active_queue)
710                 cfqd->active_queue = NULL;
711
712         if (cfqd->active_cic) {
713                 put_io_context(cfqd->active_cic->ioc);
714                 cfqd->active_cic = NULL;
715         }
716
717         cfqd->dispatch_slice = 0;
718 }
719
720 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
721 {
722         struct cfq_queue *cfqq = cfqd->active_queue;
723
724         if (cfqq)
725                 __cfq_slice_expired(cfqd, cfqq, preempted);
726 }
727
728 /*
729  * 0
730  * 0,1
731  * 0,1,2
732  * 0,1,2,3
733  * 0,1,2,3,4
734  * 0,1,2,3,4,5
735  * 0,1,2,3,4,5,6
736  * 0,1,2,3,4,5,6,7
737  */
738 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
739 {
740         int prio, wrap;
741
742         prio = -1;
743         wrap = 0;
744         do {
745                 int p;
746
747                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
748                         if (!list_empty(&cfqd->rr_list[p])) {
749                                 prio = p;
750                                 break;
751                         }
752                 }
753
754                 if (prio != -1)
755                         break;
756                 cfqd->cur_prio = 0;
757                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
758                         cfqd->cur_end_prio = 0;
759                         if (wrap)
760                                 break;
761                         wrap = 1;
762                 }
763         } while (1);
764
765         if (unlikely(prio == -1))
766                 return -1;
767
768         BUG_ON(prio >= CFQ_PRIO_LISTS);
769
770         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
771
772         cfqd->cur_prio = prio + 1;
773         if (cfqd->cur_prio > cfqd->cur_end_prio) {
774                 cfqd->cur_end_prio = cfqd->cur_prio;
775                 cfqd->cur_prio = 0;
776         }
777         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
778                 cfqd->cur_prio = 0;
779                 cfqd->cur_end_prio = 0;
780         }
781
782         return prio;
783 }
784
785 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
786 {
787         struct cfq_queue *cfqq = NULL;
788
789         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
790                 /*
791                  * if current list is non-empty, grab first entry. if it is
792                  * empty, get next prio level and grab first entry then if any
793                  * are spliced
794                  */
795                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
796         } else if (!list_empty(&cfqd->busy_rr)) {
797                 /*
798                  * If no new queues are available, check if the busy list has
799                  * some before falling back to idle io.
800                  */
801                 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
802         } else if (!list_empty(&cfqd->idle_rr)) {
803                 /*
804                  * if we have idle queues and no rt or be queues had pending
805                  * requests, either allow immediate service if the grace period
806                  * has passed or arm the idle grace timer
807                  */
808                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
809
810                 if (time_after_eq(jiffies, end))
811                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
812                 else
813                         mod_timer(&cfqd->idle_class_timer, end);
814         }
815
816         __cfq_set_active_queue(cfqd, cfqq);
817         return cfqq;
818 }
819
820 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
821
822 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
823
824 {
825         struct cfq_io_context *cic;
826         unsigned long sl;
827
828         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
829         WARN_ON(cfqq != cfqd->active_queue);
830
831         /*
832          * idle is disabled, either manually or by past process history
833          */
834         if (!cfqd->cfq_slice_idle)
835                 return 0;
836         if (!cfq_cfqq_idle_window(cfqq))
837                 return 0;
838         /*
839          * task has exited, don't wait
840          */
841         cic = cfqd->active_cic;
842         if (!cic || !cic->ioc->task)
843                 return 0;
844
845         cfq_mark_cfqq_must_dispatch(cfqq);
846         cfq_mark_cfqq_wait_request(cfqq);
847
848         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
849
850         /*
851          * we don't want to idle for seeks, but we do want to allow
852          * fair distribution of slice time for a process doing back-to-back
853          * seeks. so allow a little bit of time for him to submit a new rq
854          */
855         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
856                 sl = min(sl, msecs_to_jiffies(2));
857
858         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
859         return 1;
860 }
861
862 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
863 {
864         struct cfq_data *cfqd = q->elevator->elevator_data;
865         struct cfq_queue *cfqq = RQ_CFQQ(rq);
866
867         cfq_remove_request(rq);
868         cfqq->on_dispatch[rq_is_sync(rq)]++;
869         elv_dispatch_sort(q, rq);
870
871         rq = list_entry(q->queue_head.prev, struct request, queuelist);
872         cfqd->last_sector = rq->sector + rq->nr_sectors;
873 }
874
875 /*
876  * return expired entry, or NULL to just start from scratch in rbtree
877  */
878 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
879 {
880         struct cfq_data *cfqd = cfqq->cfqd;
881         struct request *rq;
882         int fifo;
883
884         if (cfq_cfqq_fifo_expire(cfqq))
885                 return NULL;
886         if (list_empty(&cfqq->fifo))
887                 return NULL;
888
889         fifo = cfq_cfqq_class_sync(cfqq);
890         rq = rq_entry_fifo(cfqq->fifo.next);
891
892         if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
893                 cfq_mark_cfqq_fifo_expire(cfqq);
894                 return rq;
895         }
896
897         return NULL;
898 }
899
900 static inline int
901 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
902 {
903         const int base_rq = cfqd->cfq_slice_async_rq;
904
905         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
906
907         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
908 }
909
910 /*
911  * get next queue for service
912  */
913 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
914 {
915         struct cfq_queue *cfqq;
916
917         cfqq = cfqd->active_queue;
918         if (!cfqq)
919                 goto new_queue;
920
921         /*
922          * slice has expired
923          */
924         if (!cfq_cfqq_must_dispatch(cfqq) && cfq_slice_used(cfqq))
925                 goto expire;
926
927         /*
928          * if queue has requests, dispatch one. if not, check if
929          * enough slice is left to wait for one
930          */
931         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
932                 goto keep_queue;
933         else if (cfq_cfqq_slice_new(cfqq) || cfq_cfqq_dispatched(cfqq)) {
934                 cfqq = NULL;
935                 goto keep_queue;
936         } else if (cfq_cfqq_class_sync(cfqq)) {
937                 if (cfq_arm_slice_timer(cfqd, cfqq))
938                         return NULL;
939         }
940
941 expire:
942         cfq_slice_expired(cfqd, 0);
943 new_queue:
944         cfqq = cfq_set_active_queue(cfqd);
945 keep_queue:
946         return cfqq;
947 }
948
949 static int
950 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
951                         int max_dispatch)
952 {
953         int dispatched = 0;
954
955         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
956
957         do {
958                 struct request *rq;
959
960                 /*
961                  * follow expired path, else get first next available
962                  */
963                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
964                         rq = cfqq->next_rq;
965
966                 /*
967                  * finally, insert request into driver dispatch list
968                  */
969                 cfq_dispatch_insert(cfqd->queue, rq);
970
971                 cfqd->dispatch_slice++;
972                 dispatched++;
973
974                 if (!cfqd->active_cic) {
975                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
976                         cfqd->active_cic = RQ_CIC(rq);
977                 }
978
979                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
980                         break;
981
982         } while (dispatched < max_dispatch);
983
984         /*
985          * expire an async queue immediately if it has used up its slice. idle
986          * queue always expire after 1 dispatch round.
987          */
988         if ((!cfq_cfqq_sync(cfqq) &&
989             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
990             cfq_class_idle(cfqq)) {
991                 cfqq->slice_end = jiffies + 1;
992                 cfq_slice_expired(cfqd, 0);
993         }
994
995         return dispatched;
996 }
997
998 static int
999 cfq_forced_dispatch_cfqqs(struct list_head *list)
1000 {
1001         struct cfq_queue *cfqq, *next;
1002         int dispatched;
1003
1004         dispatched = 0;
1005         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1006                 while (cfqq->next_rq) {
1007                         cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1008                         dispatched++;
1009                 }
1010                 BUG_ON(!list_empty(&cfqq->fifo));
1011         }
1012
1013         return dispatched;
1014 }
1015
1016 static int
1017 cfq_forced_dispatch(struct cfq_data *cfqd)
1018 {
1019         int i, dispatched = 0;
1020
1021         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1022                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1023
1024         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1025         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1026         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1027
1028         cfq_slice_expired(cfqd, 0);
1029
1030         BUG_ON(cfqd->busy_queues);
1031
1032         return dispatched;
1033 }
1034
1035 static int
1036 cfq_dispatch_requests(request_queue_t *q, int force)
1037 {
1038         struct cfq_data *cfqd = q->elevator->elevator_data;
1039         struct cfq_queue *cfqq, *prev_cfqq;
1040         int dispatched;
1041
1042         if (!cfqd->busy_queues)
1043                 return 0;
1044
1045         if (unlikely(force))
1046                 return cfq_forced_dispatch(cfqd);
1047
1048         dispatched = 0;
1049         prev_cfqq = NULL;
1050         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1051                 int max_dispatch;
1052
1053                 /*
1054                  * Don't repeat dispatch from the previous queue.
1055                  */
1056                 if (prev_cfqq == cfqq)
1057                         break;
1058
1059                 cfq_clear_cfqq_must_dispatch(cfqq);
1060                 cfq_clear_cfqq_wait_request(cfqq);
1061                 del_timer(&cfqd->idle_slice_timer);
1062
1063                 max_dispatch = cfqd->cfq_quantum;
1064                 if (cfq_class_idle(cfqq))
1065                         max_dispatch = 1;
1066
1067                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1068
1069                 /*
1070                  * If the dispatch cfqq has idling enabled and is still
1071                  * the active queue, break out.
1072                  */
1073                 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1074                         break;
1075
1076                 prev_cfqq = cfqq;
1077         }
1078
1079         return dispatched;
1080 }
1081
1082 /*
1083  * task holds one reference to the queue, dropped when task exits. each rq
1084  * in-flight on this queue also holds a reference, dropped when rq is freed.
1085  *
1086  * queue lock must be held here.
1087  */
1088 static void cfq_put_queue(struct cfq_queue *cfqq)
1089 {
1090         struct cfq_data *cfqd = cfqq->cfqd;
1091
1092         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1093
1094         if (!atomic_dec_and_test(&cfqq->ref))
1095                 return;
1096
1097         BUG_ON(rb_first(&cfqq->sort_list));
1098         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1099         BUG_ON(cfq_cfqq_on_rr(cfqq));
1100
1101         if (unlikely(cfqd->active_queue == cfqq))
1102                 __cfq_slice_expired(cfqd, cfqq, 0);
1103
1104         /*
1105          * it's on the empty list and still hashed
1106          */
1107         list_del(&cfqq->cfq_list);
1108         hlist_del(&cfqq->cfq_hash);
1109         kmem_cache_free(cfq_pool, cfqq);
1110 }
1111
1112 static struct cfq_queue *
1113 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1114                     const int hashval)
1115 {
1116         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1117         struct hlist_node *entry;
1118         struct cfq_queue *__cfqq;
1119
1120         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1121                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1122
1123                 if (__cfqq->key == key && (__p == prio || !prio))
1124                         return __cfqq;
1125         }
1126
1127         return NULL;
1128 }
1129
1130 static struct cfq_queue *
1131 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1132 {
1133         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1134 }
1135
1136 static void cfq_free_io_context(struct io_context *ioc)
1137 {
1138         struct cfq_io_context *__cic;
1139         struct rb_node *n;
1140         int freed = 0;
1141
1142         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1143                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1144                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1145                 kmem_cache_free(cfq_ioc_pool, __cic);
1146                 freed++;
1147         }
1148
1149         elv_ioc_count_mod(ioc_count, -freed);
1150
1151         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1152                 complete(ioc_gone);
1153 }
1154
1155 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1156 {
1157         if (unlikely(cfqq == cfqd->active_queue))
1158                 __cfq_slice_expired(cfqd, cfqq, 0);
1159
1160         cfq_put_queue(cfqq);
1161 }
1162
1163 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1164                                          struct cfq_io_context *cic)
1165 {
1166         list_del_init(&cic->queue_list);
1167         smp_wmb();
1168         cic->key = NULL;
1169
1170         if (cic->cfqq[ASYNC]) {
1171                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1172                 cic->cfqq[ASYNC] = NULL;
1173         }
1174
1175         if (cic->cfqq[SYNC]) {
1176                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1177                 cic->cfqq[SYNC] = NULL;
1178         }
1179 }
1180
1181
1182 /*
1183  * Called with interrupts disabled
1184  */
1185 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1186 {
1187         struct cfq_data *cfqd = cic->key;
1188
1189         if (cfqd) {
1190                 request_queue_t *q = cfqd->queue;
1191
1192                 spin_lock_irq(q->queue_lock);
1193                 __cfq_exit_single_io_context(cfqd, cic);
1194                 spin_unlock_irq(q->queue_lock);
1195         }
1196 }
1197
1198 static void cfq_exit_io_context(struct io_context *ioc)
1199 {
1200         struct cfq_io_context *__cic;
1201         struct rb_node *n;
1202
1203         /*
1204          * put the reference this task is holding to the various queues
1205          */
1206
1207         n = rb_first(&ioc->cic_root);
1208         while (n != NULL) {
1209                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1210
1211                 cfq_exit_single_io_context(__cic);
1212                 n = rb_next(n);
1213         }
1214 }
1215
1216 static struct cfq_io_context *
1217 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1218 {
1219         struct cfq_io_context *cic;
1220
1221         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1222         if (cic) {
1223                 memset(cic, 0, sizeof(*cic));
1224                 cic->last_end_request = jiffies;
1225                 INIT_LIST_HEAD(&cic->queue_list);
1226                 cic->dtor = cfq_free_io_context;
1227                 cic->exit = cfq_exit_io_context;
1228                 elv_ioc_count_inc(ioc_count);
1229         }
1230
1231         return cic;
1232 }
1233
1234 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1235 {
1236         struct task_struct *tsk = current;
1237         int ioprio_class;
1238
1239         if (!cfq_cfqq_prio_changed(cfqq))
1240                 return;
1241
1242         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1243         switch (ioprio_class) {
1244                 default:
1245                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1246                 case IOPRIO_CLASS_NONE:
1247                         /*
1248                          * no prio set, place us in the middle of the BE classes
1249                          */
1250                         cfqq->ioprio = task_nice_ioprio(tsk);
1251                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1252                         break;
1253                 case IOPRIO_CLASS_RT:
1254                         cfqq->ioprio = task_ioprio(tsk);
1255                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1256                         break;
1257                 case IOPRIO_CLASS_BE:
1258                         cfqq->ioprio = task_ioprio(tsk);
1259                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1260                         break;
1261                 case IOPRIO_CLASS_IDLE:
1262                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1263                         cfqq->ioprio = 7;
1264                         cfq_clear_cfqq_idle_window(cfqq);
1265                         break;
1266         }
1267
1268         /*
1269          * keep track of original prio settings in case we have to temporarily
1270          * elevate the priority of this queue
1271          */
1272         cfqq->org_ioprio = cfqq->ioprio;
1273         cfqq->org_ioprio_class = cfqq->ioprio_class;
1274
1275         cfq_resort_rr_list(cfqq, 0);
1276         cfq_clear_cfqq_prio_changed(cfqq);
1277 }
1278
1279 static inline void changed_ioprio(struct cfq_io_context *cic)
1280 {
1281         struct cfq_data *cfqd = cic->key;
1282         struct cfq_queue *cfqq;
1283         unsigned long flags;
1284
1285         if (unlikely(!cfqd))
1286                 return;
1287
1288         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1289
1290         cfqq = cic->cfqq[ASYNC];
1291         if (cfqq) {
1292                 struct cfq_queue *new_cfqq;
1293                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1294                                          GFP_ATOMIC);
1295                 if (new_cfqq) {
1296                         cic->cfqq[ASYNC] = new_cfqq;
1297                         cfq_put_queue(cfqq);
1298                 }
1299         }
1300
1301         cfqq = cic->cfqq[SYNC];
1302         if (cfqq)
1303                 cfq_mark_cfqq_prio_changed(cfqq);
1304
1305         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1306 }
1307
1308 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1309 {
1310         struct cfq_io_context *cic;
1311         struct rb_node *n;
1312
1313         ioc->ioprio_changed = 0;
1314
1315         n = rb_first(&ioc->cic_root);
1316         while (n != NULL) {
1317                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1318
1319                 changed_ioprio(cic);
1320                 n = rb_next(n);
1321         }
1322 }
1323
1324 static struct cfq_queue *
1325 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1326               gfp_t gfp_mask)
1327 {
1328         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1329         struct cfq_queue *cfqq, *new_cfqq = NULL;
1330         unsigned short ioprio;
1331
1332 retry:
1333         ioprio = tsk->ioprio;
1334         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1335
1336         if (!cfqq) {
1337                 if (new_cfqq) {
1338                         cfqq = new_cfqq;
1339                         new_cfqq = NULL;
1340                 } else if (gfp_mask & __GFP_WAIT) {
1341                         /*
1342                          * Inform the allocator of the fact that we will
1343                          * just repeat this allocation if it fails, to allow
1344                          * the allocator to do whatever it needs to attempt to
1345                          * free memory.
1346                          */
1347                         spin_unlock_irq(cfqd->queue->queue_lock);
1348                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1349                         spin_lock_irq(cfqd->queue->queue_lock);
1350                         goto retry;
1351                 } else {
1352                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1353                         if (!cfqq)
1354                                 goto out;
1355                 }
1356
1357                 memset(cfqq, 0, sizeof(*cfqq));
1358
1359                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1360                 INIT_LIST_HEAD(&cfqq->cfq_list);
1361                 INIT_LIST_HEAD(&cfqq->fifo);
1362
1363                 cfqq->key = key;
1364                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1365                 atomic_set(&cfqq->ref, 0);
1366                 cfqq->cfqd = cfqd;
1367                 /*
1368                  * set ->slice_left to allow preemption for a new process
1369                  */
1370                 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1371                 cfq_mark_cfqq_idle_window(cfqq);
1372                 cfq_mark_cfqq_prio_changed(cfqq);
1373                 cfq_mark_cfqq_queue_new(cfqq);
1374                 cfq_init_prio_data(cfqq);
1375         }
1376
1377         if (new_cfqq)
1378                 kmem_cache_free(cfq_pool, new_cfqq);
1379
1380         atomic_inc(&cfqq->ref);
1381 out:
1382         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1383         return cfqq;
1384 }
1385
1386 static void
1387 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1388 {
1389         WARN_ON(!list_empty(&cic->queue_list));
1390         rb_erase(&cic->rb_node, &ioc->cic_root);
1391         kmem_cache_free(cfq_ioc_pool, cic);
1392         elv_ioc_count_dec(ioc_count);
1393 }
1394
1395 static struct cfq_io_context *
1396 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1397 {
1398         struct rb_node *n;
1399         struct cfq_io_context *cic;
1400         void *k, *key = cfqd;
1401
1402 restart:
1403         n = ioc->cic_root.rb_node;
1404         while (n) {
1405                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1406                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1407                 k = cic->key;
1408                 if (unlikely(!k)) {
1409                         cfq_drop_dead_cic(ioc, cic);
1410                         goto restart;
1411                 }
1412
1413                 if (key < k)
1414                         n = n->rb_left;
1415                 else if (key > k)
1416                         n = n->rb_right;
1417                 else
1418                         return cic;
1419         }
1420
1421         return NULL;
1422 }
1423
1424 static inline void
1425 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1426              struct cfq_io_context *cic)
1427 {
1428         struct rb_node **p;
1429         struct rb_node *parent;
1430         struct cfq_io_context *__cic;
1431         unsigned long flags;
1432         void *k;
1433
1434         cic->ioc = ioc;
1435         cic->key = cfqd;
1436
1437 restart:
1438         parent = NULL;
1439         p = &ioc->cic_root.rb_node;
1440         while (*p) {
1441                 parent = *p;
1442                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1443                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1444                 k = __cic->key;
1445                 if (unlikely(!k)) {
1446                         cfq_drop_dead_cic(ioc, __cic);
1447                         goto restart;
1448                 }
1449
1450                 if (cic->key < k)
1451                         p = &(*p)->rb_left;
1452                 else if (cic->key > k)
1453                         p = &(*p)->rb_right;
1454                 else
1455                         BUG();
1456         }
1457
1458         rb_link_node(&cic->rb_node, parent, p);
1459         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1460
1461         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1462         list_add(&cic->queue_list, &cfqd->cic_list);
1463         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1464 }
1465
1466 /*
1467  * Setup general io context and cfq io context. There can be several cfq
1468  * io contexts per general io context, if this process is doing io to more
1469  * than one device managed by cfq.
1470  */
1471 static struct cfq_io_context *
1472 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1473 {
1474         struct io_context *ioc = NULL;
1475         struct cfq_io_context *cic;
1476
1477         might_sleep_if(gfp_mask & __GFP_WAIT);
1478
1479         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1480         if (!ioc)
1481                 return NULL;
1482
1483         cic = cfq_cic_rb_lookup(cfqd, ioc);
1484         if (cic)
1485                 goto out;
1486
1487         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1488         if (cic == NULL)
1489                 goto err;
1490
1491         cfq_cic_link(cfqd, ioc, cic);
1492 out:
1493         smp_read_barrier_depends();
1494         if (unlikely(ioc->ioprio_changed))
1495                 cfq_ioc_set_ioprio(ioc);
1496
1497         return cic;
1498 err:
1499         put_io_context(ioc);
1500         return NULL;
1501 }
1502
1503 static void
1504 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1505 {
1506         unsigned long elapsed = jiffies - cic->last_end_request;
1507         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1508
1509         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1510         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1511         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1512 }
1513
1514 static void
1515 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1516 {
1517         sector_t sdist;
1518         u64 total;
1519
1520         if (cic->last_request_pos < rq->sector)
1521                 sdist = rq->sector - cic->last_request_pos;
1522         else
1523                 sdist = cic->last_request_pos - rq->sector;
1524
1525         /*
1526          * Don't allow the seek distance to get too large from the
1527          * odd fragment, pagein, etc
1528          */
1529         if (cic->seek_samples <= 60) /* second&third seek */
1530                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1531         else
1532                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1533
1534         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1535         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1536         total = cic->seek_total + (cic->seek_samples/2);
1537         do_div(total, cic->seek_samples);
1538         cic->seek_mean = (sector_t)total;
1539 }
1540
1541 /*
1542  * Disable idle window if the process thinks too long or seeks so much that
1543  * it doesn't matter
1544  */
1545 static void
1546 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547                        struct cfq_io_context *cic)
1548 {
1549         int enable_idle = cfq_cfqq_idle_window(cfqq);
1550
1551         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1552             (cfqd->hw_tag && CIC_SEEKY(cic)))
1553                 enable_idle = 0;
1554         else if (sample_valid(cic->ttime_samples)) {
1555                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1556                         enable_idle = 0;
1557                 else
1558                         enable_idle = 1;
1559         }
1560
1561         if (enable_idle)
1562                 cfq_mark_cfqq_idle_window(cfqq);
1563         else
1564                 cfq_clear_cfqq_idle_window(cfqq);
1565 }
1566
1567
1568 /*
1569  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1570  * no or if we aren't sure, a 1 will cause a preempt.
1571  */
1572 static int
1573 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1574                    struct request *rq)
1575 {
1576         struct cfq_queue *cfqq = cfqd->active_queue;
1577
1578         if (cfq_class_idle(new_cfqq))
1579                 return 0;
1580
1581         if (!cfqq)
1582                 return 0;
1583
1584         if (cfq_class_idle(cfqq))
1585                 return 1;
1586         if (!cfq_cfqq_wait_request(new_cfqq))
1587                 return 0;
1588         /*
1589          * if it doesn't have slice left, forget it
1590          */
1591         if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1592                 return 0;
1593         /*
1594          * if the new request is sync, but the currently running queue is
1595          * not, let the sync request have priority.
1596          */
1597         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1598                 return 1;
1599         /*
1600          * So both queues are sync. Let the new request get disk time if
1601          * it's a metadata request and the current queue is doing regular IO.
1602          */
1603         if (rq_is_meta(rq) && !cfqq->meta_pending)
1604                 return 1;
1605
1606         return 0;
1607 }
1608
1609 /*
1610  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1611  * let it have half of its nominal slice.
1612  */
1613 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1614 {
1615         cfq_slice_expired(cfqd, 1);
1616
1617         if (!cfqq->slice_left)
1618                 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1619
1620         /*
1621          * Put the new queue at the front of the of the current list,
1622          * so we know that it will be selected next.
1623          */
1624         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1625         list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1626
1627         cfqq->slice_end = 0;
1628         cfq_mark_cfqq_slice_new(cfqq);
1629 }
1630
1631 /*
1632  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1633  * something we should do about it
1634  */
1635 static void
1636 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1637                 struct request *rq)
1638 {
1639         struct cfq_io_context *cic = RQ_CIC(rq);
1640
1641         if (rq_is_meta(rq))
1642                 cfqq->meta_pending++;
1643
1644         /*
1645          * check if this request is a better next-serve candidate)) {
1646          */
1647         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1648         BUG_ON(!cfqq->next_rq);
1649
1650         /*
1651          * we never wait for an async request and we don't allow preemption
1652          * of an async request. so just return early
1653          */
1654         if (!rq_is_sync(rq)) {
1655                 /*
1656                  * sync process issued an async request, if it's waiting
1657                  * then expire it and kick rq handling.
1658                  */
1659                 if (cic == cfqd->active_cic &&
1660                     del_timer(&cfqd->idle_slice_timer)) {
1661                         cfq_slice_expired(cfqd, 0);
1662                         blk_start_queueing(cfqd->queue);
1663                 }
1664                 return;
1665         }
1666
1667         cfq_update_io_thinktime(cfqd, cic);
1668         cfq_update_io_seektime(cic, rq);
1669         cfq_update_idle_window(cfqd, cfqq, cic);
1670
1671         cic->last_request_pos = rq->sector + rq->nr_sectors;
1672
1673         if (cfqq == cfqd->active_queue) {
1674                 /*
1675                  * if we are waiting for a request for this queue, let it rip
1676                  * immediately and flag that we must not expire this queue
1677                  * just now
1678                  */
1679                 if (cfq_cfqq_wait_request(cfqq)) {
1680                         cfq_mark_cfqq_must_dispatch(cfqq);
1681                         del_timer(&cfqd->idle_slice_timer);
1682                         blk_start_queueing(cfqd->queue);
1683                 }
1684         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1685                 /*
1686                  * not the active queue - expire current slice if it is
1687                  * idle and has expired it's mean thinktime or this new queue
1688                  * has some old slice time left and is of higher priority
1689                  */
1690                 cfq_preempt_queue(cfqd, cfqq);
1691                 cfq_mark_cfqq_must_dispatch(cfqq);
1692                 blk_start_queueing(cfqd->queue);
1693         }
1694 }
1695
1696 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1697 {
1698         struct cfq_data *cfqd = q->elevator->elevator_data;
1699         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1700
1701         cfq_init_prio_data(cfqq);
1702
1703         cfq_add_rq_rb(rq);
1704
1705         list_add_tail(&rq->queuelist, &cfqq->fifo);
1706
1707         cfq_rq_enqueued(cfqd, cfqq, rq);
1708 }
1709
1710 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1711 {
1712         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1713         struct cfq_data *cfqd = cfqq->cfqd;
1714         const int sync = rq_is_sync(rq);
1715         unsigned long now;
1716
1717         now = jiffies;
1718
1719         WARN_ON(!cfqd->rq_in_driver);
1720         WARN_ON(!cfqq->on_dispatch[sync]);
1721         cfqd->rq_in_driver--;
1722         cfqq->on_dispatch[sync]--;
1723         cfqq->service_last = now;
1724
1725         if (!cfq_class_idle(cfqq))
1726                 cfqd->last_end_request = now;
1727
1728         cfq_resort_rr_list(cfqq, 0);
1729
1730         if (sync)
1731                 RQ_CIC(rq)->last_end_request = now;
1732
1733         /*
1734          * If this is the active queue, check if it needs to be expired,
1735          * or if we want to idle in case it has no pending requests.
1736          */
1737         if (cfqd->active_queue == cfqq) {
1738                 if (cfq_cfqq_slice_new(cfqq)) {
1739                         cfq_set_prio_slice(cfqd, cfqq);
1740                         cfq_clear_cfqq_slice_new(cfqq);
1741                 }
1742                 if (cfq_slice_used(cfqq))
1743                         cfq_slice_expired(cfqd, 0);
1744                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1745                         if (!cfq_arm_slice_timer(cfqd, cfqq))
1746                                 cfq_schedule_dispatch(cfqd);
1747                 }
1748         }
1749 }
1750
1751 /*
1752  * we temporarily boost lower priority queues if they are holding fs exclusive
1753  * resources. they are boosted to normal prio (CLASS_BE/4)
1754  */
1755 static void cfq_prio_boost(struct cfq_queue *cfqq)
1756 {
1757         const int ioprio_class = cfqq->ioprio_class;
1758         const int ioprio = cfqq->ioprio;
1759
1760         if (has_fs_excl()) {
1761                 /*
1762                  * boost idle prio on transactions that would lock out other
1763                  * users of the filesystem
1764                  */
1765                 if (cfq_class_idle(cfqq))
1766                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1767                 if (cfqq->ioprio > IOPRIO_NORM)
1768                         cfqq->ioprio = IOPRIO_NORM;
1769         } else {
1770                 /*
1771                  * check if we need to unboost the queue
1772                  */
1773                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1774                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1775                 if (cfqq->ioprio != cfqq->org_ioprio)
1776                         cfqq->ioprio = cfqq->org_ioprio;
1777         }
1778
1779         /*
1780          * refile between round-robin lists if we moved the priority class
1781          */
1782         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio))
1783                 cfq_resort_rr_list(cfqq, 0);
1784 }
1785
1786 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1787 {
1788         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1789             !cfq_cfqq_must_alloc_slice(cfqq)) {
1790                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1791                 return ELV_MQUEUE_MUST;
1792         }
1793
1794         return ELV_MQUEUE_MAY;
1795 }
1796
1797 static int cfq_may_queue(request_queue_t *q, int rw)
1798 {
1799         struct cfq_data *cfqd = q->elevator->elevator_data;
1800         struct task_struct *tsk = current;
1801         struct cfq_queue *cfqq;
1802         unsigned int key;
1803
1804         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1805
1806         /*
1807          * don't force setup of a queue from here, as a call to may_queue
1808          * does not necessarily imply that a request actually will be queued.
1809          * so just lookup a possibly existing queue, or return 'may queue'
1810          * if that fails
1811          */
1812         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1813         if (cfqq) {
1814                 cfq_init_prio_data(cfqq);
1815                 cfq_prio_boost(cfqq);
1816
1817                 return __cfq_may_queue(cfqq);
1818         }
1819
1820         return ELV_MQUEUE_MAY;
1821 }
1822
1823 /*
1824  * queue lock held here
1825  */
1826 static void cfq_put_request(struct request *rq)
1827 {
1828         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1829
1830         if (cfqq) {
1831                 const int rw = rq_data_dir(rq);
1832
1833                 BUG_ON(!cfqq->allocated[rw]);
1834                 cfqq->allocated[rw]--;
1835
1836                 put_io_context(RQ_CIC(rq)->ioc);
1837
1838                 rq->elevator_private = NULL;
1839                 rq->elevator_private2 = NULL;
1840
1841                 cfq_put_queue(cfqq);
1842         }
1843 }
1844
1845 /*
1846  * Allocate cfq data structures associated with this request.
1847  */
1848 static int
1849 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1850 {
1851         struct cfq_data *cfqd = q->elevator->elevator_data;
1852         struct task_struct *tsk = current;
1853         struct cfq_io_context *cic;
1854         const int rw = rq_data_dir(rq);
1855         const int is_sync = rq_is_sync(rq);
1856         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1857         struct cfq_queue *cfqq;
1858         unsigned long flags;
1859
1860         might_sleep_if(gfp_mask & __GFP_WAIT);
1861
1862         cic = cfq_get_io_context(cfqd, gfp_mask);
1863
1864         spin_lock_irqsave(q->queue_lock, flags);
1865
1866         if (!cic)
1867                 goto queue_fail;
1868
1869         if (!cic->cfqq[is_sync]) {
1870                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1871                 if (!cfqq)
1872                         goto queue_fail;
1873
1874                 cic->cfqq[is_sync] = cfqq;
1875         } else
1876                 cfqq = cic->cfqq[is_sync];
1877
1878         cfqq->allocated[rw]++;
1879         cfq_clear_cfqq_must_alloc(cfqq);
1880         atomic_inc(&cfqq->ref);
1881
1882         spin_unlock_irqrestore(q->queue_lock, flags);
1883
1884         rq->elevator_private = cic;
1885         rq->elevator_private2 = cfqq;
1886         return 0;
1887
1888 queue_fail:
1889         if (cic)
1890                 put_io_context(cic->ioc);
1891
1892         cfq_schedule_dispatch(cfqd);
1893         spin_unlock_irqrestore(q->queue_lock, flags);
1894         return 1;
1895 }
1896
1897 static void cfq_kick_queue(struct work_struct *work)
1898 {
1899         struct cfq_data *cfqd =
1900                 container_of(work, struct cfq_data, unplug_work);
1901         request_queue_t *q = cfqd->queue;
1902         unsigned long flags;
1903
1904         spin_lock_irqsave(q->queue_lock, flags);
1905         blk_start_queueing(q);
1906         spin_unlock_irqrestore(q->queue_lock, flags);
1907 }
1908
1909 /*
1910  * Timer running if the active_queue is currently idling inside its time slice
1911  */
1912 static void cfq_idle_slice_timer(unsigned long data)
1913 {
1914         struct cfq_data *cfqd = (struct cfq_data *) data;
1915         struct cfq_queue *cfqq;
1916         unsigned long flags;
1917
1918         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1919
1920         if ((cfqq = cfqd->active_queue) != NULL) {
1921                 /*
1922                  * expired
1923                  */
1924                 if (cfq_slice_used(cfqq))
1925                         goto expire;
1926
1927                 /*
1928                  * only expire and reinvoke request handler, if there are
1929                  * other queues with pending requests
1930                  */
1931                 if (!cfqd->busy_queues)
1932                         goto out_cont;
1933
1934                 /*
1935                  * not expired and it has a request pending, let it dispatch
1936                  */
1937                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1938                         cfq_mark_cfqq_must_dispatch(cfqq);
1939                         goto out_kick;
1940                 }
1941         }
1942 expire:
1943         cfq_slice_expired(cfqd, 0);
1944 out_kick:
1945         cfq_schedule_dispatch(cfqd);
1946 out_cont:
1947         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1948 }
1949
1950 /*
1951  * Timer running if an idle class queue is waiting for service
1952  */
1953 static void cfq_idle_class_timer(unsigned long data)
1954 {
1955         struct cfq_data *cfqd = (struct cfq_data *) data;
1956         unsigned long flags, end;
1957
1958         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1959
1960         /*
1961          * race with a non-idle queue, reset timer
1962          */
1963         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1964         if (!time_after_eq(jiffies, end))
1965                 mod_timer(&cfqd->idle_class_timer, end);
1966         else
1967                 cfq_schedule_dispatch(cfqd);
1968
1969         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1970 }
1971
1972 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1973 {
1974         del_timer_sync(&cfqd->idle_slice_timer);
1975         del_timer_sync(&cfqd->idle_class_timer);
1976         blk_sync_queue(cfqd->queue);
1977 }
1978
1979 static void cfq_exit_queue(elevator_t *e)
1980 {
1981         struct cfq_data *cfqd = e->elevator_data;
1982         request_queue_t *q = cfqd->queue;
1983
1984         cfq_shutdown_timer_wq(cfqd);
1985
1986         spin_lock_irq(q->queue_lock);
1987
1988         if (cfqd->active_queue)
1989                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1990
1991         while (!list_empty(&cfqd->cic_list)) {
1992                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1993                                                         struct cfq_io_context,
1994                                                         queue_list);
1995
1996                 __cfq_exit_single_io_context(cfqd, cic);
1997         }
1998
1999         spin_unlock_irq(q->queue_lock);
2000
2001         cfq_shutdown_timer_wq(cfqd);
2002
2003         kfree(cfqd->cfq_hash);
2004         kfree(cfqd);
2005 }
2006
2007 static void *cfq_init_queue(request_queue_t *q)
2008 {
2009         struct cfq_data *cfqd;
2010         int i;
2011
2012         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2013         if (!cfqd)
2014                 return NULL;
2015
2016         memset(cfqd, 0, sizeof(*cfqd));
2017
2018         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2019                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2020
2021         INIT_LIST_HEAD(&cfqd->busy_rr);
2022         INIT_LIST_HEAD(&cfqd->cur_rr);
2023         INIT_LIST_HEAD(&cfqd->idle_rr);
2024         INIT_LIST_HEAD(&cfqd->cic_list);
2025
2026         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2027         if (!cfqd->cfq_hash)
2028                 goto out_free;
2029
2030         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2031                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2032
2033         cfqd->queue = q;
2034
2035         init_timer(&cfqd->idle_slice_timer);
2036         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2037         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2038
2039         init_timer(&cfqd->idle_class_timer);
2040         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2041         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2042
2043         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2044
2045         cfqd->cfq_quantum = cfq_quantum;
2046         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2047         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2048         cfqd->cfq_back_max = cfq_back_max;
2049         cfqd->cfq_back_penalty = cfq_back_penalty;
2050         cfqd->cfq_slice[0] = cfq_slice_async;
2051         cfqd->cfq_slice[1] = cfq_slice_sync;
2052         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2053         cfqd->cfq_slice_idle = cfq_slice_idle;
2054
2055         return cfqd;
2056 out_free:
2057         kfree(cfqd);
2058         return NULL;
2059 }
2060
2061 static void cfq_slab_kill(void)
2062 {
2063         if (cfq_pool)
2064                 kmem_cache_destroy(cfq_pool);
2065         if (cfq_ioc_pool)
2066                 kmem_cache_destroy(cfq_ioc_pool);
2067 }
2068
2069 static int __init cfq_slab_setup(void)
2070 {
2071         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2072                                         NULL, NULL);
2073         if (!cfq_pool)
2074                 goto fail;
2075
2076         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2077                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2078         if (!cfq_ioc_pool)
2079                 goto fail;
2080
2081         return 0;
2082 fail:
2083         cfq_slab_kill();
2084         return -ENOMEM;
2085 }
2086
2087 /*
2088  * sysfs parts below -->
2089  */
2090
2091 static ssize_t
2092 cfq_var_show(unsigned int var, char *page)
2093 {
2094         return sprintf(page, "%d\n", var);
2095 }
2096
2097 static ssize_t
2098 cfq_var_store(unsigned int *var, const char *page, size_t count)
2099 {
2100         char *p = (char *) page;
2101
2102         *var = simple_strtoul(p, &p, 10);
2103         return count;
2104 }
2105
2106 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2107 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2108 {                                                                       \
2109         struct cfq_data *cfqd = e->elevator_data;                       \
2110         unsigned int __data = __VAR;                                    \
2111         if (__CONV)                                                     \
2112                 __data = jiffies_to_msecs(__data);                      \
2113         return cfq_var_show(__data, (page));                            \
2114 }
2115 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2116 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2117 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2118 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2119 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2120 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2121 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2122 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2123 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2124 #undef SHOW_FUNCTION
2125
2126 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2127 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2128 {                                                                       \
2129         struct cfq_data *cfqd = e->elevator_data;                       \
2130         unsigned int __data;                                            \
2131         int ret = cfq_var_store(&__data, (page), count);                \
2132         if (__data < (MIN))                                             \
2133                 __data = (MIN);                                         \
2134         else if (__data > (MAX))                                        \
2135                 __data = (MAX);                                         \
2136         if (__CONV)                                                     \
2137                 *(__PTR) = msecs_to_jiffies(__data);                    \
2138         else                                                            \
2139                 *(__PTR) = __data;                                      \
2140         return ret;                                                     \
2141 }
2142 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2143 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2144 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2145 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2146 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2147 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2148 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2149 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2150 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2151 #undef STORE_FUNCTION
2152
2153 #define CFQ_ATTR(name) \
2154         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2155
2156 static struct elv_fs_entry cfq_attrs[] = {
2157         CFQ_ATTR(quantum),
2158         CFQ_ATTR(fifo_expire_sync),
2159         CFQ_ATTR(fifo_expire_async),
2160         CFQ_ATTR(back_seek_max),
2161         CFQ_ATTR(back_seek_penalty),
2162         CFQ_ATTR(slice_sync),
2163         CFQ_ATTR(slice_async),
2164         CFQ_ATTR(slice_async_rq),
2165         CFQ_ATTR(slice_idle),
2166         __ATTR_NULL
2167 };
2168
2169 static struct elevator_type iosched_cfq = {
2170         .ops = {
2171                 .elevator_merge_fn =            cfq_merge,
2172                 .elevator_merged_fn =           cfq_merged_request,
2173                 .elevator_merge_req_fn =        cfq_merged_requests,
2174                 .elevator_allow_merge_fn =      cfq_allow_merge,
2175                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2176                 .elevator_add_req_fn =          cfq_insert_request,
2177                 .elevator_activate_req_fn =     cfq_activate_request,
2178                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2179                 .elevator_queue_empty_fn =      cfq_queue_empty,
2180                 .elevator_completed_req_fn =    cfq_completed_request,
2181                 .elevator_former_req_fn =       elv_rb_former_request,
2182                 .elevator_latter_req_fn =       elv_rb_latter_request,
2183                 .elevator_set_req_fn =          cfq_set_request,
2184                 .elevator_put_req_fn =          cfq_put_request,
2185                 .elevator_may_queue_fn =        cfq_may_queue,
2186                 .elevator_init_fn =             cfq_init_queue,
2187                 .elevator_exit_fn =             cfq_exit_queue,
2188                 .trim =                         cfq_free_io_context,
2189         },
2190         .elevator_attrs =       cfq_attrs,
2191         .elevator_name =        "cfq",
2192         .elevator_owner =       THIS_MODULE,
2193 };
2194
2195 static int __init cfq_init(void)
2196 {
2197         int ret;
2198
2199         /*
2200          * could be 0 on HZ < 1000 setups
2201          */
2202         if (!cfq_slice_async)
2203                 cfq_slice_async = 1;
2204         if (!cfq_slice_idle)
2205                 cfq_slice_idle = 1;
2206
2207         if (cfq_slab_setup())
2208                 return -ENOMEM;
2209
2210         ret = elv_register(&iosched_cfq);
2211         if (ret)
2212                 cfq_slab_kill();
2213
2214         return ret;
2215 }
2216
2217 static void __exit cfq_exit(void)
2218 {
2219         DECLARE_COMPLETION_ONSTACK(all_gone);
2220         elv_unregister(&iosched_cfq);
2221         ioc_gone = &all_gone;
2222         /* ioc_gone's update must be visible before reading ioc_count */
2223         smp_wmb();
2224         if (elv_ioc_count_read(ioc_count))
2225                 wait_for_completion(ioc_gone);
2226         synchronize_rcu();
2227         cfq_slab_kill();
2228 }
2229
2230 module_init(cfq_init);
2231 module_exit(cfq_exit);
2232
2233 MODULE_AUTHOR("Jens Axboe");
2234 MODULE_LICENSE("GPL");
2235 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");