xen: remove xen_load_gdt debug
[safe/jmp/linux-2.6] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55
56 EXPORT_SYMBOL_GPL(hypercall_page);
57
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66
67 struct shared_info xen_dummy_shared_info;
68
69 void *xen_initial_gdt;
70
71 /*
72  * Point at some empty memory to start with. We map the real shared_info
73  * page as soon as fixmap is up and running.
74  */
75 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
76
77 /*
78  * Flag to determine whether vcpu info placement is available on all
79  * VCPUs.  We assume it is to start with, and then set it to zero on
80  * the first failure.  This is because it can succeed on some VCPUs
81  * and not others, since it can involve hypervisor memory allocation,
82  * or because the guest failed to guarantee all the appropriate
83  * constraints on all VCPUs (ie buffer can't cross a page boundary).
84  *
85  * Note that any particular CPU may be using a placed vcpu structure,
86  * but we can only optimise if the all are.
87  *
88  * 0: not available, 1: available
89  */
90 static int have_vcpu_info_placement = 1;
91
92 static void xen_vcpu_setup(int cpu)
93 {
94         struct vcpu_register_vcpu_info info;
95         int err;
96         struct vcpu_info *vcpup;
97
98         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
99         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
100
101         if (!have_vcpu_info_placement)
102                 return;         /* already tested, not available */
103
104         vcpup = &per_cpu(xen_vcpu_info, cpu);
105
106         info.mfn = arbitrary_virt_to_mfn(vcpup);
107         info.offset = offset_in_page(vcpup);
108
109         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
110                cpu, vcpup, info.mfn, info.offset);
111
112         /* Check to see if the hypervisor will put the vcpu_info
113            structure where we want it, which allows direct access via
114            a percpu-variable. */
115         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
116
117         if (err) {
118                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
119                 have_vcpu_info_placement = 0;
120         } else {
121                 /* This cpu is using the registered vcpu info, even if
122                    later ones fail to. */
123                 per_cpu(xen_vcpu, cpu) = vcpup;
124
125                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
126                        cpu, vcpup);
127         }
128 }
129
130 /*
131  * On restore, set the vcpu placement up again.
132  * If it fails, then we're in a bad state, since
133  * we can't back out from using it...
134  */
135 void xen_vcpu_restore(void)
136 {
137         if (have_vcpu_info_placement) {
138                 int cpu;
139
140                 for_each_online_cpu(cpu) {
141                         bool other_cpu = (cpu != smp_processor_id());
142
143                         if (other_cpu &&
144                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
145                                 BUG();
146
147                         xen_vcpu_setup(cpu);
148
149                         if (other_cpu &&
150                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
151                                 BUG();
152                 }
153
154                 BUG_ON(!have_vcpu_info_placement);
155         }
156 }
157
158 static void __init xen_banner(void)
159 {
160         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
161         struct xen_extraversion extra;
162         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
163
164         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
165                pv_info.name);
166         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
167                version >> 16, version & 0xffff, extra.extraversion,
168                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
169 }
170
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172                       unsigned int *cx, unsigned int *dx)
173 {
174         unsigned maskedx = ~0;
175
176         /*
177          * Mask out inconvenient features, to try and disable as many
178          * unsupported kernel subsystems as possible.
179          */
180         if (*ax == 1)
181                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
182                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
183                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
184                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
185                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
186
187         asm(XEN_EMULATE_PREFIX "cpuid"
188                 : "=a" (*ax),
189                   "=b" (*bx),
190                   "=c" (*cx),
191                   "=d" (*dx)
192                 : "0" (*ax), "2" (*cx));
193         *dx &= maskedx;
194 }
195
196 static void xen_set_debugreg(int reg, unsigned long val)
197 {
198         HYPERVISOR_set_debugreg(reg, val);
199 }
200
201 static unsigned long xen_get_debugreg(int reg)
202 {
203         return HYPERVISOR_get_debugreg(reg);
204 }
205
206 void xen_leave_lazy(void)
207 {
208         paravirt_leave_lazy(paravirt_get_lazy_mode());
209         xen_mc_flush();
210 }
211
212 static unsigned long xen_store_tr(void)
213 {
214         return 0;
215 }
216
217 /*
218  * Set the page permissions for a particular virtual address.  If the
219  * address is a vmalloc mapping (or other non-linear mapping), then
220  * find the linear mapping of the page and also set its protections to
221  * match.
222  */
223 static void set_aliased_prot(void *v, pgprot_t prot)
224 {
225         int level;
226         pte_t *ptep;
227         pte_t pte;
228         unsigned long pfn;
229         struct page *page;
230
231         ptep = lookup_address((unsigned long)v, &level);
232         BUG_ON(ptep == NULL);
233
234         pfn = pte_pfn(*ptep);
235         page = pfn_to_page(pfn);
236
237         pte = pfn_pte(pfn, prot);
238
239         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
240                 BUG();
241
242         if (!PageHighMem(page)) {
243                 void *av = __va(PFN_PHYS(pfn));
244
245                 if (av != v)
246                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
247                                 BUG();
248         } else
249                 kmap_flush_unused();
250 }
251
252 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
253 {
254         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
255         int i;
256
257         for(i = 0; i < entries; i += entries_per_page)
258                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
259 }
260
261 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
262 {
263         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
264         int i;
265
266         for(i = 0; i < entries; i += entries_per_page)
267                 set_aliased_prot(ldt + i, PAGE_KERNEL);
268 }
269
270 static void xen_set_ldt(const void *addr, unsigned entries)
271 {
272         struct mmuext_op *op;
273         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
274
275         op = mcs.args;
276         op->cmd = MMUEXT_SET_LDT;
277         op->arg1.linear_addr = (unsigned long)addr;
278         op->arg2.nr_ents = entries;
279
280         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
281
282         xen_mc_issue(PARAVIRT_LAZY_CPU);
283 }
284
285 static void xen_load_gdt(const struct desc_ptr *dtr)
286 {
287         unsigned long va = dtr->address;
288         unsigned int size = dtr->size + 1;
289         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
290         unsigned long frames[pages];
291         int f;
292
293         /* A GDT can be up to 64k in size, which corresponds to 8192
294            8-byte entries, or 16 4k pages.. */
295
296         BUG_ON(size > 65536);
297         BUG_ON(va & ~PAGE_MASK);
298
299         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
300                 int level;
301                 pte_t *ptep = lookup_address(va, &level);
302                 unsigned long pfn, mfn;
303                 void *virt;
304
305                 BUG_ON(ptep == NULL);
306
307                 pfn = pte_pfn(*ptep);
308                 mfn = pfn_to_mfn(pfn);
309                 virt = __va(PFN_PHYS(pfn));
310
311                 frames[f] = mfn;
312
313                 make_lowmem_page_readonly((void *)va);
314                 make_lowmem_page_readonly(virt);
315         }
316
317         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
318                 BUG();
319 }
320
321 static void load_TLS_descriptor(struct thread_struct *t,
322                                 unsigned int cpu, unsigned int i)
323 {
324         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
325         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
326         struct multicall_space mc = __xen_mc_entry(0);
327
328         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
329 }
330
331 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
332 {
333         /*
334          * XXX sleazy hack: If we're being called in a lazy-cpu zone
335          * and lazy gs handling is enabled, it means we're in a
336          * context switch, and %gs has just been saved.  This means we
337          * can zero it out to prevent faults on exit from the
338          * hypervisor if the next process has no %gs.  Either way, it
339          * has been saved, and the new value will get loaded properly.
340          * This will go away as soon as Xen has been modified to not
341          * save/restore %gs for normal hypercalls.
342          *
343          * On x86_64, this hack is not used for %gs, because gs points
344          * to KERNEL_GS_BASE (and uses it for PDA references), so we
345          * must not zero %gs on x86_64
346          *
347          * For x86_64, we need to zero %fs, otherwise we may get an
348          * exception between the new %fs descriptor being loaded and
349          * %fs being effectively cleared at __switch_to().
350          */
351         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
352 #ifdef CONFIG_X86_32
353                 lazy_load_gs(0);
354 #else
355                 loadsegment(fs, 0);
356 #endif
357         }
358
359         xen_mc_batch();
360
361         load_TLS_descriptor(t, cpu, 0);
362         load_TLS_descriptor(t, cpu, 1);
363         load_TLS_descriptor(t, cpu, 2);
364
365         xen_mc_issue(PARAVIRT_LAZY_CPU);
366 }
367
368 #ifdef CONFIG_X86_64
369 static void xen_load_gs_index(unsigned int idx)
370 {
371         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
372                 BUG();
373 }
374 #endif
375
376 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
377                                 const void *ptr)
378 {
379         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
380         u64 entry = *(u64 *)ptr;
381
382         preempt_disable();
383
384         xen_mc_flush();
385         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
386                 BUG();
387
388         preempt_enable();
389 }
390
391 static int cvt_gate_to_trap(int vector, const gate_desc *val,
392                             struct trap_info *info)
393 {
394         if (val->type != 0xf && val->type != 0xe)
395                 return 0;
396
397         info->vector = vector;
398         info->address = gate_offset(*val);
399         info->cs = gate_segment(*val);
400         info->flags = val->dpl;
401         /* interrupt gates clear IF */
402         if (val->type == 0xe)
403                 info->flags |= 4;
404
405         return 1;
406 }
407
408 /* Locations of each CPU's IDT */
409 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
410
411 /* Set an IDT entry.  If the entry is part of the current IDT, then
412    also update Xen. */
413 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
414 {
415         unsigned long p = (unsigned long)&dt[entrynum];
416         unsigned long start, end;
417
418         preempt_disable();
419
420         start = __get_cpu_var(idt_desc).address;
421         end = start + __get_cpu_var(idt_desc).size + 1;
422
423         xen_mc_flush();
424
425         native_write_idt_entry(dt, entrynum, g);
426
427         if (p >= start && (p + 8) <= end) {
428                 struct trap_info info[2];
429
430                 info[1].address = 0;
431
432                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
433                         if (HYPERVISOR_set_trap_table(info))
434                                 BUG();
435         }
436
437         preempt_enable();
438 }
439
440 static void xen_convert_trap_info(const struct desc_ptr *desc,
441                                   struct trap_info *traps)
442 {
443         unsigned in, out, count;
444
445         count = (desc->size+1) / sizeof(gate_desc);
446         BUG_ON(count > 256);
447
448         for (in = out = 0; in < count; in++) {
449                 gate_desc *entry = (gate_desc*)(desc->address) + in;
450
451                 if (cvt_gate_to_trap(in, entry, &traps[out]))
452                         out++;
453         }
454         traps[out].address = 0;
455 }
456
457 void xen_copy_trap_info(struct trap_info *traps)
458 {
459         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
460
461         xen_convert_trap_info(desc, traps);
462 }
463
464 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
465    hold a spinlock to protect the static traps[] array (static because
466    it avoids allocation, and saves stack space). */
467 static void xen_load_idt(const struct desc_ptr *desc)
468 {
469         static DEFINE_SPINLOCK(lock);
470         static struct trap_info traps[257];
471
472         spin_lock(&lock);
473
474         __get_cpu_var(idt_desc) = *desc;
475
476         xen_convert_trap_info(desc, traps);
477
478         xen_mc_flush();
479         if (HYPERVISOR_set_trap_table(traps))
480                 BUG();
481
482         spin_unlock(&lock);
483 }
484
485 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
486    they're handled differently. */
487 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
488                                 const void *desc, int type)
489 {
490         preempt_disable();
491
492         switch (type) {
493         case DESC_LDT:
494         case DESC_TSS:
495                 /* ignore */
496                 break;
497
498         default: {
499                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
500
501                 xen_mc_flush();
502                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
503                         BUG();
504         }
505
506         }
507
508         preempt_enable();
509 }
510
511 static void xen_load_sp0(struct tss_struct *tss,
512                          struct thread_struct *thread)
513 {
514         struct multicall_space mcs = xen_mc_entry(0);
515         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
516         xen_mc_issue(PARAVIRT_LAZY_CPU);
517 }
518
519 static void xen_set_iopl_mask(unsigned mask)
520 {
521         struct physdev_set_iopl set_iopl;
522
523         /* Force the change at ring 0. */
524         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
525         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
526 }
527
528 static void xen_io_delay(void)
529 {
530 }
531
532 #ifdef CONFIG_X86_LOCAL_APIC
533 static u32 xen_apic_read(u32 reg)
534 {
535         return 0;
536 }
537
538 static void xen_apic_write(u32 reg, u32 val)
539 {
540         /* Warn to see if there's any stray references */
541         WARN_ON(1);
542 }
543
544 static u64 xen_apic_icr_read(void)
545 {
546         return 0;
547 }
548
549 static void xen_apic_icr_write(u32 low, u32 id)
550 {
551         /* Warn to see if there's any stray references */
552         WARN_ON(1);
553 }
554
555 static void xen_apic_wait_icr_idle(void)
556 {
557         return;
558 }
559
560 static u32 xen_safe_apic_wait_icr_idle(void)
561 {
562         return 0;
563 }
564
565 static void set_xen_basic_apic_ops(void)
566 {
567         apic->read = xen_apic_read;
568         apic->write = xen_apic_write;
569         apic->icr_read = xen_apic_icr_read;
570         apic->icr_write = xen_apic_icr_write;
571         apic->wait_icr_idle = xen_apic_wait_icr_idle;
572         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
573 }
574
575 #endif
576
577
578 static void xen_clts(void)
579 {
580         struct multicall_space mcs;
581
582         mcs = xen_mc_entry(0);
583
584         MULTI_fpu_taskswitch(mcs.mc, 0);
585
586         xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588
589 static void xen_write_cr0(unsigned long cr0)
590 {
591         struct multicall_space mcs;
592
593         /* Only pay attention to cr0.TS; everything else is
594            ignored. */
595         mcs = xen_mc_entry(0);
596
597         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
598
599         xen_mc_issue(PARAVIRT_LAZY_CPU);
600 }
601
602 static void xen_write_cr4(unsigned long cr4)
603 {
604         cr4 &= ~X86_CR4_PGE;
605         cr4 &= ~X86_CR4_PSE;
606
607         native_write_cr4(cr4);
608 }
609
610 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
611 {
612         int ret;
613
614         ret = 0;
615
616         switch (msr) {
617 #ifdef CONFIG_X86_64
618                 unsigned which;
619                 u64 base;
620
621         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
622         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
623         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
624
625         set:
626                 base = ((u64)high << 32) | low;
627                 if (HYPERVISOR_set_segment_base(which, base) != 0)
628                         ret = -EFAULT;
629                 break;
630 #endif
631
632         case MSR_STAR:
633         case MSR_CSTAR:
634         case MSR_LSTAR:
635         case MSR_SYSCALL_MASK:
636         case MSR_IA32_SYSENTER_CS:
637         case MSR_IA32_SYSENTER_ESP:
638         case MSR_IA32_SYSENTER_EIP:
639                 /* Fast syscall setup is all done in hypercalls, so
640                    these are all ignored.  Stub them out here to stop
641                    Xen console noise. */
642                 break;
643
644         default:
645                 ret = native_write_msr_safe(msr, low, high);
646         }
647
648         return ret;
649 }
650
651 void xen_setup_shared_info(void)
652 {
653         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
654                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
655                            xen_start_info->shared_info);
656
657                 HYPERVISOR_shared_info =
658                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
659         } else
660                 HYPERVISOR_shared_info =
661                         (struct shared_info *)__va(xen_start_info->shared_info);
662
663 #ifndef CONFIG_SMP
664         /* In UP this is as good a place as any to set up shared info */
665         xen_setup_vcpu_info_placement();
666 #endif
667
668         xen_setup_mfn_list_list();
669 }
670
671 /* This is called once we have the cpu_possible_map */
672 void xen_setup_vcpu_info_placement(void)
673 {
674         int cpu;
675
676         for_each_possible_cpu(cpu)
677                 xen_vcpu_setup(cpu);
678
679         /* xen_vcpu_setup managed to place the vcpu_info within the
680            percpu area for all cpus, so make use of it */
681         if (have_vcpu_info_placement) {
682                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
683
684                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
685                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
686                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
687                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
688                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
689         }
690 }
691
692 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
693                           unsigned long addr, unsigned len)
694 {
695         char *start, *end, *reloc;
696         unsigned ret;
697
698         start = end = reloc = NULL;
699
700 #define SITE(op, x)                                                     \
701         case PARAVIRT_PATCH(op.x):                                      \
702         if (have_vcpu_info_placement) {                                 \
703                 start = (char *)xen_##x##_direct;                       \
704                 end = xen_##x##_direct_end;                             \
705                 reloc = xen_##x##_direct_reloc;                         \
706         }                                                               \
707         goto patch_site
708
709         switch (type) {
710                 SITE(pv_irq_ops, irq_enable);
711                 SITE(pv_irq_ops, irq_disable);
712                 SITE(pv_irq_ops, save_fl);
713                 SITE(pv_irq_ops, restore_fl);
714 #undef SITE
715
716         patch_site:
717                 if (start == NULL || (end-start) > len)
718                         goto default_patch;
719
720                 ret = paravirt_patch_insns(insnbuf, len, start, end);
721
722                 /* Note: because reloc is assigned from something that
723                    appears to be an array, gcc assumes it's non-null,
724                    but doesn't know its relationship with start and
725                    end. */
726                 if (reloc > start && reloc < end) {
727                         int reloc_off = reloc - start;
728                         long *relocp = (long *)(insnbuf + reloc_off);
729                         long delta = start - (char *)addr;
730
731                         *relocp += delta;
732                 }
733                 break;
734
735         default_patch:
736         default:
737                 ret = paravirt_patch_default(type, clobbers, insnbuf,
738                                              addr, len);
739                 break;
740         }
741
742         return ret;
743 }
744
745 static const struct pv_info xen_info __initdata = {
746         .paravirt_enabled = 1,
747         .shared_kernel_pmd = 0,
748
749         .name = "Xen",
750 };
751
752 static const struct pv_init_ops xen_init_ops __initdata = {
753         .patch = xen_patch,
754
755         .banner = xen_banner,
756         .memory_setup = xen_memory_setup,
757         .arch_setup = xen_arch_setup,
758         .post_allocator_init = xen_post_allocator_init,
759 };
760
761 static const struct pv_time_ops xen_time_ops __initdata = {
762         .time_init = xen_time_init,
763
764         .set_wallclock = xen_set_wallclock,
765         .get_wallclock = xen_get_wallclock,
766         .get_tsc_khz = xen_tsc_khz,
767         .sched_clock = xen_sched_clock,
768 };
769
770 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
771         .cpuid = xen_cpuid,
772
773         .set_debugreg = xen_set_debugreg,
774         .get_debugreg = xen_get_debugreg,
775
776         .clts = xen_clts,
777
778         .read_cr0 = native_read_cr0,
779         .write_cr0 = xen_write_cr0,
780
781         .read_cr4 = native_read_cr4,
782         .read_cr4_safe = native_read_cr4_safe,
783         .write_cr4 = xen_write_cr4,
784
785         .wbinvd = native_wbinvd,
786
787         .read_msr = native_read_msr_safe,
788         .write_msr = xen_write_msr_safe,
789         .read_tsc = native_read_tsc,
790         .read_pmc = native_read_pmc,
791
792         .iret = xen_iret,
793         .irq_enable_sysexit = xen_sysexit,
794 #ifdef CONFIG_X86_64
795         .usergs_sysret32 = xen_sysret32,
796         .usergs_sysret64 = xen_sysret64,
797 #endif
798
799         .load_tr_desc = paravirt_nop,
800         .set_ldt = xen_set_ldt,
801         .load_gdt = xen_load_gdt,
802         .load_idt = xen_load_idt,
803         .load_tls = xen_load_tls,
804 #ifdef CONFIG_X86_64
805         .load_gs_index = xen_load_gs_index,
806 #endif
807
808         .alloc_ldt = xen_alloc_ldt,
809         .free_ldt = xen_free_ldt,
810
811         .store_gdt = native_store_gdt,
812         .store_idt = native_store_idt,
813         .store_tr = xen_store_tr,
814
815         .write_ldt_entry = xen_write_ldt_entry,
816         .write_gdt_entry = xen_write_gdt_entry,
817         .write_idt_entry = xen_write_idt_entry,
818         .load_sp0 = xen_load_sp0,
819
820         .set_iopl_mask = xen_set_iopl_mask,
821         .io_delay = xen_io_delay,
822
823         /* Xen takes care of %gs when switching to usermode for us */
824         .swapgs = paravirt_nop,
825
826         .lazy_mode = {
827                 .enter = paravirt_enter_lazy_cpu,
828                 .leave = xen_leave_lazy,
829         },
830 };
831
832 static const struct pv_apic_ops xen_apic_ops __initdata = {
833 #ifdef CONFIG_X86_LOCAL_APIC
834         .setup_boot_clock = paravirt_nop,
835         .setup_secondary_clock = paravirt_nop,
836         .startup_ipi_hook = paravirt_nop,
837 #endif
838 };
839
840 static void xen_reboot(int reason)
841 {
842         struct sched_shutdown r = { .reason = reason };
843
844 #ifdef CONFIG_SMP
845         smp_send_stop();
846 #endif
847
848         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
849                 BUG();
850 }
851
852 static void xen_restart(char *msg)
853 {
854         xen_reboot(SHUTDOWN_reboot);
855 }
856
857 static void xen_emergency_restart(void)
858 {
859         xen_reboot(SHUTDOWN_reboot);
860 }
861
862 static void xen_machine_halt(void)
863 {
864         xen_reboot(SHUTDOWN_poweroff);
865 }
866
867 static void xen_crash_shutdown(struct pt_regs *regs)
868 {
869         xen_reboot(SHUTDOWN_crash);
870 }
871
872 static const struct machine_ops __initdata xen_machine_ops = {
873         .restart = xen_restart,
874         .halt = xen_machine_halt,
875         .power_off = xen_machine_halt,
876         .shutdown = xen_machine_halt,
877         .crash_shutdown = xen_crash_shutdown,
878         .emergency_restart = xen_emergency_restart,
879 };
880
881
882 /* First C function to be called on Xen boot */
883 asmlinkage void __init xen_start_kernel(void)
884 {
885         pgd_t *pgd;
886
887         if (!xen_start_info)
888                 return;
889
890         xen_domain_type = XEN_PV_DOMAIN;
891
892         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
893
894         xen_setup_features();
895
896         /* Install Xen paravirt ops */
897         pv_info = xen_info;
898         pv_init_ops = xen_init_ops;
899         pv_time_ops = xen_time_ops;
900         pv_cpu_ops = xen_cpu_ops;
901         pv_apic_ops = xen_apic_ops;
902         pv_mmu_ops = xen_mmu_ops;
903
904         xen_init_irq_ops();
905
906 #ifdef CONFIG_X86_LOCAL_APIC
907         /*
908          * set up the basic apic ops.
909          */
910         set_xen_basic_apic_ops();
911 #endif
912
913         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
914                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
915                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
916         }
917
918         machine_ops = xen_machine_ops;
919
920 #ifdef CONFIG_X86_64
921         /*
922          * Setup percpu state.  We only need to do this for 64-bit
923          * because 32-bit already has %fs set properly.
924          */
925         load_percpu_segment(0);
926 #endif
927         /*
928          * The only reliable way to retain the initial address of the
929          * percpu gdt_page is to remember it here, so we can go and
930          * mark it RW later, when the initial percpu area is freed.
931          */
932         xen_initial_gdt = &per_cpu(gdt_page, 0);
933
934         xen_smp_init();
935
936         /* Get mfn list */
937         if (!xen_feature(XENFEAT_auto_translated_physmap))
938                 xen_build_dynamic_phys_to_machine();
939
940         pgd = (pgd_t *)xen_start_info->pt_base;
941
942         /* Prevent unwanted bits from being set in PTEs. */
943         __supported_pte_mask &= ~_PAGE_GLOBAL;
944         if (!xen_initial_domain())
945                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
946
947         /* Don't do the full vcpu_info placement stuff until we have a
948            possible map and a non-dummy shared_info. */
949         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
950
951         local_irq_disable();
952         early_boot_irqs_off();
953
954         xen_raw_console_write("mapping kernel into physical memory\n");
955         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
956
957         init_mm.pgd = pgd;
958
959         /* keep using Xen gdt for now; no urgent need to change it */
960
961         pv_info.kernel_rpl = 1;
962         if (xen_feature(XENFEAT_supervisor_mode_kernel))
963                 pv_info.kernel_rpl = 0;
964
965         /* set the limit of our address space */
966         xen_reserve_top();
967
968 #ifdef CONFIG_X86_32
969         /* set up basic CPUID stuff */
970         cpu_detect(&new_cpu_data);
971         new_cpu_data.hard_math = 1;
972         new_cpu_data.x86_capability[0] = cpuid_edx(1);
973 #endif
974
975         /* Poke various useful things into boot_params */
976         boot_params.hdr.type_of_loader = (9 << 4) | 0;
977         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
978                 ? __pa(xen_start_info->mod_start) : 0;
979         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
980         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
981
982         if (!xen_initial_domain()) {
983                 add_preferred_console("xenboot", 0, NULL);
984                 add_preferred_console("tty", 0, NULL);
985                 add_preferred_console("hvc", 0, NULL);
986         }
987
988         xen_raw_console_write("about to get started...\n");
989
990         /* Start the world */
991 #ifdef CONFIG_X86_32
992         i386_start_kernel();
993 #else
994         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
995 #endif
996 }