xen: implement Xen write_msr operation
[safe/jmp/linux-2.6] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61  * Identity map, in addition to plain kernel map.  This needs to be
62  * large enough to allocate page table pages to allocate the rest.
63  * Each page can map 2MB.
64  */
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
66
67 #ifdef CONFIG_X86_64
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
71
72 /*
73  * Note about cr3 (pagetable base) values:
74  *
75  * xen_cr3 contains the current logical cr3 value; it contains the
76  * last set cr3.  This may not be the current effective cr3, because
77  * its update may be being lazily deferred.  However, a vcpu looking
78  * at its own cr3 can use this value knowing that it everything will
79  * be self-consistent.
80  *
81  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82  * hypercall to set the vcpu cr3 is complete (so it may be a little
83  * out of date, but it will never be set early).  If one vcpu is
84  * looking at another vcpu's cr3 value, it should use this variable.
85  */
86 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
88
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
91
92 struct shared_info xen_dummy_shared_info;
93
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114
115 static void xen_vcpu_setup(int cpu)
116 {
117         struct vcpu_register_vcpu_info info;
118         int err;
119         struct vcpu_info *vcpup;
120
121         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
123
124         if (!have_vcpu_info_placement)
125                 return;         /* already tested, not available */
126
127         vcpup = &per_cpu(xen_vcpu_info, cpu);
128
129         info.mfn = virt_to_mfn(vcpup);
130         info.offset = offset_in_page(vcpup);
131
132         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133                cpu, vcpup, info.mfn, info.offset);
134
135         /* Check to see if the hypervisor will put the vcpu_info
136            structure where we want it, which allows direct access via
137            a percpu-variable. */
138         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
139
140         if (err) {
141                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142                 have_vcpu_info_placement = 0;
143         } else {
144                 /* This cpu is using the registered vcpu info, even if
145                    later ones fail to. */
146                 per_cpu(xen_vcpu, cpu) = vcpup;
147
148                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
149                        cpu, vcpup);
150         }
151 }
152
153 /*
154  * On restore, set the vcpu placement up again.
155  * If it fails, then we're in a bad state, since
156  * we can't back out from using it...
157  */
158 void xen_vcpu_restore(void)
159 {
160         if (have_vcpu_info_placement) {
161                 int cpu;
162
163                 for_each_online_cpu(cpu) {
164                         bool other_cpu = (cpu != smp_processor_id());
165
166                         if (other_cpu &&
167                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168                                 BUG();
169
170                         xen_vcpu_setup(cpu);
171
172                         if (other_cpu &&
173                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
174                                 BUG();
175                 }
176
177                 BUG_ON(!have_vcpu_info_placement);
178         }
179 }
180
181 static void __init xen_banner(void)
182 {
183         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
184                pv_info.name);
185         printk(KERN_INFO "Hypervisor signature: %s%s\n",
186                xen_start_info->magic,
187                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
188 }
189
190 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
191                       unsigned int *cx, unsigned int *dx)
192 {
193         unsigned maskedx = ~0;
194
195         /*
196          * Mask out inconvenient features, to try and disable as many
197          * unsupported kernel subsystems as possible.
198          */
199         if (*ax == 1)
200                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
201                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
202                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
203                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
204                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
205
206         asm(XEN_EMULATE_PREFIX "cpuid"
207                 : "=a" (*ax),
208                   "=b" (*bx),
209                   "=c" (*cx),
210                   "=d" (*dx)
211                 : "0" (*ax), "2" (*cx));
212         *dx &= maskedx;
213 }
214
215 static void xen_set_debugreg(int reg, unsigned long val)
216 {
217         HYPERVISOR_set_debugreg(reg, val);
218 }
219
220 static unsigned long xen_get_debugreg(int reg)
221 {
222         return HYPERVISOR_get_debugreg(reg);
223 }
224
225 static unsigned long xen_save_fl(void)
226 {
227         struct vcpu_info *vcpu;
228         unsigned long flags;
229
230         vcpu = x86_read_percpu(xen_vcpu);
231
232         /* flag has opposite sense of mask */
233         flags = !vcpu->evtchn_upcall_mask;
234
235         /* convert to IF type flag
236            -0 -> 0x00000000
237            -1 -> 0xffffffff
238         */
239         return (-flags) & X86_EFLAGS_IF;
240 }
241
242 static void xen_restore_fl(unsigned long flags)
243 {
244         struct vcpu_info *vcpu;
245
246         /* convert from IF type flag */
247         flags = !(flags & X86_EFLAGS_IF);
248
249         /* There's a one instruction preempt window here.  We need to
250            make sure we're don't switch CPUs between getting the vcpu
251            pointer and updating the mask. */
252         preempt_disable();
253         vcpu = x86_read_percpu(xen_vcpu);
254         vcpu->evtchn_upcall_mask = flags;
255         preempt_enable_no_resched();
256
257         /* Doesn't matter if we get preempted here, because any
258            pending event will get dealt with anyway. */
259
260         if (flags == 0) {
261                 preempt_check_resched();
262                 barrier(); /* unmask then check (avoid races) */
263                 if (unlikely(vcpu->evtchn_upcall_pending))
264                         force_evtchn_callback();
265         }
266 }
267
268 static void xen_irq_disable(void)
269 {
270         /* There's a one instruction preempt window here.  We need to
271            make sure we're don't switch CPUs between getting the vcpu
272            pointer and updating the mask. */
273         preempt_disable();
274         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
275         preempt_enable_no_resched();
276 }
277
278 static void xen_irq_enable(void)
279 {
280         struct vcpu_info *vcpu;
281
282         /* We don't need to worry about being preempted here, since
283            either a) interrupts are disabled, so no preemption, or b)
284            the caller is confused and is trying to re-enable interrupts
285            on an indeterminate processor. */
286
287         vcpu = x86_read_percpu(xen_vcpu);
288         vcpu->evtchn_upcall_mask = 0;
289
290         /* Doesn't matter if we get preempted here, because any
291            pending event will get dealt with anyway. */
292
293         barrier(); /* unmask then check (avoid races) */
294         if (unlikely(vcpu->evtchn_upcall_pending))
295                 force_evtchn_callback();
296 }
297
298 static void xen_safe_halt(void)
299 {
300         /* Blocking includes an implicit local_irq_enable(). */
301         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
302                 BUG();
303 }
304
305 static void xen_halt(void)
306 {
307         if (irqs_disabled())
308                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
309         else
310                 xen_safe_halt();
311 }
312
313 static void xen_leave_lazy(void)
314 {
315         paravirt_leave_lazy(paravirt_get_lazy_mode());
316         xen_mc_flush();
317 }
318
319 static unsigned long xen_store_tr(void)
320 {
321         return 0;
322 }
323
324 static void xen_set_ldt(const void *addr, unsigned entries)
325 {
326         struct mmuext_op *op;
327         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
328
329         op = mcs.args;
330         op->cmd = MMUEXT_SET_LDT;
331         op->arg1.linear_addr = (unsigned long)addr;
332         op->arg2.nr_ents = entries;
333
334         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
335
336         xen_mc_issue(PARAVIRT_LAZY_CPU);
337 }
338
339 static void xen_load_gdt(const struct desc_ptr *dtr)
340 {
341         unsigned long *frames;
342         unsigned long va = dtr->address;
343         unsigned int size = dtr->size + 1;
344         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
345         int f;
346         struct multicall_space mcs;
347
348         /* A GDT can be up to 64k in size, which corresponds to 8192
349            8-byte entries, or 16 4k pages.. */
350
351         BUG_ON(size > 65536);
352         BUG_ON(va & ~PAGE_MASK);
353
354         mcs = xen_mc_entry(sizeof(*frames) * pages);
355         frames = mcs.args;
356
357         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
358                 frames[f] = virt_to_mfn(va);
359                 make_lowmem_page_readonly((void *)va);
360         }
361
362         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
363
364         xen_mc_issue(PARAVIRT_LAZY_CPU);
365 }
366
367 static void load_TLS_descriptor(struct thread_struct *t,
368                                 unsigned int cpu, unsigned int i)
369 {
370         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
371         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
372         struct multicall_space mc = __xen_mc_entry(0);
373
374         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
375 }
376
377 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
378 {
379         /*
380          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
381          * it means we're in a context switch, and %gs has just been
382          * saved.  This means we can zero it out to prevent faults on
383          * exit from the hypervisor if the next process has no %gs.
384          * Either way, it has been saved, and the new value will get
385          * loaded properly.  This will go away as soon as Xen has been
386          * modified to not save/restore %gs for normal hypercalls.
387          *
388          * On x86_64, this hack is not used for %gs, because gs points
389          * to KERNEL_GS_BASE (and uses it for PDA references), so we
390          * must not zero %gs on x86_64
391          *
392          * For x86_64, we need to zero %fs, otherwise we may get an
393          * exception between the new %fs descriptor being loaded and
394          * %fs being effectively cleared at __switch_to().
395          */
396         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
397 #ifdef CONFIG_X86_32
398                 loadsegment(gs, 0);
399 #else
400                 loadsegment(fs, 0);
401 #endif
402         }
403
404         xen_mc_batch();
405
406         load_TLS_descriptor(t, cpu, 0);
407         load_TLS_descriptor(t, cpu, 1);
408         load_TLS_descriptor(t, cpu, 2);
409
410         xen_mc_issue(PARAVIRT_LAZY_CPU);
411 }
412
413 #ifdef CONFIG_X86_64
414 static void xen_load_gs_index(unsigned int idx)
415 {
416         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
417                 BUG();
418 }
419 #endif
420
421 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
422                                 const void *ptr)
423 {
424         unsigned long lp = (unsigned long)&dt[entrynum];
425         xmaddr_t mach_lp = virt_to_machine(lp);
426         u64 entry = *(u64 *)ptr;
427
428         preempt_disable();
429
430         xen_mc_flush();
431         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
432                 BUG();
433
434         preempt_enable();
435 }
436
437 static int cvt_gate_to_trap(int vector, const gate_desc *val,
438                             struct trap_info *info)
439 {
440         if (val->type != 0xf && val->type != 0xe)
441                 return 0;
442
443         info->vector = vector;
444         info->address = gate_offset(*val);
445         info->cs = gate_segment(*val);
446         info->flags = val->dpl;
447         /* interrupt gates clear IF */
448         if (val->type == 0xe)
449                 info->flags |= 4;
450
451         return 1;
452 }
453
454 /* Locations of each CPU's IDT */
455 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
456
457 /* Set an IDT entry.  If the entry is part of the current IDT, then
458    also update Xen. */
459 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
460 {
461         unsigned long p = (unsigned long)&dt[entrynum];
462         unsigned long start, end;
463
464         preempt_disable();
465
466         start = __get_cpu_var(idt_desc).address;
467         end = start + __get_cpu_var(idt_desc).size + 1;
468
469         xen_mc_flush();
470
471         native_write_idt_entry(dt, entrynum, g);
472
473         if (p >= start && (p + 8) <= end) {
474                 struct trap_info info[2];
475
476                 info[1].address = 0;
477
478                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
479                         if (HYPERVISOR_set_trap_table(info))
480                                 BUG();
481         }
482
483         preempt_enable();
484 }
485
486 static void xen_convert_trap_info(const struct desc_ptr *desc,
487                                   struct trap_info *traps)
488 {
489         unsigned in, out, count;
490
491         count = (desc->size+1) / sizeof(gate_desc);
492         BUG_ON(count > 256);
493
494         for (in = out = 0; in < count; in++) {
495                 gate_desc *entry = (gate_desc*)(desc->address) + in;
496
497                 if (cvt_gate_to_trap(in, entry, &traps[out]))
498                         out++;
499         }
500         traps[out].address = 0;
501 }
502
503 void xen_copy_trap_info(struct trap_info *traps)
504 {
505         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
506
507         xen_convert_trap_info(desc, traps);
508 }
509
510 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
511    hold a spinlock to protect the static traps[] array (static because
512    it avoids allocation, and saves stack space). */
513 static void xen_load_idt(const struct desc_ptr *desc)
514 {
515         static DEFINE_SPINLOCK(lock);
516         static struct trap_info traps[257];
517
518         spin_lock(&lock);
519
520         __get_cpu_var(idt_desc) = *desc;
521
522         xen_convert_trap_info(desc, traps);
523
524         xen_mc_flush();
525         if (HYPERVISOR_set_trap_table(traps))
526                 BUG();
527
528         spin_unlock(&lock);
529 }
530
531 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
532    they're handled differently. */
533 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
534                                 const void *desc, int type)
535 {
536         preempt_disable();
537
538         switch (type) {
539         case DESC_LDT:
540         case DESC_TSS:
541                 /* ignore */
542                 break;
543
544         default: {
545                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
546
547                 xen_mc_flush();
548                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
549                         BUG();
550         }
551
552         }
553
554         preempt_enable();
555 }
556
557 static void xen_load_sp0(struct tss_struct *tss,
558                           struct thread_struct *thread)
559 {
560         struct multicall_space mcs = xen_mc_entry(0);
561         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
562         xen_mc_issue(PARAVIRT_LAZY_CPU);
563 }
564
565 static void xen_set_iopl_mask(unsigned mask)
566 {
567         struct physdev_set_iopl set_iopl;
568
569         /* Force the change at ring 0. */
570         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
571         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
572 }
573
574 static void xen_io_delay(void)
575 {
576 }
577
578 #ifdef CONFIG_X86_LOCAL_APIC
579 static u32 xen_apic_read(unsigned long reg)
580 {
581         return 0;
582 }
583
584 static void xen_apic_write(unsigned long reg, u32 val)
585 {
586         /* Warn to see if there's any stray references */
587         WARN_ON(1);
588 }
589 #endif
590
591 static void xen_flush_tlb(void)
592 {
593         struct mmuext_op *op;
594         struct multicall_space mcs;
595
596         preempt_disable();
597
598         mcs = xen_mc_entry(sizeof(*op));
599
600         op = mcs.args;
601         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
602         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
603
604         xen_mc_issue(PARAVIRT_LAZY_MMU);
605
606         preempt_enable();
607 }
608
609 static void xen_flush_tlb_single(unsigned long addr)
610 {
611         struct mmuext_op *op;
612         struct multicall_space mcs;
613
614         preempt_disable();
615
616         mcs = xen_mc_entry(sizeof(*op));
617         op = mcs.args;
618         op->cmd = MMUEXT_INVLPG_LOCAL;
619         op->arg1.linear_addr = addr & PAGE_MASK;
620         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
621
622         xen_mc_issue(PARAVIRT_LAZY_MMU);
623
624         preempt_enable();
625 }
626
627 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
628                                  unsigned long va)
629 {
630         struct {
631                 struct mmuext_op op;
632                 cpumask_t mask;
633         } *args;
634         cpumask_t cpumask = *cpus;
635         struct multicall_space mcs;
636
637         /*
638          * A couple of (to be removed) sanity checks:
639          *
640          * - current CPU must not be in mask
641          * - mask must exist :)
642          */
643         BUG_ON(cpus_empty(cpumask));
644         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
645         BUG_ON(!mm);
646
647         /* If a CPU which we ran on has gone down, OK. */
648         cpus_and(cpumask, cpumask, cpu_online_map);
649         if (cpus_empty(cpumask))
650                 return;
651
652         mcs = xen_mc_entry(sizeof(*args));
653         args = mcs.args;
654         args->mask = cpumask;
655         args->op.arg2.vcpumask = &args->mask;
656
657         if (va == TLB_FLUSH_ALL) {
658                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
659         } else {
660                 args->op.cmd = MMUEXT_INVLPG_MULTI;
661                 args->op.arg1.linear_addr = va;
662         }
663
664         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
665
666         xen_mc_issue(PARAVIRT_LAZY_MMU);
667 }
668
669 static void xen_clts(void)
670 {
671         struct multicall_space mcs;
672
673         mcs = xen_mc_entry(0);
674
675         MULTI_fpu_taskswitch(mcs.mc, 0);
676
677         xen_mc_issue(PARAVIRT_LAZY_CPU);
678 }
679
680 static void xen_write_cr0(unsigned long cr0)
681 {
682         struct multicall_space mcs;
683
684         /* Only pay attention to cr0.TS; everything else is
685            ignored. */
686         mcs = xen_mc_entry(0);
687
688         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
689
690         xen_mc_issue(PARAVIRT_LAZY_CPU);
691 }
692
693 static void xen_write_cr2(unsigned long cr2)
694 {
695         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
696 }
697
698 static unsigned long xen_read_cr2(void)
699 {
700         return x86_read_percpu(xen_vcpu)->arch.cr2;
701 }
702
703 static unsigned long xen_read_cr2_direct(void)
704 {
705         return x86_read_percpu(xen_vcpu_info.arch.cr2);
706 }
707
708 static void xen_write_cr4(unsigned long cr4)
709 {
710         cr4 &= ~X86_CR4_PGE;
711         cr4 &= ~X86_CR4_PSE;
712
713         native_write_cr4(cr4);
714 }
715
716 static unsigned long xen_read_cr3(void)
717 {
718         return x86_read_percpu(xen_cr3);
719 }
720
721 static void set_current_cr3(void *v)
722 {
723         x86_write_percpu(xen_current_cr3, (unsigned long)v);
724 }
725
726 static void __xen_write_cr3(bool kernel, unsigned long cr3)
727 {
728         struct mmuext_op *op;
729         struct multicall_space mcs;
730         unsigned long mfn;
731
732         if (cr3)
733                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
734         else
735                 mfn = 0;
736
737         WARN_ON(mfn == 0 && kernel);
738
739         mcs = __xen_mc_entry(sizeof(*op));
740
741         op = mcs.args;
742         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
743         op->arg1.mfn = mfn;
744
745         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
746
747         if (kernel) {
748                 x86_write_percpu(xen_cr3, cr3);
749
750                 /* Update xen_current_cr3 once the batch has actually
751                    been submitted. */
752                 xen_mc_callback(set_current_cr3, (void *)cr3);
753         }
754 }
755
756 static void xen_write_cr3(unsigned long cr3)
757 {
758         BUG_ON(preemptible());
759
760         xen_mc_batch();  /* disables interrupts */
761
762         /* Update while interrupts are disabled, so its atomic with
763            respect to ipis */
764         x86_write_percpu(xen_cr3, cr3);
765
766         __xen_write_cr3(true, cr3);
767
768 #ifdef CONFIG_X86_64
769         {
770                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
771                 if (user_pgd)
772                         __xen_write_cr3(false, __pa(user_pgd));
773                 else
774                         __xen_write_cr3(false, 0);
775         }
776 #endif
777
778         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
779 }
780
781 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
782 {
783         int ret;
784
785         ret = 0;
786
787         switch(msr) {
788 #ifdef CONFIG_X86_64
789                 unsigned which;
790                 u64 base;
791
792         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
793         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
794         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
795
796         set:
797                 base = ((u64)high << 32) | low;
798                 if (HYPERVISOR_set_segment_base(which, base) != 0)
799                         ret = -EFAULT;
800                 break;
801 #endif
802         default:
803                 ret = native_write_msr_safe(msr, low, high);
804         }
805
806         return ret;
807 }
808
809 /* Early in boot, while setting up the initial pagetable, assume
810    everything is pinned. */
811 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
812 {
813 #ifdef CONFIG_FLATMEM
814         BUG_ON(mem_map);        /* should only be used early */
815 #endif
816         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
817 }
818
819 /* Early release_pte assumes that all pts are pinned, since there's
820    only init_mm and anything attached to that is pinned. */
821 static void xen_release_pte_init(u32 pfn)
822 {
823         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
824 }
825
826 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
827 {
828         struct mmuext_op op;
829         op.cmd = cmd;
830         op.arg1.mfn = pfn_to_mfn(pfn);
831         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
832                 BUG();
833 }
834
835 /* This needs to make sure the new pte page is pinned iff its being
836    attached to a pinned pagetable. */
837 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
838 {
839         struct page *page = pfn_to_page(pfn);
840
841         if (PagePinned(virt_to_page(mm->pgd))) {
842                 SetPagePinned(page);
843
844                 if (!PageHighMem(page)) {
845                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
846                         if (level == PT_PTE)
847                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
848                 } else
849                         /* make sure there are no stray mappings of
850                            this page */
851                         kmap_flush_unused();
852         }
853 }
854
855 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
856 {
857         xen_alloc_ptpage(mm, pfn, PT_PTE);
858 }
859
860 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
861 {
862         xen_alloc_ptpage(mm, pfn, PT_PMD);
863 }
864
865 static int xen_pgd_alloc(struct mm_struct *mm)
866 {
867         pgd_t *pgd = mm->pgd;
868         int ret = 0;
869
870         BUG_ON(PagePinned(virt_to_page(pgd)));
871
872 #ifdef CONFIG_X86_64
873         {
874                 struct page *page = virt_to_page(pgd);
875                 pgd_t *user_pgd;
876
877                 BUG_ON(page->private != 0);
878
879                 ret = -ENOMEM;
880
881                 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
882                 page->private = (unsigned long)user_pgd;
883
884                 if (user_pgd != NULL) {
885                         user_pgd[pgd_index(VSYSCALL_START)] =
886                                 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
887                         ret = 0;
888                 }
889
890                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
891         }
892 #endif
893
894         return ret;
895 }
896
897 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
898 {
899 #ifdef CONFIG_X86_64
900         pgd_t *user_pgd = xen_get_user_pgd(pgd);
901
902         if (user_pgd)
903                 free_page((unsigned long)user_pgd);
904 #endif
905 }
906
907 /* This should never happen until we're OK to use struct page */
908 static void xen_release_ptpage(u32 pfn, unsigned level)
909 {
910         struct page *page = pfn_to_page(pfn);
911
912         if (PagePinned(page)) {
913                 if (!PageHighMem(page)) {
914                         if (level == PT_PTE)
915                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
916                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
917                 }
918                 ClearPagePinned(page);
919         }
920 }
921
922 static void xen_release_pte(u32 pfn)
923 {
924         xen_release_ptpage(pfn, PT_PTE);
925 }
926
927 static void xen_release_pmd(u32 pfn)
928 {
929         xen_release_ptpage(pfn, PT_PMD);
930 }
931
932 #if PAGETABLE_LEVELS == 4
933 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
934 {
935         xen_alloc_ptpage(mm, pfn, PT_PUD);
936 }
937
938 static void xen_release_pud(u32 pfn)
939 {
940         xen_release_ptpage(pfn, PT_PUD);
941 }
942 #endif
943
944 #ifdef CONFIG_HIGHPTE
945 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
946 {
947         pgprot_t prot = PAGE_KERNEL;
948
949         if (PagePinned(page))
950                 prot = PAGE_KERNEL_RO;
951
952         if (0 && PageHighMem(page))
953                 printk("mapping highpte %lx type %d prot %s\n",
954                        page_to_pfn(page), type,
955                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
956
957         return kmap_atomic_prot(page, type, prot);
958 }
959 #endif
960
961 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
962 {
963         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
964         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
965                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
966                                pte_val_ma(pte));
967
968         return pte;
969 }
970
971 /* Init-time set_pte while constructing initial pagetables, which
972    doesn't allow RO pagetable pages to be remapped RW */
973 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
974 {
975         pte = mask_rw_pte(ptep, pte);
976
977         xen_set_pte(ptep, pte);
978 }
979
980 static __init void xen_pagetable_setup_start(pgd_t *base)
981 {
982 }
983
984 void xen_setup_shared_info(void)
985 {
986         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
987                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
988                            xen_start_info->shared_info);
989
990                 HYPERVISOR_shared_info =
991                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
992         } else
993                 HYPERVISOR_shared_info =
994                         (struct shared_info *)__va(xen_start_info->shared_info);
995
996 #ifndef CONFIG_SMP
997         /* In UP this is as good a place as any to set up shared info */
998         xen_setup_vcpu_info_placement();
999 #endif
1000
1001         xen_setup_mfn_list_list();
1002 }
1003
1004 static __init void xen_pagetable_setup_done(pgd_t *base)
1005 {
1006         xen_setup_shared_info();
1007 }
1008
1009 static __init void xen_post_allocator_init(void)
1010 {
1011         pv_mmu_ops.set_pte = xen_set_pte;
1012         pv_mmu_ops.set_pmd = xen_set_pmd;
1013         pv_mmu_ops.set_pud = xen_set_pud;
1014 #if PAGETABLE_LEVELS == 4
1015         pv_mmu_ops.set_pgd = xen_set_pgd;
1016 #endif
1017
1018         /* This will work as long as patching hasn't happened yet
1019            (which it hasn't) */
1020         pv_mmu_ops.alloc_pte = xen_alloc_pte;
1021         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1022         pv_mmu_ops.release_pte = xen_release_pte;
1023         pv_mmu_ops.release_pmd = xen_release_pmd;
1024 #if PAGETABLE_LEVELS == 4
1025         pv_mmu_ops.alloc_pud = xen_alloc_pud;
1026         pv_mmu_ops.release_pud = xen_release_pud;
1027 #endif
1028
1029 #ifdef CONFIG_X86_64
1030         SetPagePinned(virt_to_page(level3_user_vsyscall));
1031 #endif
1032         xen_mark_init_mm_pinned();
1033 }
1034
1035 /* This is called once we have the cpu_possible_map */
1036 void xen_setup_vcpu_info_placement(void)
1037 {
1038         int cpu;
1039
1040         for_each_possible_cpu(cpu)
1041                 xen_vcpu_setup(cpu);
1042
1043         /* xen_vcpu_setup managed to place the vcpu_info within the
1044            percpu area for all cpus, so make use of it */
1045 #ifdef CONFIG_X86_32
1046         if (have_vcpu_info_placement) {
1047                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1048
1049                 pv_irq_ops.save_fl = xen_save_fl_direct;
1050                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1051                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1052                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1053                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1054         }
1055 #endif
1056 }
1057
1058 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1059                           unsigned long addr, unsigned len)
1060 {
1061         char *start, *end, *reloc;
1062         unsigned ret;
1063
1064         start = end = reloc = NULL;
1065
1066 #define SITE(op, x)                                                     \
1067         case PARAVIRT_PATCH(op.x):                                      \
1068         if (have_vcpu_info_placement) {                                 \
1069                 start = (char *)xen_##x##_direct;                       \
1070                 end = xen_##x##_direct_end;                             \
1071                 reloc = xen_##x##_direct_reloc;                         \
1072         }                                                               \
1073         goto patch_site
1074
1075         switch (type) {
1076 #ifdef CONFIG_X86_32
1077                 SITE(pv_irq_ops, irq_enable);
1078                 SITE(pv_irq_ops, irq_disable);
1079                 SITE(pv_irq_ops, save_fl);
1080                 SITE(pv_irq_ops, restore_fl);
1081 #endif /* CONFIG_X86_32 */
1082 #undef SITE
1083
1084         patch_site:
1085                 if (start == NULL || (end-start) > len)
1086                         goto default_patch;
1087
1088                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1089
1090                 /* Note: because reloc is assigned from something that
1091                    appears to be an array, gcc assumes it's non-null,
1092                    but doesn't know its relationship with start and
1093                    end. */
1094                 if (reloc > start && reloc < end) {
1095                         int reloc_off = reloc - start;
1096                         long *relocp = (long *)(insnbuf + reloc_off);
1097                         long delta = start - (char *)addr;
1098
1099                         *relocp += delta;
1100                 }
1101                 break;
1102
1103         default_patch:
1104         default:
1105                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1106                                              addr, len);
1107                 break;
1108         }
1109
1110         return ret;
1111 }
1112
1113 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1114 {
1115         pte_t pte;
1116
1117         phys >>= PAGE_SHIFT;
1118
1119         switch (idx) {
1120         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1121 #ifdef CONFIG_X86_F00F_BUG
1122         case FIX_F00F_IDT:
1123 #endif
1124 #ifdef CONFIG_X86_32
1125         case FIX_WP_TEST:
1126         case FIX_VDSO:
1127         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1128 #else
1129         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1130 #endif
1131 #ifdef CONFIG_X86_LOCAL_APIC
1132         case FIX_APIC_BASE:     /* maps dummy local APIC */
1133 #endif
1134                 pte = pfn_pte(phys, prot);
1135                 break;
1136
1137         default:
1138                 pte = mfn_pte(phys, prot);
1139                 break;
1140         }
1141
1142         __native_set_fixmap(idx, pte);
1143
1144 #ifdef CONFIG_X86_64
1145         /* Replicate changes to map the vsyscall page into the user
1146            pagetable vsyscall mapping. */
1147         if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1148                 unsigned long vaddr = __fix_to_virt(idx);
1149                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1150         }
1151 #endif
1152 }
1153
1154 static const struct pv_info xen_info __initdata = {
1155         .paravirt_enabled = 1,
1156         .shared_kernel_pmd = 0,
1157
1158         .name = "Xen",
1159 };
1160
1161 static const struct pv_init_ops xen_init_ops __initdata = {
1162         .patch = xen_patch,
1163
1164         .banner = xen_banner,
1165         .memory_setup = xen_memory_setup,
1166         .arch_setup = xen_arch_setup,
1167         .post_allocator_init = xen_post_allocator_init,
1168 };
1169
1170 static const struct pv_time_ops xen_time_ops __initdata = {
1171         .time_init = xen_time_init,
1172
1173         .set_wallclock = xen_set_wallclock,
1174         .get_wallclock = xen_get_wallclock,
1175         .get_tsc_khz = xen_tsc_khz,
1176         .sched_clock = xen_sched_clock,
1177 };
1178
1179 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1180         .cpuid = xen_cpuid,
1181
1182         .set_debugreg = xen_set_debugreg,
1183         .get_debugreg = xen_get_debugreg,
1184
1185         .clts = xen_clts,
1186
1187         .read_cr0 = native_read_cr0,
1188         .write_cr0 = xen_write_cr0,
1189
1190         .read_cr4 = native_read_cr4,
1191         .read_cr4_safe = native_read_cr4_safe,
1192         .write_cr4 = xen_write_cr4,
1193
1194         .wbinvd = native_wbinvd,
1195
1196         .read_msr = native_read_msr_safe,
1197         .write_msr = xen_write_msr_safe,
1198         .read_tsc = native_read_tsc,
1199         .read_pmc = native_read_pmc,
1200
1201         .iret = xen_iret,
1202         .irq_enable_sysexit = xen_sysexit,
1203 #ifdef CONFIG_X86_64
1204         .usergs_sysret32 = xen_sysret32,
1205         .usergs_sysret64 = xen_sysret64,
1206 #endif
1207
1208         .load_tr_desc = paravirt_nop,
1209         .set_ldt = xen_set_ldt,
1210         .load_gdt = xen_load_gdt,
1211         .load_idt = xen_load_idt,
1212         .load_tls = xen_load_tls,
1213 #ifdef CONFIG_X86_64
1214         .load_gs_index = xen_load_gs_index,
1215 #endif
1216
1217         .store_gdt = native_store_gdt,
1218         .store_idt = native_store_idt,
1219         .store_tr = xen_store_tr,
1220
1221         .write_ldt_entry = xen_write_ldt_entry,
1222         .write_gdt_entry = xen_write_gdt_entry,
1223         .write_idt_entry = xen_write_idt_entry,
1224         .load_sp0 = xen_load_sp0,
1225
1226         .set_iopl_mask = xen_set_iopl_mask,
1227         .io_delay = xen_io_delay,
1228
1229         /* Xen takes care of %gs when switching to usermode for us */
1230         .swapgs = paravirt_nop,
1231
1232         .lazy_mode = {
1233                 .enter = paravirt_enter_lazy_cpu,
1234                 .leave = xen_leave_lazy,
1235         },
1236 };
1237
1238 static void __init __xen_init_IRQ(void)
1239 {
1240 #ifdef CONFIG_X86_64
1241         int i;
1242
1243         /* Create identity vector->irq map */
1244         for(i = 0; i < NR_VECTORS; i++) {
1245                 int cpu;
1246
1247                 for_each_possible_cpu(cpu)
1248                         per_cpu(vector_irq, cpu)[i] = i;
1249         }
1250 #endif  /* CONFIG_X86_64 */
1251
1252         xen_init_IRQ();
1253 }
1254
1255 static const struct pv_irq_ops xen_irq_ops __initdata = {
1256         .init_IRQ = __xen_init_IRQ,
1257         .save_fl = xen_save_fl,
1258         .restore_fl = xen_restore_fl,
1259         .irq_disable = xen_irq_disable,
1260         .irq_enable = xen_irq_enable,
1261         .safe_halt = xen_safe_halt,
1262         .halt = xen_halt,
1263 #ifdef CONFIG_X86_64
1264         .adjust_exception_frame = xen_adjust_exception_frame,
1265 #endif
1266 };
1267
1268 static const struct pv_apic_ops xen_apic_ops __initdata = {
1269 #ifdef CONFIG_X86_LOCAL_APIC
1270         .apic_write = xen_apic_write,
1271         .apic_write_atomic = xen_apic_write,
1272         .apic_read = xen_apic_read,
1273         .setup_boot_clock = paravirt_nop,
1274         .setup_secondary_clock = paravirt_nop,
1275         .startup_ipi_hook = paravirt_nop,
1276 #endif
1277 };
1278
1279 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1280         .pagetable_setup_start = xen_pagetable_setup_start,
1281         .pagetable_setup_done = xen_pagetable_setup_done,
1282
1283         .read_cr2 = xen_read_cr2,
1284         .write_cr2 = xen_write_cr2,
1285
1286         .read_cr3 = xen_read_cr3,
1287         .write_cr3 = xen_write_cr3,
1288
1289         .flush_tlb_user = xen_flush_tlb,
1290         .flush_tlb_kernel = xen_flush_tlb,
1291         .flush_tlb_single = xen_flush_tlb_single,
1292         .flush_tlb_others = xen_flush_tlb_others,
1293
1294         .pte_update = paravirt_nop,
1295         .pte_update_defer = paravirt_nop,
1296
1297         .pgd_alloc = xen_pgd_alloc,
1298         .pgd_free = xen_pgd_free,
1299
1300         .alloc_pte = xen_alloc_pte_init,
1301         .release_pte = xen_release_pte_init,
1302         .alloc_pmd = xen_alloc_pte_init,
1303         .alloc_pmd_clone = paravirt_nop,
1304         .release_pmd = xen_release_pte_init,
1305
1306 #ifdef CONFIG_HIGHPTE
1307         .kmap_atomic_pte = xen_kmap_atomic_pte,
1308 #endif
1309
1310 #ifdef CONFIG_X86_64
1311         .set_pte = xen_set_pte,
1312 #else
1313         .set_pte = xen_set_pte_init,
1314 #endif
1315         .set_pte_at = xen_set_pte_at,
1316         .set_pmd = xen_set_pmd_hyper,
1317
1318         .ptep_modify_prot_start = __ptep_modify_prot_start,
1319         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1320
1321         .pte_val = xen_pte_val,
1322         .pte_flags = native_pte_val,
1323         .pgd_val = xen_pgd_val,
1324
1325         .make_pte = xen_make_pte,
1326         .make_pgd = xen_make_pgd,
1327
1328 #ifdef CONFIG_X86_PAE
1329         .set_pte_atomic = xen_set_pte_atomic,
1330         .set_pte_present = xen_set_pte_at,
1331         .pte_clear = xen_pte_clear,
1332         .pmd_clear = xen_pmd_clear,
1333 #endif  /* CONFIG_X86_PAE */
1334         .set_pud = xen_set_pud_hyper,
1335
1336         .make_pmd = xen_make_pmd,
1337         .pmd_val = xen_pmd_val,
1338
1339 #if PAGETABLE_LEVELS == 4
1340         .pud_val = xen_pud_val,
1341         .make_pud = xen_make_pud,
1342         .set_pgd = xen_set_pgd_hyper,
1343
1344         .alloc_pud = xen_alloc_pte_init,
1345         .release_pud = xen_release_pte_init,
1346 #endif  /* PAGETABLE_LEVELS == 4 */
1347
1348         .activate_mm = xen_activate_mm,
1349         .dup_mmap = xen_dup_mmap,
1350         .exit_mmap = xen_exit_mmap,
1351
1352         .lazy_mode = {
1353                 .enter = paravirt_enter_lazy_mmu,
1354                 .leave = xen_leave_lazy,
1355         },
1356
1357         .set_fixmap = xen_set_fixmap,
1358 };
1359
1360 static void xen_reboot(int reason)
1361 {
1362         struct sched_shutdown r = { .reason = reason };
1363
1364 #ifdef CONFIG_SMP
1365         smp_send_stop();
1366 #endif
1367
1368         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1369                 BUG();
1370 }
1371
1372 static void xen_restart(char *msg)
1373 {
1374         xen_reboot(SHUTDOWN_reboot);
1375 }
1376
1377 static void xen_emergency_restart(void)
1378 {
1379         xen_reboot(SHUTDOWN_reboot);
1380 }
1381
1382 static void xen_machine_halt(void)
1383 {
1384         xen_reboot(SHUTDOWN_poweroff);
1385 }
1386
1387 static void xen_crash_shutdown(struct pt_regs *regs)
1388 {
1389         xen_reboot(SHUTDOWN_crash);
1390 }
1391
1392 static const struct machine_ops __initdata xen_machine_ops = {
1393         .restart = xen_restart,
1394         .halt = xen_machine_halt,
1395         .power_off = xen_machine_halt,
1396         .shutdown = xen_machine_halt,
1397         .crash_shutdown = xen_crash_shutdown,
1398         .emergency_restart = xen_emergency_restart,
1399 };
1400
1401
1402 static void __init xen_reserve_top(void)
1403 {
1404 #ifdef CONFIG_X86_32
1405         unsigned long top = HYPERVISOR_VIRT_START;
1406         struct xen_platform_parameters pp;
1407
1408         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1409                 top = pp.virt_start;
1410
1411         reserve_top_address(-top + 2 * PAGE_SIZE);
1412 #endif  /* CONFIG_X86_32 */
1413 }
1414
1415 /*
1416  * Like __va(), but returns address in the kernel mapping (which is
1417  * all we have until the physical memory mapping has been set up.
1418  */
1419 static void *__ka(phys_addr_t paddr)
1420 {
1421 #ifdef CONFIG_X86_64
1422         return (void *)(paddr + __START_KERNEL_map);
1423 #else
1424         return __va(paddr);
1425 #endif
1426 }
1427
1428 /* Convert a machine address to physical address */
1429 static unsigned long m2p(phys_addr_t maddr)
1430 {
1431         phys_addr_t paddr;
1432
1433         maddr &= PTE_MASK;
1434         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1435
1436         return paddr;
1437 }
1438
1439 /* Convert a machine address to kernel virtual */
1440 static void *m2v(phys_addr_t maddr)
1441 {
1442         return __ka(m2p(maddr));
1443 }
1444
1445 #ifdef CONFIG_X86_64
1446 static void walk(pgd_t *pgd, unsigned long addr)
1447 {
1448         unsigned l4idx = pgd_index(addr);
1449         unsigned l3idx = pud_index(addr);
1450         unsigned l2idx = pmd_index(addr);
1451         unsigned l1idx = pte_index(addr);
1452         pgd_t l4;
1453         pud_t l3;
1454         pmd_t l2;
1455         pte_t l1;
1456
1457         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1458                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1459
1460         l4 = pgd[l4idx];
1461         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1462         xen_raw_printk("      %016lx\n", pgd_val(l4));
1463
1464         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1465         xen_raw_printk("  l3: %016lx\n", l3.pud);
1466         xen_raw_printk("      %016lx\n", pud_val(l3));
1467
1468         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1469         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1470         xen_raw_printk("      %016lx\n", pmd_val(l2));
1471
1472         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1473         xen_raw_printk("  l1: %016lx\n", l1.pte);
1474         xen_raw_printk("      %016lx\n", pte_val(l1));
1475 }
1476 #endif
1477
1478 static void set_page_prot(void *addr, pgprot_t prot)
1479 {
1480         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1481         pte_t pte = pfn_pte(pfn, prot);
1482
1483         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1484                        addr, pfn, get_phys_to_machine(pfn),
1485                        pgprot_val(prot), pte.pte);
1486
1487         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1488                 BUG();
1489 }
1490
1491 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1492 {
1493         unsigned pmdidx, pteidx;
1494         unsigned ident_pte;
1495         unsigned long pfn;
1496
1497         ident_pte = 0;
1498         pfn = 0;
1499         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1500                 pte_t *pte_page;
1501
1502                 /* Reuse or allocate a page of ptes */
1503                 if (pmd_present(pmd[pmdidx]))
1504                         pte_page = m2v(pmd[pmdidx].pmd);
1505                 else {
1506                         /* Check for free pte pages */
1507                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1508                                 break;
1509
1510                         pte_page = &level1_ident_pgt[ident_pte];
1511                         ident_pte += PTRS_PER_PTE;
1512
1513                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1514                 }
1515
1516                 /* Install mappings */
1517                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1518                         pte_t pte;
1519
1520                         if (pfn > max_pfn_mapped)
1521                                 max_pfn_mapped = pfn;
1522
1523                         if (!pte_none(pte_page[pteidx]))
1524                                 continue;
1525
1526                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1527                         pte_page[pteidx] = pte;
1528                 }
1529         }
1530
1531         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1532                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1533
1534         set_page_prot(pmd, PAGE_KERNEL_RO);
1535 }
1536
1537 #ifdef CONFIG_X86_64
1538 static void convert_pfn_mfn(void *v)
1539 {
1540         pte_t *pte = v;
1541         int i;
1542
1543         /* All levels are converted the same way, so just treat them
1544            as ptes. */
1545         for(i = 0; i < PTRS_PER_PTE; i++)
1546                 pte[i] = xen_make_pte(pte[i].pte);
1547 }
1548
1549 /*
1550  * Set up the inital kernel pagetable.
1551  *
1552  * We can construct this by grafting the Xen provided pagetable into
1553  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1554  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1555  * means that only the kernel has a physical mapping to start with -
1556  * but that's enough to get __va working.  We need to fill in the rest
1557  * of the physical mapping once some sort of allocator has been set
1558  * up.
1559  */
1560 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1561 {
1562         pud_t *l3;
1563         pmd_t *l2;
1564
1565         /* Zap identity mapping */
1566         init_level4_pgt[0] = __pgd(0);
1567
1568         /* Pre-constructed entries are in pfn, so convert to mfn */
1569         convert_pfn_mfn(init_level4_pgt);
1570         convert_pfn_mfn(level3_ident_pgt);
1571         convert_pfn_mfn(level3_kernel_pgt);
1572
1573         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1574         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1575
1576         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1577         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1578
1579         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1580         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1581         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1582
1583         /* Set up identity map */
1584         xen_map_identity_early(level2_ident_pgt, max_pfn);
1585
1586         /* Make pagetable pieces RO */
1587         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1588         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1589         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1590         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1591         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1592         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1593
1594         /* Pin down new L4 */
1595         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1596                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1597
1598         /* Unpin Xen-provided one */
1599         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1600
1601         /* Switch over */
1602         pgd = init_level4_pgt;
1603
1604         /*
1605          * At this stage there can be no user pgd, and no page
1606          * structure to attach it to, so make sure we just set kernel
1607          * pgd.
1608          */
1609         xen_mc_batch();
1610         __xen_write_cr3(true, __pa(pgd));
1611         xen_mc_issue(PARAVIRT_LAZY_CPU);
1612
1613         reserve_early(__pa(xen_start_info->pt_base),
1614                       __pa(xen_start_info->pt_base +
1615                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1616                       "XEN PAGETABLES");
1617
1618         return pgd;
1619 }
1620 #else   /* !CONFIG_X86_64 */
1621 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1622
1623 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1624 {
1625         pmd_t *kernel_pmd;
1626
1627         init_pg_tables_start = __pa(pgd);
1628         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1629         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1630
1631         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1632         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1633
1634         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1635
1636         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1637         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1638                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1639
1640         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1641         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1642         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1643
1644         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1645
1646         xen_write_cr3(__pa(swapper_pg_dir));
1647
1648         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1649
1650         return swapper_pg_dir;
1651 }
1652 #endif  /* CONFIG_X86_64 */
1653
1654 /* First C function to be called on Xen boot */
1655 asmlinkage void __init xen_start_kernel(void)
1656 {
1657         pgd_t *pgd;
1658
1659         if (!xen_start_info)
1660                 return;
1661
1662         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1663
1664         xen_setup_features();
1665
1666         /* Install Xen paravirt ops */
1667         pv_info = xen_info;
1668         pv_init_ops = xen_init_ops;
1669         pv_time_ops = xen_time_ops;
1670         pv_cpu_ops = xen_cpu_ops;
1671         pv_irq_ops = xen_irq_ops;
1672         pv_apic_ops = xen_apic_ops;
1673         pv_mmu_ops = xen_mmu_ops;
1674
1675         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1676                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1677                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1678         }
1679
1680         machine_ops = xen_machine_ops;
1681
1682 #ifdef CONFIG_X86_64
1683         /* Disable until direct per-cpu data access. */
1684         have_vcpu_info_placement = 0;
1685         x86_64_init_pda();
1686 #endif
1687
1688         xen_smp_init();
1689
1690         /* Get mfn list */
1691         if (!xen_feature(XENFEAT_auto_translated_physmap))
1692                 xen_build_dynamic_phys_to_machine();
1693
1694         pgd = (pgd_t *)xen_start_info->pt_base;
1695
1696         /* Prevent unwanted bits from being set in PTEs. */
1697         __supported_pte_mask &= ~_PAGE_GLOBAL;
1698         if (!is_initial_xendomain())
1699                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1700
1701         /* Don't do the full vcpu_info placement stuff until we have a
1702            possible map and a non-dummy shared_info. */
1703         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1704
1705         xen_raw_console_write("mapping kernel into physical memory\n");
1706         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1707
1708         init_mm.pgd = pgd;
1709
1710         /* keep using Xen gdt for now; no urgent need to change it */
1711
1712         pv_info.kernel_rpl = 1;
1713         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1714                 pv_info.kernel_rpl = 0;
1715
1716         /* set the limit of our address space */
1717         xen_reserve_top();
1718
1719 #ifdef CONFIG_X86_32
1720         /* set up basic CPUID stuff */
1721         cpu_detect(&new_cpu_data);
1722         new_cpu_data.hard_math = 1;
1723         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1724 #endif
1725
1726         /* Poke various useful things into boot_params */
1727         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1728         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1729                 ? __pa(xen_start_info->mod_start) : 0;
1730         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1731         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1732
1733         if (!is_initial_xendomain()) {
1734                 add_preferred_console("xenboot", 0, NULL);
1735                 add_preferred_console("tty", 0, NULL);
1736                 add_preferred_console("hvc", 0, NULL);
1737         }
1738
1739         xen_raw_console_write("about to get started...\n");
1740
1741 #if 0
1742         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1743                        &boot_params, __pa_symbol(&boot_params),
1744                        __va(__pa_symbol(&boot_params)));
1745
1746         walk(pgd, &boot_params);
1747         walk(pgd, __va(__pa(&boot_params)));
1748 #endif
1749
1750         /* Start the world */
1751 #ifdef CONFIG_X86_32
1752         i386_start_kernel();
1753 #else
1754         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1755 #endif
1756 }