perf: Stop stack frame walking off kernel addresses boundaries
[safe/jmp/linux-2.6] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
26
27 /*
28  * The current flushing context - we pass it instead of 5 arguments:
29  */
30 struct cpa_data {
31         unsigned long   *vaddr;
32         pgprot_t        mask_set;
33         pgprot_t        mask_clr;
34         int             numpages;
35         int             flags;
36         unsigned long   pfn;
37         unsigned        force_split : 1;
38         int             curpage;
39         struct page     **pages;
40 };
41
42 /*
43  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45  * entries change the page attribute in parallel to some other cpu
46  * splitting a large page entry along with changing the attribute.
47  */
48 static DEFINE_SPINLOCK(cpa_lock);
49
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
53
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57 void update_page_count(int level, unsigned long pages)
58 {
59         unsigned long flags;
60
61         /* Protect against CPA */
62         spin_lock_irqsave(&pgd_lock, flags);
63         direct_pages_count[level] += pages;
64         spin_unlock_irqrestore(&pgd_lock, flags);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @addr:       virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263         if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264                 pgprot_val(forbidden) |= _PAGE_NX;
265
266         /*
267          * The kernel text needs to be executable for obvious reasons
268          * Does not cover __inittext since that is gone later on. On
269          * 64bit we do not enforce !NX on the low mapping
270          */
271         if (within(address, (unsigned long)_text, (unsigned long)_etext))
272                 pgprot_val(forbidden) |= _PAGE_NX;
273
274         /*
275          * The .rodata section needs to be read-only. Using the pfn
276          * catches all aliases.
277          */
278         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
279                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
280                 pgprot_val(forbidden) |= _PAGE_RW;
281
282 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
283         /*
284          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
285          * kernel text mappings for the large page aligned text, rodata sections
286          * will be always read-only. For the kernel identity mappings covering
287          * the holes caused by this alignment can be anything that user asks.
288          *
289          * This will preserve the large page mappings for kernel text/data
290          * at no extra cost.
291          */
292         if (kernel_set_to_readonly &&
293             within(address, (unsigned long)_text,
294                    (unsigned long)__end_rodata_hpage_align))
295                 pgprot_val(forbidden) |= _PAGE_RW;
296 #endif
297
298         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
299
300         return prot;
301 }
302
303 /*
304  * Lookup the page table entry for a virtual address. Return a pointer
305  * to the entry and the level of the mapping.
306  *
307  * Note: We return pud and pmd either when the entry is marked large
308  * or when the present bit is not set. Otherwise we would return a
309  * pointer to a nonexisting mapping.
310  */
311 pte_t *lookup_address(unsigned long address, unsigned int *level)
312 {
313         pgd_t *pgd = pgd_offset_k(address);
314         pud_t *pud;
315         pmd_t *pmd;
316
317         *level = PG_LEVEL_NONE;
318
319         if (pgd_none(*pgd))
320                 return NULL;
321
322         pud = pud_offset(pgd, address);
323         if (pud_none(*pud))
324                 return NULL;
325
326         *level = PG_LEVEL_1G;
327         if (pud_large(*pud) || !pud_present(*pud))
328                 return (pte_t *)pud;
329
330         pmd = pmd_offset(pud, address);
331         if (pmd_none(*pmd))
332                 return NULL;
333
334         *level = PG_LEVEL_2M;
335         if (pmd_large(*pmd) || !pmd_present(*pmd))
336                 return (pte_t *)pmd;
337
338         *level = PG_LEVEL_4K;
339
340         return pte_offset_kernel(pmd, address);
341 }
342 EXPORT_SYMBOL_GPL(lookup_address);
343
344 /*
345  * Set the new pmd in all the pgds we know about:
346  */
347 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
348 {
349         /* change init_mm */
350         set_pte_atomic(kpte, pte);
351 #ifdef CONFIG_X86_32
352         if (!SHARED_KERNEL_PMD) {
353                 struct page *page;
354
355                 list_for_each_entry(page, &pgd_list, lru) {
356                         pgd_t *pgd;
357                         pud_t *pud;
358                         pmd_t *pmd;
359
360                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
361                         pud = pud_offset(pgd, address);
362                         pmd = pmd_offset(pud, address);
363                         set_pte_atomic((pte_t *)pmd, pte);
364                 }
365         }
366 #endif
367 }
368
369 static int
370 try_preserve_large_page(pte_t *kpte, unsigned long address,
371                         struct cpa_data *cpa)
372 {
373         unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
374         pte_t new_pte, old_pte, *tmp;
375         pgprot_t old_prot, new_prot;
376         int i, do_split = 1;
377         unsigned int level;
378
379         if (cpa->force_split)
380                 return 1;
381
382         spin_lock_irqsave(&pgd_lock, flags);
383         /*
384          * Check for races, another CPU might have split this page
385          * up already:
386          */
387         tmp = lookup_address(address, &level);
388         if (tmp != kpte)
389                 goto out_unlock;
390
391         switch (level) {
392         case PG_LEVEL_2M:
393                 psize = PMD_PAGE_SIZE;
394                 pmask = PMD_PAGE_MASK;
395                 break;
396 #ifdef CONFIG_X86_64
397         case PG_LEVEL_1G:
398                 psize = PUD_PAGE_SIZE;
399                 pmask = PUD_PAGE_MASK;
400                 break;
401 #endif
402         default:
403                 do_split = -EINVAL;
404                 goto out_unlock;
405         }
406
407         /*
408          * Calculate the number of pages, which fit into this large
409          * page starting at address:
410          */
411         nextpage_addr = (address + psize) & pmask;
412         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
413         if (numpages < cpa->numpages)
414                 cpa->numpages = numpages;
415
416         /*
417          * We are safe now. Check whether the new pgprot is the same:
418          */
419         old_pte = *kpte;
420         old_prot = new_prot = pte_pgprot(old_pte);
421
422         pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
423         pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
424
425         /*
426          * old_pte points to the large page base address. So we need
427          * to add the offset of the virtual address:
428          */
429         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
430         cpa->pfn = pfn;
431
432         new_prot = static_protections(new_prot, address, pfn);
433
434         /*
435          * We need to check the full range, whether
436          * static_protection() requires a different pgprot for one of
437          * the pages in the range we try to preserve:
438          */
439         addr = address + PAGE_SIZE;
440         pfn++;
441         for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
442                 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
443
444                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
445                         goto out_unlock;
446         }
447
448         /*
449          * If there are no changes, return. maxpages has been updated
450          * above:
451          */
452         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
453                 do_split = 0;
454                 goto out_unlock;
455         }
456
457         /*
458          * We need to change the attributes. Check, whether we can
459          * change the large page in one go. We request a split, when
460          * the address is not aligned and the number of pages is
461          * smaller than the number of pages in the large page. Note
462          * that we limited the number of possible pages already to
463          * the number of pages in the large page.
464          */
465         if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
466                 /*
467                  * The address is aligned and the number of pages
468                  * covers the full page.
469                  */
470                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
471                 __set_pmd_pte(kpte, address, new_pte);
472                 cpa->flags |= CPA_FLUSHTLB;
473                 do_split = 0;
474         }
475
476 out_unlock:
477         spin_unlock_irqrestore(&pgd_lock, flags);
478
479         return do_split;
480 }
481
482 static int split_large_page(pte_t *kpte, unsigned long address)
483 {
484         unsigned long flags, pfn, pfninc = 1;
485         unsigned int i, level;
486         pte_t *pbase, *tmp;
487         pgprot_t ref_prot;
488         struct page *base;
489
490         if (!debug_pagealloc)
491                 spin_unlock(&cpa_lock);
492         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
493         if (!debug_pagealloc)
494                 spin_lock(&cpa_lock);
495         if (!base)
496                 return -ENOMEM;
497
498         spin_lock_irqsave(&pgd_lock, flags);
499         /*
500          * Check for races, another CPU might have split this page
501          * up for us already:
502          */
503         tmp = lookup_address(address, &level);
504         if (tmp != kpte)
505                 goto out_unlock;
506
507         pbase = (pte_t *)page_address(base);
508         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
509         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
510         /*
511          * If we ever want to utilize the PAT bit, we need to
512          * update this function to make sure it's converted from
513          * bit 12 to bit 7 when we cross from the 2MB level to
514          * the 4K level:
515          */
516         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
517
518 #ifdef CONFIG_X86_64
519         if (level == PG_LEVEL_1G) {
520                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
521                 pgprot_val(ref_prot) |= _PAGE_PSE;
522         }
523 #endif
524
525         /*
526          * Get the target pfn from the original entry:
527          */
528         pfn = pte_pfn(*kpte);
529         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
530                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
531
532         if (address >= (unsigned long)__va(0) &&
533                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
534                 split_page_count(level);
535
536 #ifdef CONFIG_X86_64
537         if (address >= (unsigned long)__va(1UL<<32) &&
538                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
539                 split_page_count(level);
540 #endif
541
542         /*
543          * Install the new, split up pagetable.
544          *
545          * We use the standard kernel pagetable protections for the new
546          * pagetable protections, the actual ptes set above control the
547          * primary protection behavior:
548          */
549         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
550
551         /*
552          * Intel Atom errata AAH41 workaround.
553          *
554          * The real fix should be in hw or in a microcode update, but
555          * we also probabilistically try to reduce the window of having
556          * a large TLB mixed with 4K TLBs while instruction fetches are
557          * going on.
558          */
559         __flush_tlb_all();
560
561         base = NULL;
562
563 out_unlock:
564         /*
565          * If we dropped out via the lookup_address check under
566          * pgd_lock then stick the page back into the pool:
567          */
568         if (base)
569                 __free_page(base);
570         spin_unlock_irqrestore(&pgd_lock, flags);
571
572         return 0;
573 }
574
575 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
576                                int primary)
577 {
578         /*
579          * Ignore all non primary paths.
580          */
581         if (!primary)
582                 return 0;
583
584         /*
585          * Ignore the NULL PTE for kernel identity mapping, as it is expected
586          * to have holes.
587          * Also set numpages to '1' indicating that we processed cpa req for
588          * one virtual address page and its pfn. TBD: numpages can be set based
589          * on the initial value and the level returned by lookup_address().
590          */
591         if (within(vaddr, PAGE_OFFSET,
592                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
593                 cpa->numpages = 1;
594                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
595                 return 0;
596         } else {
597                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
598                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
599                         *cpa->vaddr);
600
601                 return -EFAULT;
602         }
603 }
604
605 static int __change_page_attr(struct cpa_data *cpa, int primary)
606 {
607         unsigned long address;
608         int do_split, err;
609         unsigned int level;
610         pte_t *kpte, old_pte;
611
612         if (cpa->flags & CPA_PAGES_ARRAY) {
613                 struct page *page = cpa->pages[cpa->curpage];
614                 if (unlikely(PageHighMem(page)))
615                         return 0;
616                 address = (unsigned long)page_address(page);
617         } else if (cpa->flags & CPA_ARRAY)
618                 address = cpa->vaddr[cpa->curpage];
619         else
620                 address = *cpa->vaddr;
621 repeat:
622         kpte = lookup_address(address, &level);
623         if (!kpte)
624                 return __cpa_process_fault(cpa, address, primary);
625
626         old_pte = *kpte;
627         if (!pte_val(old_pte))
628                 return __cpa_process_fault(cpa, address, primary);
629
630         if (level == PG_LEVEL_4K) {
631                 pte_t new_pte;
632                 pgprot_t new_prot = pte_pgprot(old_pte);
633                 unsigned long pfn = pte_pfn(old_pte);
634
635                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
636                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
637
638                 new_prot = static_protections(new_prot, address, pfn);
639
640                 /*
641                  * We need to keep the pfn from the existing PTE,
642                  * after all we're only going to change it's attributes
643                  * not the memory it points to
644                  */
645                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
646                 cpa->pfn = pfn;
647                 /*
648                  * Do we really change anything ?
649                  */
650                 if (pte_val(old_pte) != pte_val(new_pte)) {
651                         set_pte_atomic(kpte, new_pte);
652                         cpa->flags |= CPA_FLUSHTLB;
653                 }
654                 cpa->numpages = 1;
655                 return 0;
656         }
657
658         /*
659          * Check, whether we can keep the large page intact
660          * and just change the pte:
661          */
662         do_split = try_preserve_large_page(kpte, address, cpa);
663         /*
664          * When the range fits into the existing large page,
665          * return. cp->numpages and cpa->tlbflush have been updated in
666          * try_large_page:
667          */
668         if (do_split <= 0)
669                 return do_split;
670
671         /*
672          * We have to split the large page:
673          */
674         err = split_large_page(kpte, address);
675         if (!err) {
676                 /*
677                  * Do a global flush tlb after splitting the large page
678                  * and before we do the actual change page attribute in the PTE.
679                  *
680                  * With out this, we violate the TLB application note, that says
681                  * "The TLBs may contain both ordinary and large-page
682                  *  translations for a 4-KByte range of linear addresses. This
683                  *  may occur if software modifies the paging structures so that
684                  *  the page size used for the address range changes. If the two
685                  *  translations differ with respect to page frame or attributes
686                  *  (e.g., permissions), processor behavior is undefined and may
687                  *  be implementation-specific."
688                  *
689                  * We do this global tlb flush inside the cpa_lock, so that we
690                  * don't allow any other cpu, with stale tlb entries change the
691                  * page attribute in parallel, that also falls into the
692                  * just split large page entry.
693                  */
694                 flush_tlb_all();
695                 goto repeat;
696         }
697
698         return err;
699 }
700
701 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
702
703 static int cpa_process_alias(struct cpa_data *cpa)
704 {
705         struct cpa_data alias_cpa;
706         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
707         unsigned long vaddr;
708         int ret;
709
710         if (cpa->pfn >= max_pfn_mapped)
711                 return 0;
712
713 #ifdef CONFIG_X86_64
714         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
715                 return 0;
716 #endif
717         /*
718          * No need to redo, when the primary call touched the direct
719          * mapping already:
720          */
721         if (cpa->flags & CPA_PAGES_ARRAY) {
722                 struct page *page = cpa->pages[cpa->curpage];
723                 if (unlikely(PageHighMem(page)))
724                         return 0;
725                 vaddr = (unsigned long)page_address(page);
726         } else if (cpa->flags & CPA_ARRAY)
727                 vaddr = cpa->vaddr[cpa->curpage];
728         else
729                 vaddr = *cpa->vaddr;
730
731         if (!(within(vaddr, PAGE_OFFSET,
732                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
733
734                 alias_cpa = *cpa;
735                 alias_cpa.vaddr = &laddr;
736                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
737
738                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
739                 if (ret)
740                         return ret;
741         }
742
743 #ifdef CONFIG_X86_64
744         /*
745          * If the primary call didn't touch the high mapping already
746          * and the physical address is inside the kernel map, we need
747          * to touch the high mapped kernel as well:
748          */
749         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
750             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
751                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
752                                                __START_KERNEL_map - phys_base;
753                 alias_cpa = *cpa;
754                 alias_cpa.vaddr = &temp_cpa_vaddr;
755                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
756
757                 /*
758                  * The high mapping range is imprecise, so ignore the
759                  * return value.
760                  */
761                 __change_page_attr_set_clr(&alias_cpa, 0);
762         }
763 #endif
764
765         return 0;
766 }
767
768 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
769 {
770         int ret, numpages = cpa->numpages;
771
772         while (numpages) {
773                 /*
774                  * Store the remaining nr of pages for the large page
775                  * preservation check.
776                  */
777                 cpa->numpages = numpages;
778                 /* for array changes, we can't use large page */
779                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
780                         cpa->numpages = 1;
781
782                 if (!debug_pagealloc)
783                         spin_lock(&cpa_lock);
784                 ret = __change_page_attr(cpa, checkalias);
785                 if (!debug_pagealloc)
786                         spin_unlock(&cpa_lock);
787                 if (ret)
788                         return ret;
789
790                 if (checkalias) {
791                         ret = cpa_process_alias(cpa);
792                         if (ret)
793                                 return ret;
794                 }
795
796                 /*
797                  * Adjust the number of pages with the result of the
798                  * CPA operation. Either a large page has been
799                  * preserved or a single page update happened.
800                  */
801                 BUG_ON(cpa->numpages > numpages);
802                 numpages -= cpa->numpages;
803                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
804                         cpa->curpage++;
805                 else
806                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
807
808         }
809         return 0;
810 }
811
812 static inline int cache_attr(pgprot_t attr)
813 {
814         return pgprot_val(attr) &
815                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
816 }
817
818 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
819                                     pgprot_t mask_set, pgprot_t mask_clr,
820                                     int force_split, int in_flag,
821                                     struct page **pages)
822 {
823         struct cpa_data cpa;
824         int ret, cache, checkalias;
825         unsigned long baddr = 0;
826
827         /*
828          * Check, if we are requested to change a not supported
829          * feature:
830          */
831         mask_set = canon_pgprot(mask_set);
832         mask_clr = canon_pgprot(mask_clr);
833         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
834                 return 0;
835
836         /* Ensure we are PAGE_SIZE aligned */
837         if (in_flag & CPA_ARRAY) {
838                 int i;
839                 for (i = 0; i < numpages; i++) {
840                         if (addr[i] & ~PAGE_MASK) {
841                                 addr[i] &= PAGE_MASK;
842                                 WARN_ON_ONCE(1);
843                         }
844                 }
845         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
846                 /*
847                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
848                  * No need to cehck in that case
849                  */
850                 if (*addr & ~PAGE_MASK) {
851                         *addr &= PAGE_MASK;
852                         /*
853                          * People should not be passing in unaligned addresses:
854                          */
855                         WARN_ON_ONCE(1);
856                 }
857                 /*
858                  * Save address for cache flush. *addr is modified in the call
859                  * to __change_page_attr_set_clr() below.
860                  */
861                 baddr = *addr;
862         }
863
864         /* Must avoid aliasing mappings in the highmem code */
865         kmap_flush_unused();
866
867         vm_unmap_aliases();
868
869         cpa.vaddr = addr;
870         cpa.pages = pages;
871         cpa.numpages = numpages;
872         cpa.mask_set = mask_set;
873         cpa.mask_clr = mask_clr;
874         cpa.flags = 0;
875         cpa.curpage = 0;
876         cpa.force_split = force_split;
877
878         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
879                 cpa.flags |= in_flag;
880
881         /* No alias checking for _NX bit modifications */
882         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
883
884         ret = __change_page_attr_set_clr(&cpa, checkalias);
885
886         /*
887          * Check whether we really changed something:
888          */
889         if (!(cpa.flags & CPA_FLUSHTLB))
890                 goto out;
891
892         /*
893          * No need to flush, when we did not set any of the caching
894          * attributes:
895          */
896         cache = cache_attr(mask_set);
897
898         /*
899          * On success we use clflush, when the CPU supports it to
900          * avoid the wbindv. If the CPU does not support it and in the
901          * error case we fall back to cpa_flush_all (which uses
902          * wbindv):
903          */
904         if (!ret && cpu_has_clflush) {
905                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
906                         cpa_flush_array(addr, numpages, cache,
907                                         cpa.flags, pages);
908                 } else
909                         cpa_flush_range(baddr, numpages, cache);
910         } else
911                 cpa_flush_all(cache);
912
913 out:
914         return ret;
915 }
916
917 static inline int change_page_attr_set(unsigned long *addr, int numpages,
918                                        pgprot_t mask, int array)
919 {
920         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
921                 (array ? CPA_ARRAY : 0), NULL);
922 }
923
924 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
925                                          pgprot_t mask, int array)
926 {
927         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
928                 (array ? CPA_ARRAY : 0), NULL);
929 }
930
931 static inline int cpa_set_pages_array(struct page **pages, int numpages,
932                                        pgprot_t mask)
933 {
934         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
935                 CPA_PAGES_ARRAY, pages);
936 }
937
938 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
939                                          pgprot_t mask)
940 {
941         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
942                 CPA_PAGES_ARRAY, pages);
943 }
944
945 int _set_memory_uc(unsigned long addr, int numpages)
946 {
947         /*
948          * for now UC MINUS. see comments in ioremap_nocache()
949          */
950         return change_page_attr_set(&addr, numpages,
951                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
952 }
953
954 int set_memory_uc(unsigned long addr, int numpages)
955 {
956         int ret;
957
958         /*
959          * for now UC MINUS. see comments in ioremap_nocache()
960          */
961         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
962                             _PAGE_CACHE_UC_MINUS, NULL);
963         if (ret)
964                 goto out_err;
965
966         ret = _set_memory_uc(addr, numpages);
967         if (ret)
968                 goto out_free;
969
970         return 0;
971
972 out_free:
973         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
974 out_err:
975         return ret;
976 }
977 EXPORT_SYMBOL(set_memory_uc);
978
979 int set_memory_array_uc(unsigned long *addr, int addrinarray)
980 {
981         int i, j;
982         int ret;
983
984         /*
985          * for now UC MINUS. see comments in ioremap_nocache()
986          */
987         for (i = 0; i < addrinarray; i++) {
988                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
989                                         _PAGE_CACHE_UC_MINUS, NULL);
990                 if (ret)
991                         goto out_free;
992         }
993
994         ret = change_page_attr_set(addr, addrinarray,
995                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
996         if (ret)
997                 goto out_free;
998
999         return 0;
1000
1001 out_free:
1002         for (j = 0; j < i; j++)
1003                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1004
1005         return ret;
1006 }
1007 EXPORT_SYMBOL(set_memory_array_uc);
1008
1009 int _set_memory_wc(unsigned long addr, int numpages)
1010 {
1011         int ret;
1012         unsigned long addr_copy = addr;
1013
1014         ret = change_page_attr_set(&addr, numpages,
1015                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1016         if (!ret) {
1017                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1018                                                __pgprot(_PAGE_CACHE_WC),
1019                                                __pgprot(_PAGE_CACHE_MASK),
1020                                                0, 0, NULL);
1021         }
1022         return ret;
1023 }
1024
1025 int set_memory_wc(unsigned long addr, int numpages)
1026 {
1027         int ret;
1028
1029         if (!pat_enabled)
1030                 return set_memory_uc(addr, numpages);
1031
1032         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1033                 _PAGE_CACHE_WC, NULL);
1034         if (ret)
1035                 goto out_err;
1036
1037         ret = _set_memory_wc(addr, numpages);
1038         if (ret)
1039                 goto out_free;
1040
1041         return 0;
1042
1043 out_free:
1044         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1045 out_err:
1046         return ret;
1047 }
1048 EXPORT_SYMBOL(set_memory_wc);
1049
1050 int _set_memory_wb(unsigned long addr, int numpages)
1051 {
1052         return change_page_attr_clear(&addr, numpages,
1053                                       __pgprot(_PAGE_CACHE_MASK), 0);
1054 }
1055
1056 int set_memory_wb(unsigned long addr, int numpages)
1057 {
1058         int ret;
1059
1060         ret = _set_memory_wb(addr, numpages);
1061         if (ret)
1062                 return ret;
1063
1064         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1065         return 0;
1066 }
1067 EXPORT_SYMBOL(set_memory_wb);
1068
1069 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1070 {
1071         int i;
1072         int ret;
1073
1074         ret = change_page_attr_clear(addr, addrinarray,
1075                                       __pgprot(_PAGE_CACHE_MASK), 1);
1076         if (ret)
1077                 return ret;
1078
1079         for (i = 0; i < addrinarray; i++)
1080                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1081
1082         return 0;
1083 }
1084 EXPORT_SYMBOL(set_memory_array_wb);
1085
1086 int set_memory_x(unsigned long addr, int numpages)
1087 {
1088         if (!(__supported_pte_mask & _PAGE_NX))
1089                 return 0;
1090
1091         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1092 }
1093 EXPORT_SYMBOL(set_memory_x);
1094
1095 int set_memory_nx(unsigned long addr, int numpages)
1096 {
1097         if (!(__supported_pte_mask & _PAGE_NX))
1098                 return 0;
1099
1100         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1101 }
1102 EXPORT_SYMBOL(set_memory_nx);
1103
1104 int set_memory_ro(unsigned long addr, int numpages)
1105 {
1106         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1107 }
1108 EXPORT_SYMBOL_GPL(set_memory_ro);
1109
1110 int set_memory_rw(unsigned long addr, int numpages)
1111 {
1112         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1113 }
1114 EXPORT_SYMBOL_GPL(set_memory_rw);
1115
1116 int set_memory_np(unsigned long addr, int numpages)
1117 {
1118         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1119 }
1120
1121 int set_memory_4k(unsigned long addr, int numpages)
1122 {
1123         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1124                                         __pgprot(0), 1, 0, NULL);
1125 }
1126
1127 int set_pages_uc(struct page *page, int numpages)
1128 {
1129         unsigned long addr = (unsigned long)page_address(page);
1130
1131         return set_memory_uc(addr, numpages);
1132 }
1133 EXPORT_SYMBOL(set_pages_uc);
1134
1135 int set_pages_array_uc(struct page **pages, int addrinarray)
1136 {
1137         unsigned long start;
1138         unsigned long end;
1139         int i;
1140         int free_idx;
1141
1142         for (i = 0; i < addrinarray; i++) {
1143                 if (PageHighMem(pages[i]))
1144                         continue;
1145                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1146                 end = start + PAGE_SIZE;
1147                 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1148                         goto err_out;
1149         }
1150
1151         if (cpa_set_pages_array(pages, addrinarray,
1152                         __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1153                 return 0; /* Success */
1154         }
1155 err_out:
1156         free_idx = i;
1157         for (i = 0; i < free_idx; i++) {
1158                 if (PageHighMem(pages[i]))
1159                         continue;
1160                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1161                 end = start + PAGE_SIZE;
1162                 free_memtype(start, end);
1163         }
1164         return -EINVAL;
1165 }
1166 EXPORT_SYMBOL(set_pages_array_uc);
1167
1168 int set_pages_wb(struct page *page, int numpages)
1169 {
1170         unsigned long addr = (unsigned long)page_address(page);
1171
1172         return set_memory_wb(addr, numpages);
1173 }
1174 EXPORT_SYMBOL(set_pages_wb);
1175
1176 int set_pages_array_wb(struct page **pages, int addrinarray)
1177 {
1178         int retval;
1179         unsigned long start;
1180         unsigned long end;
1181         int i;
1182
1183         retval = cpa_clear_pages_array(pages, addrinarray,
1184                         __pgprot(_PAGE_CACHE_MASK));
1185         if (retval)
1186                 return retval;
1187
1188         for (i = 0; i < addrinarray; i++) {
1189                 if (PageHighMem(pages[i]))
1190                         continue;
1191                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1192                 end = start + PAGE_SIZE;
1193                 free_memtype(start, end);
1194         }
1195
1196         return 0;
1197 }
1198 EXPORT_SYMBOL(set_pages_array_wb);
1199
1200 int set_pages_x(struct page *page, int numpages)
1201 {
1202         unsigned long addr = (unsigned long)page_address(page);
1203
1204         return set_memory_x(addr, numpages);
1205 }
1206 EXPORT_SYMBOL(set_pages_x);
1207
1208 int set_pages_nx(struct page *page, int numpages)
1209 {
1210         unsigned long addr = (unsigned long)page_address(page);
1211
1212         return set_memory_nx(addr, numpages);
1213 }
1214 EXPORT_SYMBOL(set_pages_nx);
1215
1216 int set_pages_ro(struct page *page, int numpages)
1217 {
1218         unsigned long addr = (unsigned long)page_address(page);
1219
1220         return set_memory_ro(addr, numpages);
1221 }
1222
1223 int set_pages_rw(struct page *page, int numpages)
1224 {
1225         unsigned long addr = (unsigned long)page_address(page);
1226
1227         return set_memory_rw(addr, numpages);
1228 }
1229
1230 #ifdef CONFIG_DEBUG_PAGEALLOC
1231
1232 static int __set_pages_p(struct page *page, int numpages)
1233 {
1234         unsigned long tempaddr = (unsigned long) page_address(page);
1235         struct cpa_data cpa = { .vaddr = &tempaddr,
1236                                 .numpages = numpages,
1237                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1238                                 .mask_clr = __pgprot(0),
1239                                 .flags = 0};
1240
1241         /*
1242          * No alias checking needed for setting present flag. otherwise,
1243          * we may need to break large pages for 64-bit kernel text
1244          * mappings (this adds to complexity if we want to do this from
1245          * atomic context especially). Let's keep it simple!
1246          */
1247         return __change_page_attr_set_clr(&cpa, 0);
1248 }
1249
1250 static int __set_pages_np(struct page *page, int numpages)
1251 {
1252         unsigned long tempaddr = (unsigned long) page_address(page);
1253         struct cpa_data cpa = { .vaddr = &tempaddr,
1254                                 .numpages = numpages,
1255                                 .mask_set = __pgprot(0),
1256                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1257                                 .flags = 0};
1258
1259         /*
1260          * No alias checking needed for setting not present flag. otherwise,
1261          * we may need to break large pages for 64-bit kernel text
1262          * mappings (this adds to complexity if we want to do this from
1263          * atomic context especially). Let's keep it simple!
1264          */
1265         return __change_page_attr_set_clr(&cpa, 0);
1266 }
1267
1268 void kernel_map_pages(struct page *page, int numpages, int enable)
1269 {
1270         if (PageHighMem(page))
1271                 return;
1272         if (!enable) {
1273                 debug_check_no_locks_freed(page_address(page),
1274                                            numpages * PAGE_SIZE);
1275         }
1276
1277         /*
1278          * If page allocator is not up yet then do not call c_p_a():
1279          */
1280         if (!debug_pagealloc_enabled)
1281                 return;
1282
1283         /*
1284          * The return value is ignored as the calls cannot fail.
1285          * Large pages for identity mappings are not used at boot time
1286          * and hence no memory allocations during large page split.
1287          */
1288         if (enable)
1289                 __set_pages_p(page, numpages);
1290         else
1291                 __set_pages_np(page, numpages);
1292
1293         /*
1294          * We should perform an IPI and flush all tlbs,
1295          * but that can deadlock->flush only current cpu:
1296          */
1297         __flush_tlb_all();
1298 }
1299
1300 #ifdef CONFIG_HIBERNATION
1301
1302 bool kernel_page_present(struct page *page)
1303 {
1304         unsigned int level;
1305         pte_t *pte;
1306
1307         if (PageHighMem(page))
1308                 return false;
1309
1310         pte = lookup_address((unsigned long)page_address(page), &level);
1311         return (pte_val(*pte) & _PAGE_PRESENT);
1312 }
1313
1314 #endif /* CONFIG_HIBERNATION */
1315
1316 #endif /* CONFIG_DEBUG_PAGEALLOC */
1317
1318 /*
1319  * The testcases use internal knowledge of the implementation that shouldn't
1320  * be exposed to the rest of the kernel. Include these directly here.
1321  */
1322 #ifdef CONFIG_CPA_DEBUG
1323 #include "pageattr-test.c"
1324 #endif