Merge branch 'x86/fixmap' into x86/devel
[safe/jmp/linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * PFN of last memory page.
53  */
54 unsigned long end_pfn;
55
56 /*
57  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
58  * The direct mapping extends to max_pfn_mapped, so that we can directly access
59  * apertures, ACPI and other tables without having to play with fixmaps.
60  */
61 unsigned long max_pfn_mapped;
62
63 static unsigned long dma_reserve __initdata;
64
65 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
66
67 int direct_gbpages __meminitdata
68 #ifdef CONFIG_DIRECT_GBPAGES
69                                 = 1
70 #endif
71 ;
72
73 static int __init parse_direct_gbpages_off(char *arg)
74 {
75         direct_gbpages = 0;
76         return 0;
77 }
78 early_param("nogbpages", parse_direct_gbpages_off);
79
80 static int __init parse_direct_gbpages_on(char *arg)
81 {
82         direct_gbpages = 1;
83         return 0;
84 }
85 early_param("gbpages", parse_direct_gbpages_on);
86
87 /*
88  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
89  * physical space so we can cache the place of the first one and move
90  * around without checking the pgd every time.
91  */
92
93 void show_mem(void)
94 {
95         long i, total = 0, reserved = 0;
96         long shared = 0, cached = 0;
97         struct page *page;
98         pg_data_t *pgdat;
99
100         printk(KERN_INFO "Mem-info:\n");
101         show_free_areas();
102         for_each_online_pgdat(pgdat) {
103                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
104                         /*
105                          * This loop can take a while with 256 GB and
106                          * 4k pages so defer the NMI watchdog:
107                          */
108                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
109                                 touch_nmi_watchdog();
110
111                         if (!pfn_valid(pgdat->node_start_pfn + i))
112                                 continue;
113
114                         page = pfn_to_page(pgdat->node_start_pfn + i);
115                         total++;
116                         if (PageReserved(page))
117                                 reserved++;
118                         else if (PageSwapCache(page))
119                                 cached++;
120                         else if (page_count(page))
121                                 shared += page_count(page) - 1;
122                 }
123         }
124         printk(KERN_INFO "%lu pages of RAM\n",          total);
125         printk(KERN_INFO "%lu reserved pages\n",        reserved);
126         printk(KERN_INFO "%lu pages shared\n",          shared);
127         printk(KERN_INFO "%lu pages swap cached\n",     cached);
128 }
129
130 int after_bootmem;
131
132 static __init void *spp_getpage(void)
133 {
134         void *ptr;
135
136         if (after_bootmem)
137                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
138         else
139                 ptr = alloc_bootmem_pages(PAGE_SIZE);
140
141         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
142                 panic("set_pte_phys: cannot allocate page data %s\n",
143                         after_bootmem ? "after bootmem" : "");
144         }
145
146         pr_debug("spp_getpage %p\n", ptr);
147
148         return ptr;
149 }
150
151 void
152 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
153 {
154         pgd_t *pgd;
155         pud_t *pud;
156         pmd_t *pmd;
157         pte_t *pte;
158
159         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
160
161         pgd = pgd_offset_k(vaddr);
162         if (pgd_none(*pgd)) {
163                 printk(KERN_ERR
164                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
165                 return;
166         }
167         pud = pud_offset(pgd, vaddr);
168         if (pud_none(*pud)) {
169                 pmd = (pmd_t *) spp_getpage();
170                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
171                 if (pmd != pmd_offset(pud, 0)) {
172                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
173                                 pmd, pmd_offset(pud, 0));
174                         return;
175                 }
176         }
177         pmd = pmd_offset(pud, vaddr);
178         if (pmd_none(*pmd)) {
179                 pte = (pte_t *) spp_getpage();
180                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
181                 if (pte != pte_offset_kernel(pmd, 0)) {
182                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
183                         return;
184                 }
185         }
186
187         pte = pte_offset_kernel(pmd, vaddr);
188         if (!pte_none(*pte) && pte_val(new_pte) &&
189             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
190                 pte_ERROR(*pte);
191         set_pte(pte, new_pte);
192
193         /*
194          * It's enough to flush this one mapping.
195          * (PGE mappings get flushed as well)
196          */
197         __flush_tlb_one(vaddr);
198 }
199
200 /*
201  * The head.S code sets up the kernel high mapping:
202  *
203  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
204  *
205  * phys_addr holds the negative offset to the kernel, which is added
206  * to the compile time generated pmds. This results in invalid pmds up
207  * to the point where we hit the physaddr 0 mapping.
208  *
209  * We limit the mappings to the region from _text to _end.  _end is
210  * rounded up to the 2MB boundary. This catches the invalid pmds as
211  * well, as they are located before _text:
212  */
213 void __init cleanup_highmap(void)
214 {
215         unsigned long vaddr = __START_KERNEL_map;
216         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
217         pmd_t *pmd = level2_kernel_pgt;
218         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
219
220         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
221                 if (pmd_none(*pmd))
222                         continue;
223                 if (vaddr < (unsigned long) _text || vaddr > end)
224                         set_pmd(pmd, __pmd(0));
225         }
226 }
227
228 static unsigned long __initdata table_start;
229 static unsigned long __meminitdata table_end;
230
231 static __meminit void *alloc_low_page(unsigned long *phys)
232 {
233         unsigned long pfn = table_end++;
234         void *adr;
235
236         if (after_bootmem) {
237                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
238                 *phys = __pa(adr);
239
240                 return adr;
241         }
242
243         if (pfn >= end_pfn)
244                 panic("alloc_low_page: ran out of memory");
245
246         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
247         memset(adr, 0, PAGE_SIZE);
248         *phys  = pfn * PAGE_SIZE;
249         return adr;
250 }
251
252 static __meminit void unmap_low_page(void *adr)
253 {
254         if (after_bootmem)
255                 return;
256
257         early_iounmap(adr, PAGE_SIZE);
258 }
259
260 /* Must run before zap_low_mappings */
261 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
262 {
263         pmd_t *pmd, *last_pmd;
264         unsigned long vaddr;
265         int i, pmds;
266
267         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
268         vaddr = __START_KERNEL_map;
269         pmd = level2_kernel_pgt;
270         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
271
272         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
273                 for (i = 0; i < pmds; i++) {
274                         if (pmd_present(pmd[i]))
275                                 goto continue_outer_loop;
276                 }
277                 vaddr += addr & ~PMD_MASK;
278                 addr &= PMD_MASK;
279
280                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
281                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
282                 __flush_tlb_all();
283
284                 return (void *)vaddr;
285 continue_outer_loop:
286                 ;
287         }
288         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
289
290         return NULL;
291 }
292
293 /*
294  * To avoid virtual aliases later:
295  */
296 __meminit void early_iounmap(void *addr, unsigned long size)
297 {
298         unsigned long vaddr;
299         pmd_t *pmd;
300         int i, pmds;
301
302         vaddr = (unsigned long)addr;
303         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
304         pmd = level2_kernel_pgt + pmd_index(vaddr);
305
306         for (i = 0; i < pmds; i++)
307                 pmd_clear(pmd + i);
308
309         __flush_tlb_all();
310 }
311
312 static unsigned long __meminit
313 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
314 {
315         unsigned long pages = 0;
316
317         int i = pmd_index(address);
318
319         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
320                 pmd_t *pmd = pmd_page + pmd_index(address);
321
322                 if (address >= end) {
323                         if (!after_bootmem) {
324                                 for (; i < PTRS_PER_PMD; i++, pmd++)
325                                         set_pmd(pmd, __pmd(0));
326                         }
327                         break;
328                 }
329
330                 if (pmd_val(*pmd))
331                         continue;
332
333                 pages++;
334                 set_pte((pte_t *)pmd,
335                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
336         }
337         update_page_count(PG_LEVEL_2M, pages);
338         return address;
339 }
340
341 static unsigned long __meminit
342 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
343 {
344         pmd_t *pmd = pmd_offset(pud, 0);
345         unsigned long last_map_addr;
346
347         spin_lock(&init_mm.page_table_lock);
348         last_map_addr = phys_pmd_init(pmd, address, end);
349         spin_unlock(&init_mm.page_table_lock);
350         __flush_tlb_all();
351         return last_map_addr;
352 }
353
354 static unsigned long __meminit
355 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
356 {
357         unsigned long pages = 0;
358         unsigned long last_map_addr = end;
359         int i = pud_index(addr);
360
361         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
362                 unsigned long pmd_phys;
363                 pud_t *pud = pud_page + pud_index(addr);
364                 pmd_t *pmd;
365
366                 if (addr >= end)
367                         break;
368
369                 if (!after_bootmem &&
370                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
371                         set_pud(pud, __pud(0));
372                         continue;
373                 }
374
375                 if (pud_val(*pud)) {
376                         if (!pud_large(*pud))
377                                 last_map_addr = phys_pmd_update(pud, addr, end);
378                         continue;
379                 }
380
381                 if (direct_gbpages) {
382                         pages++;
383                         set_pte((pte_t *)pud,
384                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
385                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
386                         continue;
387                 }
388
389                 pmd = alloc_low_page(&pmd_phys);
390
391                 spin_lock(&init_mm.page_table_lock);
392                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
393                 last_map_addr = phys_pmd_init(pmd, addr, end);
394                 spin_unlock(&init_mm.page_table_lock);
395
396                 unmap_low_page(pmd);
397         }
398         __flush_tlb_all();
399         update_page_count(PG_LEVEL_1G, pages);
400
401         return last_map_addr >> PAGE_SHIFT;
402 }
403
404 static void __init find_early_table_space(unsigned long end)
405 {
406         unsigned long puds, pmds, tables, start;
407
408         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
409         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
410         if (!direct_gbpages) {
411                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
412                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
413         }
414
415         /*
416          * RED-PEN putting page tables only on node 0 could
417          * cause a hotspot and fill up ZONE_DMA. The page tables
418          * need roughly 0.5KB per GB.
419          */
420         start = 0x8000;
421         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
422         if (table_start == -1UL)
423                 panic("Cannot find space for the kernel page tables");
424
425         table_start >>= PAGE_SHIFT;
426         table_end = table_start;
427
428         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
429                 end, table_start << PAGE_SHIFT,
430                 (table_start << PAGE_SHIFT) + tables);
431 }
432
433 static void __init init_gbpages(void)
434 {
435         if (direct_gbpages && cpu_has_gbpages)
436                 printk(KERN_INFO "Using GB pages for direct mapping\n");
437         else
438                 direct_gbpages = 0;
439 }
440
441 #ifdef CONFIG_MEMTEST
442
443 static void __init memtest(unsigned long start_phys, unsigned long size,
444                                  unsigned pattern)
445 {
446         unsigned long i;
447         unsigned long *start;
448         unsigned long start_bad;
449         unsigned long last_bad;
450         unsigned long val;
451         unsigned long start_phys_aligned;
452         unsigned long count;
453         unsigned long incr;
454
455         switch (pattern) {
456         case 0:
457                 val = 0UL;
458                 break;
459         case 1:
460                 val = -1UL;
461                 break;
462         case 2:
463                 val = 0x5555555555555555UL;
464                 break;
465         case 3:
466                 val = 0xaaaaaaaaaaaaaaaaUL;
467                 break;
468         default:
469                 return;
470         }
471
472         incr = sizeof(unsigned long);
473         start_phys_aligned = ALIGN(start_phys, incr);
474         count = (size - (start_phys_aligned - start_phys))/incr;
475         start = __va(start_phys_aligned);
476         start_bad = 0;
477         last_bad = 0;
478
479         for (i = 0; i < count; i++)
480                 start[i] = val;
481         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
482                 if (*start != val) {
483                         if (start_phys_aligned == last_bad + incr) {
484                                 last_bad += incr;
485                         } else {
486                                 if (start_bad) {
487                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
488                                                 val, start_bad, last_bad + incr);
489                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
490                                 }
491                                 start_bad = last_bad = start_phys_aligned;
492                         }
493                 }
494         }
495         if (start_bad) {
496                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
497                         val, start_bad, last_bad + incr);
498                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
499         }
500
501 }
502
503 /* default is disabled */
504 static int memtest_pattern __initdata;
505
506 static int __init parse_memtest(char *arg)
507 {
508         if (arg)
509                 memtest_pattern = simple_strtoul(arg, NULL, 0);
510         return 0;
511 }
512
513 early_param("memtest", parse_memtest);
514
515 static void __init early_memtest(unsigned long start, unsigned long end)
516 {
517         u64 t_start, t_size;
518         unsigned pattern;
519
520         if (!memtest_pattern)
521                 return;
522
523         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
524         for (pattern = 0; pattern < memtest_pattern; pattern++) {
525                 t_start = start;
526                 t_size = 0;
527                 while (t_start < end) {
528                         t_start = find_e820_area_size(t_start, &t_size, 1);
529
530                         /* done ? */
531                         if (t_start >= end)
532                                 break;
533                         if (t_start + t_size > end)
534                                 t_size = end - t_start;
535
536                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
537                                 (unsigned long long)t_start,
538                                 (unsigned long long)t_start + t_size, pattern);
539
540                         memtest(t_start, t_size, pattern);
541
542                         t_start += t_size;
543                 }
544         }
545         printk(KERN_CONT "\n");
546 }
547 #else
548 static void __init early_memtest(unsigned long start, unsigned long end)
549 {
550 }
551 #endif
552
553 /*
554  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
555  * This runs before bootmem is initialized and gets pages directly from
556  * the physical memory. To access them they are temporarily mapped.
557  */
558 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
559 {
560         unsigned long next, last_map_addr = end;
561         unsigned long start_phys = start, end_phys = end;
562
563         printk(KERN_INFO "init_memory_mapping\n");
564
565         /*
566          * Find space for the kernel direct mapping tables.
567          *
568          * Later we should allocate these tables in the local node of the
569          * memory mapped. Unfortunately this is done currently before the
570          * nodes are discovered.
571          */
572         if (!after_bootmem) {
573                 init_gbpages();
574                 find_early_table_space(end);
575         }
576
577         start = (unsigned long)__va(start);
578         end = (unsigned long)__va(end);
579
580         for (; start < end; start = next) {
581                 pgd_t *pgd = pgd_offset_k(start);
582                 unsigned long pud_phys;
583                 pud_t *pud;
584
585                 if (after_bootmem)
586                         pud = pud_offset(pgd, start & PGDIR_MASK);
587                 else
588                         pud = alloc_low_page(&pud_phys);
589
590                 next = start + PGDIR_SIZE;
591                 if (next > end)
592                         next = end;
593                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
594                 if (!after_bootmem)
595                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
596                 unmap_low_page(pud);
597         }
598
599         if (!after_bootmem)
600                 mmu_cr4_features = read_cr4();
601         __flush_tlb_all();
602
603         if (!after_bootmem)
604                 reserve_early(table_start << PAGE_SHIFT,
605                                  table_end << PAGE_SHIFT, "PGTABLE");
606
607         if (!after_bootmem)
608                 early_memtest(start_phys, end_phys);
609
610         return last_map_addr;
611 }
612
613 #ifndef CONFIG_NUMA
614 void __init paging_init(void)
615 {
616         unsigned long max_zone_pfns[MAX_NR_ZONES];
617
618         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
619         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
620         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
621         max_zone_pfns[ZONE_NORMAL] = end_pfn;
622
623         memory_present(0, 0, end_pfn);
624         sparse_init();
625         free_area_init_nodes(max_zone_pfns);
626 }
627 #endif
628
629 /*
630  * Memory hotplug specific functions
631  */
632 #ifdef CONFIG_MEMORY_HOTPLUG
633 /*
634  * Memory is added always to NORMAL zone. This means you will never get
635  * additional DMA/DMA32 memory.
636  */
637 int arch_add_memory(int nid, u64 start, u64 size)
638 {
639         struct pglist_data *pgdat = NODE_DATA(nid);
640         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
641         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
642         unsigned long nr_pages = size >> PAGE_SHIFT;
643         int ret;
644
645         last_mapped_pfn = init_memory_mapping(start, start + size-1);
646         if (last_mapped_pfn > max_pfn_mapped)
647                 max_pfn_mapped = last_mapped_pfn;
648
649         ret = __add_pages(zone, start_pfn, nr_pages);
650         WARN_ON(1);
651
652         return ret;
653 }
654 EXPORT_SYMBOL_GPL(arch_add_memory);
655
656 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
657 int memory_add_physaddr_to_nid(u64 start)
658 {
659         return 0;
660 }
661 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
662 #endif
663
664 #endif /* CONFIG_MEMORY_HOTPLUG */
665
666 /*
667  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
668  * is valid. The argument is a physical page number.
669  *
670  *
671  * On x86, access has to be given to the first megabyte of ram because that area
672  * contains bios code and data regions used by X and dosemu and similar apps.
673  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
674  * mmio resources as well as potential bios/acpi data regions.
675  */
676 int devmem_is_allowed(unsigned long pagenr)
677 {
678         if (pagenr <= 256)
679                 return 1;
680         if (!page_is_ram(pagenr))
681                 return 1;
682         return 0;
683 }
684
685
686 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
687                          kcore_modules, kcore_vsyscall;
688
689 void __init mem_init(void)
690 {
691         long codesize, reservedpages, datasize, initsize;
692
693         pci_iommu_alloc();
694
695         /* clear_bss() already clear the empty_zero_page */
696
697         reservedpages = 0;
698
699         /* this will put all low memory onto the freelists */
700 #ifdef CONFIG_NUMA
701         totalram_pages = numa_free_all_bootmem();
702 #else
703         totalram_pages = free_all_bootmem();
704 #endif
705         reservedpages = end_pfn - totalram_pages -
706                                         absent_pages_in_range(0, end_pfn);
707         after_bootmem = 1;
708
709         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
710         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
711         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
712
713         /* Register memory areas for /proc/kcore */
714         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
715         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
716                    VMALLOC_END-VMALLOC_START);
717         kclist_add(&kcore_kernel, &_stext, _end - _stext);
718         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
719         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
720                                  VSYSCALL_END - VSYSCALL_START);
721
722         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
723                                 "%ldk reserved, %ldk data, %ldk init)\n",
724                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
725                 end_pfn << (PAGE_SHIFT-10),
726                 codesize >> 10,
727                 reservedpages << (PAGE_SHIFT-10),
728                 datasize >> 10,
729                 initsize >> 10);
730
731         cpa_init();
732 }
733
734 void free_init_pages(char *what, unsigned long begin, unsigned long end)
735 {
736         unsigned long addr = begin;
737
738         if (addr >= end)
739                 return;
740
741         /*
742          * If debugging page accesses then do not free this memory but
743          * mark them not present - any buggy init-section access will
744          * create a kernel page fault:
745          */
746 #ifdef CONFIG_DEBUG_PAGEALLOC
747         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
748                 begin, PAGE_ALIGN(end));
749         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
750 #else
751         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
752
753         for (; addr < end; addr += PAGE_SIZE) {
754                 ClearPageReserved(virt_to_page(addr));
755                 init_page_count(virt_to_page(addr));
756                 memset((void *)(addr & ~(PAGE_SIZE-1)),
757                         POISON_FREE_INITMEM, PAGE_SIZE);
758                 free_page(addr);
759                 totalram_pages++;
760         }
761 #endif
762 }
763
764 void free_initmem(void)
765 {
766         free_init_pages("unused kernel memory",
767                         (unsigned long)(&__init_begin),
768                         (unsigned long)(&__init_end));
769 }
770
771 #ifdef CONFIG_DEBUG_RODATA
772 const int rodata_test_data = 0xC3;
773 EXPORT_SYMBOL_GPL(rodata_test_data);
774
775 void mark_rodata_ro(void)
776 {
777         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
778
779         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
780                (end - start) >> 10);
781         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
782
783         /*
784          * The rodata section (but not the kernel text!) should also be
785          * not-executable.
786          */
787         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
788         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
789
790         rodata_test();
791
792 #ifdef CONFIG_CPA_DEBUG
793         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
794         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
795
796         printk(KERN_INFO "Testing CPA: again\n");
797         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
798 #endif
799 }
800
801 #endif
802
803 #ifdef CONFIG_BLK_DEV_INITRD
804 void free_initrd_mem(unsigned long start, unsigned long end)
805 {
806         free_init_pages("initrd memory", start, end);
807 }
808 #endif
809
810 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
811                                    int flags)
812 {
813 #ifdef CONFIG_NUMA
814         int nid, next_nid;
815 #endif
816         unsigned long pfn = phys >> PAGE_SHIFT;
817         int ret;
818
819         if (pfn >= end_pfn) {
820                 /*
821                  * This can happen with kdump kernels when accessing
822                  * firmware tables:
823                  */
824                 if (pfn < max_pfn_mapped)
825                         return -EFAULT;
826
827                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
828                                 phys, len);
829                 return -EFAULT;
830         }
831
832         /* Should check here against the e820 map to avoid double free */
833 #ifdef CONFIG_NUMA
834         nid = phys_to_nid(phys);
835         next_nid = phys_to_nid(phys + len - 1);
836         if (nid == next_nid)
837                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
838         else
839                 ret = reserve_bootmem(phys, len, flags);
840
841         if (ret != 0)
842                 return ret;
843
844 #else
845         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
846 #endif
847
848         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
849                 dma_reserve += len / PAGE_SIZE;
850                 set_dma_reserve(dma_reserve);
851         }
852
853         return 0;
854 }
855
856 int kern_addr_valid(unsigned long addr)
857 {
858         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
859         pgd_t *pgd;
860         pud_t *pud;
861         pmd_t *pmd;
862         pte_t *pte;
863
864         if (above != 0 && above != -1UL)
865                 return 0;
866
867         pgd = pgd_offset_k(addr);
868         if (pgd_none(*pgd))
869                 return 0;
870
871         pud = pud_offset(pgd, addr);
872         if (pud_none(*pud))
873                 return 0;
874
875         pmd = pmd_offset(pud, addr);
876         if (pmd_none(*pmd))
877                 return 0;
878
879         if (pmd_large(*pmd))
880                 return pfn_valid(pmd_pfn(*pmd));
881
882         pte = pte_offset_kernel(pmd, addr);
883         if (pte_none(*pte))
884                 return 0;
885
886         return pfn_valid(pte_pfn(*pte));
887 }
888
889 /*
890  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
891  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
892  * not need special handling anymore:
893  */
894 static struct vm_area_struct gate_vma = {
895         .vm_start       = VSYSCALL_START,
896         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
897         .vm_page_prot   = PAGE_READONLY_EXEC,
898         .vm_flags       = VM_READ | VM_EXEC
899 };
900
901 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
902 {
903 #ifdef CONFIG_IA32_EMULATION
904         if (test_tsk_thread_flag(tsk, TIF_IA32))
905                 return NULL;
906 #endif
907         return &gate_vma;
908 }
909
910 int in_gate_area(struct task_struct *task, unsigned long addr)
911 {
912         struct vm_area_struct *vma = get_gate_vma(task);
913
914         if (!vma)
915                 return 0;
916
917         return (addr >= vma->vm_start) && (addr < vma->vm_end);
918 }
919
920 /*
921  * Use this when you have no reliable task/vma, typically from interrupt
922  * context. It is less reliable than using the task's vma and may give
923  * false positives:
924  */
925 int in_gate_area_no_task(unsigned long addr)
926 {
927         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
928 }
929
930 const char *arch_vma_name(struct vm_area_struct *vma)
931 {
932         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
933                 return "[vdso]";
934         if (vma == &gate_vma)
935                 return "[vsyscall]";
936         return NULL;
937 }
938
939 #ifdef CONFIG_SPARSEMEM_VMEMMAP
940 /*
941  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
942  */
943 static long __meminitdata addr_start, addr_end;
944 static void __meminitdata *p_start, *p_end;
945 static int __meminitdata node_start;
946
947 int __meminit
948 vmemmap_populate(struct page *start_page, unsigned long size, int node)
949 {
950         unsigned long addr = (unsigned long)start_page;
951         unsigned long end = (unsigned long)(start_page + size);
952         unsigned long next;
953         pgd_t *pgd;
954         pud_t *pud;
955         pmd_t *pmd;
956
957         for (; addr < end; addr = next) {
958                 next = pmd_addr_end(addr, end);
959
960                 pgd = vmemmap_pgd_populate(addr, node);
961                 if (!pgd)
962                         return -ENOMEM;
963
964                 pud = vmemmap_pud_populate(pgd, addr, node);
965                 if (!pud)
966                         return -ENOMEM;
967
968                 pmd = pmd_offset(pud, addr);
969                 if (pmd_none(*pmd)) {
970                         pte_t entry;
971                         void *p;
972
973                         p = vmemmap_alloc_block(PMD_SIZE, node);
974                         if (!p)
975                                 return -ENOMEM;
976
977                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
978                                                         PAGE_KERNEL_LARGE);
979                         set_pmd(pmd, __pmd(pte_val(entry)));
980
981                         /* check to see if we have contiguous blocks */
982                         if (p_end != p || node_start != node) {
983                                 if (p_start)
984                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
985                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
986                                 addr_start = addr;
987                                 node_start = node;
988                                 p_start = p;
989                         }
990                         addr_end = addr + PMD_SIZE;
991                         p_end = p + PMD_SIZE;
992                 } else {
993                         vmemmap_verify((pte_t *)pmd, node, addr, next);
994                 }
995         }
996         return 0;
997 }
998
999 void __meminit vmemmap_populate_print_last(void)
1000 {
1001         if (p_start) {
1002                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1003                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1004                 p_start = NULL;
1005                 p_end = NULL;
1006                 node_start = 0;
1007         }
1008 }
1009 #endif