x86: move function and variable declarations to asm/init.h
[safe/jmp/linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 #include <asm/init.h>
52
53 /*
54  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
55  * The direct mapping extends to max_pfn_mapped, so that we can directly access
56  * apertures, ACPI and other tables without having to play with fixmaps.
57  */
58 unsigned long max_low_pfn_mapped;
59 unsigned long max_pfn_mapped;
60
61 static unsigned long dma_reserve __initdata;
62
63 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
64
65 static int __init parse_direct_gbpages_off(char *arg)
66 {
67         direct_gbpages = 0;
68         return 0;
69 }
70 early_param("nogbpages", parse_direct_gbpages_off);
71
72 static int __init parse_direct_gbpages_on(char *arg)
73 {
74         direct_gbpages = 1;
75         return 0;
76 }
77 early_param("gbpages", parse_direct_gbpages_on);
78
79 /*
80  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
81  * physical space so we can cache the place of the first one and move
82  * around without checking the pgd every time.
83  */
84
85 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
86 EXPORT_SYMBOL_GPL(__supported_pte_mask);
87
88 static int do_not_nx __cpuinitdata;
89
90 /*
91  * noexec=on|off
92  * Control non-executable mappings for 64-bit processes.
93  *
94  * on   Enable (default)
95  * off  Disable
96  */
97 static int __init nonx_setup(char *str)
98 {
99         if (!str)
100                 return -EINVAL;
101         if (!strncmp(str, "on", 2)) {
102                 __supported_pte_mask |= _PAGE_NX;
103                 do_not_nx = 0;
104         } else if (!strncmp(str, "off", 3)) {
105                 do_not_nx = 1;
106                 __supported_pte_mask &= ~_PAGE_NX;
107         }
108         return 0;
109 }
110 early_param("noexec", nonx_setup);
111
112 void __cpuinit check_efer(void)
113 {
114         unsigned long efer;
115
116         rdmsrl(MSR_EFER, efer);
117         if (!(efer & EFER_NX) || do_not_nx)
118                 __supported_pte_mask &= ~_PAGE_NX;
119 }
120
121 int force_personality32;
122
123 /*
124  * noexec32=on|off
125  * Control non executable heap for 32bit processes.
126  * To control the stack too use noexec=off
127  *
128  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
129  * off  PROT_READ implies PROT_EXEC
130  */
131 static int __init nonx32_setup(char *str)
132 {
133         if (!strcmp(str, "on"))
134                 force_personality32 &= ~READ_IMPLIES_EXEC;
135         else if (!strcmp(str, "off"))
136                 force_personality32 |= READ_IMPLIES_EXEC;
137         return 1;
138 }
139 __setup("noexec32=", nonx32_setup);
140
141 /*
142  * NOTE: This function is marked __ref because it calls __init function
143  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
144  */
145 static __ref void *spp_getpage(void)
146 {
147         void *ptr;
148
149         if (after_bootmem)
150                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
151         else
152                 ptr = alloc_bootmem_pages(PAGE_SIZE);
153
154         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
155                 panic("set_pte_phys: cannot allocate page data %s\n",
156                         after_bootmem ? "after bootmem" : "");
157         }
158
159         pr_debug("spp_getpage %p\n", ptr);
160
161         return ptr;
162 }
163
164 void
165 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
166 {
167         pud_t *pud;
168         pmd_t *pmd;
169         pte_t *pte;
170
171         pud = pud_page + pud_index(vaddr);
172         if (pud_none(*pud)) {
173                 pmd = (pmd_t *) spp_getpage();
174                 pud_populate(&init_mm, pud, pmd);
175                 if (pmd != pmd_offset(pud, 0)) {
176                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
177                                 pmd, pmd_offset(pud, 0));
178                         return;
179                 }
180         }
181         pmd = pmd_offset(pud, vaddr);
182         if (pmd_none(*pmd)) {
183                 pte = (pte_t *) spp_getpage();
184                 pmd_populate_kernel(&init_mm, pmd, pte);
185                 if (pte != pte_offset_kernel(pmd, 0)) {
186                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
187                         return;
188                 }
189         }
190
191         pte = pte_offset_kernel(pmd, vaddr);
192         set_pte(pte, new_pte);
193
194         /*
195          * It's enough to flush this one mapping.
196          * (PGE mappings get flushed as well)
197          */
198         __flush_tlb_one(vaddr);
199 }
200
201 void
202 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
203 {
204         pgd_t *pgd;
205         pud_t *pud_page;
206
207         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
208
209         pgd = pgd_offset_k(vaddr);
210         if (pgd_none(*pgd)) {
211                 printk(KERN_ERR
212                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
213                 return;
214         }
215         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
216         set_pte_vaddr_pud(pud_page, vaddr, pteval);
217 }
218
219 /*
220  * Create large page table mappings for a range of physical addresses.
221  */
222 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
223                                                 pgprot_t prot)
224 {
225         pgd_t *pgd;
226         pud_t *pud;
227         pmd_t *pmd;
228
229         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
230         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
231                 pgd = pgd_offset_k((unsigned long)__va(phys));
232                 if (pgd_none(*pgd)) {
233                         pud = (pud_t *) spp_getpage();
234                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
235                                                 _PAGE_USER));
236                 }
237                 pud = pud_offset(pgd, (unsigned long)__va(phys));
238                 if (pud_none(*pud)) {
239                         pmd = (pmd_t *) spp_getpage();
240                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
241                                                 _PAGE_USER));
242                 }
243                 pmd = pmd_offset(pud, phys);
244                 BUG_ON(!pmd_none(*pmd));
245                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
246         }
247 }
248
249 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
250 {
251         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
252 }
253
254 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
255 {
256         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
257 }
258
259 /*
260  * The head.S code sets up the kernel high mapping:
261  *
262  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
263  *
264  * phys_addr holds the negative offset to the kernel, which is added
265  * to the compile time generated pmds. This results in invalid pmds up
266  * to the point where we hit the physaddr 0 mapping.
267  *
268  * We limit the mappings to the region from _text to _end.  _end is
269  * rounded up to the 2MB boundary. This catches the invalid pmds as
270  * well, as they are located before _text:
271  */
272 void __init cleanup_highmap(void)
273 {
274         unsigned long vaddr = __START_KERNEL_map;
275         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
276         pmd_t *pmd = level2_kernel_pgt;
277         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
278
279         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
280                 if (pmd_none(*pmd))
281                         continue;
282                 if (vaddr < (unsigned long) _text || vaddr > end)
283                         set_pmd(pmd, __pmd(0));
284         }
285 }
286
287 static __ref void *alloc_low_page(unsigned long *phys)
288 {
289         unsigned long pfn = e820_table_end++;
290         void *adr;
291
292         if (after_bootmem) {
293                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
294                 *phys = __pa(adr);
295
296                 return adr;
297         }
298
299         if (pfn >= e820_table_top)
300                 panic("alloc_low_page: ran out of memory");
301
302         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
303         memset(adr, 0, PAGE_SIZE);
304         *phys  = pfn * PAGE_SIZE;
305         return adr;
306 }
307
308 static __ref void unmap_low_page(void *adr)
309 {
310         if (after_bootmem)
311                 return;
312
313         early_iounmap(adr, PAGE_SIZE);
314 }
315
316 static unsigned long __meminit
317 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
318               pgprot_t prot)
319 {
320         unsigned pages = 0;
321         unsigned long last_map_addr = end;
322         int i;
323
324         pte_t *pte = pte_page + pte_index(addr);
325
326         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
327
328                 if (addr >= end) {
329                         if (!after_bootmem) {
330                                 for(; i < PTRS_PER_PTE; i++, pte++)
331                                         set_pte(pte, __pte(0));
332                         }
333                         break;
334                 }
335
336                 /*
337                  * We will re-use the existing mapping.
338                  * Xen for example has some special requirements, like mapping
339                  * pagetable pages as RO. So assume someone who pre-setup
340                  * these mappings are more intelligent.
341                  */
342                 if (pte_val(*pte)) {
343                         pages++;
344                         continue;
345                 }
346
347                 if (0)
348                         printk("   pte=%p addr=%lx pte=%016lx\n",
349                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
350                 pages++;
351                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
352                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
353         }
354
355         update_page_count(PG_LEVEL_4K, pages);
356
357         return last_map_addr;
358 }
359
360 static unsigned long __meminit
361 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
362                 pgprot_t prot)
363 {
364         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
365
366         return phys_pte_init(pte, address, end, prot);
367 }
368
369 static unsigned long __meminit
370 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
371               unsigned long page_size_mask, pgprot_t prot)
372 {
373         unsigned long pages = 0;
374         unsigned long last_map_addr = end;
375
376         int i = pmd_index(address);
377
378         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
379                 unsigned long pte_phys;
380                 pmd_t *pmd = pmd_page + pmd_index(address);
381                 pte_t *pte;
382                 pgprot_t new_prot = prot;
383
384                 if (address >= end) {
385                         if (!after_bootmem) {
386                                 for (; i < PTRS_PER_PMD; i++, pmd++)
387                                         set_pmd(pmd, __pmd(0));
388                         }
389                         break;
390                 }
391
392                 if (pmd_val(*pmd)) {
393                         if (!pmd_large(*pmd)) {
394                                 spin_lock(&init_mm.page_table_lock);
395                                 last_map_addr = phys_pte_update(pmd, address,
396                                                                 end, prot);
397                                 spin_unlock(&init_mm.page_table_lock);
398                                 continue;
399                         }
400                         /*
401                          * If we are ok with PG_LEVEL_2M mapping, then we will
402                          * use the existing mapping,
403                          *
404                          * Otherwise, we will split the large page mapping but
405                          * use the same existing protection bits except for
406                          * large page, so that we don't violate Intel's TLB
407                          * Application note (317080) which says, while changing
408                          * the page sizes, new and old translations should
409                          * not differ with respect to page frame and
410                          * attributes.
411                          */
412                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
413                                 pages++;
414                                 continue;
415                         }
416                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
417                 }
418
419                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
420                         pages++;
421                         spin_lock(&init_mm.page_table_lock);
422                         set_pte((pte_t *)pmd,
423                                 pfn_pte(address >> PAGE_SHIFT,
424                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
425                         spin_unlock(&init_mm.page_table_lock);
426                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
427                         continue;
428                 }
429
430                 pte = alloc_low_page(&pte_phys);
431                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
432                 unmap_low_page(pte);
433
434                 spin_lock(&init_mm.page_table_lock);
435                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
436                 spin_unlock(&init_mm.page_table_lock);
437         }
438         update_page_count(PG_LEVEL_2M, pages);
439         return last_map_addr;
440 }
441
442 static unsigned long __meminit
443 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
444                 unsigned long page_size_mask, pgprot_t prot)
445 {
446         pmd_t *pmd = pmd_offset(pud, 0);
447         unsigned long last_map_addr;
448
449         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
450         __flush_tlb_all();
451         return last_map_addr;
452 }
453
454 static unsigned long __meminit
455 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
456                          unsigned long page_size_mask)
457 {
458         unsigned long pages = 0;
459         unsigned long last_map_addr = end;
460         int i = pud_index(addr);
461
462         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
463                 unsigned long pmd_phys;
464                 pud_t *pud = pud_page + pud_index(addr);
465                 pmd_t *pmd;
466                 pgprot_t prot = PAGE_KERNEL;
467
468                 if (addr >= end)
469                         break;
470
471                 if (!after_bootmem &&
472                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
473                         set_pud(pud, __pud(0));
474                         continue;
475                 }
476
477                 if (pud_val(*pud)) {
478                         if (!pud_large(*pud)) {
479                                 last_map_addr = phys_pmd_update(pud, addr, end,
480                                                          page_size_mask, prot);
481                                 continue;
482                         }
483                         /*
484                          * If we are ok with PG_LEVEL_1G mapping, then we will
485                          * use the existing mapping.
486                          *
487                          * Otherwise, we will split the gbpage mapping but use
488                          * the same existing protection  bits except for large
489                          * page, so that we don't violate Intel's TLB
490                          * Application note (317080) which says, while changing
491                          * the page sizes, new and old translations should
492                          * not differ with respect to page frame and
493                          * attributes.
494                          */
495                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
496                                 pages++;
497                                 continue;
498                         }
499                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
500                 }
501
502                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
503                         pages++;
504                         spin_lock(&init_mm.page_table_lock);
505                         set_pte((pte_t *)pud,
506                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
507                         spin_unlock(&init_mm.page_table_lock);
508                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
509                         continue;
510                 }
511
512                 pmd = alloc_low_page(&pmd_phys);
513                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
514                                               prot);
515                 unmap_low_page(pmd);
516
517                 spin_lock(&init_mm.page_table_lock);
518                 pud_populate(&init_mm, pud, __va(pmd_phys));
519                 spin_unlock(&init_mm.page_table_lock);
520         }
521         __flush_tlb_all();
522
523         update_page_count(PG_LEVEL_1G, pages);
524
525         return last_map_addr;
526 }
527
528 static unsigned long __meminit
529 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
530                  unsigned long page_size_mask)
531 {
532         pud_t *pud;
533
534         pud = (pud_t *)pgd_page_vaddr(*pgd);
535
536         return phys_pud_init(pud, addr, end, page_size_mask);
537 }
538
539 unsigned long __init
540 kernel_physical_mapping_init(unsigned long start,
541                              unsigned long end,
542                              unsigned long page_size_mask)
543 {
544
545         unsigned long next, last_map_addr = end;
546
547         start = (unsigned long)__va(start);
548         end = (unsigned long)__va(end);
549
550         for (; start < end; start = next) {
551                 pgd_t *pgd = pgd_offset_k(start);
552                 unsigned long pud_phys;
553                 pud_t *pud;
554
555                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
556                 if (next > end)
557                         next = end;
558
559                 if (pgd_val(*pgd)) {
560                         last_map_addr = phys_pud_update(pgd, __pa(start),
561                                                  __pa(end), page_size_mask);
562                         continue;
563                 }
564
565                 pud = alloc_low_page(&pud_phys);
566                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
567                                                  page_size_mask);
568                 unmap_low_page(pud);
569
570                 spin_lock(&init_mm.page_table_lock);
571                 pgd_populate(&init_mm, pgd, __va(pud_phys));
572                 spin_unlock(&init_mm.page_table_lock);
573         }
574         __flush_tlb_all();
575
576         return last_map_addr;
577 }
578
579 #ifndef CONFIG_NUMA
580 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
581 {
582         unsigned long bootmap_size, bootmap;
583
584         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
585         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
586                                  PAGE_SIZE);
587         if (bootmap == -1L)
588                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
589         /* don't touch min_low_pfn */
590         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
591                                          0, end_pfn);
592         e820_register_active_regions(0, start_pfn, end_pfn);
593         free_bootmem_with_active_regions(0, end_pfn);
594         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
595         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
596 }
597
598 void __init paging_init(void)
599 {
600         unsigned long max_zone_pfns[MAX_NR_ZONES];
601
602         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
603         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
604         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
605         max_zone_pfns[ZONE_NORMAL] = max_pfn;
606
607         memory_present(0, 0, max_pfn);
608         sparse_init();
609         free_area_init_nodes(max_zone_pfns);
610 }
611 #endif
612
613 /*
614  * Memory hotplug specific functions
615  */
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 /*
618  * Memory is added always to NORMAL zone. This means you will never get
619  * additional DMA/DMA32 memory.
620  */
621 int arch_add_memory(int nid, u64 start, u64 size)
622 {
623         struct pglist_data *pgdat = NODE_DATA(nid);
624         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
625         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
626         unsigned long nr_pages = size >> PAGE_SHIFT;
627         int ret;
628
629         last_mapped_pfn = init_memory_mapping(start, start + size);
630         if (last_mapped_pfn > max_pfn_mapped)
631                 max_pfn_mapped = last_mapped_pfn;
632
633         ret = __add_pages(nid, zone, start_pfn, nr_pages);
634         WARN_ON_ONCE(ret);
635
636         return ret;
637 }
638 EXPORT_SYMBOL_GPL(arch_add_memory);
639
640 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
641 int memory_add_physaddr_to_nid(u64 start)
642 {
643         return 0;
644 }
645 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
646 #endif
647
648 #endif /* CONFIG_MEMORY_HOTPLUG */
649
650 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
651                          kcore_modules, kcore_vsyscall;
652
653 void __init mem_init(void)
654 {
655         long codesize, reservedpages, datasize, initsize;
656         unsigned long absent_pages;
657
658         pci_iommu_alloc();
659
660         /* clear_bss() already clear the empty_zero_page */
661
662         reservedpages = 0;
663
664         /* this will put all low memory onto the freelists */
665 #ifdef CONFIG_NUMA
666         totalram_pages = numa_free_all_bootmem();
667 #else
668         totalram_pages = free_all_bootmem();
669 #endif
670
671         absent_pages = absent_pages_in_range(0, max_pfn);
672         reservedpages = max_pfn - totalram_pages - absent_pages;
673         after_bootmem = 1;
674
675         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
676         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
677         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
678
679         /* Register memory areas for /proc/kcore */
680         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
681         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
682                    VMALLOC_END-VMALLOC_START);
683         kclist_add(&kcore_kernel, &_stext, _end - _stext);
684         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
685         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
686                                  VSYSCALL_END - VSYSCALL_START);
687
688         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
689                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
690                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
691                 max_pfn << (PAGE_SHIFT-10),
692                 codesize >> 10,
693                 absent_pages << (PAGE_SHIFT-10),
694                 reservedpages << (PAGE_SHIFT-10),
695                 datasize >> 10,
696                 initsize >> 10);
697 }
698
699 #ifdef CONFIG_DEBUG_RODATA
700 const int rodata_test_data = 0xC3;
701 EXPORT_SYMBOL_GPL(rodata_test_data);
702
703 void mark_rodata_ro(void)
704 {
705         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
706         unsigned long rodata_start =
707                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
708
709 #ifdef CONFIG_DYNAMIC_FTRACE
710         /* Dynamic tracing modifies the kernel text section */
711         start = rodata_start;
712 #endif
713
714         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
715                (end - start) >> 10);
716         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
717
718         /*
719          * The rodata section (but not the kernel text!) should also be
720          * not-executable.
721          */
722         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
723
724         rodata_test();
725
726 #ifdef CONFIG_CPA_DEBUG
727         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
728         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
729
730         printk(KERN_INFO "Testing CPA: again\n");
731         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
732 #endif
733 }
734
735 #endif
736
737 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
738                                    int flags)
739 {
740 #ifdef CONFIG_NUMA
741         int nid, next_nid;
742         int ret;
743 #endif
744         unsigned long pfn = phys >> PAGE_SHIFT;
745
746         if (pfn >= max_pfn) {
747                 /*
748                  * This can happen with kdump kernels when accessing
749                  * firmware tables:
750                  */
751                 if (pfn < max_pfn_mapped)
752                         return -EFAULT;
753
754                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
755                                 phys, len);
756                 return -EFAULT;
757         }
758
759         /* Should check here against the e820 map to avoid double free */
760 #ifdef CONFIG_NUMA
761         nid = phys_to_nid(phys);
762         next_nid = phys_to_nid(phys + len - 1);
763         if (nid == next_nid)
764                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
765         else
766                 ret = reserve_bootmem(phys, len, flags);
767
768         if (ret != 0)
769                 return ret;
770
771 #else
772         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
773 #endif
774
775         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
776                 dma_reserve += len / PAGE_SIZE;
777                 set_dma_reserve(dma_reserve);
778         }
779
780         return 0;
781 }
782
783 int kern_addr_valid(unsigned long addr)
784 {
785         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
786         pgd_t *pgd;
787         pud_t *pud;
788         pmd_t *pmd;
789         pte_t *pte;
790
791         if (above != 0 && above != -1UL)
792                 return 0;
793
794         pgd = pgd_offset_k(addr);
795         if (pgd_none(*pgd))
796                 return 0;
797
798         pud = pud_offset(pgd, addr);
799         if (pud_none(*pud))
800                 return 0;
801
802         pmd = pmd_offset(pud, addr);
803         if (pmd_none(*pmd))
804                 return 0;
805
806         if (pmd_large(*pmd))
807                 return pfn_valid(pmd_pfn(*pmd));
808
809         pte = pte_offset_kernel(pmd, addr);
810         if (pte_none(*pte))
811                 return 0;
812
813         return pfn_valid(pte_pfn(*pte));
814 }
815
816 /*
817  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
818  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
819  * not need special handling anymore:
820  */
821 static struct vm_area_struct gate_vma = {
822         .vm_start       = VSYSCALL_START,
823         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
824         .vm_page_prot   = PAGE_READONLY_EXEC,
825         .vm_flags       = VM_READ | VM_EXEC
826 };
827
828 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
829 {
830 #ifdef CONFIG_IA32_EMULATION
831         if (test_tsk_thread_flag(tsk, TIF_IA32))
832                 return NULL;
833 #endif
834         return &gate_vma;
835 }
836
837 int in_gate_area(struct task_struct *task, unsigned long addr)
838 {
839         struct vm_area_struct *vma = get_gate_vma(task);
840
841         if (!vma)
842                 return 0;
843
844         return (addr >= vma->vm_start) && (addr < vma->vm_end);
845 }
846
847 /*
848  * Use this when you have no reliable task/vma, typically from interrupt
849  * context. It is less reliable than using the task's vma and may give
850  * false positives:
851  */
852 int in_gate_area_no_task(unsigned long addr)
853 {
854         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
855 }
856
857 const char *arch_vma_name(struct vm_area_struct *vma)
858 {
859         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
860                 return "[vdso]";
861         if (vma == &gate_vma)
862                 return "[vsyscall]";
863         return NULL;
864 }
865
866 #ifdef CONFIG_SPARSEMEM_VMEMMAP
867 /*
868  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
869  */
870 static long __meminitdata addr_start, addr_end;
871 static void __meminitdata *p_start, *p_end;
872 static int __meminitdata node_start;
873
874 int __meminit
875 vmemmap_populate(struct page *start_page, unsigned long size, int node)
876 {
877         unsigned long addr = (unsigned long)start_page;
878         unsigned long end = (unsigned long)(start_page + size);
879         unsigned long next;
880         pgd_t *pgd;
881         pud_t *pud;
882         pmd_t *pmd;
883
884         for (; addr < end; addr = next) {
885                 void *p = NULL;
886
887                 pgd = vmemmap_pgd_populate(addr, node);
888                 if (!pgd)
889                         return -ENOMEM;
890
891                 pud = vmemmap_pud_populate(pgd, addr, node);
892                 if (!pud)
893                         return -ENOMEM;
894
895                 if (!cpu_has_pse) {
896                         next = (addr + PAGE_SIZE) & PAGE_MASK;
897                         pmd = vmemmap_pmd_populate(pud, addr, node);
898
899                         if (!pmd)
900                                 return -ENOMEM;
901
902                         p = vmemmap_pte_populate(pmd, addr, node);
903
904                         if (!p)
905                                 return -ENOMEM;
906
907                         addr_end = addr + PAGE_SIZE;
908                         p_end = p + PAGE_SIZE;
909                 } else {
910                         next = pmd_addr_end(addr, end);
911
912                         pmd = pmd_offset(pud, addr);
913                         if (pmd_none(*pmd)) {
914                                 pte_t entry;
915
916                                 p = vmemmap_alloc_block(PMD_SIZE, node);
917                                 if (!p)
918                                         return -ENOMEM;
919
920                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
921                                                 PAGE_KERNEL_LARGE);
922                                 set_pmd(pmd, __pmd(pte_val(entry)));
923
924                                 /* check to see if we have contiguous blocks */
925                                 if (p_end != p || node_start != node) {
926                                         if (p_start)
927                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
928                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
929                                         addr_start = addr;
930                                         node_start = node;
931                                         p_start = p;
932                                 }
933
934                                 addr_end = addr + PMD_SIZE;
935                                 p_end = p + PMD_SIZE;
936                         } else
937                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
938                 }
939
940         }
941         return 0;
942 }
943
944 void __meminit vmemmap_populate_print_last(void)
945 {
946         if (p_start) {
947                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
948                         addr_start, addr_end-1, p_start, p_end-1, node_start);
949                 p_start = NULL;
950                 p_end = NULL;
951                 node_start = 0;
952         }
953 }
954 #endif