x86, 64-bit: split set_pte_vaddr()
[safe/jmp/linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_pfn_mapped;
57
58 static unsigned long dma_reserve __initdata;
59
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64                                 = 1
65 #endif
66 ;
67
68 static int __init parse_direct_gbpages_off(char *arg)
69 {
70         direct_gbpages = 0;
71         return 0;
72 }
73 early_param("nogbpages", parse_direct_gbpages_off);
74
75 static int __init parse_direct_gbpages_on(char *arg)
76 {
77         direct_gbpages = 1;
78         return 0;
79 }
80 early_param("gbpages", parse_direct_gbpages_on);
81
82 /*
83  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84  * physical space so we can cache the place of the first one and move
85  * around without checking the pgd every time.
86  */
87
88 void show_mem(void)
89 {
90         long i, total = 0, reserved = 0;
91         long shared = 0, cached = 0;
92         struct page *page;
93         pg_data_t *pgdat;
94
95         printk(KERN_INFO "Mem-info:\n");
96         show_free_areas();
97         for_each_online_pgdat(pgdat) {
98                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
99                         /*
100                          * This loop can take a while with 256 GB and
101                          * 4k pages so defer the NMI watchdog:
102                          */
103                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104                                 touch_nmi_watchdog();
105
106                         if (!pfn_valid(pgdat->node_start_pfn + i))
107                                 continue;
108
109                         page = pfn_to_page(pgdat->node_start_pfn + i);
110                         total++;
111                         if (PageReserved(page))
112                                 reserved++;
113                         else if (PageSwapCache(page))
114                                 cached++;
115                         else if (page_count(page))
116                                 shared += page_count(page) - 1;
117                 }
118         }
119         printk(KERN_INFO "%lu pages of RAM\n",          total);
120         printk(KERN_INFO "%lu reserved pages\n",        reserved);
121         printk(KERN_INFO "%lu pages shared\n",          shared);
122         printk(KERN_INFO "%lu pages swap cached\n",     cached);
123 }
124
125 int after_bootmem;
126
127 static __init void *spp_getpage(void)
128 {
129         void *ptr;
130
131         if (after_bootmem)
132                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133         else
134                 ptr = alloc_bootmem_pages(PAGE_SIZE);
135
136         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137                 panic("set_pte_phys: cannot allocate page data %s\n",
138                         after_bootmem ? "after bootmem" : "");
139         }
140
141         pr_debug("spp_getpage %p\n", ptr);
142
143         return ptr;
144 }
145
146 void
147 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
148 {
149         pud_t *pud;
150         pmd_t *pmd;
151         pte_t *pte;
152
153         pud = pud_page + pud_index(vaddr);
154         if (pud_none(*pud)) {
155                 pmd = (pmd_t *) spp_getpage();
156                 pud_populate(&init_mm, pud, pmd);
157                 if (pmd != pmd_offset(pud, 0)) {
158                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
159                                 pmd, pmd_offset(pud, 0));
160                         return;
161                 }
162         }
163         pmd = pmd_offset(pud, vaddr);
164         if (pmd_none(*pmd)) {
165                 pte = (pte_t *) spp_getpage();
166                 pmd_populate_kernel(&init_mm, pmd, pte);
167                 if (pte != pte_offset_kernel(pmd, 0)) {
168                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
169                         return;
170                 }
171         }
172
173         pte = pte_offset_kernel(pmd, vaddr);
174         if (!pte_none(*pte) && pte_val(new_pte) &&
175             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
176                 pte_ERROR(*pte);
177         set_pte(pte, new_pte);
178
179         /*
180          * It's enough to flush this one mapping.
181          * (PGE mappings get flushed as well)
182          */
183         __flush_tlb_one(vaddr);
184 }
185
186 void
187 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
188 {
189         pgd_t *pgd;
190         pud_t *pud_page;
191
192         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
193
194         pgd = pgd_offset_k(vaddr);
195         if (pgd_none(*pgd)) {
196                 printk(KERN_ERR
197                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
198                 return;
199         }
200         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
201         set_pte_vaddr_pud(pud_page, vaddr, pteval);
202 }
203
204 /*
205  * The head.S code sets up the kernel high mapping:
206  *
207  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
208  *
209  * phys_addr holds the negative offset to the kernel, which is added
210  * to the compile time generated pmds. This results in invalid pmds up
211  * to the point where we hit the physaddr 0 mapping.
212  *
213  * We limit the mappings to the region from _text to _end.  _end is
214  * rounded up to the 2MB boundary. This catches the invalid pmds as
215  * well, as they are located before _text:
216  */
217 void __init cleanup_highmap(void)
218 {
219         unsigned long vaddr = __START_KERNEL_map;
220         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
221         pmd_t *pmd = level2_kernel_pgt;
222         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
223
224         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
225                 if (pmd_none(*pmd))
226                         continue;
227                 if (vaddr < (unsigned long) _text || vaddr > end)
228                         set_pmd(pmd, __pmd(0));
229         }
230 }
231
232 static unsigned long __initdata table_start;
233 static unsigned long __meminitdata table_end;
234 static unsigned long __meminitdata table_top;
235
236 static __meminit void *alloc_low_page(unsigned long *phys)
237 {
238         unsigned long pfn = table_end++;
239         void *adr;
240
241         if (after_bootmem) {
242                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
243                 *phys = __pa(adr);
244
245                 return adr;
246         }
247
248         if (pfn >= table_top)
249                 panic("alloc_low_page: ran out of memory");
250
251         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
252         memset(adr, 0, PAGE_SIZE);
253         *phys  = pfn * PAGE_SIZE;
254         return adr;
255 }
256
257 static __meminit void unmap_low_page(void *adr)
258 {
259         if (after_bootmem)
260                 return;
261
262         early_iounmap(adr, PAGE_SIZE);
263 }
264
265 static void __meminit
266 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
267 {
268         unsigned pages = 0;
269         int i;
270         pte_t *pte = pte_page + pte_index(addr);
271
272         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
273
274                 if (addr >= end) {
275                         if (!after_bootmem) {
276                                 for(; i < PTRS_PER_PTE; i++, pte++)
277                                         set_pte(pte, __pte(0));
278                         }
279                         break;
280                 }
281
282                 if (pte_val(*pte))
283                         continue;
284
285                 if (0)
286                         printk("   pte=%p addr=%lx pte=%016lx\n",
287                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
288                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
289                 pages++;
290         }
291         update_page_count(PG_LEVEL_4K, pages);
292 }
293
294 static void __meminit
295 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
296 {
297         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
298
299         phys_pte_init(pte, address, end);
300 }
301
302 static unsigned long __meminit
303 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
304 {
305         unsigned long pages = 0;
306
307         int i = pmd_index(address);
308
309         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
310                 unsigned long pte_phys;
311                 pmd_t *pmd = pmd_page + pmd_index(address);
312                 pte_t *pte;
313
314                 if (address >= end) {
315                         if (!after_bootmem) {
316                                 for (; i < PTRS_PER_PMD; i++, pmd++)
317                                         set_pmd(pmd, __pmd(0));
318                         }
319                         break;
320                 }
321
322                 if (pmd_val(*pmd)) {
323                         phys_pte_update(pmd, address, end);
324                         continue;
325                 }
326
327                 if (cpu_has_pse) {
328                         pages++;
329                         set_pte((pte_t *)pmd,
330                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
331                         continue;
332                 }
333
334                 pte = alloc_low_page(&pte_phys);
335                 phys_pte_init(pte, address, end);
336                 unmap_low_page(pte);
337
338                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
339         }
340         update_page_count(PG_LEVEL_2M, pages);
341         return address;
342 }
343
344 static unsigned long __meminit
345 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
346 {
347         pmd_t *pmd = pmd_offset(pud, 0);
348         unsigned long last_map_addr;
349
350         spin_lock(&init_mm.page_table_lock);
351         last_map_addr = phys_pmd_init(pmd, address, end);
352         spin_unlock(&init_mm.page_table_lock);
353         __flush_tlb_all();
354         return last_map_addr;
355 }
356
357 static unsigned long __meminit
358 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
359 {
360         unsigned long pages = 0;
361         unsigned long last_map_addr = end;
362         int i = pud_index(addr);
363
364         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
365                 unsigned long pmd_phys;
366                 pud_t *pud = pud_page + pud_index(addr);
367                 pmd_t *pmd;
368
369                 if (addr >= end)
370                         break;
371
372                 if (!after_bootmem &&
373                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
374                         set_pud(pud, __pud(0));
375                         continue;
376                 }
377
378                 if (pud_val(*pud)) {
379                         if (!pud_large(*pud))
380                                 last_map_addr = phys_pmd_update(pud, addr, end);
381                         continue;
382                 }
383
384                 if (direct_gbpages) {
385                         pages++;
386                         set_pte((pte_t *)pud,
387                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
388                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
389                         continue;
390                 }
391
392                 pmd = alloc_low_page(&pmd_phys);
393
394                 spin_lock(&init_mm.page_table_lock);
395                 last_map_addr = phys_pmd_init(pmd, addr, end);
396                 unmap_low_page(pmd);
397                 pud_populate(&init_mm, pud, __va(pmd_phys));
398                 spin_unlock(&init_mm.page_table_lock);
399
400         }
401         __flush_tlb_all();
402         update_page_count(PG_LEVEL_1G, pages);
403
404         return last_map_addr;
405 }
406
407 static unsigned long __meminit
408 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end)
409 {
410         pud_t *pud;
411
412         pud = (pud_t *)pgd_page_vaddr(*pgd);
413
414         return phys_pud_init(pud, addr, end);
415 }
416
417 static void __init find_early_table_space(unsigned long end)
418 {
419         unsigned long puds, tables, start;
420
421         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
422         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
423         if (!direct_gbpages) {
424                 unsigned long pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
425                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
426         }
427         if (!cpu_has_pse) {
428                 unsigned long ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
429                 tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
430         }
431
432         /*
433          * RED-PEN putting page tables only on node 0 could
434          * cause a hotspot and fill up ZONE_DMA. The page tables
435          * need roughly 0.5KB per GB.
436          */
437         start = 0x8000;
438         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
439         if (table_start == -1UL)
440                 panic("Cannot find space for the kernel page tables");
441
442         table_start >>= PAGE_SHIFT;
443         table_end = table_start;
444         table_top = table_start + (tables >> PAGE_SHIFT);
445
446         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
447                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
448 }
449
450 static void __init init_gbpages(void)
451 {
452         if (direct_gbpages && cpu_has_gbpages)
453                 printk(KERN_INFO "Using GB pages for direct mapping\n");
454         else
455                 direct_gbpages = 0;
456 }
457
458 #ifdef CONFIG_MEMTEST
459
460 static void __init memtest(unsigned long start_phys, unsigned long size,
461                                  unsigned pattern)
462 {
463         unsigned long i;
464         unsigned long *start;
465         unsigned long start_bad;
466         unsigned long last_bad;
467         unsigned long val;
468         unsigned long start_phys_aligned;
469         unsigned long count;
470         unsigned long incr;
471
472         switch (pattern) {
473         case 0:
474                 val = 0UL;
475                 break;
476         case 1:
477                 val = -1UL;
478                 break;
479         case 2:
480                 val = 0x5555555555555555UL;
481                 break;
482         case 3:
483                 val = 0xaaaaaaaaaaaaaaaaUL;
484                 break;
485         default:
486                 return;
487         }
488
489         incr = sizeof(unsigned long);
490         start_phys_aligned = ALIGN(start_phys, incr);
491         count = (size - (start_phys_aligned - start_phys))/incr;
492         start = __va(start_phys_aligned);
493         start_bad = 0;
494         last_bad = 0;
495
496         for (i = 0; i < count; i++)
497                 start[i] = val;
498         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
499                 if (*start != val) {
500                         if (start_phys_aligned == last_bad + incr) {
501                                 last_bad += incr;
502                         } else {
503                                 if (start_bad) {
504                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
505                                                 val, start_bad, last_bad + incr);
506                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
507                                 }
508                                 start_bad = last_bad = start_phys_aligned;
509                         }
510                 }
511         }
512         if (start_bad) {
513                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
514                         val, start_bad, last_bad + incr);
515                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
516         }
517
518 }
519
520 /* default is disabled */
521 static int memtest_pattern __initdata;
522
523 static int __init parse_memtest(char *arg)
524 {
525         if (arg)
526                 memtest_pattern = simple_strtoul(arg, NULL, 0);
527         return 0;
528 }
529
530 early_param("memtest", parse_memtest);
531
532 static void __init early_memtest(unsigned long start, unsigned long end)
533 {
534         u64 t_start, t_size;
535         unsigned pattern;
536
537         if (!memtest_pattern)
538                 return;
539
540         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
541         for (pattern = 0; pattern < memtest_pattern; pattern++) {
542                 t_start = start;
543                 t_size = 0;
544                 while (t_start < end) {
545                         t_start = find_e820_area_size(t_start, &t_size, 1);
546
547                         /* done ? */
548                         if (t_start >= end)
549                                 break;
550                         if (t_start + t_size > end)
551                                 t_size = end - t_start;
552
553                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
554                                 (unsigned long long)t_start,
555                                 (unsigned long long)t_start + t_size, pattern);
556
557                         memtest(t_start, t_size, pattern);
558
559                         t_start += t_size;
560                 }
561         }
562         printk(KERN_CONT "\n");
563 }
564 #else
565 static void __init early_memtest(unsigned long start, unsigned long end)
566 {
567 }
568 #endif
569
570 /*
571  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
572  * This runs before bootmem is initialized and gets pages directly from
573  * the physical memory. To access them they are temporarily mapped.
574  */
575 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
576 {
577         unsigned long next, last_map_addr = end;
578         unsigned long start_phys = start, end_phys = end;
579
580         printk(KERN_INFO "init_memory_mapping\n");
581
582         /*
583          * Find space for the kernel direct mapping tables.
584          *
585          * Later we should allocate these tables in the local node of the
586          * memory mapped. Unfortunately this is done currently before the
587          * nodes are discovered.
588          */
589         if (!after_bootmem) {
590                 init_gbpages();
591                 find_early_table_space(end);
592         }
593
594         start = (unsigned long)__va(start);
595         end = (unsigned long)__va(end);
596
597         for (; start < end; start = next) {
598                 pgd_t *pgd = pgd_offset_k(start);
599                 unsigned long pud_phys;
600                 pud_t *pud;
601
602                 next = start + PGDIR_SIZE;
603                 if (next > end)
604                         next = end;
605
606                 if (pgd_val(*pgd)) {
607                         last_map_addr = phys_pud_update(pgd, __pa(start), __pa(end));
608                         continue;
609                 }
610
611                 if (after_bootmem)
612                         pud = pud_offset(pgd, start & PGDIR_MASK);
613                 else
614                         pud = alloc_low_page(&pud_phys);
615
616                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
617                 unmap_low_page(pud);
618                 if (!after_bootmem)
619                         pgd_populate(&init_mm, pgd_offset_k(start),
620                                      __va(pud_phys));
621         }
622
623         if (!after_bootmem)
624                 mmu_cr4_features = read_cr4();
625         __flush_tlb_all();
626
627         if (!after_bootmem)
628                 reserve_early(table_start << PAGE_SHIFT,
629                                  table_end << PAGE_SHIFT, "PGTABLE");
630
631         if (!after_bootmem)
632                 early_memtest(start_phys, end_phys);
633
634         return last_map_addr >> PAGE_SHIFT;
635 }
636
637 #ifndef CONFIG_NUMA
638 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
639 {
640         unsigned long bootmap_size, bootmap;
641
642         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
643         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
644                                  PAGE_SIZE);
645         if (bootmap == -1L)
646                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
647         /* don't touch min_low_pfn */
648         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
649                                          0, end_pfn);
650         e820_register_active_regions(0, start_pfn, end_pfn);
651         free_bootmem_with_active_regions(0, end_pfn);
652         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
653         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
654 }
655
656 void __init paging_init(void)
657 {
658         unsigned long max_zone_pfns[MAX_NR_ZONES];
659
660         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
661         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
662         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
663         max_zone_pfns[ZONE_NORMAL] = max_pfn;
664
665         memory_present(0, 0, max_pfn);
666         sparse_init();
667         free_area_init_nodes(max_zone_pfns);
668 }
669 #endif
670
671 /*
672  * Memory hotplug specific functions
673  */
674 #ifdef CONFIG_MEMORY_HOTPLUG
675 /*
676  * Memory is added always to NORMAL zone. This means you will never get
677  * additional DMA/DMA32 memory.
678  */
679 int arch_add_memory(int nid, u64 start, u64 size)
680 {
681         struct pglist_data *pgdat = NODE_DATA(nid);
682         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
683         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
684         unsigned long nr_pages = size >> PAGE_SHIFT;
685         int ret;
686
687         last_mapped_pfn = init_memory_mapping(start, start + size-1);
688         if (last_mapped_pfn > max_pfn_mapped)
689                 max_pfn_mapped = last_mapped_pfn;
690
691         ret = __add_pages(zone, start_pfn, nr_pages);
692         WARN_ON(1);
693
694         return ret;
695 }
696 EXPORT_SYMBOL_GPL(arch_add_memory);
697
698 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
699 int memory_add_physaddr_to_nid(u64 start)
700 {
701         return 0;
702 }
703 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
704 #endif
705
706 #endif /* CONFIG_MEMORY_HOTPLUG */
707
708 /*
709  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
710  * is valid. The argument is a physical page number.
711  *
712  *
713  * On x86, access has to be given to the first megabyte of ram because that area
714  * contains bios code and data regions used by X and dosemu and similar apps.
715  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
716  * mmio resources as well as potential bios/acpi data regions.
717  */
718 int devmem_is_allowed(unsigned long pagenr)
719 {
720         if (pagenr <= 256)
721                 return 1;
722         if (!page_is_ram(pagenr))
723                 return 1;
724         return 0;
725 }
726
727
728 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
729                          kcore_modules, kcore_vsyscall;
730
731 void __init mem_init(void)
732 {
733         long codesize, reservedpages, datasize, initsize;
734
735         pci_iommu_alloc();
736
737         /* clear_bss() already clear the empty_zero_page */
738
739         reservedpages = 0;
740
741         /* this will put all low memory onto the freelists */
742 #ifdef CONFIG_NUMA
743         totalram_pages = numa_free_all_bootmem();
744 #else
745         totalram_pages = free_all_bootmem();
746 #endif
747         reservedpages = max_pfn - totalram_pages -
748                                         absent_pages_in_range(0, max_pfn);
749         after_bootmem = 1;
750
751         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
752         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
753         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
754
755         /* Register memory areas for /proc/kcore */
756         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
757         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
758                    VMALLOC_END-VMALLOC_START);
759         kclist_add(&kcore_kernel, &_stext, _end - _stext);
760         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
761         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
762                                  VSYSCALL_END - VSYSCALL_START);
763
764         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
765                                 "%ldk reserved, %ldk data, %ldk init)\n",
766                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
767                 max_pfn << (PAGE_SHIFT-10),
768                 codesize >> 10,
769                 reservedpages << (PAGE_SHIFT-10),
770                 datasize >> 10,
771                 initsize >> 10);
772
773         cpa_init();
774 }
775
776 void free_init_pages(char *what, unsigned long begin, unsigned long end)
777 {
778         unsigned long addr = begin;
779
780         if (addr >= end)
781                 return;
782
783         /*
784          * If debugging page accesses then do not free this memory but
785          * mark them not present - any buggy init-section access will
786          * create a kernel page fault:
787          */
788 #ifdef CONFIG_DEBUG_PAGEALLOC
789         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
790                 begin, PAGE_ALIGN(end));
791         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
792 #else
793         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
794
795         for (; addr < end; addr += PAGE_SIZE) {
796                 ClearPageReserved(virt_to_page(addr));
797                 init_page_count(virt_to_page(addr));
798                 memset((void *)(addr & ~(PAGE_SIZE-1)),
799                         POISON_FREE_INITMEM, PAGE_SIZE);
800                 free_page(addr);
801                 totalram_pages++;
802         }
803 #endif
804 }
805
806 void free_initmem(void)
807 {
808         free_init_pages("unused kernel memory",
809                         (unsigned long)(&__init_begin),
810                         (unsigned long)(&__init_end));
811 }
812
813 #ifdef CONFIG_DEBUG_RODATA
814 const int rodata_test_data = 0xC3;
815 EXPORT_SYMBOL_GPL(rodata_test_data);
816
817 void mark_rodata_ro(void)
818 {
819         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
820
821         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
822                (end - start) >> 10);
823         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
824
825         /*
826          * The rodata section (but not the kernel text!) should also be
827          * not-executable.
828          */
829         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
830         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
831
832         rodata_test();
833
834 #ifdef CONFIG_CPA_DEBUG
835         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
836         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
837
838         printk(KERN_INFO "Testing CPA: again\n");
839         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
840 #endif
841 }
842
843 #endif
844
845 #ifdef CONFIG_BLK_DEV_INITRD
846 void free_initrd_mem(unsigned long start, unsigned long end)
847 {
848         free_init_pages("initrd memory", start, end);
849 }
850 #endif
851
852 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
853                                    int flags)
854 {
855 #ifdef CONFIG_NUMA
856         int nid, next_nid;
857         int ret;
858 #endif
859         unsigned long pfn = phys >> PAGE_SHIFT;
860
861         if (pfn >= max_pfn) {
862                 /*
863                  * This can happen with kdump kernels when accessing
864                  * firmware tables:
865                  */
866                 if (pfn < max_pfn_mapped)
867                         return -EFAULT;
868
869                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
870                                 phys, len);
871                 return -EFAULT;
872         }
873
874         /* Should check here against the e820 map to avoid double free */
875 #ifdef CONFIG_NUMA
876         nid = phys_to_nid(phys);
877         next_nid = phys_to_nid(phys + len - 1);
878         if (nid == next_nid)
879                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
880         else
881                 ret = reserve_bootmem(phys, len, flags);
882
883         if (ret != 0)
884                 return ret;
885
886 #else
887         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
888 #endif
889
890         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
891                 dma_reserve += len / PAGE_SIZE;
892                 set_dma_reserve(dma_reserve);
893         }
894
895         return 0;
896 }
897
898 int kern_addr_valid(unsigned long addr)
899 {
900         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
901         pgd_t *pgd;
902         pud_t *pud;
903         pmd_t *pmd;
904         pte_t *pte;
905
906         if (above != 0 && above != -1UL)
907                 return 0;
908
909         pgd = pgd_offset_k(addr);
910         if (pgd_none(*pgd))
911                 return 0;
912
913         pud = pud_offset(pgd, addr);
914         if (pud_none(*pud))
915                 return 0;
916
917         pmd = pmd_offset(pud, addr);
918         if (pmd_none(*pmd))
919                 return 0;
920
921         if (pmd_large(*pmd))
922                 return pfn_valid(pmd_pfn(*pmd));
923
924         pte = pte_offset_kernel(pmd, addr);
925         if (pte_none(*pte))
926                 return 0;
927
928         return pfn_valid(pte_pfn(*pte));
929 }
930
931 /*
932  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
933  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
934  * not need special handling anymore:
935  */
936 static struct vm_area_struct gate_vma = {
937         .vm_start       = VSYSCALL_START,
938         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
939         .vm_page_prot   = PAGE_READONLY_EXEC,
940         .vm_flags       = VM_READ | VM_EXEC
941 };
942
943 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
944 {
945 #ifdef CONFIG_IA32_EMULATION
946         if (test_tsk_thread_flag(tsk, TIF_IA32))
947                 return NULL;
948 #endif
949         return &gate_vma;
950 }
951
952 int in_gate_area(struct task_struct *task, unsigned long addr)
953 {
954         struct vm_area_struct *vma = get_gate_vma(task);
955
956         if (!vma)
957                 return 0;
958
959         return (addr >= vma->vm_start) && (addr < vma->vm_end);
960 }
961
962 /*
963  * Use this when you have no reliable task/vma, typically from interrupt
964  * context. It is less reliable than using the task's vma and may give
965  * false positives:
966  */
967 int in_gate_area_no_task(unsigned long addr)
968 {
969         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
970 }
971
972 const char *arch_vma_name(struct vm_area_struct *vma)
973 {
974         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
975                 return "[vdso]";
976         if (vma == &gate_vma)
977                 return "[vsyscall]";
978         return NULL;
979 }
980
981 #ifdef CONFIG_SPARSEMEM_VMEMMAP
982 /*
983  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
984  */
985 static long __meminitdata addr_start, addr_end;
986 static void __meminitdata *p_start, *p_end;
987 static int __meminitdata node_start;
988
989 int __meminit
990 vmemmap_populate(struct page *start_page, unsigned long size, int node)
991 {
992         unsigned long addr = (unsigned long)start_page;
993         unsigned long end = (unsigned long)(start_page + size);
994         unsigned long next;
995         pgd_t *pgd;
996         pud_t *pud;
997         pmd_t *pmd;
998
999         for (; addr < end; addr = next) {
1000                 void *p = NULL;
1001
1002                 pgd = vmemmap_pgd_populate(addr, node);
1003                 if (!pgd)
1004                         return -ENOMEM;
1005
1006                 pud = vmemmap_pud_populate(pgd, addr, node);
1007                 if (!pud)
1008                         return -ENOMEM;
1009
1010                 if (!cpu_has_pse) {
1011                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1012                         pmd = vmemmap_pmd_populate(pud, addr, node);
1013
1014                         if (!pmd)
1015                                 return -ENOMEM;
1016
1017                         p = vmemmap_pte_populate(pmd, addr, node);
1018
1019                         if (!p)
1020                                 return -ENOMEM;
1021
1022                         addr_end = addr + PAGE_SIZE;
1023                         p_end = p + PAGE_SIZE;
1024                 } else {
1025                         next = pmd_addr_end(addr, end);
1026
1027                         pmd = pmd_offset(pud, addr);
1028                         if (pmd_none(*pmd)) {
1029                                 pte_t entry;
1030
1031                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1032                                 if (!p)
1033                                         return -ENOMEM;
1034
1035                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1036                                                 PAGE_KERNEL_LARGE);
1037                                 set_pmd(pmd, __pmd(pte_val(entry)));
1038
1039                                 addr_end = addr + PMD_SIZE;
1040                                 p_end = p + PMD_SIZE;
1041
1042                                 /* check to see if we have contiguous blocks */
1043                                 if (p_end != p || node_start != node) {
1044                                         if (p_start)
1045                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1046                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1047                                         addr_start = addr;
1048                                         node_start = node;
1049                                         p_start = p;
1050                                 }
1051                         } else
1052                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1053                 }
1054
1055         }
1056         return 0;
1057 }
1058
1059 void __meminit vmemmap_populate_print_last(void)
1060 {
1061         if (p_start) {
1062                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1063                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1064                 p_start = NULL;
1065                 p_end = NULL;
1066                 node_start = 0;
1067         }
1068 }
1069 #endif