KVM: x86: Fix typo in function name
[safe/jmp/linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/intel-iommu.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/msr.h>
41 #include <asm/desc.h>
42 #include <asm/mtrr.h>
43
44 #define MAX_IO_MSRS 256
45 #define CR0_RESERVED_BITS                                               \
46         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
47                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
48                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
49 #define CR4_RESERVED_BITS                                               \
50         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
51                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
52                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
53                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
54
55 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
56 /* EFER defaults:
57  * - enable syscall per default because its emulated by KVM
58  * - enable LME and LMA per default on 64 bit KVM
59  */
60 #ifdef CONFIG_X86_64
61 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
62 #else
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
64 #endif
65
66 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
67 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
68
69 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
70                                     struct kvm_cpuid_entry2 __user *entries);
71
72 struct kvm_x86_ops *kvm_x86_ops;
73 EXPORT_SYMBOL_GPL(kvm_x86_ops);
74
75 struct kvm_stats_debugfs_item debugfs_entries[] = {
76         { "pf_fixed", VCPU_STAT(pf_fixed) },
77         { "pf_guest", VCPU_STAT(pf_guest) },
78         { "tlb_flush", VCPU_STAT(tlb_flush) },
79         { "invlpg", VCPU_STAT(invlpg) },
80         { "exits", VCPU_STAT(exits) },
81         { "io_exits", VCPU_STAT(io_exits) },
82         { "mmio_exits", VCPU_STAT(mmio_exits) },
83         { "signal_exits", VCPU_STAT(signal_exits) },
84         { "irq_window", VCPU_STAT(irq_window_exits) },
85         { "nmi_window", VCPU_STAT(nmi_window_exits) },
86         { "halt_exits", VCPU_STAT(halt_exits) },
87         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
88         { "hypercalls", VCPU_STAT(hypercalls) },
89         { "request_irq", VCPU_STAT(request_irq_exits) },
90         { "request_nmi", VCPU_STAT(request_nmi_exits) },
91         { "irq_exits", VCPU_STAT(irq_exits) },
92         { "host_state_reload", VCPU_STAT(host_state_reload) },
93         { "efer_reload", VCPU_STAT(efer_reload) },
94         { "fpu_reload", VCPU_STAT(fpu_reload) },
95         { "insn_emulation", VCPU_STAT(insn_emulation) },
96         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
97         { "irq_injections", VCPU_STAT(irq_injections) },
98         { "nmi_injections", VCPU_STAT(nmi_injections) },
99         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
100         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
101         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
102         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
103         { "mmu_flooded", VM_STAT(mmu_flooded) },
104         { "mmu_recycled", VM_STAT(mmu_recycled) },
105         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
106         { "mmu_unsync", VM_STAT(mmu_unsync) },
107         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
108         { "largepages", VM_STAT(lpages) },
109         { NULL }
110 };
111
112 unsigned long segment_base(u16 selector)
113 {
114         struct descriptor_table gdt;
115         struct desc_struct *d;
116         unsigned long table_base;
117         unsigned long v;
118
119         if (selector == 0)
120                 return 0;
121
122         asm("sgdt %0" : "=m"(gdt));
123         table_base = gdt.base;
124
125         if (selector & 4) {           /* from ldt */
126                 u16 ldt_selector;
127
128                 asm("sldt %0" : "=g"(ldt_selector));
129                 table_base = segment_base(ldt_selector);
130         }
131         d = (struct desc_struct *)(table_base + (selector & ~7));
132         v = d->base0 | ((unsigned long)d->base1 << 16) |
133                 ((unsigned long)d->base2 << 24);
134 #ifdef CONFIG_X86_64
135         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
136                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
137 #endif
138         return v;
139 }
140 EXPORT_SYMBOL_GPL(segment_base);
141
142 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
143 {
144         if (irqchip_in_kernel(vcpu->kvm))
145                 return vcpu->arch.apic_base;
146         else
147                 return vcpu->arch.apic_base;
148 }
149 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
150
151 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
152 {
153         /* TODO: reserve bits check */
154         if (irqchip_in_kernel(vcpu->kvm))
155                 kvm_lapic_set_base(vcpu, data);
156         else
157                 vcpu->arch.apic_base = data;
158 }
159 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
160
161 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
162 {
163         WARN_ON(vcpu->arch.exception.pending);
164         vcpu->arch.exception.pending = true;
165         vcpu->arch.exception.has_error_code = false;
166         vcpu->arch.exception.nr = nr;
167 }
168 EXPORT_SYMBOL_GPL(kvm_queue_exception);
169
170 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
171                            u32 error_code)
172 {
173         ++vcpu->stat.pf_guest;
174         if (vcpu->arch.exception.pending) {
175                 if (vcpu->arch.exception.nr == PF_VECTOR) {
176                         printk(KERN_DEBUG "kvm: inject_page_fault:"
177                                         " double fault 0x%lx\n", addr);
178                         vcpu->arch.exception.nr = DF_VECTOR;
179                         vcpu->arch.exception.error_code = 0;
180                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
181                         /* triple fault -> shutdown */
182                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
183                 }
184                 return;
185         }
186         vcpu->arch.cr2 = addr;
187         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
188 }
189
190 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
191 {
192         vcpu->arch.nmi_pending = 1;
193 }
194 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
195
196 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
197 {
198         WARN_ON(vcpu->arch.exception.pending);
199         vcpu->arch.exception.pending = true;
200         vcpu->arch.exception.has_error_code = true;
201         vcpu->arch.exception.nr = nr;
202         vcpu->arch.exception.error_code = error_code;
203 }
204 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
205
206 static void __queue_exception(struct kvm_vcpu *vcpu)
207 {
208         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
209                                      vcpu->arch.exception.has_error_code,
210                                      vcpu->arch.exception.error_code);
211 }
212
213 /*
214  * Load the pae pdptrs.  Return true is they are all valid.
215  */
216 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
217 {
218         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
219         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
220         int i;
221         int ret;
222         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
223
224         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
225                                   offset * sizeof(u64), sizeof(pdpte));
226         if (ret < 0) {
227                 ret = 0;
228                 goto out;
229         }
230         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
231                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
232                         ret = 0;
233                         goto out;
234                 }
235         }
236         ret = 1;
237
238         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
239 out:
240
241         return ret;
242 }
243 EXPORT_SYMBOL_GPL(load_pdptrs);
244
245 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
246 {
247         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248         bool changed = true;
249         int r;
250
251         if (is_long_mode(vcpu) || !is_pae(vcpu))
252                 return false;
253
254         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
255         if (r < 0)
256                 goto out;
257         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
258 out:
259
260         return changed;
261 }
262
263 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
264 {
265         if (cr0 & CR0_RESERVED_BITS) {
266                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
267                        cr0, vcpu->arch.cr0);
268                 kvm_inject_gp(vcpu, 0);
269                 return;
270         }
271
272         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
273                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
274                 kvm_inject_gp(vcpu, 0);
275                 return;
276         }
277
278         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
279                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
280                        "and a clear PE flag\n");
281                 kvm_inject_gp(vcpu, 0);
282                 return;
283         }
284
285         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
286 #ifdef CONFIG_X86_64
287                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
288                         int cs_db, cs_l;
289
290                         if (!is_pae(vcpu)) {
291                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
292                                        "in long mode while PAE is disabled\n");
293                                 kvm_inject_gp(vcpu, 0);
294                                 return;
295                         }
296                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
297                         if (cs_l) {
298                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
299                                        "in long mode while CS.L == 1\n");
300                                 kvm_inject_gp(vcpu, 0);
301                                 return;
302
303                         }
304                 } else
305 #endif
306                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
307                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
308                                "reserved bits\n");
309                         kvm_inject_gp(vcpu, 0);
310                         return;
311                 }
312
313         }
314
315         kvm_x86_ops->set_cr0(vcpu, cr0);
316         vcpu->arch.cr0 = cr0;
317
318         kvm_mmu_reset_context(vcpu);
319         return;
320 }
321 EXPORT_SYMBOL_GPL(kvm_set_cr0);
322
323 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
324 {
325         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
326         KVMTRACE_1D(LMSW, vcpu,
327                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
328                     handler);
329 }
330 EXPORT_SYMBOL_GPL(kvm_lmsw);
331
332 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
333 {
334         if (cr4 & CR4_RESERVED_BITS) {
335                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
336                 kvm_inject_gp(vcpu, 0);
337                 return;
338         }
339
340         if (is_long_mode(vcpu)) {
341                 if (!(cr4 & X86_CR4_PAE)) {
342                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
343                                "in long mode\n");
344                         kvm_inject_gp(vcpu, 0);
345                         return;
346                 }
347         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
348                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
349                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
350                 kvm_inject_gp(vcpu, 0);
351                 return;
352         }
353
354         if (cr4 & X86_CR4_VMXE) {
355                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
356                 kvm_inject_gp(vcpu, 0);
357                 return;
358         }
359         kvm_x86_ops->set_cr4(vcpu, cr4);
360         vcpu->arch.cr4 = cr4;
361         kvm_mmu_reset_context(vcpu);
362 }
363 EXPORT_SYMBOL_GPL(kvm_set_cr4);
364
365 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
366 {
367         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
368                 kvm_mmu_sync_roots(vcpu);
369                 kvm_mmu_flush_tlb(vcpu);
370                 return;
371         }
372
373         if (is_long_mode(vcpu)) {
374                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
375                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
376                         kvm_inject_gp(vcpu, 0);
377                         return;
378                 }
379         } else {
380                 if (is_pae(vcpu)) {
381                         if (cr3 & CR3_PAE_RESERVED_BITS) {
382                                 printk(KERN_DEBUG
383                                        "set_cr3: #GP, reserved bits\n");
384                                 kvm_inject_gp(vcpu, 0);
385                                 return;
386                         }
387                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
388                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
389                                        "reserved bits\n");
390                                 kvm_inject_gp(vcpu, 0);
391                                 return;
392                         }
393                 }
394                 /*
395                  * We don't check reserved bits in nonpae mode, because
396                  * this isn't enforced, and VMware depends on this.
397                  */
398         }
399
400         /*
401          * Does the new cr3 value map to physical memory? (Note, we
402          * catch an invalid cr3 even in real-mode, because it would
403          * cause trouble later on when we turn on paging anyway.)
404          *
405          * A real CPU would silently accept an invalid cr3 and would
406          * attempt to use it - with largely undefined (and often hard
407          * to debug) behavior on the guest side.
408          */
409         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
410                 kvm_inject_gp(vcpu, 0);
411         else {
412                 vcpu->arch.cr3 = cr3;
413                 vcpu->arch.mmu.new_cr3(vcpu);
414         }
415 }
416 EXPORT_SYMBOL_GPL(kvm_set_cr3);
417
418 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
419 {
420         if (cr8 & CR8_RESERVED_BITS) {
421                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
422                 kvm_inject_gp(vcpu, 0);
423                 return;
424         }
425         if (irqchip_in_kernel(vcpu->kvm))
426                 kvm_lapic_set_tpr(vcpu, cr8);
427         else
428                 vcpu->arch.cr8 = cr8;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_cr8);
431
432 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
433 {
434         if (irqchip_in_kernel(vcpu->kvm))
435                 return kvm_lapic_get_cr8(vcpu);
436         else
437                 return vcpu->arch.cr8;
438 }
439 EXPORT_SYMBOL_GPL(kvm_get_cr8);
440
441 /*
442  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
443  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
444  *
445  * This list is modified at module load time to reflect the
446  * capabilities of the host cpu.
447  */
448 static u32 msrs_to_save[] = {
449         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
450         MSR_K6_STAR,
451 #ifdef CONFIG_X86_64
452         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
453 #endif
454         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
455         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT
456 };
457
458 static unsigned num_msrs_to_save;
459
460 static u32 emulated_msrs[] = {
461         MSR_IA32_MISC_ENABLE,
462 };
463
464 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
465 {
466         if (efer & efer_reserved_bits) {
467                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
468                        efer);
469                 kvm_inject_gp(vcpu, 0);
470                 return;
471         }
472
473         if (is_paging(vcpu)
474             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
475                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
476                 kvm_inject_gp(vcpu, 0);
477                 return;
478         }
479
480         kvm_x86_ops->set_efer(vcpu, efer);
481
482         efer &= ~EFER_LMA;
483         efer |= vcpu->arch.shadow_efer & EFER_LMA;
484
485         vcpu->arch.shadow_efer = efer;
486 }
487
488 void kvm_enable_efer_bits(u64 mask)
489 {
490        efer_reserved_bits &= ~mask;
491 }
492 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
493
494
495 /*
496  * Writes msr value into into the appropriate "register".
497  * Returns 0 on success, non-0 otherwise.
498  * Assumes vcpu_load() was already called.
499  */
500 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
501 {
502         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
503 }
504
505 /*
506  * Adapt set_msr() to msr_io()'s calling convention
507  */
508 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
509 {
510         return kvm_set_msr(vcpu, index, *data);
511 }
512
513 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
514 {
515         static int version;
516         struct pvclock_wall_clock wc;
517         struct timespec now, sys, boot;
518
519         if (!wall_clock)
520                 return;
521
522         version++;
523
524         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
525
526         /*
527          * The guest calculates current wall clock time by adding
528          * system time (updated by kvm_write_guest_time below) to the
529          * wall clock specified here.  guest system time equals host
530          * system time for us, thus we must fill in host boot time here.
531          */
532         now = current_kernel_time();
533         ktime_get_ts(&sys);
534         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
535
536         wc.sec = boot.tv_sec;
537         wc.nsec = boot.tv_nsec;
538         wc.version = version;
539
540         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
541
542         version++;
543         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
544 }
545
546 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
547 {
548         uint32_t quotient, remainder;
549
550         /* Don't try to replace with do_div(), this one calculates
551          * "(dividend << 32) / divisor" */
552         __asm__ ( "divl %4"
553                   : "=a" (quotient), "=d" (remainder)
554                   : "0" (0), "1" (dividend), "r" (divisor) );
555         return quotient;
556 }
557
558 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
559 {
560         uint64_t nsecs = 1000000000LL;
561         int32_t  shift = 0;
562         uint64_t tps64;
563         uint32_t tps32;
564
565         tps64 = tsc_khz * 1000LL;
566         while (tps64 > nsecs*2) {
567                 tps64 >>= 1;
568                 shift--;
569         }
570
571         tps32 = (uint32_t)tps64;
572         while (tps32 <= (uint32_t)nsecs) {
573                 tps32 <<= 1;
574                 shift++;
575         }
576
577         hv_clock->tsc_shift = shift;
578         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
579
580         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
581                  __func__, tsc_khz, hv_clock->tsc_shift,
582                  hv_clock->tsc_to_system_mul);
583 }
584
585 static void kvm_write_guest_time(struct kvm_vcpu *v)
586 {
587         struct timespec ts;
588         unsigned long flags;
589         struct kvm_vcpu_arch *vcpu = &v->arch;
590         void *shared_kaddr;
591
592         if ((!vcpu->time_page))
593                 return;
594
595         if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
596                 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
597                 vcpu->hv_clock_tsc_khz = tsc_khz;
598         }
599
600         /* Keep irq disabled to prevent changes to the clock */
601         local_irq_save(flags);
602         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
603                           &vcpu->hv_clock.tsc_timestamp);
604         ktime_get_ts(&ts);
605         local_irq_restore(flags);
606
607         /* With all the info we got, fill in the values */
608
609         vcpu->hv_clock.system_time = ts.tv_nsec +
610                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
611         /*
612          * The interface expects us to write an even number signaling that the
613          * update is finished. Since the guest won't see the intermediate
614          * state, we just increase by 2 at the end.
615          */
616         vcpu->hv_clock.version += 2;
617
618         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
619
620         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
621                sizeof(vcpu->hv_clock));
622
623         kunmap_atomic(shared_kaddr, KM_USER0);
624
625         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
626 }
627
628 static bool msr_mtrr_valid(unsigned msr)
629 {
630         switch (msr) {
631         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
632         case MSR_MTRRfix64K_00000:
633         case MSR_MTRRfix16K_80000:
634         case MSR_MTRRfix16K_A0000:
635         case MSR_MTRRfix4K_C0000:
636         case MSR_MTRRfix4K_C8000:
637         case MSR_MTRRfix4K_D0000:
638         case MSR_MTRRfix4K_D8000:
639         case MSR_MTRRfix4K_E0000:
640         case MSR_MTRRfix4K_E8000:
641         case MSR_MTRRfix4K_F0000:
642         case MSR_MTRRfix4K_F8000:
643         case MSR_MTRRdefType:
644         case MSR_IA32_CR_PAT:
645                 return true;
646         case 0x2f8:
647                 return true;
648         }
649         return false;
650 }
651
652 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
653 {
654         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
655
656         if (!msr_mtrr_valid(msr))
657                 return 1;
658
659         if (msr == MSR_MTRRdefType) {
660                 vcpu->arch.mtrr_state.def_type = data;
661                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
662         } else if (msr == MSR_MTRRfix64K_00000)
663                 p[0] = data;
664         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
665                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
666         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
667                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
668         else if (msr == MSR_IA32_CR_PAT)
669                 vcpu->arch.pat = data;
670         else {  /* Variable MTRRs */
671                 int idx, is_mtrr_mask;
672                 u64 *pt;
673
674                 idx = (msr - 0x200) / 2;
675                 is_mtrr_mask = msr - 0x200 - 2 * idx;
676                 if (!is_mtrr_mask)
677                         pt =
678                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
679                 else
680                         pt =
681                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
682                 *pt = data;
683         }
684
685         kvm_mmu_reset_context(vcpu);
686         return 0;
687 }
688
689 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
690 {
691         switch (msr) {
692         case MSR_EFER:
693                 set_efer(vcpu, data);
694                 break;
695         case MSR_IA32_MC0_STATUS:
696                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
697                        __func__, data);
698                 break;
699         case MSR_IA32_MCG_STATUS:
700                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
701                         __func__, data);
702                 break;
703         case MSR_IA32_MCG_CTL:
704                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
705                         __func__, data);
706                 break;
707         case MSR_IA32_DEBUGCTLMSR:
708                 if (!data) {
709                         /* We support the non-activated case already */
710                         break;
711                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
712                         /* Values other than LBR and BTF are vendor-specific,
713                            thus reserved and should throw a #GP */
714                         return 1;
715                 }
716                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
717                         __func__, data);
718                 break;
719         case MSR_IA32_UCODE_REV:
720         case MSR_IA32_UCODE_WRITE:
721                 break;
722         case 0x200 ... 0x2ff:
723                 return set_msr_mtrr(vcpu, msr, data);
724         case MSR_IA32_APICBASE:
725                 kvm_set_apic_base(vcpu, data);
726                 break;
727         case MSR_IA32_MISC_ENABLE:
728                 vcpu->arch.ia32_misc_enable_msr = data;
729                 break;
730         case MSR_KVM_WALL_CLOCK:
731                 vcpu->kvm->arch.wall_clock = data;
732                 kvm_write_wall_clock(vcpu->kvm, data);
733                 break;
734         case MSR_KVM_SYSTEM_TIME: {
735                 if (vcpu->arch.time_page) {
736                         kvm_release_page_dirty(vcpu->arch.time_page);
737                         vcpu->arch.time_page = NULL;
738                 }
739
740                 vcpu->arch.time = data;
741
742                 /* we verify if the enable bit is set... */
743                 if (!(data & 1))
744                         break;
745
746                 /* ...but clean it before doing the actual write */
747                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
748
749                 vcpu->arch.time_page =
750                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
751
752                 if (is_error_page(vcpu->arch.time_page)) {
753                         kvm_release_page_clean(vcpu->arch.time_page);
754                         vcpu->arch.time_page = NULL;
755                 }
756
757                 kvm_write_guest_time(vcpu);
758                 break;
759         }
760         default:
761                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
762                 return 1;
763         }
764         return 0;
765 }
766 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
767
768
769 /*
770  * Reads an msr value (of 'msr_index') into 'pdata'.
771  * Returns 0 on success, non-0 otherwise.
772  * Assumes vcpu_load() was already called.
773  */
774 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
775 {
776         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
777 }
778
779 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
780 {
781         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
782
783         if (!msr_mtrr_valid(msr))
784                 return 1;
785
786         if (msr == MSR_MTRRdefType)
787                 *pdata = vcpu->arch.mtrr_state.def_type +
788                          (vcpu->arch.mtrr_state.enabled << 10);
789         else if (msr == MSR_MTRRfix64K_00000)
790                 *pdata = p[0];
791         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
792                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
793         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
794                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
795         else if (msr == MSR_IA32_CR_PAT)
796                 *pdata = vcpu->arch.pat;
797         else {  /* Variable MTRRs */
798                 int idx, is_mtrr_mask;
799                 u64 *pt;
800
801                 idx = (msr - 0x200) / 2;
802                 is_mtrr_mask = msr - 0x200 - 2 * idx;
803                 if (!is_mtrr_mask)
804                         pt =
805                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
806                 else
807                         pt =
808                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
809                 *pdata = *pt;
810         }
811
812         return 0;
813 }
814
815 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
816 {
817         u64 data;
818
819         switch (msr) {
820         case 0xc0010010: /* SYSCFG */
821         case 0xc0010015: /* HWCR */
822         case MSR_IA32_PLATFORM_ID:
823         case MSR_IA32_P5_MC_ADDR:
824         case MSR_IA32_P5_MC_TYPE:
825         case MSR_IA32_MC0_CTL:
826         case MSR_IA32_MCG_STATUS:
827         case MSR_IA32_MCG_CAP:
828         case MSR_IA32_MCG_CTL:
829         case MSR_IA32_MC0_MISC:
830         case MSR_IA32_MC0_MISC+4:
831         case MSR_IA32_MC0_MISC+8:
832         case MSR_IA32_MC0_MISC+12:
833         case MSR_IA32_MC0_MISC+16:
834         case MSR_IA32_MC0_MISC+20:
835         case MSR_IA32_UCODE_REV:
836         case MSR_IA32_EBL_CR_POWERON:
837         case MSR_IA32_DEBUGCTLMSR:
838         case MSR_IA32_LASTBRANCHFROMIP:
839         case MSR_IA32_LASTBRANCHTOIP:
840         case MSR_IA32_LASTINTFROMIP:
841         case MSR_IA32_LASTINTTOIP:
842                 data = 0;
843                 break;
844         case MSR_MTRRcap:
845                 data = 0x500 | KVM_NR_VAR_MTRR;
846                 break;
847         case 0x200 ... 0x2ff:
848                 return get_msr_mtrr(vcpu, msr, pdata);
849         case 0xcd: /* fsb frequency */
850                 data = 3;
851                 break;
852         case MSR_IA32_APICBASE:
853                 data = kvm_get_apic_base(vcpu);
854                 break;
855         case MSR_IA32_MISC_ENABLE:
856                 data = vcpu->arch.ia32_misc_enable_msr;
857                 break;
858         case MSR_IA32_PERF_STATUS:
859                 /* TSC increment by tick */
860                 data = 1000ULL;
861                 /* CPU multiplier */
862                 data |= (((uint64_t)4ULL) << 40);
863                 break;
864         case MSR_EFER:
865                 data = vcpu->arch.shadow_efer;
866                 break;
867         case MSR_KVM_WALL_CLOCK:
868                 data = vcpu->kvm->arch.wall_clock;
869                 break;
870         case MSR_KVM_SYSTEM_TIME:
871                 data = vcpu->arch.time;
872                 break;
873         default:
874                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
875                 return 1;
876         }
877         *pdata = data;
878         return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
881
882 /*
883  * Read or write a bunch of msrs. All parameters are kernel addresses.
884  *
885  * @return number of msrs set successfully.
886  */
887 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
888                     struct kvm_msr_entry *entries,
889                     int (*do_msr)(struct kvm_vcpu *vcpu,
890                                   unsigned index, u64 *data))
891 {
892         int i;
893
894         vcpu_load(vcpu);
895
896         down_read(&vcpu->kvm->slots_lock);
897         for (i = 0; i < msrs->nmsrs; ++i)
898                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
899                         break;
900         up_read(&vcpu->kvm->slots_lock);
901
902         vcpu_put(vcpu);
903
904         return i;
905 }
906
907 /*
908  * Read or write a bunch of msrs. Parameters are user addresses.
909  *
910  * @return number of msrs set successfully.
911  */
912 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
913                   int (*do_msr)(struct kvm_vcpu *vcpu,
914                                 unsigned index, u64 *data),
915                   int writeback)
916 {
917         struct kvm_msrs msrs;
918         struct kvm_msr_entry *entries;
919         int r, n;
920         unsigned size;
921
922         r = -EFAULT;
923         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
924                 goto out;
925
926         r = -E2BIG;
927         if (msrs.nmsrs >= MAX_IO_MSRS)
928                 goto out;
929
930         r = -ENOMEM;
931         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
932         entries = vmalloc(size);
933         if (!entries)
934                 goto out;
935
936         r = -EFAULT;
937         if (copy_from_user(entries, user_msrs->entries, size))
938                 goto out_free;
939
940         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
941         if (r < 0)
942                 goto out_free;
943
944         r = -EFAULT;
945         if (writeback && copy_to_user(user_msrs->entries, entries, size))
946                 goto out_free;
947
948         r = n;
949
950 out_free:
951         vfree(entries);
952 out:
953         return r;
954 }
955
956 int kvm_dev_ioctl_check_extension(long ext)
957 {
958         int r;
959
960         switch (ext) {
961         case KVM_CAP_IRQCHIP:
962         case KVM_CAP_HLT:
963         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
964         case KVM_CAP_USER_MEMORY:
965         case KVM_CAP_SET_TSS_ADDR:
966         case KVM_CAP_EXT_CPUID:
967         case KVM_CAP_CLOCKSOURCE:
968         case KVM_CAP_PIT:
969         case KVM_CAP_NOP_IO_DELAY:
970         case KVM_CAP_MP_STATE:
971         case KVM_CAP_SYNC_MMU:
972                 r = 1;
973                 break;
974         case KVM_CAP_COALESCED_MMIO:
975                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
976                 break;
977         case KVM_CAP_VAPIC:
978                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
979                 break;
980         case KVM_CAP_NR_VCPUS:
981                 r = KVM_MAX_VCPUS;
982                 break;
983         case KVM_CAP_NR_MEMSLOTS:
984                 r = KVM_MEMORY_SLOTS;
985                 break;
986         case KVM_CAP_PV_MMU:
987                 r = !tdp_enabled;
988                 break;
989         case KVM_CAP_IOMMU:
990                 r = intel_iommu_found();
991                 break;
992         default:
993                 r = 0;
994                 break;
995         }
996         return r;
997
998 }
999
1000 long kvm_arch_dev_ioctl(struct file *filp,
1001                         unsigned int ioctl, unsigned long arg)
1002 {
1003         void __user *argp = (void __user *)arg;
1004         long r;
1005
1006         switch (ioctl) {
1007         case KVM_GET_MSR_INDEX_LIST: {
1008                 struct kvm_msr_list __user *user_msr_list = argp;
1009                 struct kvm_msr_list msr_list;
1010                 unsigned n;
1011
1012                 r = -EFAULT;
1013                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1014                         goto out;
1015                 n = msr_list.nmsrs;
1016                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1017                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1018                         goto out;
1019                 r = -E2BIG;
1020                 if (n < num_msrs_to_save)
1021                         goto out;
1022                 r = -EFAULT;
1023                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1024                                  num_msrs_to_save * sizeof(u32)))
1025                         goto out;
1026                 if (copy_to_user(user_msr_list->indices
1027                                  + num_msrs_to_save * sizeof(u32),
1028                                  &emulated_msrs,
1029                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1030                         goto out;
1031                 r = 0;
1032                 break;
1033         }
1034         case KVM_GET_SUPPORTED_CPUID: {
1035                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1036                 struct kvm_cpuid2 cpuid;
1037
1038                 r = -EFAULT;
1039                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1040                         goto out;
1041                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1042                         cpuid_arg->entries);
1043                 if (r)
1044                         goto out;
1045
1046                 r = -EFAULT;
1047                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1048                         goto out;
1049                 r = 0;
1050                 break;
1051         }
1052         default:
1053                 r = -EINVAL;
1054         }
1055 out:
1056         return r;
1057 }
1058
1059 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1060 {
1061         kvm_x86_ops->vcpu_load(vcpu, cpu);
1062         kvm_write_guest_time(vcpu);
1063 }
1064
1065 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1066 {
1067         kvm_x86_ops->vcpu_put(vcpu);
1068         kvm_put_guest_fpu(vcpu);
1069 }
1070
1071 static int is_efer_nx(void)
1072 {
1073         u64 efer;
1074
1075         rdmsrl(MSR_EFER, efer);
1076         return efer & EFER_NX;
1077 }
1078
1079 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1080 {
1081         int i;
1082         struct kvm_cpuid_entry2 *e, *entry;
1083
1084         entry = NULL;
1085         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1086                 e = &vcpu->arch.cpuid_entries[i];
1087                 if (e->function == 0x80000001) {
1088                         entry = e;
1089                         break;
1090                 }
1091         }
1092         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1093                 entry->edx &= ~(1 << 20);
1094                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1095         }
1096 }
1097
1098 /* when an old userspace process fills a new kernel module */
1099 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1100                                     struct kvm_cpuid *cpuid,
1101                                     struct kvm_cpuid_entry __user *entries)
1102 {
1103         int r, i;
1104         struct kvm_cpuid_entry *cpuid_entries;
1105
1106         r = -E2BIG;
1107         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1108                 goto out;
1109         r = -ENOMEM;
1110         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1111         if (!cpuid_entries)
1112                 goto out;
1113         r = -EFAULT;
1114         if (copy_from_user(cpuid_entries, entries,
1115                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1116                 goto out_free;
1117         for (i = 0; i < cpuid->nent; i++) {
1118                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1119                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1120                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1121                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1122                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1123                 vcpu->arch.cpuid_entries[i].index = 0;
1124                 vcpu->arch.cpuid_entries[i].flags = 0;
1125                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1126                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1127                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1128         }
1129         vcpu->arch.cpuid_nent = cpuid->nent;
1130         cpuid_fix_nx_cap(vcpu);
1131         r = 0;
1132
1133 out_free:
1134         vfree(cpuid_entries);
1135 out:
1136         return r;
1137 }
1138
1139 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1140                                     struct kvm_cpuid2 *cpuid,
1141                                     struct kvm_cpuid_entry2 __user *entries)
1142 {
1143         int r;
1144
1145         r = -E2BIG;
1146         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1147                 goto out;
1148         r = -EFAULT;
1149         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1150                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1151                 goto out;
1152         vcpu->arch.cpuid_nent = cpuid->nent;
1153         return 0;
1154
1155 out:
1156         return r;
1157 }
1158
1159 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1160                                     struct kvm_cpuid2 *cpuid,
1161                                     struct kvm_cpuid_entry2 __user *entries)
1162 {
1163         int r;
1164
1165         r = -E2BIG;
1166         if (cpuid->nent < vcpu->arch.cpuid_nent)
1167                 goto out;
1168         r = -EFAULT;
1169         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1170                            vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1171                 goto out;
1172         return 0;
1173
1174 out:
1175         cpuid->nent = vcpu->arch.cpuid_nent;
1176         return r;
1177 }
1178
1179 static inline u32 bit(int bitno)
1180 {
1181         return 1 << (bitno & 31);
1182 }
1183
1184 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1185                           u32 index)
1186 {
1187         entry->function = function;
1188         entry->index = index;
1189         cpuid_count(entry->function, entry->index,
1190                 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1191         entry->flags = 0;
1192 }
1193
1194 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1195                          u32 index, int *nent, int maxnent)
1196 {
1197         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1198                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1199                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1200                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1201                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1202                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1203                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1204                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1205                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1206                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1207         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1208                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1209                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1210                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1211                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1212                 bit(X86_FEATURE_PGE) |
1213                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1214                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1215                 bit(X86_FEATURE_SYSCALL) |
1216                 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1217 #ifdef CONFIG_X86_64
1218                 bit(X86_FEATURE_LM) |
1219 #endif
1220                 bit(X86_FEATURE_MMXEXT) |
1221                 bit(X86_FEATURE_3DNOWEXT) |
1222                 bit(X86_FEATURE_3DNOW);
1223         const u32 kvm_supported_word3_x86_features =
1224                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1225         const u32 kvm_supported_word6_x86_features =
1226                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1227
1228         /* all func 2 cpuid_count() should be called on the same cpu */
1229         get_cpu();
1230         do_cpuid_1_ent(entry, function, index);
1231         ++*nent;
1232
1233         switch (function) {
1234         case 0:
1235                 entry->eax = min(entry->eax, (u32)0xb);
1236                 break;
1237         case 1:
1238                 entry->edx &= kvm_supported_word0_x86_features;
1239                 entry->ecx &= kvm_supported_word3_x86_features;
1240                 break;
1241         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1242          * may return different values. This forces us to get_cpu() before
1243          * issuing the first command, and also to emulate this annoying behavior
1244          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1245         case 2: {
1246                 int t, times = entry->eax & 0xff;
1247
1248                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1249                 for (t = 1; t < times && *nent < maxnent; ++t) {
1250                         do_cpuid_1_ent(&entry[t], function, 0);
1251                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1252                         ++*nent;
1253                 }
1254                 break;
1255         }
1256         /* function 4 and 0xb have additional index. */
1257         case 4: {
1258                 int i, cache_type;
1259
1260                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1261                 /* read more entries until cache_type is zero */
1262                 for (i = 1; *nent < maxnent; ++i) {
1263                         cache_type = entry[i - 1].eax & 0x1f;
1264                         if (!cache_type)
1265                                 break;
1266                         do_cpuid_1_ent(&entry[i], function, i);
1267                         entry[i].flags |=
1268                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1269                         ++*nent;
1270                 }
1271                 break;
1272         }
1273         case 0xb: {
1274                 int i, level_type;
1275
1276                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1277                 /* read more entries until level_type is zero */
1278                 for (i = 1; *nent < maxnent; ++i) {
1279                         level_type = entry[i - 1].ecx & 0xff;
1280                         if (!level_type)
1281                                 break;
1282                         do_cpuid_1_ent(&entry[i], function, i);
1283                         entry[i].flags |=
1284                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1285                         ++*nent;
1286                 }
1287                 break;
1288         }
1289         case 0x80000000:
1290                 entry->eax = min(entry->eax, 0x8000001a);
1291                 break;
1292         case 0x80000001:
1293                 entry->edx &= kvm_supported_word1_x86_features;
1294                 entry->ecx &= kvm_supported_word6_x86_features;
1295                 break;
1296         }
1297         put_cpu();
1298 }
1299
1300 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1301                                     struct kvm_cpuid_entry2 __user *entries)
1302 {
1303         struct kvm_cpuid_entry2 *cpuid_entries;
1304         int limit, nent = 0, r = -E2BIG;
1305         u32 func;
1306
1307         if (cpuid->nent < 1)
1308                 goto out;
1309         r = -ENOMEM;
1310         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1311         if (!cpuid_entries)
1312                 goto out;
1313
1314         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1315         limit = cpuid_entries[0].eax;
1316         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1317                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1318                                 &nent, cpuid->nent);
1319         r = -E2BIG;
1320         if (nent >= cpuid->nent)
1321                 goto out_free;
1322
1323         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1324         limit = cpuid_entries[nent - 1].eax;
1325         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1326                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1327                                &nent, cpuid->nent);
1328         r = -EFAULT;
1329         if (copy_to_user(entries, cpuid_entries,
1330                         nent * sizeof(struct kvm_cpuid_entry2)))
1331                 goto out_free;
1332         cpuid->nent = nent;
1333         r = 0;
1334
1335 out_free:
1336         vfree(cpuid_entries);
1337 out:
1338         return r;
1339 }
1340
1341 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1342                                     struct kvm_lapic_state *s)
1343 {
1344         vcpu_load(vcpu);
1345         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1346         vcpu_put(vcpu);
1347
1348         return 0;
1349 }
1350
1351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1352                                     struct kvm_lapic_state *s)
1353 {
1354         vcpu_load(vcpu);
1355         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1356         kvm_apic_post_state_restore(vcpu);
1357         vcpu_put(vcpu);
1358
1359         return 0;
1360 }
1361
1362 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1363                                     struct kvm_interrupt *irq)
1364 {
1365         if (irq->irq < 0 || irq->irq >= 256)
1366                 return -EINVAL;
1367         if (irqchip_in_kernel(vcpu->kvm))
1368                 return -ENXIO;
1369         vcpu_load(vcpu);
1370
1371         set_bit(irq->irq, vcpu->arch.irq_pending);
1372         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1373
1374         vcpu_put(vcpu);
1375
1376         return 0;
1377 }
1378
1379 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1380 {
1381         vcpu_load(vcpu);
1382         kvm_inject_nmi(vcpu);
1383         vcpu_put(vcpu);
1384
1385         return 0;
1386 }
1387
1388 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1389                                            struct kvm_tpr_access_ctl *tac)
1390 {
1391         if (tac->flags)
1392                 return -EINVAL;
1393         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1394         return 0;
1395 }
1396
1397 long kvm_arch_vcpu_ioctl(struct file *filp,
1398                          unsigned int ioctl, unsigned long arg)
1399 {
1400         struct kvm_vcpu *vcpu = filp->private_data;
1401         void __user *argp = (void __user *)arg;
1402         int r;
1403         struct kvm_lapic_state *lapic = NULL;
1404
1405         switch (ioctl) {
1406         case KVM_GET_LAPIC: {
1407                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1408
1409                 r = -ENOMEM;
1410                 if (!lapic)
1411                         goto out;
1412                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1413                 if (r)
1414                         goto out;
1415                 r = -EFAULT;
1416                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1417                         goto out;
1418                 r = 0;
1419                 break;
1420         }
1421         case KVM_SET_LAPIC: {
1422                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1423                 r = -ENOMEM;
1424                 if (!lapic)
1425                         goto out;
1426                 r = -EFAULT;
1427                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1428                         goto out;
1429                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1430                 if (r)
1431                         goto out;
1432                 r = 0;
1433                 break;
1434         }
1435         case KVM_INTERRUPT: {
1436                 struct kvm_interrupt irq;
1437
1438                 r = -EFAULT;
1439                 if (copy_from_user(&irq, argp, sizeof irq))
1440                         goto out;
1441                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1442                 if (r)
1443                         goto out;
1444                 r = 0;
1445                 break;
1446         }
1447         case KVM_NMI: {
1448                 r = kvm_vcpu_ioctl_nmi(vcpu);
1449                 if (r)
1450                         goto out;
1451                 r = 0;
1452                 break;
1453         }
1454         case KVM_SET_CPUID: {
1455                 struct kvm_cpuid __user *cpuid_arg = argp;
1456                 struct kvm_cpuid cpuid;
1457
1458                 r = -EFAULT;
1459                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1460                         goto out;
1461                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1462                 if (r)
1463                         goto out;
1464                 break;
1465         }
1466         case KVM_SET_CPUID2: {
1467                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1468                 struct kvm_cpuid2 cpuid;
1469
1470                 r = -EFAULT;
1471                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1472                         goto out;
1473                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1474                                 cpuid_arg->entries);
1475                 if (r)
1476                         goto out;
1477                 break;
1478         }
1479         case KVM_GET_CPUID2: {
1480                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1481                 struct kvm_cpuid2 cpuid;
1482
1483                 r = -EFAULT;
1484                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1485                         goto out;
1486                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1487                                 cpuid_arg->entries);
1488                 if (r)
1489                         goto out;
1490                 r = -EFAULT;
1491                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1492                         goto out;
1493                 r = 0;
1494                 break;
1495         }
1496         case KVM_GET_MSRS:
1497                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1498                 break;
1499         case KVM_SET_MSRS:
1500                 r = msr_io(vcpu, argp, do_set_msr, 0);
1501                 break;
1502         case KVM_TPR_ACCESS_REPORTING: {
1503                 struct kvm_tpr_access_ctl tac;
1504
1505                 r = -EFAULT;
1506                 if (copy_from_user(&tac, argp, sizeof tac))
1507                         goto out;
1508                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1509                 if (r)
1510                         goto out;
1511                 r = -EFAULT;
1512                 if (copy_to_user(argp, &tac, sizeof tac))
1513                         goto out;
1514                 r = 0;
1515                 break;
1516         };
1517         case KVM_SET_VAPIC_ADDR: {
1518                 struct kvm_vapic_addr va;
1519
1520                 r = -EINVAL;
1521                 if (!irqchip_in_kernel(vcpu->kvm))
1522                         goto out;
1523                 r = -EFAULT;
1524                 if (copy_from_user(&va, argp, sizeof va))
1525                         goto out;
1526                 r = 0;
1527                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1528                 break;
1529         }
1530         default:
1531                 r = -EINVAL;
1532         }
1533 out:
1534         if (lapic)
1535                 kfree(lapic);
1536         return r;
1537 }
1538
1539 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1540 {
1541         int ret;
1542
1543         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1544                 return -1;
1545         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1546         return ret;
1547 }
1548
1549 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1550                                           u32 kvm_nr_mmu_pages)
1551 {
1552         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1553                 return -EINVAL;
1554
1555         down_write(&kvm->slots_lock);
1556
1557         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1558         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1559
1560         up_write(&kvm->slots_lock);
1561         return 0;
1562 }
1563
1564 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1565 {
1566         return kvm->arch.n_alloc_mmu_pages;
1567 }
1568
1569 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1570 {
1571         int i;
1572         struct kvm_mem_alias *alias;
1573
1574         for (i = 0; i < kvm->arch.naliases; ++i) {
1575                 alias = &kvm->arch.aliases[i];
1576                 if (gfn >= alias->base_gfn
1577                     && gfn < alias->base_gfn + alias->npages)
1578                         return alias->target_gfn + gfn - alias->base_gfn;
1579         }
1580         return gfn;
1581 }
1582
1583 /*
1584  * Set a new alias region.  Aliases map a portion of physical memory into
1585  * another portion.  This is useful for memory windows, for example the PC
1586  * VGA region.
1587  */
1588 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1589                                          struct kvm_memory_alias *alias)
1590 {
1591         int r, n;
1592         struct kvm_mem_alias *p;
1593
1594         r = -EINVAL;
1595         /* General sanity checks */
1596         if (alias->memory_size & (PAGE_SIZE - 1))
1597                 goto out;
1598         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1599                 goto out;
1600         if (alias->slot >= KVM_ALIAS_SLOTS)
1601                 goto out;
1602         if (alias->guest_phys_addr + alias->memory_size
1603             < alias->guest_phys_addr)
1604                 goto out;
1605         if (alias->target_phys_addr + alias->memory_size
1606             < alias->target_phys_addr)
1607                 goto out;
1608
1609         down_write(&kvm->slots_lock);
1610         spin_lock(&kvm->mmu_lock);
1611
1612         p = &kvm->arch.aliases[alias->slot];
1613         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1614         p->npages = alias->memory_size >> PAGE_SHIFT;
1615         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1616
1617         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1618                 if (kvm->arch.aliases[n - 1].npages)
1619                         break;
1620         kvm->arch.naliases = n;
1621
1622         spin_unlock(&kvm->mmu_lock);
1623         kvm_mmu_zap_all(kvm);
1624
1625         up_write(&kvm->slots_lock);
1626
1627         return 0;
1628
1629 out:
1630         return r;
1631 }
1632
1633 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1634 {
1635         int r;
1636
1637         r = 0;
1638         switch (chip->chip_id) {
1639         case KVM_IRQCHIP_PIC_MASTER:
1640                 memcpy(&chip->chip.pic,
1641                         &pic_irqchip(kvm)->pics[0],
1642                         sizeof(struct kvm_pic_state));
1643                 break;
1644         case KVM_IRQCHIP_PIC_SLAVE:
1645                 memcpy(&chip->chip.pic,
1646                         &pic_irqchip(kvm)->pics[1],
1647                         sizeof(struct kvm_pic_state));
1648                 break;
1649         case KVM_IRQCHIP_IOAPIC:
1650                 memcpy(&chip->chip.ioapic,
1651                         ioapic_irqchip(kvm),
1652                         sizeof(struct kvm_ioapic_state));
1653                 break;
1654         default:
1655                 r = -EINVAL;
1656                 break;
1657         }
1658         return r;
1659 }
1660
1661 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1662 {
1663         int r;
1664
1665         r = 0;
1666         switch (chip->chip_id) {
1667         case KVM_IRQCHIP_PIC_MASTER:
1668                 memcpy(&pic_irqchip(kvm)->pics[0],
1669                         &chip->chip.pic,
1670                         sizeof(struct kvm_pic_state));
1671                 break;
1672         case KVM_IRQCHIP_PIC_SLAVE:
1673                 memcpy(&pic_irqchip(kvm)->pics[1],
1674                         &chip->chip.pic,
1675                         sizeof(struct kvm_pic_state));
1676                 break;
1677         case KVM_IRQCHIP_IOAPIC:
1678                 memcpy(ioapic_irqchip(kvm),
1679                         &chip->chip.ioapic,
1680                         sizeof(struct kvm_ioapic_state));
1681                 break;
1682         default:
1683                 r = -EINVAL;
1684                 break;
1685         }
1686         kvm_pic_update_irq(pic_irqchip(kvm));
1687         return r;
1688 }
1689
1690 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1691 {
1692         int r = 0;
1693
1694         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1695         return r;
1696 }
1697
1698 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1699 {
1700         int r = 0;
1701
1702         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1703         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1704         return r;
1705 }
1706
1707 /*
1708  * Get (and clear) the dirty memory log for a memory slot.
1709  */
1710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1711                                       struct kvm_dirty_log *log)
1712 {
1713         int r;
1714         int n;
1715         struct kvm_memory_slot *memslot;
1716         int is_dirty = 0;
1717
1718         down_write(&kvm->slots_lock);
1719
1720         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1721         if (r)
1722                 goto out;
1723
1724         /* If nothing is dirty, don't bother messing with page tables. */
1725         if (is_dirty) {
1726                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1727                 kvm_flush_remote_tlbs(kvm);
1728                 memslot = &kvm->memslots[log->slot];
1729                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1730                 memset(memslot->dirty_bitmap, 0, n);
1731         }
1732         r = 0;
1733 out:
1734         up_write(&kvm->slots_lock);
1735         return r;
1736 }
1737
1738 long kvm_arch_vm_ioctl(struct file *filp,
1739                        unsigned int ioctl, unsigned long arg)
1740 {
1741         struct kvm *kvm = filp->private_data;
1742         void __user *argp = (void __user *)arg;
1743         int r = -EINVAL;
1744         /*
1745          * This union makes it completely explicit to gcc-3.x
1746          * that these two variables' stack usage should be
1747          * combined, not added together.
1748          */
1749         union {
1750                 struct kvm_pit_state ps;
1751                 struct kvm_memory_alias alias;
1752         } u;
1753
1754         switch (ioctl) {
1755         case KVM_SET_TSS_ADDR:
1756                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1757                 if (r < 0)
1758                         goto out;
1759                 break;
1760         case KVM_SET_MEMORY_REGION: {
1761                 struct kvm_memory_region kvm_mem;
1762                 struct kvm_userspace_memory_region kvm_userspace_mem;
1763
1764                 r = -EFAULT;
1765                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1766                         goto out;
1767                 kvm_userspace_mem.slot = kvm_mem.slot;
1768                 kvm_userspace_mem.flags = kvm_mem.flags;
1769                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1770                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1771                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1772                 if (r)
1773                         goto out;
1774                 break;
1775         }
1776         case KVM_SET_NR_MMU_PAGES:
1777                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1778                 if (r)
1779                         goto out;
1780                 break;
1781         case KVM_GET_NR_MMU_PAGES:
1782                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1783                 break;
1784         case KVM_SET_MEMORY_ALIAS:
1785                 r = -EFAULT;
1786                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1787                         goto out;
1788                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1789                 if (r)
1790                         goto out;
1791                 break;
1792         case KVM_CREATE_IRQCHIP:
1793                 r = -ENOMEM;
1794                 kvm->arch.vpic = kvm_create_pic(kvm);
1795                 if (kvm->arch.vpic) {
1796                         r = kvm_ioapic_init(kvm);
1797                         if (r) {
1798                                 kfree(kvm->arch.vpic);
1799                                 kvm->arch.vpic = NULL;
1800                                 goto out;
1801                         }
1802                 } else
1803                         goto out;
1804                 break;
1805         case KVM_CREATE_PIT:
1806                 r = -ENOMEM;
1807                 kvm->arch.vpit = kvm_create_pit(kvm);
1808                 if (kvm->arch.vpit)
1809                         r = 0;
1810                 break;
1811         case KVM_IRQ_LINE: {
1812                 struct kvm_irq_level irq_event;
1813
1814                 r = -EFAULT;
1815                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1816                         goto out;
1817                 if (irqchip_in_kernel(kvm)) {
1818                         mutex_lock(&kvm->lock);
1819                         kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1820                                     irq_event.irq, irq_event.level);
1821                         mutex_unlock(&kvm->lock);
1822                         r = 0;
1823                 }
1824                 break;
1825         }
1826         case KVM_GET_IRQCHIP: {
1827                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1828                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1829
1830                 r = -ENOMEM;
1831                 if (!chip)
1832                         goto out;
1833                 r = -EFAULT;
1834                 if (copy_from_user(chip, argp, sizeof *chip))
1835                         goto get_irqchip_out;
1836                 r = -ENXIO;
1837                 if (!irqchip_in_kernel(kvm))
1838                         goto get_irqchip_out;
1839                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1840                 if (r)
1841                         goto get_irqchip_out;
1842                 r = -EFAULT;
1843                 if (copy_to_user(argp, chip, sizeof *chip))
1844                         goto get_irqchip_out;
1845                 r = 0;
1846         get_irqchip_out:
1847                 kfree(chip);
1848                 if (r)
1849                         goto out;
1850                 break;
1851         }
1852         case KVM_SET_IRQCHIP: {
1853                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1854                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1855
1856                 r = -ENOMEM;
1857                 if (!chip)
1858                         goto out;
1859                 r = -EFAULT;
1860                 if (copy_from_user(chip, argp, sizeof *chip))
1861                         goto set_irqchip_out;
1862                 r = -ENXIO;
1863                 if (!irqchip_in_kernel(kvm))
1864                         goto set_irqchip_out;
1865                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1866                 if (r)
1867                         goto set_irqchip_out;
1868                 r = 0;
1869         set_irqchip_out:
1870                 kfree(chip);
1871                 if (r)
1872                         goto out;
1873                 break;
1874         }
1875         case KVM_GET_PIT: {
1876                 r = -EFAULT;
1877                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1878                         goto out;
1879                 r = -ENXIO;
1880                 if (!kvm->arch.vpit)
1881                         goto out;
1882                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1883                 if (r)
1884                         goto out;
1885                 r = -EFAULT;
1886                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1887                         goto out;
1888                 r = 0;
1889                 break;
1890         }
1891         case KVM_SET_PIT: {
1892                 r = -EFAULT;
1893                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1894                         goto out;
1895                 r = -ENXIO;
1896                 if (!kvm->arch.vpit)
1897                         goto out;
1898                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1899                 if (r)
1900                         goto out;
1901                 r = 0;
1902                 break;
1903         }
1904         default:
1905                 ;
1906         }
1907 out:
1908         return r;
1909 }
1910
1911 static void kvm_init_msr_list(void)
1912 {
1913         u32 dummy[2];
1914         unsigned i, j;
1915
1916         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1917                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1918                         continue;
1919                 if (j < i)
1920                         msrs_to_save[j] = msrs_to_save[i];
1921                 j++;
1922         }
1923         num_msrs_to_save = j;
1924 }
1925
1926 /*
1927  * Only apic need an MMIO device hook, so shortcut now..
1928  */
1929 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1930                                                 gpa_t addr, int len,
1931                                                 int is_write)
1932 {
1933         struct kvm_io_device *dev;
1934
1935         if (vcpu->arch.apic) {
1936                 dev = &vcpu->arch.apic->dev;
1937                 if (dev->in_range(dev, addr, len, is_write))
1938                         return dev;
1939         }
1940         return NULL;
1941 }
1942
1943
1944 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1945                                                 gpa_t addr, int len,
1946                                                 int is_write)
1947 {
1948         struct kvm_io_device *dev;
1949
1950         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1951         if (dev == NULL)
1952                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1953                                           is_write);
1954         return dev;
1955 }
1956
1957 int emulator_read_std(unsigned long addr,
1958                              void *val,
1959                              unsigned int bytes,
1960                              struct kvm_vcpu *vcpu)
1961 {
1962         void *data = val;
1963         int r = X86EMUL_CONTINUE;
1964
1965         while (bytes) {
1966                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1967                 unsigned offset = addr & (PAGE_SIZE-1);
1968                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1969                 int ret;
1970
1971                 if (gpa == UNMAPPED_GVA) {
1972                         r = X86EMUL_PROPAGATE_FAULT;
1973                         goto out;
1974                 }
1975                 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1976                 if (ret < 0) {
1977                         r = X86EMUL_UNHANDLEABLE;
1978                         goto out;
1979                 }
1980
1981                 bytes -= tocopy;
1982                 data += tocopy;
1983                 addr += tocopy;
1984         }
1985 out:
1986         return r;
1987 }
1988 EXPORT_SYMBOL_GPL(emulator_read_std);
1989
1990 static int emulator_read_emulated(unsigned long addr,
1991                                   void *val,
1992                                   unsigned int bytes,
1993                                   struct kvm_vcpu *vcpu)
1994 {
1995         struct kvm_io_device *mmio_dev;
1996         gpa_t                 gpa;
1997
1998         if (vcpu->mmio_read_completed) {
1999                 memcpy(val, vcpu->mmio_data, bytes);
2000                 vcpu->mmio_read_completed = 0;
2001                 return X86EMUL_CONTINUE;
2002         }
2003
2004         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2005
2006         /* For APIC access vmexit */
2007         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2008                 goto mmio;
2009
2010         if (emulator_read_std(addr, val, bytes, vcpu)
2011                         == X86EMUL_CONTINUE)
2012                 return X86EMUL_CONTINUE;
2013         if (gpa == UNMAPPED_GVA)
2014                 return X86EMUL_PROPAGATE_FAULT;
2015
2016 mmio:
2017         /*
2018          * Is this MMIO handled locally?
2019          */
2020         mutex_lock(&vcpu->kvm->lock);
2021         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2022         if (mmio_dev) {
2023                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2024                 mutex_unlock(&vcpu->kvm->lock);
2025                 return X86EMUL_CONTINUE;
2026         }
2027         mutex_unlock(&vcpu->kvm->lock);
2028
2029         vcpu->mmio_needed = 1;
2030         vcpu->mmio_phys_addr = gpa;
2031         vcpu->mmio_size = bytes;
2032         vcpu->mmio_is_write = 0;
2033
2034         return X86EMUL_UNHANDLEABLE;
2035 }
2036
2037 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2038                           const void *val, int bytes)
2039 {
2040         int ret;
2041
2042         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2043         if (ret < 0)
2044                 return 0;
2045         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
2046         return 1;
2047 }
2048
2049 static int emulator_write_emulated_onepage(unsigned long addr,
2050                                            const void *val,
2051                                            unsigned int bytes,
2052                                            struct kvm_vcpu *vcpu)
2053 {
2054         struct kvm_io_device *mmio_dev;
2055         gpa_t                 gpa;
2056
2057         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2058
2059         if (gpa == UNMAPPED_GVA) {
2060                 kvm_inject_page_fault(vcpu, addr, 2);
2061                 return X86EMUL_PROPAGATE_FAULT;
2062         }
2063
2064         /* For APIC access vmexit */
2065         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2066                 goto mmio;
2067
2068         if (emulator_write_phys(vcpu, gpa, val, bytes))
2069                 return X86EMUL_CONTINUE;
2070
2071 mmio:
2072         /*
2073          * Is this MMIO handled locally?
2074          */
2075         mutex_lock(&vcpu->kvm->lock);
2076         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2077         if (mmio_dev) {
2078                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2079                 mutex_unlock(&vcpu->kvm->lock);
2080                 return X86EMUL_CONTINUE;
2081         }
2082         mutex_unlock(&vcpu->kvm->lock);
2083
2084         vcpu->mmio_needed = 1;
2085         vcpu->mmio_phys_addr = gpa;
2086         vcpu->mmio_size = bytes;
2087         vcpu->mmio_is_write = 1;
2088         memcpy(vcpu->mmio_data, val, bytes);
2089
2090         return X86EMUL_CONTINUE;
2091 }
2092
2093 int emulator_write_emulated(unsigned long addr,
2094                                    const void *val,
2095                                    unsigned int bytes,
2096                                    struct kvm_vcpu *vcpu)
2097 {
2098         /* Crossing a page boundary? */
2099         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2100                 int rc, now;
2101
2102                 now = -addr & ~PAGE_MASK;
2103                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2104                 if (rc != X86EMUL_CONTINUE)
2105                         return rc;
2106                 addr += now;
2107                 val += now;
2108                 bytes -= now;
2109         }
2110         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2111 }
2112 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2113
2114 static int emulator_cmpxchg_emulated(unsigned long addr,
2115                                      const void *old,
2116                                      const void *new,
2117                                      unsigned int bytes,
2118                                      struct kvm_vcpu *vcpu)
2119 {
2120         static int reported;
2121
2122         if (!reported) {
2123                 reported = 1;
2124                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2125         }
2126 #ifndef CONFIG_X86_64
2127         /* guests cmpxchg8b have to be emulated atomically */
2128         if (bytes == 8) {
2129                 gpa_t gpa;
2130                 struct page *page;
2131                 char *kaddr;
2132                 u64 val;
2133
2134                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2135
2136                 if (gpa == UNMAPPED_GVA ||
2137                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2138                         goto emul_write;
2139
2140                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2141                         goto emul_write;
2142
2143                 val = *(u64 *)new;
2144
2145                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2146
2147                 kaddr = kmap_atomic(page, KM_USER0);
2148                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2149                 kunmap_atomic(kaddr, KM_USER0);
2150                 kvm_release_page_dirty(page);
2151         }
2152 emul_write:
2153 #endif
2154
2155         return emulator_write_emulated(addr, new, bytes, vcpu);
2156 }
2157
2158 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2159 {
2160         return kvm_x86_ops->get_segment_base(vcpu, seg);
2161 }
2162
2163 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2164 {
2165         kvm_mmu_invlpg(vcpu, address);
2166         return X86EMUL_CONTINUE;
2167 }
2168
2169 int emulate_clts(struct kvm_vcpu *vcpu)
2170 {
2171         KVMTRACE_0D(CLTS, vcpu, handler);
2172         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2173         return X86EMUL_CONTINUE;
2174 }
2175
2176 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2177 {
2178         struct kvm_vcpu *vcpu = ctxt->vcpu;
2179
2180         switch (dr) {
2181         case 0 ... 3:
2182                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2183                 return X86EMUL_CONTINUE;
2184         default:
2185                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2186                 return X86EMUL_UNHANDLEABLE;
2187         }
2188 }
2189
2190 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2191 {
2192         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2193         int exception;
2194
2195         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2196         if (exception) {
2197                 /* FIXME: better handling */
2198                 return X86EMUL_UNHANDLEABLE;
2199         }
2200         return X86EMUL_CONTINUE;
2201 }
2202
2203 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2204 {
2205         u8 opcodes[4];
2206         unsigned long rip = kvm_rip_read(vcpu);
2207         unsigned long rip_linear;
2208
2209         if (!printk_ratelimit())
2210                 return;
2211
2212         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2213
2214         emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2215
2216         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2217                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2220
2221 static struct x86_emulate_ops emulate_ops = {
2222         .read_std            = emulator_read_std,
2223         .read_emulated       = emulator_read_emulated,
2224         .write_emulated      = emulator_write_emulated,
2225         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2226 };
2227
2228 static void cache_all_regs(struct kvm_vcpu *vcpu)
2229 {
2230         kvm_register_read(vcpu, VCPU_REGS_RAX);
2231         kvm_register_read(vcpu, VCPU_REGS_RSP);
2232         kvm_register_read(vcpu, VCPU_REGS_RIP);
2233         vcpu->arch.regs_dirty = ~0;
2234 }
2235
2236 int emulate_instruction(struct kvm_vcpu *vcpu,
2237                         struct kvm_run *run,
2238                         unsigned long cr2,
2239                         u16 error_code,
2240                         int emulation_type)
2241 {
2242         int r;
2243         struct decode_cache *c;
2244
2245         kvm_clear_exception_queue(vcpu);
2246         vcpu->arch.mmio_fault_cr2 = cr2;
2247         /*
2248          * TODO: fix x86_emulate.c to use guest_read/write_register
2249          * instead of direct ->regs accesses, can save hundred cycles
2250          * on Intel for instructions that don't read/change RSP, for
2251          * for example.
2252          */
2253         cache_all_regs(vcpu);
2254
2255         vcpu->mmio_is_write = 0;
2256         vcpu->arch.pio.string = 0;
2257
2258         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2259                 int cs_db, cs_l;
2260                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2261
2262                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2263                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2264                 vcpu->arch.emulate_ctxt.mode =
2265                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2266                         ? X86EMUL_MODE_REAL : cs_l
2267                         ? X86EMUL_MODE_PROT64 : cs_db
2268                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2269
2270                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2271
2272                 /* Reject the instructions other than VMCALL/VMMCALL when
2273                  * try to emulate invalid opcode */
2274                 c = &vcpu->arch.emulate_ctxt.decode;
2275                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2276                     (!(c->twobyte && c->b == 0x01 &&
2277                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2278                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2279                         return EMULATE_FAIL;
2280
2281                 ++vcpu->stat.insn_emulation;
2282                 if (r)  {
2283                         ++vcpu->stat.insn_emulation_fail;
2284                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2285                                 return EMULATE_DONE;
2286                         return EMULATE_FAIL;
2287                 }
2288         }
2289
2290         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2291
2292         if (vcpu->arch.pio.string)
2293                 return EMULATE_DO_MMIO;
2294
2295         if ((r || vcpu->mmio_is_write) && run) {
2296                 run->exit_reason = KVM_EXIT_MMIO;
2297                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2298                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2299                 run->mmio.len = vcpu->mmio_size;
2300                 run->mmio.is_write = vcpu->mmio_is_write;
2301         }
2302
2303         if (r) {
2304                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2305                         return EMULATE_DONE;
2306                 if (!vcpu->mmio_needed) {
2307                         kvm_report_emulation_failure(vcpu, "mmio");
2308                         return EMULATE_FAIL;
2309                 }
2310                 return EMULATE_DO_MMIO;
2311         }
2312
2313         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2314
2315         if (vcpu->mmio_is_write) {
2316                 vcpu->mmio_needed = 0;
2317                 return EMULATE_DO_MMIO;
2318         }
2319
2320         return EMULATE_DONE;
2321 }
2322 EXPORT_SYMBOL_GPL(emulate_instruction);
2323
2324 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2325 {
2326         int i;
2327
2328         for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2329                 if (vcpu->arch.pio.guest_pages[i]) {
2330                         kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2331                         vcpu->arch.pio.guest_pages[i] = NULL;
2332                 }
2333 }
2334
2335 static int pio_copy_data(struct kvm_vcpu *vcpu)
2336 {
2337         void *p = vcpu->arch.pio_data;
2338         void *q;
2339         unsigned bytes;
2340         int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2341
2342         q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2343                  PAGE_KERNEL);
2344         if (!q) {
2345                 free_pio_guest_pages(vcpu);
2346                 return -ENOMEM;
2347         }
2348         q += vcpu->arch.pio.guest_page_offset;
2349         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2350         if (vcpu->arch.pio.in)
2351                 memcpy(q, p, bytes);
2352         else
2353                 memcpy(p, q, bytes);
2354         q -= vcpu->arch.pio.guest_page_offset;
2355         vunmap(q);
2356         free_pio_guest_pages(vcpu);
2357         return 0;
2358 }
2359
2360 int complete_pio(struct kvm_vcpu *vcpu)
2361 {
2362         struct kvm_pio_request *io = &vcpu->arch.pio;
2363         long delta;
2364         int r;
2365         unsigned long val;
2366
2367         if (!io->string) {
2368                 if (io->in) {
2369                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2370                         memcpy(&val, vcpu->arch.pio_data, io->size);
2371                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2372                 }
2373         } else {
2374                 if (io->in) {
2375                         r = pio_copy_data(vcpu);
2376                         if (r)
2377                                 return r;
2378                 }
2379
2380                 delta = 1;
2381                 if (io->rep) {
2382                         delta *= io->cur_count;
2383                         /*
2384                          * The size of the register should really depend on
2385                          * current address size.
2386                          */
2387                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2388                         val -= delta;
2389                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2390                 }
2391                 if (io->down)
2392                         delta = -delta;
2393                 delta *= io->size;
2394                 if (io->in) {
2395                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2396                         val += delta;
2397                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2398                 } else {
2399                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2400                         val += delta;
2401                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2402                 }
2403         }
2404
2405         io->count -= io->cur_count;
2406         io->cur_count = 0;
2407
2408         return 0;
2409 }
2410
2411 static void kernel_pio(struct kvm_io_device *pio_dev,
2412                        struct kvm_vcpu *vcpu,
2413                        void *pd)
2414 {
2415         /* TODO: String I/O for in kernel device */
2416
2417         mutex_lock(&vcpu->kvm->lock);
2418         if (vcpu->arch.pio.in)
2419                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2420                                   vcpu->arch.pio.size,
2421                                   pd);
2422         else
2423                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2424                                    vcpu->arch.pio.size,
2425                                    pd);
2426         mutex_unlock(&vcpu->kvm->lock);
2427 }
2428
2429 static void pio_string_write(struct kvm_io_device *pio_dev,
2430                              struct kvm_vcpu *vcpu)
2431 {
2432         struct kvm_pio_request *io = &vcpu->arch.pio;
2433         void *pd = vcpu->arch.pio_data;
2434         int i;
2435
2436         mutex_lock(&vcpu->kvm->lock);
2437         for (i = 0; i < io->cur_count; i++) {
2438                 kvm_iodevice_write(pio_dev, io->port,
2439                                    io->size,
2440                                    pd);
2441                 pd += io->size;
2442         }
2443         mutex_unlock(&vcpu->kvm->lock);
2444 }
2445
2446 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2447                                                gpa_t addr, int len,
2448                                                int is_write)
2449 {
2450         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2451 }
2452
2453 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2454                   int size, unsigned port)
2455 {
2456         struct kvm_io_device *pio_dev;
2457         unsigned long val;
2458
2459         vcpu->run->exit_reason = KVM_EXIT_IO;
2460         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2461         vcpu->run->io.size = vcpu->arch.pio.size = size;
2462         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2463         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2464         vcpu->run->io.port = vcpu->arch.pio.port = port;
2465         vcpu->arch.pio.in = in;
2466         vcpu->arch.pio.string = 0;
2467         vcpu->arch.pio.down = 0;
2468         vcpu->arch.pio.guest_page_offset = 0;
2469         vcpu->arch.pio.rep = 0;
2470
2471         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2472                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2473                             handler);
2474         else
2475                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2476                             handler);
2477
2478         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2479         memcpy(vcpu->arch.pio_data, &val, 4);
2480
2481         kvm_x86_ops->skip_emulated_instruction(vcpu);
2482
2483         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2484         if (pio_dev) {
2485                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2486                 complete_pio(vcpu);
2487                 return 1;
2488         }
2489         return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2492
2493 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2494                   int size, unsigned long count, int down,
2495                   gva_t address, int rep, unsigned port)
2496 {
2497         unsigned now, in_page;
2498         int i, ret = 0;
2499         int nr_pages = 1;
2500         struct page *page;
2501         struct kvm_io_device *pio_dev;
2502
2503         vcpu->run->exit_reason = KVM_EXIT_IO;
2504         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2505         vcpu->run->io.size = vcpu->arch.pio.size = size;
2506         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2507         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2508         vcpu->run->io.port = vcpu->arch.pio.port = port;
2509         vcpu->arch.pio.in = in;
2510         vcpu->arch.pio.string = 1;
2511         vcpu->arch.pio.down = down;
2512         vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2513         vcpu->arch.pio.rep = rep;
2514
2515         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2516                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2517                             handler);
2518         else
2519                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2520                             handler);
2521
2522         if (!count) {
2523                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2524                 return 1;
2525         }
2526
2527         if (!down)
2528                 in_page = PAGE_SIZE - offset_in_page(address);
2529         else
2530                 in_page = offset_in_page(address) + size;
2531         now = min(count, (unsigned long)in_page / size);
2532         if (!now) {
2533                 /*
2534                  * String I/O straddles page boundary.  Pin two guest pages
2535                  * so that we satisfy atomicity constraints.  Do just one
2536                  * transaction to avoid complexity.
2537                  */
2538                 nr_pages = 2;
2539                 now = 1;
2540         }
2541         if (down) {
2542                 /*
2543                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2544                  */
2545                 pr_unimpl(vcpu, "guest string pio down\n");
2546                 kvm_inject_gp(vcpu, 0);
2547                 return 1;
2548         }
2549         vcpu->run->io.count = now;
2550         vcpu->arch.pio.cur_count = now;
2551
2552         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2553                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2554
2555         for (i = 0; i < nr_pages; ++i) {
2556                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2557                 vcpu->arch.pio.guest_pages[i] = page;
2558                 if (!page) {
2559                         kvm_inject_gp(vcpu, 0);
2560                         free_pio_guest_pages(vcpu);
2561                         return 1;
2562                 }
2563         }
2564
2565         pio_dev = vcpu_find_pio_dev(vcpu, port,
2566                                     vcpu->arch.pio.cur_count,
2567                                     !vcpu->arch.pio.in);
2568         if (!vcpu->arch.pio.in) {
2569                 /* string PIO write */
2570                 ret = pio_copy_data(vcpu);
2571                 if (ret >= 0 && pio_dev) {
2572                         pio_string_write(pio_dev, vcpu);
2573                         complete_pio(vcpu);
2574                         if (vcpu->arch.pio.count == 0)
2575                                 ret = 1;
2576                 }
2577         } else if (pio_dev)
2578                 pr_unimpl(vcpu, "no string pio read support yet, "
2579                        "port %x size %d count %ld\n",
2580                         port, size, count);
2581
2582         return ret;
2583 }
2584 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2585
2586 int kvm_arch_init(void *opaque)
2587 {
2588         int r;
2589         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2590
2591         if (kvm_x86_ops) {
2592                 printk(KERN_ERR "kvm: already loaded the other module\n");
2593                 r = -EEXIST;
2594                 goto out;
2595         }
2596
2597         if (!ops->cpu_has_kvm_support()) {
2598                 printk(KERN_ERR "kvm: no hardware support\n");
2599                 r = -EOPNOTSUPP;
2600                 goto out;
2601         }
2602         if (ops->disabled_by_bios()) {
2603                 printk(KERN_ERR "kvm: disabled by bios\n");
2604                 r = -EOPNOTSUPP;
2605                 goto out;
2606         }
2607
2608         r = kvm_mmu_module_init();
2609         if (r)
2610                 goto out;
2611
2612         kvm_init_msr_list();
2613
2614         kvm_x86_ops = ops;
2615         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2616         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2617         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2618                         PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2619         return 0;
2620
2621 out:
2622         return r;
2623 }
2624
2625 void kvm_arch_exit(void)
2626 {
2627         kvm_x86_ops = NULL;
2628         kvm_mmu_module_exit();
2629 }
2630
2631 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2632 {
2633         ++vcpu->stat.halt_exits;
2634         KVMTRACE_0D(HLT, vcpu, handler);
2635         if (irqchip_in_kernel(vcpu->kvm)) {
2636                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2637                 return 1;
2638         } else {
2639                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2640                 return 0;
2641         }
2642 }
2643 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2644
2645 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2646                            unsigned long a1)
2647 {
2648         if (is_long_mode(vcpu))
2649                 return a0;
2650         else
2651                 return a0 | ((gpa_t)a1 << 32);
2652 }
2653
2654 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2655 {
2656         unsigned long nr, a0, a1, a2, a3, ret;
2657         int r = 1;
2658
2659         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2660         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2661         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2662         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2663         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2664
2665         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2666
2667         if (!is_long_mode(vcpu)) {
2668                 nr &= 0xFFFFFFFF;
2669                 a0 &= 0xFFFFFFFF;
2670                 a1 &= 0xFFFFFFFF;
2671                 a2 &= 0xFFFFFFFF;
2672                 a3 &= 0xFFFFFFFF;
2673         }
2674
2675         switch (nr) {
2676         case KVM_HC_VAPIC_POLL_IRQ:
2677                 ret = 0;
2678                 break;
2679         case KVM_HC_MMU_OP:
2680                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2681                 break;
2682         default:
2683                 ret = -KVM_ENOSYS;
2684                 break;
2685         }
2686         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2687         ++vcpu->stat.hypercalls;
2688         return r;
2689 }
2690 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2691
2692 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2693 {
2694         char instruction[3];
2695         int ret = 0;
2696         unsigned long rip = kvm_rip_read(vcpu);
2697
2698
2699         /*
2700          * Blow out the MMU to ensure that no other VCPU has an active mapping
2701          * to ensure that the updated hypercall appears atomically across all
2702          * VCPUs.
2703          */
2704         kvm_mmu_zap_all(vcpu->kvm);
2705
2706         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2707         if (emulator_write_emulated(rip, instruction, 3, vcpu)
2708             != X86EMUL_CONTINUE)
2709                 ret = -EFAULT;
2710
2711         return ret;
2712 }
2713
2714 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2715 {
2716         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2717 }
2718
2719 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2720 {
2721         struct descriptor_table dt = { limit, base };
2722
2723         kvm_x86_ops->set_gdt(vcpu, &dt);
2724 }
2725
2726 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2727 {
2728         struct descriptor_table dt = { limit, base };
2729
2730         kvm_x86_ops->set_idt(vcpu, &dt);
2731 }
2732
2733 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2734                    unsigned long *rflags)
2735 {
2736         kvm_lmsw(vcpu, msw);
2737         *rflags = kvm_x86_ops->get_rflags(vcpu);
2738 }
2739
2740 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2741 {
2742         unsigned long value;
2743
2744         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2745         switch (cr) {
2746         case 0:
2747                 value = vcpu->arch.cr0;
2748                 break;
2749         case 2:
2750                 value = vcpu->arch.cr2;
2751                 break;
2752         case 3:
2753                 value = vcpu->arch.cr3;
2754                 break;
2755         case 4:
2756                 value = vcpu->arch.cr4;
2757                 break;
2758         case 8:
2759                 value = kvm_get_cr8(vcpu);
2760                 break;
2761         default:
2762                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2763                 return 0;
2764         }
2765         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2766                     (u32)((u64)value >> 32), handler);
2767
2768         return value;
2769 }
2770
2771 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2772                      unsigned long *rflags)
2773 {
2774         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2775                     (u32)((u64)val >> 32), handler);
2776
2777         switch (cr) {
2778         case 0:
2779                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2780                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2781                 break;
2782         case 2:
2783                 vcpu->arch.cr2 = val;
2784                 break;
2785         case 3:
2786                 kvm_set_cr3(vcpu, val);
2787                 break;
2788         case 4:
2789                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2790                 break;
2791         case 8:
2792                 kvm_set_cr8(vcpu, val & 0xfUL);
2793                 break;
2794         default:
2795                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2796         }
2797 }
2798
2799 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2800 {
2801         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2802         int j, nent = vcpu->arch.cpuid_nent;
2803
2804         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2805         /* when no next entry is found, the current entry[i] is reselected */
2806         for (j = i + 1; j == i; j = (j + 1) % nent) {
2807                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2808                 if (ej->function == e->function) {
2809                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2810                         return j;
2811                 }
2812         }
2813         return 0; /* silence gcc, even though control never reaches here */
2814 }
2815
2816 /* find an entry with matching function, matching index (if needed), and that
2817  * should be read next (if it's stateful) */
2818 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2819         u32 function, u32 index)
2820 {
2821         if (e->function != function)
2822                 return 0;
2823         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2824                 return 0;
2825         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2826                 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2827                 return 0;
2828         return 1;
2829 }
2830
2831 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2832 {
2833         int i;
2834         u32 function, index;
2835         struct kvm_cpuid_entry2 *e, *best;
2836
2837         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2838         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2839         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2840         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2841         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2842         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2843         best = NULL;
2844         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2845                 e = &vcpu->arch.cpuid_entries[i];
2846                 if (is_matching_cpuid_entry(e, function, index)) {
2847                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2848                                 move_to_next_stateful_cpuid_entry(vcpu, i);
2849                         best = e;
2850                         break;
2851                 }
2852                 /*
2853                  * Both basic or both extended?
2854                  */
2855                 if (((e->function ^ function) & 0x80000000) == 0)
2856                         if (!best || e->function > best->function)
2857                                 best = e;
2858         }
2859         if (best) {
2860                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2861                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2862                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2863                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2864         }
2865         kvm_x86_ops->skip_emulated_instruction(vcpu);
2866         KVMTRACE_5D(CPUID, vcpu, function,
2867                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2868                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2869                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2870                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2871 }
2872 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2873
2874 /*
2875  * Check if userspace requested an interrupt window, and that the
2876  * interrupt window is open.
2877  *
2878  * No need to exit to userspace if we already have an interrupt queued.
2879  */
2880 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2881                                           struct kvm_run *kvm_run)
2882 {
2883         return (!vcpu->arch.irq_summary &&
2884                 kvm_run->request_interrupt_window &&
2885                 vcpu->arch.interrupt_window_open &&
2886                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2887 }
2888
2889 /*
2890  * Check if userspace requested a NMI window, and that the NMI window
2891  * is open.
2892  *
2893  * No need to exit to userspace if we already have a NMI queued.
2894  */
2895 static int dm_request_for_nmi_injection(struct kvm_vcpu *vcpu,
2896                                         struct kvm_run *kvm_run)
2897 {
2898         return (!vcpu->arch.nmi_pending &&
2899                 kvm_run->request_nmi_window &&
2900                 vcpu->arch.nmi_window_open);
2901 }
2902
2903 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2904                               struct kvm_run *kvm_run)
2905 {
2906         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2907         kvm_run->cr8 = kvm_get_cr8(vcpu);
2908         kvm_run->apic_base = kvm_get_apic_base(vcpu);
2909         if (irqchip_in_kernel(vcpu->kvm)) {
2910                 kvm_run->ready_for_interrupt_injection = 1;
2911                 kvm_run->ready_for_nmi_injection = 1;
2912         } else {
2913                 kvm_run->ready_for_interrupt_injection =
2914                                         (vcpu->arch.interrupt_window_open &&
2915                                          vcpu->arch.irq_summary == 0);
2916                 kvm_run->ready_for_nmi_injection =
2917                                         (vcpu->arch.nmi_window_open &&
2918                                          vcpu->arch.nmi_pending == 0);
2919         }
2920 }
2921
2922 static void vapic_enter(struct kvm_vcpu *vcpu)
2923 {
2924         struct kvm_lapic *apic = vcpu->arch.apic;
2925         struct page *page;
2926
2927         if (!apic || !apic->vapic_addr)
2928                 return;
2929
2930         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2931
2932         vcpu->arch.apic->vapic_page = page;
2933 }
2934
2935 static void vapic_exit(struct kvm_vcpu *vcpu)
2936 {
2937         struct kvm_lapic *apic = vcpu->arch.apic;
2938
2939         if (!apic || !apic->vapic_addr)
2940                 return;
2941
2942         down_read(&vcpu->kvm->slots_lock);
2943         kvm_release_page_dirty(apic->vapic_page);
2944         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2945         up_read(&vcpu->kvm->slots_lock);
2946 }
2947
2948 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2949 {
2950         int r;
2951
2952         if (vcpu->requests)
2953                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2954                         kvm_mmu_unload(vcpu);
2955
2956         r = kvm_mmu_reload(vcpu);
2957         if (unlikely(r))
2958                 goto out;
2959
2960         if (vcpu->requests) {
2961                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2962                         __kvm_migrate_timers(vcpu);
2963                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2964                         kvm_mmu_sync_roots(vcpu);
2965                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2966                         kvm_x86_ops->tlb_flush(vcpu);
2967                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2968                                        &vcpu->requests)) {
2969                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2970                         r = 0;
2971                         goto out;
2972                 }
2973                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2974                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2975                         r = 0;
2976                         goto out;
2977                 }
2978         }
2979
2980         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2981         kvm_inject_pending_timer_irqs(vcpu);
2982
2983         preempt_disable();
2984
2985         kvm_x86_ops->prepare_guest_switch(vcpu);
2986         kvm_load_guest_fpu(vcpu);
2987
2988         local_irq_disable();
2989
2990         if (vcpu->requests || need_resched() || signal_pending(current)) {
2991                 local_irq_enable();
2992                 preempt_enable();
2993                 r = 1;
2994                 goto out;
2995         }
2996
2997         if (vcpu->guest_debug.enabled)
2998                 kvm_x86_ops->guest_debug_pre(vcpu);
2999
3000         vcpu->guest_mode = 1;
3001         /*
3002          * Make sure that guest_mode assignment won't happen after
3003          * testing the pending IRQ vector bitmap.
3004          */
3005         smp_wmb();
3006
3007         if (vcpu->arch.exception.pending)
3008                 __queue_exception(vcpu);
3009         else if (irqchip_in_kernel(vcpu->kvm))
3010                 kvm_x86_ops->inject_pending_irq(vcpu);
3011         else
3012                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3013
3014         kvm_lapic_sync_to_vapic(vcpu);
3015
3016         up_read(&vcpu->kvm->slots_lock);
3017
3018         kvm_guest_enter();
3019
3020
3021         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3022         kvm_x86_ops->run(vcpu, kvm_run);
3023
3024         vcpu->guest_mode = 0;
3025         local_irq_enable();
3026
3027         ++vcpu->stat.exits;
3028
3029         /*
3030          * We must have an instruction between local_irq_enable() and
3031          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3032          * the interrupt shadow.  The stat.exits increment will do nicely.
3033          * But we need to prevent reordering, hence this barrier():
3034          */
3035         barrier();
3036
3037         kvm_guest_exit();
3038
3039         preempt_enable();
3040
3041         down_read(&vcpu->kvm->slots_lock);
3042
3043         /*
3044          * Profile KVM exit RIPs:
3045          */
3046         if (unlikely(prof_on == KVM_PROFILING)) {
3047                 unsigned long rip = kvm_rip_read(vcpu);
3048                 profile_hit(KVM_PROFILING, (void *)rip);
3049         }
3050
3051         if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3052                 vcpu->arch.exception.pending = false;
3053
3054         kvm_lapic_sync_from_vapic(vcpu);
3055
3056         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3057 out:
3058         return r;
3059 }
3060
3061 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3062 {
3063         int r;
3064
3065         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3066                 pr_debug("vcpu %d received sipi with vector # %x\n",
3067                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3068                 kvm_lapic_reset(vcpu);
3069                 r = kvm_arch_vcpu_reset(vcpu);
3070                 if (r)
3071                         return r;
3072                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3073         }
3074
3075         down_read(&vcpu->kvm->slots_lock);
3076         vapic_enter(vcpu);
3077
3078         r = 1;
3079         while (r > 0) {
3080                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3081                         r = vcpu_enter_guest(vcpu, kvm_run);
3082                 else {
3083                         up_read(&vcpu->kvm->slots_lock);
3084                         kvm_vcpu_block(vcpu);
3085                         down_read(&vcpu->kvm->slots_lock);
3086                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3087                                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3088                                         vcpu->arch.mp_state =
3089                                                         KVM_MP_STATE_RUNNABLE;
3090                         if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3091                                 r = -EINTR;
3092                 }
3093
3094                 if (r > 0) {
3095                         if (dm_request_for_nmi_injection(vcpu, kvm_run)) {
3096                                 r = -EINTR;
3097                                 kvm_run->exit_reason = KVM_EXIT_NMI;
3098                                 ++vcpu->stat.request_nmi_exits;
3099                         }
3100                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3101                                 r = -EINTR;
3102                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3103                                 ++vcpu->stat.request_irq_exits;
3104                         }
3105                         if (signal_pending(current)) {
3106                                 r = -EINTR;
3107                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3108                                 ++vcpu->stat.signal_exits;
3109                         }
3110                         if (need_resched()) {
3111                                 up_read(&vcpu->kvm->slots_lock);
3112                                 kvm_resched(vcpu);
3113                                 down_read(&vcpu->kvm->slots_lock);
3114                         }
3115                 }
3116         }
3117
3118         up_read(&vcpu->kvm->slots_lock);
3119         post_kvm_run_save(vcpu, kvm_run);
3120
3121         vapic_exit(vcpu);
3122
3123         return r;
3124 }
3125
3126 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3127 {
3128         int r;
3129         sigset_t sigsaved;
3130
3131         vcpu_load(vcpu);
3132
3133         if (vcpu->sigset_active)
3134                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3135
3136         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3137                 kvm_vcpu_block(vcpu);
3138                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3139                 r = -EAGAIN;
3140                 goto out;
3141         }
3142
3143         /* re-sync apic's tpr */
3144         if (!irqchip_in_kernel(vcpu->kvm))
3145                 kvm_set_cr8(vcpu, kvm_run->cr8);
3146
3147         if (vcpu->arch.pio.cur_count) {
3148                 r = complete_pio(vcpu);
3149                 if (r)
3150                         goto out;
3151         }
3152 #if CONFIG_HAS_IOMEM
3153         if (vcpu->mmio_needed) {
3154                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3155                 vcpu->mmio_read_completed = 1;
3156                 vcpu->mmio_needed = 0;
3157
3158                 down_read(&vcpu->kvm->slots_lock);
3159                 r = emulate_instruction(vcpu, kvm_run,
3160                                         vcpu->arch.mmio_fault_cr2, 0,
3161                                         EMULTYPE_NO_DECODE);
3162                 up_read(&vcpu->kvm->slots_lock);
3163                 if (r == EMULATE_DO_MMIO) {
3164                         /*
3165                          * Read-modify-write.  Back to userspace.
3166                          */
3167                         r = 0;
3168                         goto out;
3169                 }
3170         }
3171 #endif
3172         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3173                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3174                                      kvm_run->hypercall.ret);
3175
3176         r = __vcpu_run(vcpu, kvm_run);
3177
3178 out:
3179         if (vcpu->sigset_active)
3180                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3181
3182         vcpu_put(vcpu);
3183         return r;
3184 }
3185
3186 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3187 {
3188         vcpu_load(vcpu);
3189
3190         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3191         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3192         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3193         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3194         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3195         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3196         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3197         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3198 #ifdef CONFIG_X86_64
3199         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3200         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3201         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3202         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3203         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3204         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3205         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3206         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3207 #endif
3208
3209         regs->rip = kvm_rip_read(vcpu);
3210         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3211
3212         /*
3213          * Don't leak debug flags in case they were set for guest debugging
3214          */
3215         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3216                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3217
3218         vcpu_put(vcpu);
3219
3220         return 0;
3221 }
3222
3223 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3224 {
3225         vcpu_load(vcpu);
3226
3227         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3228         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3229         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3230         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3231         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3232         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3233         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3234         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3235 #ifdef CONFIG_X86_64
3236         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3237         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3238         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3239         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3240         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3241         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3242         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3243         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3244
3245 #endif
3246
3247         kvm_rip_write(vcpu, regs->rip);
3248         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3249
3250
3251         vcpu->arch.exception.pending = false;
3252
3253         vcpu_put(vcpu);
3254
3255         return 0;
3256 }
3257
3258 void kvm_get_segment(struct kvm_vcpu *vcpu,
3259                      struct kvm_segment *var, int seg)
3260 {
3261         kvm_x86_ops->get_segment(vcpu, var, seg);
3262 }
3263
3264 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3265 {
3266         struct kvm_segment cs;
3267
3268         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3269         *db = cs.db;
3270         *l = cs.l;
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3273
3274 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3275                                   struct kvm_sregs *sregs)
3276 {
3277         struct descriptor_table dt;
3278         int pending_vec;
3279
3280         vcpu_load(vcpu);
3281
3282         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3283         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3284         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3285         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3286         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3287         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3288
3289         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3290         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3291
3292         kvm_x86_ops->get_idt(vcpu, &dt);
3293         sregs->idt.limit = dt.limit;
3294         sregs->idt.base = dt.base;
3295         kvm_x86_ops->get_gdt(vcpu, &dt);
3296         sregs->gdt.limit = dt.limit;
3297         sregs->gdt.base = dt.base;
3298
3299         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3300         sregs->cr0 = vcpu->arch.cr0;
3301         sregs->cr2 = vcpu->arch.cr2;
3302         sregs->cr3 = vcpu->arch.cr3;
3303         sregs->cr4 = vcpu->arch.cr4;
3304         sregs->cr8 = kvm_get_cr8(vcpu);
3305         sregs->efer = vcpu->arch.shadow_efer;
3306         sregs->apic_base = kvm_get_apic_base(vcpu);
3307
3308         if (irqchip_in_kernel(vcpu->kvm)) {
3309                 memset(sregs->interrupt_bitmap, 0,
3310                        sizeof sregs->interrupt_bitmap);
3311                 pending_vec = kvm_x86_ops->get_irq(vcpu);
3312                 if (pending_vec >= 0)
3313                         set_bit(pending_vec,
3314                                 (unsigned long *)sregs->interrupt_bitmap);
3315         } else
3316                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3317                        sizeof sregs->interrupt_bitmap);
3318
3319         vcpu_put(vcpu);
3320
3321         return 0;
3322 }
3323
3324 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3325                                     struct kvm_mp_state *mp_state)
3326 {
3327         vcpu_load(vcpu);
3328         mp_state->mp_state = vcpu->arch.mp_state;
3329         vcpu_put(vcpu);
3330         return 0;
3331 }
3332
3333 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3334                                     struct kvm_mp_state *mp_state)
3335 {
3336         vcpu_load(vcpu);
3337         vcpu->arch.mp_state = mp_state->mp_state;
3338         vcpu_put(vcpu);
3339         return 0;
3340 }
3341
3342 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3343                         struct kvm_segment *var, int seg)
3344 {
3345         kvm_x86_ops->set_segment(vcpu, var, seg);
3346 }
3347
3348 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3349                                    struct kvm_segment *kvm_desct)
3350 {
3351         kvm_desct->base = seg_desc->base0;
3352         kvm_desct->base |= seg_desc->base1 << 16;
3353         kvm_desct->base |= seg_desc->base2 << 24;
3354         kvm_desct->limit = seg_desc->limit0;
3355         kvm_desct->limit |= seg_desc->limit << 16;
3356         if (seg_desc->g) {
3357                 kvm_desct->limit <<= 12;
3358                 kvm_desct->limit |= 0xfff;
3359         }
3360         kvm_desct->selector = selector;
3361         kvm_desct->type = seg_desc->type;
3362         kvm_desct->present = seg_desc->p;
3363         kvm_desct->dpl = seg_desc->dpl;
3364         kvm_desct->db = seg_desc->d;
3365         kvm_desct->s = seg_desc->s;
3366         kvm_desct->l = seg_desc->l;
3367         kvm_desct->g = seg_desc->g;
3368         kvm_desct->avl = seg_desc->avl;
3369         if (!selector)
3370                 kvm_desct->unusable = 1;
3371         else
3372                 kvm_desct->unusable = 0;
3373         kvm_desct->padding = 0;
3374 }
3375
3376 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3377                                           u16 selector,
3378                                           struct descriptor_table *dtable)
3379 {
3380         if (selector & 1 << 2) {
3381                 struct kvm_segment kvm_seg;
3382
3383                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3384
3385                 if (kvm_seg.unusable)
3386                         dtable->limit = 0;
3387                 else
3388                         dtable->limit = kvm_seg.limit;
3389                 dtable->base = kvm_seg.base;
3390         }
3391         else
3392                 kvm_x86_ops->get_gdt(vcpu, dtable);
3393 }
3394
3395 /* allowed just for 8 bytes segments */
3396 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3397                                          struct desc_struct *seg_desc)
3398 {
3399         gpa_t gpa;
3400         struct descriptor_table dtable;
3401         u16 index = selector >> 3;
3402
3403         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3404
3405         if (dtable.limit < index * 8 + 7) {
3406                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3407                 return 1;
3408         }
3409         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3410         gpa += index * 8;
3411         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3412 }
3413
3414 /* allowed just for 8 bytes segments */
3415 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3416                                          struct desc_struct *seg_desc)
3417 {
3418         gpa_t gpa;
3419         struct descriptor_table dtable;
3420         u16 index = selector >> 3;
3421
3422         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3423
3424         if (dtable.limit < index * 8 + 7)
3425                 return 1;
3426         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3427         gpa += index * 8;
3428         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3429 }
3430
3431 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3432                              struct desc_struct *seg_desc)
3433 {
3434         u32 base_addr;
3435
3436         base_addr = seg_desc->base0;
3437         base_addr |= (seg_desc->base1 << 16);
3438         base_addr |= (seg_desc->base2 << 24);
3439
3440         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3441 }
3442
3443 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3444 {
3445         struct kvm_segment kvm_seg;
3446
3447         kvm_get_segment(vcpu, &kvm_seg, seg);
3448         return kvm_seg.selector;
3449 }
3450
3451 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3452                                                 u16 selector,
3453                                                 struct kvm_segment *kvm_seg)
3454 {
3455         struct desc_struct seg_desc;
3456
3457         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3458                 return 1;
3459         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3460         return 0;
3461 }
3462
3463 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3464 {
3465         struct kvm_segment segvar = {
3466                 .base = selector << 4,
3467                 .limit = 0xffff,
3468                 .selector = selector,
3469                 .type = 3,
3470                 .present = 1,
3471                 .dpl = 3,
3472                 .db = 0,
3473                 .s = 1,
3474                 .l = 0,
3475                 .g = 0,
3476                 .avl = 0,
3477                 .unusable = 0,
3478         };
3479         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3480         return 0;
3481 }
3482
3483 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3484                                 int type_bits, int seg)
3485 {
3486         struct kvm_segment kvm_seg;
3487
3488         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3489                 return kvm_load_realmode_segment(vcpu, selector, seg);
3490         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3491                 return 1;
3492         kvm_seg.type |= type_bits;
3493
3494         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3495             seg != VCPU_SREG_LDTR)
3496                 if (!kvm_seg.s)
3497                         kvm_seg.unusable = 1;
3498
3499         kvm_set_segment(vcpu, &kvm_seg, seg);
3500         return 0;
3501 }
3502
3503 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3504                                 struct tss_segment_32 *tss)
3505 {
3506         tss->cr3 = vcpu->arch.cr3;
3507         tss->eip = kvm_rip_read(vcpu);
3508         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3509         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3510         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3511         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3512         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3513         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3514         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3515         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3516         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3517         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3518         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3519         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3520         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3521         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3522         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3523         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3524         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3525 }
3526
3527 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3528                                   struct tss_segment_32 *tss)
3529 {
3530         kvm_set_cr3(vcpu, tss->cr3);
3531
3532         kvm_rip_write(vcpu, tss->eip);
3533         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3534
3535         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3536         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3537         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3538         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3539         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3540         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3541         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3542         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3543
3544         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3545                 return 1;
3546
3547         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3548                 return 1;
3549
3550         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3551                 return 1;
3552
3553         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3554                 return 1;
3555
3556         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3557                 return 1;
3558
3559         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3560                 return 1;
3561
3562         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3563                 return 1;
3564         return 0;
3565 }
3566
3567 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3568                                 struct tss_segment_16 *tss)
3569 {
3570         tss->ip = kvm_rip_read(vcpu);
3571         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3572         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3573         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3574         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3575         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3576         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3577         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3578         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3579         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3580
3581         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3582         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3583         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3584         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3585         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3586         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3587 }
3588
3589 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3590                                  struct tss_segment_16 *tss)
3591 {
3592         kvm_rip_write(vcpu, tss->ip);
3593         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3594         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3595         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3596         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3597         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3598         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3599         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3600         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3601         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3602
3603         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3604                 return 1;
3605
3606         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3607                 return 1;
3608
3609         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3610                 return 1;
3611
3612         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3613                 return 1;
3614
3615         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3616                 return 1;
3617         return 0;
3618 }
3619
3620 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3621                        u32 old_tss_base,
3622                        struct desc_struct *nseg_desc)
3623 {
3624         struct tss_segment_16 tss_segment_16;
3625         int ret = 0;
3626
3627         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3628                            sizeof tss_segment_16))
3629                 goto out;
3630
3631         save_state_to_tss16(vcpu, &tss_segment_16);
3632
3633         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3634                             sizeof tss_segment_16))
3635                 goto out;
3636
3637         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3638                            &tss_segment_16, sizeof tss_segment_16))
3639                 goto out;
3640
3641         if (load_state_from_tss16(vcpu, &tss_segment_16))
3642                 goto out;
3643
3644         ret = 1;
3645 out:
3646         return ret;
3647 }
3648
3649 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3650                        u32 old_tss_base,
3651                        struct desc_struct *nseg_desc)
3652 {
3653         struct tss_segment_32 tss_segment_32;
3654         int ret = 0;
3655
3656         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3657                            sizeof tss_segment_32))
3658                 goto out;
3659
3660         save_state_to_tss32(vcpu, &tss_segment_32);
3661
3662         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3663                             sizeof tss_segment_32))
3664                 goto out;
3665
3666         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3667                            &tss_segment_32, sizeof tss_segment_32))
3668                 goto out;
3669
3670         if (load_state_from_tss32(vcpu, &tss_segment_32))
3671                 goto out;
3672
3673         ret = 1;
3674 out:
3675         return ret;
3676 }
3677
3678 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3679 {
3680         struct kvm_segment tr_seg;
3681         struct desc_struct cseg_desc;
3682         struct desc_struct nseg_desc;
3683         int ret = 0;
3684         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3685         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3686
3687         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3688
3689         /* FIXME: Handle errors. Failure to read either TSS or their
3690          * descriptors should generate a pagefault.
3691          */
3692         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3693                 goto out;
3694
3695         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3696                 goto out;
3697
3698         if (reason != TASK_SWITCH_IRET) {
3699                 int cpl;
3700
3701                 cpl = kvm_x86_ops->get_cpl(vcpu);
3702                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3703                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3704                         return 1;
3705                 }
3706         }
3707
3708         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3709                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3710                 return 1;
3711         }
3712
3713         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3714                 cseg_desc.type &= ~(1 << 1); //clear the B flag
3715                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3716         }
3717
3718         if (reason == TASK_SWITCH_IRET) {
3719                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3720                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3721         }
3722
3723         kvm_x86_ops->skip_emulated_instruction(vcpu);
3724
3725         if (nseg_desc.type & 8)
3726                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3727                                          &nseg_desc);
3728         else
3729                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3730                                          &nseg_desc);
3731
3732         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3733                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3734                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3735         }
3736
3737         if (reason != TASK_SWITCH_IRET) {
3738                 nseg_desc.type |= (1 << 1);
3739                 save_guest_segment_descriptor(vcpu, tss_selector,
3740                                               &nseg_desc);
3741         }
3742
3743         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3744         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3745         tr_seg.type = 11;
3746         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3747 out:
3748         return ret;
3749 }
3750 EXPORT_SYMBOL_GPL(kvm_task_switch);
3751
3752 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3753                                   struct kvm_sregs *sregs)
3754 {
3755         int mmu_reset_needed = 0;
3756         int i, pending_vec, max_bits;
3757         struct descriptor_table dt;
3758
3759         vcpu_load(vcpu);
3760
3761         dt.limit = sregs->idt.limit;
3762         dt.base = sregs->idt.base;
3763         kvm_x86_ops->set_idt(vcpu, &dt);
3764         dt.limit = sregs->gdt.limit;
3765         dt.base = sregs->gdt.base;
3766         kvm_x86_ops->set_gdt(vcpu, &dt);
3767
3768         vcpu->arch.cr2 = sregs->cr2;
3769         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3770         vcpu->arch.cr3 = sregs->cr3;
3771
3772         kvm_set_cr8(vcpu, sregs->cr8);
3773
3774         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3775         kvm_x86_ops->set_efer(vcpu, sregs->efer);
3776         kvm_set_apic_base(vcpu, sregs->apic_base);
3777
3778         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3779
3780         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3781         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3782         vcpu->arch.cr0 = sregs->cr0;
3783
3784         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3785         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3786         if (!is_long_mode(vcpu) && is_pae(vcpu))
3787                 load_pdptrs(vcpu, vcpu->arch.cr3);
3788
3789         if (mmu_reset_needed)
3790                 kvm_mmu_reset_context(vcpu);
3791
3792         if (!irqchip_in_kernel(vcpu->kvm)) {
3793                 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3794                        sizeof vcpu->arch.irq_pending);
3795                 vcpu->arch.irq_summary = 0;
3796                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3797                         if (vcpu->arch.irq_pending[i])
3798                                 __set_bit(i, &vcpu->arch.irq_summary);
3799         } else {
3800                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3801                 pending_vec = find_first_bit(
3802                         (const unsigned long *)sregs->interrupt_bitmap,
3803                         max_bits);
3804                 /* Only pending external irq is handled here */
3805                 if (pending_vec < max_bits) {
3806                         kvm_x86_ops->set_irq(vcpu, pending_vec);
3807                         pr_debug("Set back pending irq %d\n",
3808                                  pending_vec);
3809                 }
3810                 kvm_pic_clear_isr_ack(vcpu->kvm);
3811         }
3812
3813         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3814         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3815         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3816         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3817         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3818         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3819
3820         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3821         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3822
3823         /* Older userspace won't unhalt the vcpu on reset. */
3824         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3825             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3826             !(vcpu->arch.cr0 & X86_CR0_PE))
3827                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3828
3829         vcpu_put(vcpu);
3830
3831         return 0;
3832 }
3833
3834 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3835                                     struct kvm_debug_guest *dbg)
3836 {
3837         int r;
3838
3839         vcpu_load(vcpu);
3840
3841         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3842
3843         vcpu_put(vcpu);
3844
3845         return r;
3846 }
3847
3848 /*
3849  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
3850  * we have asm/x86/processor.h
3851  */
3852 struct fxsave {
3853         u16     cwd;
3854         u16     swd;
3855         u16     twd;
3856         u16     fop;
3857         u64     rip;
3858         u64     rdp;
3859         u32     mxcsr;
3860         u32     mxcsr_mask;
3861         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
3862 #ifdef CONFIG_X86_64
3863         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
3864 #else
3865         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
3866 #endif
3867 };
3868
3869 /*
3870  * Translate a guest virtual address to a guest physical address.
3871  */
3872 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3873                                     struct kvm_translation *tr)
3874 {
3875         unsigned long vaddr = tr->linear_address;
3876         gpa_t gpa;
3877
3878         vcpu_load(vcpu);
3879         down_read(&vcpu->kvm->slots_lock);
3880         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3881         up_read(&vcpu->kvm->slots_lock);
3882         tr->physical_address = gpa;
3883         tr->valid = gpa != UNMAPPED_GVA;
3884         tr->writeable = 1;
3885         tr->usermode = 0;
3886         vcpu_put(vcpu);
3887
3888         return 0;
3889 }
3890
3891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3892 {
3893         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3894
3895         vcpu_load(vcpu);
3896
3897         memcpy(fpu->fpr, fxsave->st_space, 128);
3898         fpu->fcw = fxsave->cwd;
3899         fpu->fsw = fxsave->swd;
3900         fpu->ftwx = fxsave->twd;
3901         fpu->last_opcode = fxsave->fop;
3902         fpu->last_ip = fxsave->rip;
3903         fpu->last_dp = fxsave->rdp;
3904         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3905
3906         vcpu_put(vcpu);
3907
3908         return 0;
3909 }
3910
3911 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3912 {
3913         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3914
3915         vcpu_load(vcpu);
3916
3917         memcpy(fxsave->st_space, fpu->fpr, 128);
3918         fxsave->cwd = fpu->fcw;
3919         fxsave->swd = fpu->fsw;
3920         fxsave->twd = fpu->ftwx;
3921         fxsave->fop = fpu->last_opcode;
3922         fxsave->rip = fpu->last_ip;
3923         fxsave->rdp = fpu->last_dp;
3924         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3925
3926         vcpu_put(vcpu);
3927
3928         return 0;
3929 }
3930
3931 void fx_init(struct kvm_vcpu *vcpu)
3932 {
3933         unsigned after_mxcsr_mask;
3934
3935         /*
3936          * Touch the fpu the first time in non atomic context as if
3937          * this is the first fpu instruction the exception handler
3938          * will fire before the instruction returns and it'll have to
3939          * allocate ram with GFP_KERNEL.
3940          */
3941         if (!used_math())
3942                 kvm_fx_save(&vcpu->arch.host_fx_image);
3943
3944         /* Initialize guest FPU by resetting ours and saving into guest's */
3945         preempt_disable();
3946         kvm_fx_save(&vcpu->arch.host_fx_image);
3947         kvm_fx_finit();
3948         kvm_fx_save(&vcpu->arch.guest_fx_image);
3949         kvm_fx_restore(&vcpu->arch.host_fx_image);
3950         preempt_enable();
3951
3952         vcpu->arch.cr0 |= X86_CR0_ET;
3953         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3954         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3955         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3956                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3957 }
3958 EXPORT_SYMBOL_GPL(fx_init);
3959
3960 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3961 {
3962         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3963                 return;
3964
3965         vcpu->guest_fpu_loaded = 1;
3966         kvm_fx_save(&vcpu->arch.host_fx_image);
3967         kvm_fx_restore(&vcpu->arch.guest_fx_image);
3968 }
3969 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3970
3971 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3972 {
3973         if (!vcpu->guest_fpu_loaded)
3974                 return;
3975
3976         vcpu->guest_fpu_loaded = 0;
3977         kvm_fx_save(&vcpu->arch.guest_fx_image);
3978         kvm_fx_restore(&vcpu->arch.host_fx_image);
3979         ++vcpu->stat.fpu_reload;
3980 }
3981 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3982
3983 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3984 {
3985         kvm_x86_ops->vcpu_free(vcpu);
3986 }
3987
3988 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3989                                                 unsigned int id)
3990 {
3991         return kvm_x86_ops->vcpu_create(kvm, id);
3992 }
3993
3994 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3995 {
3996         int r;
3997
3998         /* We do fxsave: this must be aligned. */
3999         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4000
4001         vcpu->arch.mtrr_state.have_fixed = 1;
4002         vcpu_load(vcpu);
4003         r = kvm_arch_vcpu_reset(vcpu);
4004         if (r == 0)
4005                 r = kvm_mmu_setup(vcpu);
4006         vcpu_put(vcpu);
4007         if (r < 0)
4008                 goto free_vcpu;
4009
4010         return 0;
4011 free_vcpu:
4012         kvm_x86_ops->vcpu_free(vcpu);
4013         return r;
4014 }
4015
4016 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4017 {
4018         vcpu_load(vcpu);
4019         kvm_mmu_unload(vcpu);
4020         vcpu_put(vcpu);
4021
4022         kvm_x86_ops->vcpu_free(vcpu);
4023 }
4024
4025 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4026 {
4027         vcpu->arch.nmi_pending = false;
4028         vcpu->arch.nmi_injected = false;
4029
4030         return kvm_x86_ops->vcpu_reset(vcpu);
4031 }
4032
4033 void kvm_arch_hardware_enable(void *garbage)
4034 {
4035         kvm_x86_ops->hardware_enable(garbage);
4036 }
4037
4038 void kvm_arch_hardware_disable(void *garbage)
4039 {
4040         kvm_x86_ops->hardware_disable(garbage);
4041 }
4042
4043 int kvm_arch_hardware_setup(void)
4044 {
4045         return kvm_x86_ops->hardware_setup();
4046 }
4047
4048 void kvm_arch_hardware_unsetup(void)
4049 {
4050         kvm_x86_ops->hardware_unsetup();
4051 }
4052
4053 void kvm_arch_check_processor_compat(void *rtn)
4054 {
4055         kvm_x86_ops->check_processor_compatibility(rtn);
4056 }
4057
4058 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4059 {
4060         struct page *page;
4061         struct kvm *kvm;
4062         int r;
4063
4064         BUG_ON(vcpu->kvm == NULL);
4065         kvm = vcpu->kvm;
4066
4067         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4068         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4069                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4070         else
4071                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4072
4073         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4074         if (!page) {
4075                 r = -ENOMEM;
4076                 goto fail;
4077         }
4078         vcpu->arch.pio_data = page_address(page);
4079
4080         r = kvm_mmu_create(vcpu);
4081         if (r < 0)
4082                 goto fail_free_pio_data;
4083
4084         if (irqchip_in_kernel(kvm)) {
4085                 r = kvm_create_lapic(vcpu);
4086                 if (r < 0)
4087                         goto fail_mmu_destroy;
4088         }
4089
4090         return 0;
4091
4092 fail_mmu_destroy:
4093         kvm_mmu_destroy(vcpu);
4094 fail_free_pio_data:
4095         free_page((unsigned long)vcpu->arch.pio_data);
4096 fail:
4097         return r;
4098 }
4099
4100 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4101 {
4102         kvm_free_lapic(vcpu);
4103         down_read(&vcpu->kvm->slots_lock);
4104         kvm_mmu_destroy(vcpu);
4105         up_read(&vcpu->kvm->slots_lock);
4106         free_page((unsigned long)vcpu->arch.pio_data);
4107 }
4108
4109 struct  kvm *kvm_arch_create_vm(void)
4110 {
4111         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4112
4113         if (!kvm)
4114                 return ERR_PTR(-ENOMEM);
4115
4116         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4117         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4118
4119         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4120         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4121
4122         return kvm;
4123 }
4124
4125 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4126 {
4127         vcpu_load(vcpu);
4128         kvm_mmu_unload(vcpu);
4129         vcpu_put(vcpu);
4130 }
4131
4132 static void kvm_free_vcpus(struct kvm *kvm)
4133 {
4134         unsigned int i;
4135
4136         /*
4137          * Unpin any mmu pages first.
4138          */
4139         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4140                 if (kvm->vcpus[i])
4141                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4142         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4143                 if (kvm->vcpus[i]) {
4144                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4145                         kvm->vcpus[i] = NULL;
4146                 }
4147         }
4148
4149 }
4150
4151 void kvm_arch_destroy_vm(struct kvm *kvm)
4152 {
4153         kvm_iommu_unmap_guest(kvm);
4154         kvm_free_all_assigned_devices(kvm);
4155         kvm_free_pit(kvm);
4156         kfree(kvm->arch.vpic);
4157         kfree(kvm->arch.vioapic);
4158         kvm_free_vcpus(kvm);
4159         kvm_free_physmem(kvm);
4160         if (kvm->arch.apic_access_page)
4161                 put_page(kvm->arch.apic_access_page);
4162         if (kvm->arch.ept_identity_pagetable)
4163                 put_page(kvm->arch.ept_identity_pagetable);
4164         kfree(kvm);
4165 }
4166
4167 int kvm_arch_set_memory_region(struct kvm *kvm,
4168                                 struct kvm_userspace_memory_region *mem,
4169                                 struct kvm_memory_slot old,
4170                                 int user_alloc)
4171 {
4172         int npages = mem->memory_size >> PAGE_SHIFT;
4173         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4174
4175         /*To keep backward compatibility with older userspace,
4176          *x86 needs to hanlde !user_alloc case.
4177          */
4178         if (!user_alloc) {
4179                 if (npages && !old.rmap) {
4180                         unsigned long userspace_addr;
4181
4182                         down_write(&current->mm->mmap_sem);
4183                         userspace_addr = do_mmap(NULL, 0,
4184                                                  npages * PAGE_SIZE,
4185                                                  PROT_READ | PROT_WRITE,
4186                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4187                                                  0);
4188                         up_write(&current->mm->mmap_sem);
4189
4190                         if (IS_ERR((void *)userspace_addr))
4191                                 return PTR_ERR((void *)userspace_addr);
4192
4193                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4194                         spin_lock(&kvm->mmu_lock);
4195                         memslot->userspace_addr = userspace_addr;
4196                         spin_unlock(&kvm->mmu_lock);
4197                 } else {
4198                         if (!old.user_alloc && old.rmap) {
4199                                 int ret;
4200
4201                                 down_write(&current->mm->mmap_sem);
4202                                 ret = do_munmap(current->mm, old.userspace_addr,
4203                                                 old.npages * PAGE_SIZE);
4204                                 up_write(&current->mm->mmap_sem);
4205                                 if (ret < 0)
4206                                         printk(KERN_WARNING
4207                                        "kvm_vm_ioctl_set_memory_region: "
4208                                        "failed to munmap memory\n");
4209                         }
4210                 }
4211         }
4212
4213         if (!kvm->arch.n_requested_mmu_pages) {
4214                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4215                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4216         }
4217
4218         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4219         kvm_flush_remote_tlbs(kvm);
4220
4221         return 0;
4222 }
4223
4224 void kvm_arch_flush_shadow(struct kvm *kvm)
4225 {
4226         kvm_mmu_zap_all(kvm);
4227 }
4228
4229 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4230 {
4231         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4232                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4233                || vcpu->arch.nmi_pending;
4234 }
4235
4236 static void vcpu_kick_intr(void *info)
4237 {
4238 #ifdef DEBUG
4239         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4240         printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4241 #endif
4242 }
4243
4244 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4245 {
4246         int ipi_pcpu = vcpu->cpu;
4247         int cpu = get_cpu();
4248
4249         if (waitqueue_active(&vcpu->wq)) {
4250                 wake_up_interruptible(&vcpu->wq);
4251                 ++vcpu->stat.halt_wakeup;
4252         }
4253         /*
4254          * We may be called synchronously with irqs disabled in guest mode,
4255          * So need not to call smp_call_function_single() in that case.
4256          */
4257         if (vcpu->guest_mode && vcpu->cpu != cpu)
4258                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4259         put_cpu();
4260 }