KVM: VMX: Move interrupt post-processing to vmx_complete_interrupts()
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
42
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
45
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
48
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
51
52 struct vmcs {
53         u32 revision_id;
54         u32 abort;
55         char data[0];
56 };
57
58 struct vcpu_vmx {
59         struct kvm_vcpu       vcpu;
60         struct list_head      local_vcpus_link;
61         int                   launched;
62         u8                    fail;
63         u32                   idt_vectoring_info;
64         struct kvm_msr_entry *guest_msrs;
65         struct kvm_msr_entry *host_msrs;
66         int                   nmsrs;
67         int                   save_nmsrs;
68         int                   msr_offset_efer;
69 #ifdef CONFIG_X86_64
70         int                   msr_offset_kernel_gs_base;
71 #endif
72         struct vmcs          *vmcs;
73         struct {
74                 int           loaded;
75                 u16           fs_sel, gs_sel, ldt_sel;
76                 int           gs_ldt_reload_needed;
77                 int           fs_reload_needed;
78                 int           guest_efer_loaded;
79         } host_state;
80         struct {
81                 struct {
82                         bool pending;
83                         u8 vector;
84                         unsigned rip;
85                 } irq;
86         } rmode;
87         int vpid;
88 };
89
90 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
91 {
92         return container_of(vcpu, struct vcpu_vmx, vcpu);
93 }
94
95 static int init_rmode(struct kvm *kvm);
96 static u64 construct_eptp(unsigned long root_hpa);
97
98 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
99 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
100 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
101
102 static struct page *vmx_io_bitmap_a;
103 static struct page *vmx_io_bitmap_b;
104 static struct page *vmx_msr_bitmap;
105
106 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
107 static DEFINE_SPINLOCK(vmx_vpid_lock);
108
109 static struct vmcs_config {
110         int size;
111         int order;
112         u32 revision_id;
113         u32 pin_based_exec_ctrl;
114         u32 cpu_based_exec_ctrl;
115         u32 cpu_based_2nd_exec_ctrl;
116         u32 vmexit_ctrl;
117         u32 vmentry_ctrl;
118 } vmcs_config;
119
120 struct vmx_capability {
121         u32 ept;
122         u32 vpid;
123 } vmx_capability;
124
125 #define VMX_SEGMENT_FIELD(seg)                                  \
126         [VCPU_SREG_##seg] = {                                   \
127                 .selector = GUEST_##seg##_SELECTOR,             \
128                 .base = GUEST_##seg##_BASE,                     \
129                 .limit = GUEST_##seg##_LIMIT,                   \
130                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
131         }
132
133 static struct kvm_vmx_segment_field {
134         unsigned selector;
135         unsigned base;
136         unsigned limit;
137         unsigned ar_bytes;
138 } kvm_vmx_segment_fields[] = {
139         VMX_SEGMENT_FIELD(CS),
140         VMX_SEGMENT_FIELD(DS),
141         VMX_SEGMENT_FIELD(ES),
142         VMX_SEGMENT_FIELD(FS),
143         VMX_SEGMENT_FIELD(GS),
144         VMX_SEGMENT_FIELD(SS),
145         VMX_SEGMENT_FIELD(TR),
146         VMX_SEGMENT_FIELD(LDTR),
147 };
148
149 /*
150  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
151  * away by decrementing the array size.
152  */
153 static const u32 vmx_msr_index[] = {
154 #ifdef CONFIG_X86_64
155         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
156 #endif
157         MSR_EFER, MSR_K6_STAR,
158 };
159 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
160
161 static void load_msrs(struct kvm_msr_entry *e, int n)
162 {
163         int i;
164
165         for (i = 0; i < n; ++i)
166                 wrmsrl(e[i].index, e[i].data);
167 }
168
169 static void save_msrs(struct kvm_msr_entry *e, int n)
170 {
171         int i;
172
173         for (i = 0; i < n; ++i)
174                 rdmsrl(e[i].index, e[i].data);
175 }
176
177 static inline int is_page_fault(u32 intr_info)
178 {
179         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180                              INTR_INFO_VALID_MASK)) ==
181                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
182 }
183
184 static inline int is_no_device(u32 intr_info)
185 {
186         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187                              INTR_INFO_VALID_MASK)) ==
188                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
189 }
190
191 static inline int is_invalid_opcode(u32 intr_info)
192 {
193         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
194                              INTR_INFO_VALID_MASK)) ==
195                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
196 }
197
198 static inline int is_external_interrupt(u32 intr_info)
199 {
200         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
201                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
202 }
203
204 static inline int cpu_has_vmx_msr_bitmap(void)
205 {
206         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
207 }
208
209 static inline int cpu_has_vmx_tpr_shadow(void)
210 {
211         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
212 }
213
214 static inline int vm_need_tpr_shadow(struct kvm *kvm)
215 {
216         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
217 }
218
219 static inline int cpu_has_secondary_exec_ctrls(void)
220 {
221         return (vmcs_config.cpu_based_exec_ctrl &
222                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
223 }
224
225 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
226 {
227         return flexpriority_enabled
228                 && (vmcs_config.cpu_based_2nd_exec_ctrl &
229                     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
230 }
231
232 static inline int cpu_has_vmx_invept_individual_addr(void)
233 {
234         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
235 }
236
237 static inline int cpu_has_vmx_invept_context(void)
238 {
239         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
240 }
241
242 static inline int cpu_has_vmx_invept_global(void)
243 {
244         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
245 }
246
247 static inline int cpu_has_vmx_ept(void)
248 {
249         return (vmcs_config.cpu_based_2nd_exec_ctrl &
250                 SECONDARY_EXEC_ENABLE_EPT);
251 }
252
253 static inline int vm_need_ept(void)
254 {
255         return (cpu_has_vmx_ept() && enable_ept);
256 }
257
258 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
259 {
260         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
261                 (irqchip_in_kernel(kvm)));
262 }
263
264 static inline int cpu_has_vmx_vpid(void)
265 {
266         return (vmcs_config.cpu_based_2nd_exec_ctrl &
267                 SECONDARY_EXEC_ENABLE_VPID);
268 }
269
270 static inline int cpu_has_virtual_nmis(void)
271 {
272         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
273 }
274
275 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
276 {
277         int i;
278
279         for (i = 0; i < vmx->nmsrs; ++i)
280                 if (vmx->guest_msrs[i].index == msr)
281                         return i;
282         return -1;
283 }
284
285 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
286 {
287     struct {
288         u64 vpid : 16;
289         u64 rsvd : 48;
290         u64 gva;
291     } operand = { vpid, 0, gva };
292
293     asm volatile (__ex(ASM_VMX_INVVPID)
294                   /* CF==1 or ZF==1 --> rc = -1 */
295                   "; ja 1f ; ud2 ; 1:"
296                   : : "a"(&operand), "c"(ext) : "cc", "memory");
297 }
298
299 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
300 {
301         struct {
302                 u64 eptp, gpa;
303         } operand = {eptp, gpa};
304
305         asm volatile (__ex(ASM_VMX_INVEPT)
306                         /* CF==1 or ZF==1 --> rc = -1 */
307                         "; ja 1f ; ud2 ; 1:\n"
308                         : : "a" (&operand), "c" (ext) : "cc", "memory");
309 }
310
311 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
312 {
313         int i;
314
315         i = __find_msr_index(vmx, msr);
316         if (i >= 0)
317                 return &vmx->guest_msrs[i];
318         return NULL;
319 }
320
321 static void vmcs_clear(struct vmcs *vmcs)
322 {
323         u64 phys_addr = __pa(vmcs);
324         u8 error;
325
326         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
327                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
328                       : "cc", "memory");
329         if (error)
330                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
331                        vmcs, phys_addr);
332 }
333
334 static void __vcpu_clear(void *arg)
335 {
336         struct vcpu_vmx *vmx = arg;
337         int cpu = raw_smp_processor_id();
338
339         if (vmx->vcpu.cpu == cpu)
340                 vmcs_clear(vmx->vmcs);
341         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
342                 per_cpu(current_vmcs, cpu) = NULL;
343         rdtscll(vmx->vcpu.arch.host_tsc);
344         list_del(&vmx->local_vcpus_link);
345         vmx->vcpu.cpu = -1;
346         vmx->launched = 0;
347 }
348
349 static void vcpu_clear(struct vcpu_vmx *vmx)
350 {
351         if (vmx->vcpu.cpu == -1)
352                 return;
353         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
354 }
355
356 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
357 {
358         if (vmx->vpid == 0)
359                 return;
360
361         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
362 }
363
364 static inline void ept_sync_global(void)
365 {
366         if (cpu_has_vmx_invept_global())
367                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
368 }
369
370 static inline void ept_sync_context(u64 eptp)
371 {
372         if (vm_need_ept()) {
373                 if (cpu_has_vmx_invept_context())
374                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
375                 else
376                         ept_sync_global();
377         }
378 }
379
380 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
381 {
382         if (vm_need_ept()) {
383                 if (cpu_has_vmx_invept_individual_addr())
384                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
385                                         eptp, gpa);
386                 else
387                         ept_sync_context(eptp);
388         }
389 }
390
391 static unsigned long vmcs_readl(unsigned long field)
392 {
393         unsigned long value;
394
395         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
396                       : "=a"(value) : "d"(field) : "cc");
397         return value;
398 }
399
400 static u16 vmcs_read16(unsigned long field)
401 {
402         return vmcs_readl(field);
403 }
404
405 static u32 vmcs_read32(unsigned long field)
406 {
407         return vmcs_readl(field);
408 }
409
410 static u64 vmcs_read64(unsigned long field)
411 {
412 #ifdef CONFIG_X86_64
413         return vmcs_readl(field);
414 #else
415         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
416 #endif
417 }
418
419 static noinline void vmwrite_error(unsigned long field, unsigned long value)
420 {
421         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
422                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
423         dump_stack();
424 }
425
426 static void vmcs_writel(unsigned long field, unsigned long value)
427 {
428         u8 error;
429
430         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
431                        : "=q"(error) : "a"(value), "d"(field) : "cc");
432         if (unlikely(error))
433                 vmwrite_error(field, value);
434 }
435
436 static void vmcs_write16(unsigned long field, u16 value)
437 {
438         vmcs_writel(field, value);
439 }
440
441 static void vmcs_write32(unsigned long field, u32 value)
442 {
443         vmcs_writel(field, value);
444 }
445
446 static void vmcs_write64(unsigned long field, u64 value)
447 {
448         vmcs_writel(field, value);
449 #ifndef CONFIG_X86_64
450         asm volatile ("");
451         vmcs_writel(field+1, value >> 32);
452 #endif
453 }
454
455 static void vmcs_clear_bits(unsigned long field, u32 mask)
456 {
457         vmcs_writel(field, vmcs_readl(field) & ~mask);
458 }
459
460 static void vmcs_set_bits(unsigned long field, u32 mask)
461 {
462         vmcs_writel(field, vmcs_readl(field) | mask);
463 }
464
465 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
466 {
467         u32 eb;
468
469         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
470         if (!vcpu->fpu_active)
471                 eb |= 1u << NM_VECTOR;
472         if (vcpu->guest_debug.enabled)
473                 eb |= 1u << 1;
474         if (vcpu->arch.rmode.active)
475                 eb = ~0;
476         if (vm_need_ept())
477                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
478         vmcs_write32(EXCEPTION_BITMAP, eb);
479 }
480
481 static void reload_tss(void)
482 {
483         /*
484          * VT restores TR but not its size.  Useless.
485          */
486         struct descriptor_table gdt;
487         struct desc_struct *descs;
488
489         kvm_get_gdt(&gdt);
490         descs = (void *)gdt.base;
491         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
492         load_TR_desc();
493 }
494
495 static void load_transition_efer(struct vcpu_vmx *vmx)
496 {
497         int efer_offset = vmx->msr_offset_efer;
498         u64 host_efer = vmx->host_msrs[efer_offset].data;
499         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
500         u64 ignore_bits;
501
502         if (efer_offset < 0)
503                 return;
504         /*
505          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
506          * outside long mode
507          */
508         ignore_bits = EFER_NX | EFER_SCE;
509 #ifdef CONFIG_X86_64
510         ignore_bits |= EFER_LMA | EFER_LME;
511         /* SCE is meaningful only in long mode on Intel */
512         if (guest_efer & EFER_LMA)
513                 ignore_bits &= ~(u64)EFER_SCE;
514 #endif
515         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
516                 return;
517
518         vmx->host_state.guest_efer_loaded = 1;
519         guest_efer &= ~ignore_bits;
520         guest_efer |= host_efer & ignore_bits;
521         wrmsrl(MSR_EFER, guest_efer);
522         vmx->vcpu.stat.efer_reload++;
523 }
524
525 static void reload_host_efer(struct vcpu_vmx *vmx)
526 {
527         if (vmx->host_state.guest_efer_loaded) {
528                 vmx->host_state.guest_efer_loaded = 0;
529                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
530         }
531 }
532
533 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
534 {
535         struct vcpu_vmx *vmx = to_vmx(vcpu);
536
537         if (vmx->host_state.loaded)
538                 return;
539
540         vmx->host_state.loaded = 1;
541         /*
542          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
543          * allow segment selectors with cpl > 0 or ti == 1.
544          */
545         vmx->host_state.ldt_sel = kvm_read_ldt();
546         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
547         vmx->host_state.fs_sel = kvm_read_fs();
548         if (!(vmx->host_state.fs_sel & 7)) {
549                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
550                 vmx->host_state.fs_reload_needed = 0;
551         } else {
552                 vmcs_write16(HOST_FS_SELECTOR, 0);
553                 vmx->host_state.fs_reload_needed = 1;
554         }
555         vmx->host_state.gs_sel = kvm_read_gs();
556         if (!(vmx->host_state.gs_sel & 7))
557                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
558         else {
559                 vmcs_write16(HOST_GS_SELECTOR, 0);
560                 vmx->host_state.gs_ldt_reload_needed = 1;
561         }
562
563 #ifdef CONFIG_X86_64
564         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
565         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
566 #else
567         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
568         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
569 #endif
570
571 #ifdef CONFIG_X86_64
572         if (is_long_mode(&vmx->vcpu))
573                 save_msrs(vmx->host_msrs +
574                           vmx->msr_offset_kernel_gs_base, 1);
575
576 #endif
577         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
578         load_transition_efer(vmx);
579 }
580
581 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
582 {
583         unsigned long flags;
584
585         if (!vmx->host_state.loaded)
586                 return;
587
588         ++vmx->vcpu.stat.host_state_reload;
589         vmx->host_state.loaded = 0;
590         if (vmx->host_state.fs_reload_needed)
591                 kvm_load_fs(vmx->host_state.fs_sel);
592         if (vmx->host_state.gs_ldt_reload_needed) {
593                 kvm_load_ldt(vmx->host_state.ldt_sel);
594                 /*
595                  * If we have to reload gs, we must take care to
596                  * preserve our gs base.
597                  */
598                 local_irq_save(flags);
599                 kvm_load_gs(vmx->host_state.gs_sel);
600 #ifdef CONFIG_X86_64
601                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
602 #endif
603                 local_irq_restore(flags);
604         }
605         reload_tss();
606         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
607         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
608         reload_host_efer(vmx);
609 }
610
611 static void vmx_load_host_state(struct vcpu_vmx *vmx)
612 {
613         preempt_disable();
614         __vmx_load_host_state(vmx);
615         preempt_enable();
616 }
617
618 /*
619  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
620  * vcpu mutex is already taken.
621  */
622 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
623 {
624         struct vcpu_vmx *vmx = to_vmx(vcpu);
625         u64 phys_addr = __pa(vmx->vmcs);
626         u64 tsc_this, delta, new_offset;
627
628         if (vcpu->cpu != cpu) {
629                 vcpu_clear(vmx);
630                 kvm_migrate_timers(vcpu);
631                 vpid_sync_vcpu_all(vmx);
632                 local_irq_disable();
633                 list_add(&vmx->local_vcpus_link,
634                          &per_cpu(vcpus_on_cpu, cpu));
635                 local_irq_enable();
636         }
637
638         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
639                 u8 error;
640
641                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
642                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
643                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
644                               : "cc");
645                 if (error)
646                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
647                                vmx->vmcs, phys_addr);
648         }
649
650         if (vcpu->cpu != cpu) {
651                 struct descriptor_table dt;
652                 unsigned long sysenter_esp;
653
654                 vcpu->cpu = cpu;
655                 /*
656                  * Linux uses per-cpu TSS and GDT, so set these when switching
657                  * processors.
658                  */
659                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
660                 kvm_get_gdt(&dt);
661                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
662
663                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
664                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
665
666                 /*
667                  * Make sure the time stamp counter is monotonous.
668                  */
669                 rdtscll(tsc_this);
670                 if (tsc_this < vcpu->arch.host_tsc) {
671                         delta = vcpu->arch.host_tsc - tsc_this;
672                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
673                         vmcs_write64(TSC_OFFSET, new_offset);
674                 }
675         }
676 }
677
678 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
679 {
680         __vmx_load_host_state(to_vmx(vcpu));
681 }
682
683 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
684 {
685         if (vcpu->fpu_active)
686                 return;
687         vcpu->fpu_active = 1;
688         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
689         if (vcpu->arch.cr0 & X86_CR0_TS)
690                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
691         update_exception_bitmap(vcpu);
692 }
693
694 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
695 {
696         if (!vcpu->fpu_active)
697                 return;
698         vcpu->fpu_active = 0;
699         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
700         update_exception_bitmap(vcpu);
701 }
702
703 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
704 {
705         return vmcs_readl(GUEST_RFLAGS);
706 }
707
708 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
709 {
710         if (vcpu->arch.rmode.active)
711                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
712         vmcs_writel(GUEST_RFLAGS, rflags);
713 }
714
715 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
716 {
717         unsigned long rip;
718         u32 interruptibility;
719
720         rip = kvm_rip_read(vcpu);
721         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
722         kvm_rip_write(vcpu, rip);
723
724         /*
725          * We emulated an instruction, so temporary interrupt blocking
726          * should be removed, if set.
727          */
728         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
729         if (interruptibility & 3)
730                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
731                              interruptibility & ~3);
732         vcpu->arch.interrupt_window_open = 1;
733 }
734
735 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
736                                 bool has_error_code, u32 error_code)
737 {
738         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
739                      nr | INTR_TYPE_EXCEPTION
740                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
741                      | INTR_INFO_VALID_MASK);
742         if (has_error_code)
743                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
744 }
745
746 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
747 {
748         return false;
749 }
750
751 /*
752  * Swap MSR entry in host/guest MSR entry array.
753  */
754 #ifdef CONFIG_X86_64
755 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
756 {
757         struct kvm_msr_entry tmp;
758
759         tmp = vmx->guest_msrs[to];
760         vmx->guest_msrs[to] = vmx->guest_msrs[from];
761         vmx->guest_msrs[from] = tmp;
762         tmp = vmx->host_msrs[to];
763         vmx->host_msrs[to] = vmx->host_msrs[from];
764         vmx->host_msrs[from] = tmp;
765 }
766 #endif
767
768 /*
769  * Set up the vmcs to automatically save and restore system
770  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
771  * mode, as fiddling with msrs is very expensive.
772  */
773 static void setup_msrs(struct vcpu_vmx *vmx)
774 {
775         int save_nmsrs;
776
777         vmx_load_host_state(vmx);
778         save_nmsrs = 0;
779 #ifdef CONFIG_X86_64
780         if (is_long_mode(&vmx->vcpu)) {
781                 int index;
782
783                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
784                 if (index >= 0)
785                         move_msr_up(vmx, index, save_nmsrs++);
786                 index = __find_msr_index(vmx, MSR_LSTAR);
787                 if (index >= 0)
788                         move_msr_up(vmx, index, save_nmsrs++);
789                 index = __find_msr_index(vmx, MSR_CSTAR);
790                 if (index >= 0)
791                         move_msr_up(vmx, index, save_nmsrs++);
792                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
793                 if (index >= 0)
794                         move_msr_up(vmx, index, save_nmsrs++);
795                 /*
796                  * MSR_K6_STAR is only needed on long mode guests, and only
797                  * if efer.sce is enabled.
798                  */
799                 index = __find_msr_index(vmx, MSR_K6_STAR);
800                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
801                         move_msr_up(vmx, index, save_nmsrs++);
802         }
803 #endif
804         vmx->save_nmsrs = save_nmsrs;
805
806 #ifdef CONFIG_X86_64
807         vmx->msr_offset_kernel_gs_base =
808                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
809 #endif
810         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
811 }
812
813 /*
814  * reads and returns guest's timestamp counter "register"
815  * guest_tsc = host_tsc + tsc_offset    -- 21.3
816  */
817 static u64 guest_read_tsc(void)
818 {
819         u64 host_tsc, tsc_offset;
820
821         rdtscll(host_tsc);
822         tsc_offset = vmcs_read64(TSC_OFFSET);
823         return host_tsc + tsc_offset;
824 }
825
826 /*
827  * writes 'guest_tsc' into guest's timestamp counter "register"
828  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
829  */
830 static void guest_write_tsc(u64 guest_tsc)
831 {
832         u64 host_tsc;
833
834         rdtscll(host_tsc);
835         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
836 }
837
838 /*
839  * Reads an msr value (of 'msr_index') into 'pdata'.
840  * Returns 0 on success, non-0 otherwise.
841  * Assumes vcpu_load() was already called.
842  */
843 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
844 {
845         u64 data;
846         struct kvm_msr_entry *msr;
847
848         if (!pdata) {
849                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
850                 return -EINVAL;
851         }
852
853         switch (msr_index) {
854 #ifdef CONFIG_X86_64
855         case MSR_FS_BASE:
856                 data = vmcs_readl(GUEST_FS_BASE);
857                 break;
858         case MSR_GS_BASE:
859                 data = vmcs_readl(GUEST_GS_BASE);
860                 break;
861         case MSR_EFER:
862                 return kvm_get_msr_common(vcpu, msr_index, pdata);
863 #endif
864         case MSR_IA32_TIME_STAMP_COUNTER:
865                 data = guest_read_tsc();
866                 break;
867         case MSR_IA32_SYSENTER_CS:
868                 data = vmcs_read32(GUEST_SYSENTER_CS);
869                 break;
870         case MSR_IA32_SYSENTER_EIP:
871                 data = vmcs_readl(GUEST_SYSENTER_EIP);
872                 break;
873         case MSR_IA32_SYSENTER_ESP:
874                 data = vmcs_readl(GUEST_SYSENTER_ESP);
875                 break;
876         default:
877                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
878                 if (msr) {
879                         data = msr->data;
880                         break;
881                 }
882                 return kvm_get_msr_common(vcpu, msr_index, pdata);
883         }
884
885         *pdata = data;
886         return 0;
887 }
888
889 /*
890  * Writes msr value into into the appropriate "register".
891  * Returns 0 on success, non-0 otherwise.
892  * Assumes vcpu_load() was already called.
893  */
894 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
895 {
896         struct vcpu_vmx *vmx = to_vmx(vcpu);
897         struct kvm_msr_entry *msr;
898         int ret = 0;
899
900         switch (msr_index) {
901 #ifdef CONFIG_X86_64
902         case MSR_EFER:
903                 vmx_load_host_state(vmx);
904                 ret = kvm_set_msr_common(vcpu, msr_index, data);
905                 break;
906         case MSR_FS_BASE:
907                 vmcs_writel(GUEST_FS_BASE, data);
908                 break;
909         case MSR_GS_BASE:
910                 vmcs_writel(GUEST_GS_BASE, data);
911                 break;
912 #endif
913         case MSR_IA32_SYSENTER_CS:
914                 vmcs_write32(GUEST_SYSENTER_CS, data);
915                 break;
916         case MSR_IA32_SYSENTER_EIP:
917                 vmcs_writel(GUEST_SYSENTER_EIP, data);
918                 break;
919         case MSR_IA32_SYSENTER_ESP:
920                 vmcs_writel(GUEST_SYSENTER_ESP, data);
921                 break;
922         case MSR_IA32_TIME_STAMP_COUNTER:
923                 guest_write_tsc(data);
924                 break;
925         case MSR_P6_PERFCTR0:
926         case MSR_P6_PERFCTR1:
927         case MSR_P6_EVNTSEL0:
928         case MSR_P6_EVNTSEL1:
929                 /*
930                  * Just discard all writes to the performance counters; this
931                  * should keep both older linux and windows 64-bit guests
932                  * happy
933                  */
934                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
935
936                 break;
937         default:
938                 vmx_load_host_state(vmx);
939                 msr = find_msr_entry(vmx, msr_index);
940                 if (msr) {
941                         msr->data = data;
942                         break;
943                 }
944                 ret = kvm_set_msr_common(vcpu, msr_index, data);
945         }
946
947         return ret;
948 }
949
950 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
951 {
952         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
953         switch (reg) {
954         case VCPU_REGS_RSP:
955                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
956                 break;
957         case VCPU_REGS_RIP:
958                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
959                 break;
960         default:
961                 break;
962         }
963 }
964
965 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
966 {
967         unsigned long dr7 = 0x400;
968         int old_singlestep;
969
970         old_singlestep = vcpu->guest_debug.singlestep;
971
972         vcpu->guest_debug.enabled = dbg->enabled;
973         if (vcpu->guest_debug.enabled) {
974                 int i;
975
976                 dr7 |= 0x200;  /* exact */
977                 for (i = 0; i < 4; ++i) {
978                         if (!dbg->breakpoints[i].enabled)
979                                 continue;
980                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
981                         dr7 |= 2 << (i*2);    /* global enable */
982                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
983                 }
984
985                 vcpu->guest_debug.singlestep = dbg->singlestep;
986         } else
987                 vcpu->guest_debug.singlestep = 0;
988
989         if (old_singlestep && !vcpu->guest_debug.singlestep) {
990                 unsigned long flags;
991
992                 flags = vmcs_readl(GUEST_RFLAGS);
993                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
994                 vmcs_writel(GUEST_RFLAGS, flags);
995         }
996
997         update_exception_bitmap(vcpu);
998         vmcs_writel(GUEST_DR7, dr7);
999
1000         return 0;
1001 }
1002
1003 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1004 {
1005         if (!vcpu->arch.interrupt.pending)
1006                 return -1;
1007         return vcpu->arch.interrupt.nr;
1008 }
1009
1010 static __init int cpu_has_kvm_support(void)
1011 {
1012         unsigned long ecx = cpuid_ecx(1);
1013         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1014 }
1015
1016 static __init int vmx_disabled_by_bios(void)
1017 {
1018         u64 msr;
1019
1020         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1021         return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1022                        IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1023             == IA32_FEATURE_CONTROL_LOCKED_BIT;
1024         /* locked but not enabled */
1025 }
1026
1027 static void hardware_enable(void *garbage)
1028 {
1029         int cpu = raw_smp_processor_id();
1030         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1031         u64 old;
1032
1033         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1034         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1035         if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
1036                     IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1037             != (IA32_FEATURE_CONTROL_LOCKED_BIT |
1038                 IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
1039                 /* enable and lock */
1040                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1041                        IA32_FEATURE_CONTROL_LOCKED_BIT |
1042                        IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
1043         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1044         asm volatile (ASM_VMX_VMXON_RAX
1045                       : : "a"(&phys_addr), "m"(phys_addr)
1046                       : "memory", "cc");
1047 }
1048
1049 static void vmclear_local_vcpus(void)
1050 {
1051         int cpu = raw_smp_processor_id();
1052         struct vcpu_vmx *vmx, *n;
1053
1054         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1055                                  local_vcpus_link)
1056                 __vcpu_clear(vmx);
1057 }
1058
1059 static void hardware_disable(void *garbage)
1060 {
1061         vmclear_local_vcpus();
1062         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1063         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1064 }
1065
1066 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1067                                       u32 msr, u32 *result)
1068 {
1069         u32 vmx_msr_low, vmx_msr_high;
1070         u32 ctl = ctl_min | ctl_opt;
1071
1072         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1073
1074         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1075         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1076
1077         /* Ensure minimum (required) set of control bits are supported. */
1078         if (ctl_min & ~ctl)
1079                 return -EIO;
1080
1081         *result = ctl;
1082         return 0;
1083 }
1084
1085 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1086 {
1087         u32 vmx_msr_low, vmx_msr_high;
1088         u32 min, opt, min2, opt2;
1089         u32 _pin_based_exec_control = 0;
1090         u32 _cpu_based_exec_control = 0;
1091         u32 _cpu_based_2nd_exec_control = 0;
1092         u32 _vmexit_control = 0;
1093         u32 _vmentry_control = 0;
1094
1095         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1096         opt = PIN_BASED_VIRTUAL_NMIS;
1097         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1098                                 &_pin_based_exec_control) < 0)
1099                 return -EIO;
1100
1101         min = CPU_BASED_HLT_EXITING |
1102 #ifdef CONFIG_X86_64
1103               CPU_BASED_CR8_LOAD_EXITING |
1104               CPU_BASED_CR8_STORE_EXITING |
1105 #endif
1106               CPU_BASED_CR3_LOAD_EXITING |
1107               CPU_BASED_CR3_STORE_EXITING |
1108               CPU_BASED_USE_IO_BITMAPS |
1109               CPU_BASED_MOV_DR_EXITING |
1110               CPU_BASED_USE_TSC_OFFSETING;
1111         opt = CPU_BASED_TPR_SHADOW |
1112               CPU_BASED_USE_MSR_BITMAPS |
1113               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1114         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1115                                 &_cpu_based_exec_control) < 0)
1116                 return -EIO;
1117 #ifdef CONFIG_X86_64
1118         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1119                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1120                                            ~CPU_BASED_CR8_STORE_EXITING;
1121 #endif
1122         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1123                 min2 = 0;
1124                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1125                         SECONDARY_EXEC_WBINVD_EXITING |
1126                         SECONDARY_EXEC_ENABLE_VPID |
1127                         SECONDARY_EXEC_ENABLE_EPT;
1128                 if (adjust_vmx_controls(min2, opt2,
1129                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1130                                         &_cpu_based_2nd_exec_control) < 0)
1131                         return -EIO;
1132         }
1133 #ifndef CONFIG_X86_64
1134         if (!(_cpu_based_2nd_exec_control &
1135                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1136                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1137 #endif
1138         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1139                 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1140                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1141                          CPU_BASED_CR3_STORE_EXITING);
1142                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1143                                         &_cpu_based_exec_control) < 0)
1144                         return -EIO;
1145                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1146                       vmx_capability.ept, vmx_capability.vpid);
1147         }
1148
1149         min = 0;
1150 #ifdef CONFIG_X86_64
1151         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1152 #endif
1153         opt = 0;
1154         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1155                                 &_vmexit_control) < 0)
1156                 return -EIO;
1157
1158         min = opt = 0;
1159         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1160                                 &_vmentry_control) < 0)
1161                 return -EIO;
1162
1163         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1164
1165         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1166         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1167                 return -EIO;
1168
1169 #ifdef CONFIG_X86_64
1170         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1171         if (vmx_msr_high & (1u<<16))
1172                 return -EIO;
1173 #endif
1174
1175         /* Require Write-Back (WB) memory type for VMCS accesses. */
1176         if (((vmx_msr_high >> 18) & 15) != 6)
1177                 return -EIO;
1178
1179         vmcs_conf->size = vmx_msr_high & 0x1fff;
1180         vmcs_conf->order = get_order(vmcs_config.size);
1181         vmcs_conf->revision_id = vmx_msr_low;
1182
1183         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1184         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1185         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1186         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1187         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1188
1189         return 0;
1190 }
1191
1192 static struct vmcs *alloc_vmcs_cpu(int cpu)
1193 {
1194         int node = cpu_to_node(cpu);
1195         struct page *pages;
1196         struct vmcs *vmcs;
1197
1198         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1199         if (!pages)
1200                 return NULL;
1201         vmcs = page_address(pages);
1202         memset(vmcs, 0, vmcs_config.size);
1203         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1204         return vmcs;
1205 }
1206
1207 static struct vmcs *alloc_vmcs(void)
1208 {
1209         return alloc_vmcs_cpu(raw_smp_processor_id());
1210 }
1211
1212 static void free_vmcs(struct vmcs *vmcs)
1213 {
1214         free_pages((unsigned long)vmcs, vmcs_config.order);
1215 }
1216
1217 static void free_kvm_area(void)
1218 {
1219         int cpu;
1220
1221         for_each_online_cpu(cpu)
1222                 free_vmcs(per_cpu(vmxarea, cpu));
1223 }
1224
1225 static __init int alloc_kvm_area(void)
1226 {
1227         int cpu;
1228
1229         for_each_online_cpu(cpu) {
1230                 struct vmcs *vmcs;
1231
1232                 vmcs = alloc_vmcs_cpu(cpu);
1233                 if (!vmcs) {
1234                         free_kvm_area();
1235                         return -ENOMEM;
1236                 }
1237
1238                 per_cpu(vmxarea, cpu) = vmcs;
1239         }
1240         return 0;
1241 }
1242
1243 static __init int hardware_setup(void)
1244 {
1245         if (setup_vmcs_config(&vmcs_config) < 0)
1246                 return -EIO;
1247
1248         if (boot_cpu_has(X86_FEATURE_NX))
1249                 kvm_enable_efer_bits(EFER_NX);
1250
1251         return alloc_kvm_area();
1252 }
1253
1254 static __exit void hardware_unsetup(void)
1255 {
1256         free_kvm_area();
1257 }
1258
1259 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1260 {
1261         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1262
1263         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1264                 vmcs_write16(sf->selector, save->selector);
1265                 vmcs_writel(sf->base, save->base);
1266                 vmcs_write32(sf->limit, save->limit);
1267                 vmcs_write32(sf->ar_bytes, save->ar);
1268         } else {
1269                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1270                         << AR_DPL_SHIFT;
1271                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1272         }
1273 }
1274
1275 static void enter_pmode(struct kvm_vcpu *vcpu)
1276 {
1277         unsigned long flags;
1278
1279         vcpu->arch.rmode.active = 0;
1280
1281         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1282         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1283         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1284
1285         flags = vmcs_readl(GUEST_RFLAGS);
1286         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1287         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1288         vmcs_writel(GUEST_RFLAGS, flags);
1289
1290         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1291                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1292
1293         update_exception_bitmap(vcpu);
1294
1295         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1296         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1297         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1298         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1299
1300         vmcs_write16(GUEST_SS_SELECTOR, 0);
1301         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1302
1303         vmcs_write16(GUEST_CS_SELECTOR,
1304                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1305         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1306 }
1307
1308 static gva_t rmode_tss_base(struct kvm *kvm)
1309 {
1310         if (!kvm->arch.tss_addr) {
1311                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1312                                  kvm->memslots[0].npages - 3;
1313                 return base_gfn << PAGE_SHIFT;
1314         }
1315         return kvm->arch.tss_addr;
1316 }
1317
1318 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1319 {
1320         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1321
1322         save->selector = vmcs_read16(sf->selector);
1323         save->base = vmcs_readl(sf->base);
1324         save->limit = vmcs_read32(sf->limit);
1325         save->ar = vmcs_read32(sf->ar_bytes);
1326         vmcs_write16(sf->selector, save->base >> 4);
1327         vmcs_write32(sf->base, save->base & 0xfffff);
1328         vmcs_write32(sf->limit, 0xffff);
1329         vmcs_write32(sf->ar_bytes, 0xf3);
1330 }
1331
1332 static void enter_rmode(struct kvm_vcpu *vcpu)
1333 {
1334         unsigned long flags;
1335
1336         vcpu->arch.rmode.active = 1;
1337
1338         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1339         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1340
1341         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1342         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1343
1344         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1345         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1346
1347         flags = vmcs_readl(GUEST_RFLAGS);
1348         vcpu->arch.rmode.save_iopl
1349                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1350
1351         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1352
1353         vmcs_writel(GUEST_RFLAGS, flags);
1354         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1355         update_exception_bitmap(vcpu);
1356
1357         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1358         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1359         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1360
1361         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1362         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1363         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1364                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1365         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1366
1367         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1368         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1369         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1370         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1371
1372         kvm_mmu_reset_context(vcpu);
1373         init_rmode(vcpu->kvm);
1374 }
1375
1376 #ifdef CONFIG_X86_64
1377
1378 static void enter_lmode(struct kvm_vcpu *vcpu)
1379 {
1380         u32 guest_tr_ar;
1381
1382         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1383         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1384                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1385                        __func__);
1386                 vmcs_write32(GUEST_TR_AR_BYTES,
1387                              (guest_tr_ar & ~AR_TYPE_MASK)
1388                              | AR_TYPE_BUSY_64_TSS);
1389         }
1390
1391         vcpu->arch.shadow_efer |= EFER_LMA;
1392
1393         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1394         vmcs_write32(VM_ENTRY_CONTROLS,
1395                      vmcs_read32(VM_ENTRY_CONTROLS)
1396                      | VM_ENTRY_IA32E_MODE);
1397 }
1398
1399 static void exit_lmode(struct kvm_vcpu *vcpu)
1400 {
1401         vcpu->arch.shadow_efer &= ~EFER_LMA;
1402
1403         vmcs_write32(VM_ENTRY_CONTROLS,
1404                      vmcs_read32(VM_ENTRY_CONTROLS)
1405                      & ~VM_ENTRY_IA32E_MODE);
1406 }
1407
1408 #endif
1409
1410 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1411 {
1412         vpid_sync_vcpu_all(to_vmx(vcpu));
1413         if (vm_need_ept())
1414                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1415 }
1416
1417 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1418 {
1419         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1420         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1421 }
1422
1423 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1424 {
1425         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1426                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1427                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1428                         return;
1429                 }
1430                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1431                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1432                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1433                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1434         }
1435 }
1436
1437 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1438
1439 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1440                                         unsigned long cr0,
1441                                         struct kvm_vcpu *vcpu)
1442 {
1443         if (!(cr0 & X86_CR0_PG)) {
1444                 /* From paging/starting to nonpaging */
1445                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1446                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1447                              (CPU_BASED_CR3_LOAD_EXITING |
1448                               CPU_BASED_CR3_STORE_EXITING));
1449                 vcpu->arch.cr0 = cr0;
1450                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1451                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1452                 *hw_cr0 &= ~X86_CR0_WP;
1453         } else if (!is_paging(vcpu)) {
1454                 /* From nonpaging to paging */
1455                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1456                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1457                              ~(CPU_BASED_CR3_LOAD_EXITING |
1458                                CPU_BASED_CR3_STORE_EXITING));
1459                 vcpu->arch.cr0 = cr0;
1460                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1461                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1462                         *hw_cr0 &= ~X86_CR0_WP;
1463         }
1464 }
1465
1466 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1467                                         struct kvm_vcpu *vcpu)
1468 {
1469         if (!is_paging(vcpu)) {
1470                 *hw_cr4 &= ~X86_CR4_PAE;
1471                 *hw_cr4 |= X86_CR4_PSE;
1472         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1473                 *hw_cr4 &= ~X86_CR4_PAE;
1474 }
1475
1476 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1477 {
1478         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1479                                 KVM_VM_CR0_ALWAYS_ON;
1480
1481         vmx_fpu_deactivate(vcpu);
1482
1483         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1484                 enter_pmode(vcpu);
1485
1486         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1487                 enter_rmode(vcpu);
1488
1489 #ifdef CONFIG_X86_64
1490         if (vcpu->arch.shadow_efer & EFER_LME) {
1491                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1492                         enter_lmode(vcpu);
1493                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1494                         exit_lmode(vcpu);
1495         }
1496 #endif
1497
1498         if (vm_need_ept())
1499                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1500
1501         vmcs_writel(CR0_READ_SHADOW, cr0);
1502         vmcs_writel(GUEST_CR0, hw_cr0);
1503         vcpu->arch.cr0 = cr0;
1504
1505         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1506                 vmx_fpu_activate(vcpu);
1507 }
1508
1509 static u64 construct_eptp(unsigned long root_hpa)
1510 {
1511         u64 eptp;
1512
1513         /* TODO write the value reading from MSR */
1514         eptp = VMX_EPT_DEFAULT_MT |
1515                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1516         eptp |= (root_hpa & PAGE_MASK);
1517
1518         return eptp;
1519 }
1520
1521 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1522 {
1523         unsigned long guest_cr3;
1524         u64 eptp;
1525
1526         guest_cr3 = cr3;
1527         if (vm_need_ept()) {
1528                 eptp = construct_eptp(cr3);
1529                 vmcs_write64(EPT_POINTER, eptp);
1530                 ept_sync_context(eptp);
1531                 ept_load_pdptrs(vcpu);
1532                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1533                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1534         }
1535
1536         vmx_flush_tlb(vcpu);
1537         vmcs_writel(GUEST_CR3, guest_cr3);
1538         if (vcpu->arch.cr0 & X86_CR0_PE)
1539                 vmx_fpu_deactivate(vcpu);
1540 }
1541
1542 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1543 {
1544         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1545                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1546
1547         vcpu->arch.cr4 = cr4;
1548         if (vm_need_ept())
1549                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1550
1551         vmcs_writel(CR4_READ_SHADOW, cr4);
1552         vmcs_writel(GUEST_CR4, hw_cr4);
1553 }
1554
1555 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1556 {
1557         struct vcpu_vmx *vmx = to_vmx(vcpu);
1558         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1559
1560         vcpu->arch.shadow_efer = efer;
1561         if (!msr)
1562                 return;
1563         if (efer & EFER_LMA) {
1564                 vmcs_write32(VM_ENTRY_CONTROLS,
1565                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1566                                      VM_ENTRY_IA32E_MODE);
1567                 msr->data = efer;
1568
1569         } else {
1570                 vmcs_write32(VM_ENTRY_CONTROLS,
1571                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1572                                      ~VM_ENTRY_IA32E_MODE);
1573
1574                 msr->data = efer & ~EFER_LME;
1575         }
1576         setup_msrs(vmx);
1577 }
1578
1579 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1580 {
1581         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1582
1583         return vmcs_readl(sf->base);
1584 }
1585
1586 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1587                             struct kvm_segment *var, int seg)
1588 {
1589         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1590         u32 ar;
1591
1592         var->base = vmcs_readl(sf->base);
1593         var->limit = vmcs_read32(sf->limit);
1594         var->selector = vmcs_read16(sf->selector);
1595         ar = vmcs_read32(sf->ar_bytes);
1596         if (ar & AR_UNUSABLE_MASK)
1597                 ar = 0;
1598         var->type = ar & 15;
1599         var->s = (ar >> 4) & 1;
1600         var->dpl = (ar >> 5) & 3;
1601         var->present = (ar >> 7) & 1;
1602         var->avl = (ar >> 12) & 1;
1603         var->l = (ar >> 13) & 1;
1604         var->db = (ar >> 14) & 1;
1605         var->g = (ar >> 15) & 1;
1606         var->unusable = (ar >> 16) & 1;
1607 }
1608
1609 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1610 {
1611         struct kvm_segment kvm_seg;
1612
1613         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1614                 return 0;
1615
1616         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1617                 return 3;
1618
1619         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1620         return kvm_seg.selector & 3;
1621 }
1622
1623 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1624 {
1625         u32 ar;
1626
1627         if (var->unusable)
1628                 ar = 1 << 16;
1629         else {
1630                 ar = var->type & 15;
1631                 ar |= (var->s & 1) << 4;
1632                 ar |= (var->dpl & 3) << 5;
1633                 ar |= (var->present & 1) << 7;
1634                 ar |= (var->avl & 1) << 12;
1635                 ar |= (var->l & 1) << 13;
1636                 ar |= (var->db & 1) << 14;
1637                 ar |= (var->g & 1) << 15;
1638         }
1639         if (ar == 0) /* a 0 value means unusable */
1640                 ar = AR_UNUSABLE_MASK;
1641
1642         return ar;
1643 }
1644
1645 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1646                             struct kvm_segment *var, int seg)
1647 {
1648         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1649         u32 ar;
1650
1651         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1652                 vcpu->arch.rmode.tr.selector = var->selector;
1653                 vcpu->arch.rmode.tr.base = var->base;
1654                 vcpu->arch.rmode.tr.limit = var->limit;
1655                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1656                 return;
1657         }
1658         vmcs_writel(sf->base, var->base);
1659         vmcs_write32(sf->limit, var->limit);
1660         vmcs_write16(sf->selector, var->selector);
1661         if (vcpu->arch.rmode.active && var->s) {
1662                 /*
1663                  * Hack real-mode segments into vm86 compatibility.
1664                  */
1665                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1666                         vmcs_writel(sf->base, 0xf0000);
1667                 ar = 0xf3;
1668         } else
1669                 ar = vmx_segment_access_rights(var);
1670         vmcs_write32(sf->ar_bytes, ar);
1671 }
1672
1673 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1674 {
1675         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1676
1677         *db = (ar >> 14) & 1;
1678         *l = (ar >> 13) & 1;
1679 }
1680
1681 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1682 {
1683         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1684         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1685 }
1686
1687 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1688 {
1689         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1690         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1691 }
1692
1693 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1694 {
1695         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1696         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1697 }
1698
1699 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1700 {
1701         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1702         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1703 }
1704
1705 static int init_rmode_tss(struct kvm *kvm)
1706 {
1707         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1708         u16 data = 0;
1709         int ret = 0;
1710         int r;
1711
1712         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1713         if (r < 0)
1714                 goto out;
1715         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1716         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1717         if (r < 0)
1718                 goto out;
1719         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1720         if (r < 0)
1721                 goto out;
1722         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1723         if (r < 0)
1724                 goto out;
1725         data = ~0;
1726         r = kvm_write_guest_page(kvm, fn, &data,
1727                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1728                                  sizeof(u8));
1729         if (r < 0)
1730                 goto out;
1731
1732         ret = 1;
1733 out:
1734         return ret;
1735 }
1736
1737 static int init_rmode_identity_map(struct kvm *kvm)
1738 {
1739         int i, r, ret;
1740         pfn_t identity_map_pfn;
1741         u32 tmp;
1742
1743         if (!vm_need_ept())
1744                 return 1;
1745         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1746                 printk(KERN_ERR "EPT: identity-mapping pagetable "
1747                         "haven't been allocated!\n");
1748                 return 0;
1749         }
1750         if (likely(kvm->arch.ept_identity_pagetable_done))
1751                 return 1;
1752         ret = 0;
1753         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1754         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1755         if (r < 0)
1756                 goto out;
1757         /* Set up identity-mapping pagetable for EPT in real mode */
1758         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1759                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1760                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1761                 r = kvm_write_guest_page(kvm, identity_map_pfn,
1762                                 &tmp, i * sizeof(tmp), sizeof(tmp));
1763                 if (r < 0)
1764                         goto out;
1765         }
1766         kvm->arch.ept_identity_pagetable_done = true;
1767         ret = 1;
1768 out:
1769         return ret;
1770 }
1771
1772 static void seg_setup(int seg)
1773 {
1774         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1775
1776         vmcs_write16(sf->selector, 0);
1777         vmcs_writel(sf->base, 0);
1778         vmcs_write32(sf->limit, 0xffff);
1779         vmcs_write32(sf->ar_bytes, 0x93);
1780 }
1781
1782 static int alloc_apic_access_page(struct kvm *kvm)
1783 {
1784         struct kvm_userspace_memory_region kvm_userspace_mem;
1785         int r = 0;
1786
1787         down_write(&kvm->slots_lock);
1788         if (kvm->arch.apic_access_page)
1789                 goto out;
1790         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1791         kvm_userspace_mem.flags = 0;
1792         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1793         kvm_userspace_mem.memory_size = PAGE_SIZE;
1794         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1795         if (r)
1796                 goto out;
1797
1798         down_read(&current->mm->mmap_sem);
1799         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1800         up_read(&current->mm->mmap_sem);
1801 out:
1802         up_write(&kvm->slots_lock);
1803         return r;
1804 }
1805
1806 static int alloc_identity_pagetable(struct kvm *kvm)
1807 {
1808         struct kvm_userspace_memory_region kvm_userspace_mem;
1809         int r = 0;
1810
1811         down_write(&kvm->slots_lock);
1812         if (kvm->arch.ept_identity_pagetable)
1813                 goto out;
1814         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1815         kvm_userspace_mem.flags = 0;
1816         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1817         kvm_userspace_mem.memory_size = PAGE_SIZE;
1818         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1819         if (r)
1820                 goto out;
1821
1822         down_read(&current->mm->mmap_sem);
1823         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1824                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1825         up_read(&current->mm->mmap_sem);
1826 out:
1827         up_write(&kvm->slots_lock);
1828         return r;
1829 }
1830
1831 static void allocate_vpid(struct vcpu_vmx *vmx)
1832 {
1833         int vpid;
1834
1835         vmx->vpid = 0;
1836         if (!enable_vpid || !cpu_has_vmx_vpid())
1837                 return;
1838         spin_lock(&vmx_vpid_lock);
1839         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1840         if (vpid < VMX_NR_VPIDS) {
1841                 vmx->vpid = vpid;
1842                 __set_bit(vpid, vmx_vpid_bitmap);
1843         }
1844         spin_unlock(&vmx_vpid_lock);
1845 }
1846
1847 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1848 {
1849         void *va;
1850
1851         if (!cpu_has_vmx_msr_bitmap())
1852                 return;
1853
1854         /*
1855          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1856          * have the write-low and read-high bitmap offsets the wrong way round.
1857          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1858          */
1859         va = kmap(msr_bitmap);
1860         if (msr <= 0x1fff) {
1861                 __clear_bit(msr, va + 0x000); /* read-low */
1862                 __clear_bit(msr, va + 0x800); /* write-low */
1863         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1864                 msr &= 0x1fff;
1865                 __clear_bit(msr, va + 0x400); /* read-high */
1866                 __clear_bit(msr, va + 0xc00); /* write-high */
1867         }
1868         kunmap(msr_bitmap);
1869 }
1870
1871 /*
1872  * Sets up the vmcs for emulated real mode.
1873  */
1874 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1875 {
1876         u32 host_sysenter_cs;
1877         u32 junk;
1878         unsigned long a;
1879         struct descriptor_table dt;
1880         int i;
1881         unsigned long kvm_vmx_return;
1882         u32 exec_control;
1883
1884         /* I/O */
1885         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1886         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1887
1888         if (cpu_has_vmx_msr_bitmap())
1889                 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1890
1891         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1892
1893         /* Control */
1894         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1895                 vmcs_config.pin_based_exec_ctrl);
1896
1897         exec_control = vmcs_config.cpu_based_exec_ctrl;
1898         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1899                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1900 #ifdef CONFIG_X86_64
1901                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1902                                 CPU_BASED_CR8_LOAD_EXITING;
1903 #endif
1904         }
1905         if (!vm_need_ept())
1906                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1907                                 CPU_BASED_CR3_LOAD_EXITING;
1908         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1909
1910         if (cpu_has_secondary_exec_ctrls()) {
1911                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1912                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1913                         exec_control &=
1914                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1915                 if (vmx->vpid == 0)
1916                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1917                 if (!vm_need_ept())
1918                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1919                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1920         }
1921
1922         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1923         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1924         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1925
1926         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1927         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1928         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1929
1930         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1931         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1932         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1933         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
1934         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
1935         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1936 #ifdef CONFIG_X86_64
1937         rdmsrl(MSR_FS_BASE, a);
1938         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1939         rdmsrl(MSR_GS_BASE, a);
1940         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1941 #else
1942         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1943         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1944 #endif
1945
1946         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1947
1948         kvm_get_idt(&dt);
1949         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1950
1951         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1952         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1953         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1954         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1955         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1956
1957         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1958         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1959         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1960         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1961         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1962         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1963
1964         for (i = 0; i < NR_VMX_MSR; ++i) {
1965                 u32 index = vmx_msr_index[i];
1966                 u32 data_low, data_high;
1967                 u64 data;
1968                 int j = vmx->nmsrs;
1969
1970                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1971                         continue;
1972                 if (wrmsr_safe(index, data_low, data_high) < 0)
1973                         continue;
1974                 data = data_low | ((u64)data_high << 32);
1975                 vmx->host_msrs[j].index = index;
1976                 vmx->host_msrs[j].reserved = 0;
1977                 vmx->host_msrs[j].data = data;
1978                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1979                 ++vmx->nmsrs;
1980         }
1981
1982         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1983
1984         /* 22.2.1, 20.8.1 */
1985         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1986
1987         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1988         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1989
1990
1991         return 0;
1992 }
1993
1994 static int init_rmode(struct kvm *kvm)
1995 {
1996         if (!init_rmode_tss(kvm))
1997                 return 0;
1998         if (!init_rmode_identity_map(kvm))
1999                 return 0;
2000         return 1;
2001 }
2002
2003 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2004 {
2005         struct vcpu_vmx *vmx = to_vmx(vcpu);
2006         u64 msr;
2007         int ret;
2008
2009         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2010         down_read(&vcpu->kvm->slots_lock);
2011         if (!init_rmode(vmx->vcpu.kvm)) {
2012                 ret = -ENOMEM;
2013                 goto out;
2014         }
2015
2016         vmx->vcpu.arch.rmode.active = 0;
2017
2018         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2019         kvm_set_cr8(&vmx->vcpu, 0);
2020         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2021         if (vmx->vcpu.vcpu_id == 0)
2022                 msr |= MSR_IA32_APICBASE_BSP;
2023         kvm_set_apic_base(&vmx->vcpu, msr);
2024
2025         fx_init(&vmx->vcpu);
2026
2027         /*
2028          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2029          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2030          */
2031         if (vmx->vcpu.vcpu_id == 0) {
2032                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2033                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2034         } else {
2035                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2036                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2037         }
2038         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2039         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2040
2041         seg_setup(VCPU_SREG_DS);
2042         seg_setup(VCPU_SREG_ES);
2043         seg_setup(VCPU_SREG_FS);
2044         seg_setup(VCPU_SREG_GS);
2045         seg_setup(VCPU_SREG_SS);
2046
2047         vmcs_write16(GUEST_TR_SELECTOR, 0);
2048         vmcs_writel(GUEST_TR_BASE, 0);
2049         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2050         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2051
2052         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2053         vmcs_writel(GUEST_LDTR_BASE, 0);
2054         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2055         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2056
2057         vmcs_write32(GUEST_SYSENTER_CS, 0);
2058         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2059         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2060
2061         vmcs_writel(GUEST_RFLAGS, 0x02);
2062         if (vmx->vcpu.vcpu_id == 0)
2063                 kvm_rip_write(vcpu, 0xfff0);
2064         else
2065                 kvm_rip_write(vcpu, 0);
2066         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2067
2068         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2069         vmcs_writel(GUEST_DR7, 0x400);
2070
2071         vmcs_writel(GUEST_GDTR_BASE, 0);
2072         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2073
2074         vmcs_writel(GUEST_IDTR_BASE, 0);
2075         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2076
2077         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2078         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2079         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2080
2081         guest_write_tsc(0);
2082
2083         /* Special registers */
2084         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2085
2086         setup_msrs(vmx);
2087
2088         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2089
2090         if (cpu_has_vmx_tpr_shadow()) {
2091                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2092                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2093                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2094                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2095                 vmcs_write32(TPR_THRESHOLD, 0);
2096         }
2097
2098         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2099                 vmcs_write64(APIC_ACCESS_ADDR,
2100                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2101
2102         if (vmx->vpid != 0)
2103                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2104
2105         vmx->vcpu.arch.cr0 = 0x60000010;
2106         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2107         vmx_set_cr4(&vmx->vcpu, 0);
2108         vmx_set_efer(&vmx->vcpu, 0);
2109         vmx_fpu_activate(&vmx->vcpu);
2110         update_exception_bitmap(&vmx->vcpu);
2111
2112         vpid_sync_vcpu_all(vmx);
2113
2114         ret = 0;
2115
2116 out:
2117         up_read(&vcpu->kvm->slots_lock);
2118         return ret;
2119 }
2120
2121 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2122 {
2123         struct vcpu_vmx *vmx = to_vmx(vcpu);
2124
2125         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2126
2127         if (vcpu->arch.rmode.active) {
2128                 vmx->rmode.irq.pending = true;
2129                 vmx->rmode.irq.vector = irq;
2130                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2131                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2132                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2133                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2134                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2135                 return;
2136         }
2137         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2138                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2139 }
2140
2141 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2142 {
2143         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2144                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2145 }
2146
2147 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2148 {
2149         int word_index = __ffs(vcpu->arch.irq_summary);
2150         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2151         int irq = word_index * BITS_PER_LONG + bit_index;
2152
2153         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2154         if (!vcpu->arch.irq_pending[word_index])
2155                 clear_bit(word_index, &vcpu->arch.irq_summary);
2156         vmx_inject_irq(vcpu, irq);
2157 }
2158
2159
2160 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2161                                        struct kvm_run *kvm_run)
2162 {
2163         u32 cpu_based_vm_exec_control;
2164
2165         vcpu->arch.interrupt_window_open =
2166                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2167                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2168
2169         if (vcpu->arch.interrupt_window_open &&
2170             vcpu->arch.irq_summary &&
2171             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2172                 /*
2173                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
2174                  */
2175                 kvm_do_inject_irq(vcpu);
2176
2177         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2178         if (!vcpu->arch.interrupt_window_open &&
2179             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2180                 /*
2181                  * Interrupts blocked.  Wait for unblock.
2182                  */
2183                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2184         else
2185                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2186         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2187 }
2188
2189 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2190 {
2191         int ret;
2192         struct kvm_userspace_memory_region tss_mem = {
2193                 .slot = 8,
2194                 .guest_phys_addr = addr,
2195                 .memory_size = PAGE_SIZE * 3,
2196                 .flags = 0,
2197         };
2198
2199         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2200         if (ret)
2201                 return ret;
2202         kvm->arch.tss_addr = addr;
2203         return 0;
2204 }
2205
2206 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2207 {
2208         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2209
2210         set_debugreg(dbg->bp[0], 0);
2211         set_debugreg(dbg->bp[1], 1);
2212         set_debugreg(dbg->bp[2], 2);
2213         set_debugreg(dbg->bp[3], 3);
2214
2215         if (dbg->singlestep) {
2216                 unsigned long flags;
2217
2218                 flags = vmcs_readl(GUEST_RFLAGS);
2219                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2220                 vmcs_writel(GUEST_RFLAGS, flags);
2221         }
2222 }
2223
2224 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2225                                   int vec, u32 err_code)
2226 {
2227         if (!vcpu->arch.rmode.active)
2228                 return 0;
2229
2230         /*
2231          * Instruction with address size override prefix opcode 0x67
2232          * Cause the #SS fault with 0 error code in VM86 mode.
2233          */
2234         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2235                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2236                         return 1;
2237         return 0;
2238 }
2239
2240 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2241 {
2242         struct vcpu_vmx *vmx = to_vmx(vcpu);
2243         u32 intr_info, error_code;
2244         unsigned long cr2, rip;
2245         u32 vect_info;
2246         enum emulation_result er;
2247
2248         vect_info = vmx->idt_vectoring_info;
2249         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2250
2251         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2252                                                 !is_page_fault(intr_info))
2253                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2254                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2255
2256         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2257                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2258                 set_bit(irq, vcpu->arch.irq_pending);
2259                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2260         }
2261
2262         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2263                 return 1;  /* already handled by vmx_vcpu_run() */
2264
2265         if (is_no_device(intr_info)) {
2266                 vmx_fpu_activate(vcpu);
2267                 return 1;
2268         }
2269
2270         if (is_invalid_opcode(intr_info)) {
2271                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2272                 if (er != EMULATE_DONE)
2273                         kvm_queue_exception(vcpu, UD_VECTOR);
2274                 return 1;
2275         }
2276
2277         error_code = 0;
2278         rip = kvm_rip_read(vcpu);
2279         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2280                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2281         if (is_page_fault(intr_info)) {
2282                 /* EPT won't cause page fault directly */
2283                 if (vm_need_ept())
2284                         BUG();
2285                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2286                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2287                             (u32)((u64)cr2 >> 32), handler);
2288                 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2289                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2290                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2291         }
2292
2293         if (vcpu->arch.rmode.active &&
2294             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2295                                                                 error_code)) {
2296                 if (vcpu->arch.halt_request) {
2297                         vcpu->arch.halt_request = 0;
2298                         return kvm_emulate_halt(vcpu);
2299                 }
2300                 return 1;
2301         }
2302
2303         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2304             (INTR_TYPE_EXCEPTION | 1)) {
2305                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2306                 return 0;
2307         }
2308         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2309         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2310         kvm_run->ex.error_code = error_code;
2311         return 0;
2312 }
2313
2314 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2315                                      struct kvm_run *kvm_run)
2316 {
2317         ++vcpu->stat.irq_exits;
2318         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2319         return 1;
2320 }
2321
2322 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2323 {
2324         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2325         return 0;
2326 }
2327
2328 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2329 {
2330         unsigned long exit_qualification;
2331         int size, down, in, string, rep;
2332         unsigned port;
2333
2334         ++vcpu->stat.io_exits;
2335         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2336         string = (exit_qualification & 16) != 0;
2337
2338         if (string) {
2339                 if (emulate_instruction(vcpu,
2340                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2341                         return 0;
2342                 return 1;
2343         }
2344
2345         size = (exit_qualification & 7) + 1;
2346         in = (exit_qualification & 8) != 0;
2347         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2348         rep = (exit_qualification & 32) != 0;
2349         port = exit_qualification >> 16;
2350
2351         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2352 }
2353
2354 static void
2355 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2356 {
2357         /*
2358          * Patch in the VMCALL instruction:
2359          */
2360         hypercall[0] = 0x0f;
2361         hypercall[1] = 0x01;
2362         hypercall[2] = 0xc1;
2363 }
2364
2365 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2366 {
2367         unsigned long exit_qualification;
2368         int cr;
2369         int reg;
2370
2371         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2372         cr = exit_qualification & 15;
2373         reg = (exit_qualification >> 8) & 15;
2374         switch ((exit_qualification >> 4) & 3) {
2375         case 0: /* mov to cr */
2376                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2377                             (u32)kvm_register_read(vcpu, reg),
2378                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2379                             handler);
2380                 switch (cr) {
2381                 case 0:
2382                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2383                         skip_emulated_instruction(vcpu);
2384                         return 1;
2385                 case 3:
2386                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2387                         skip_emulated_instruction(vcpu);
2388                         return 1;
2389                 case 4:
2390                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2391                         skip_emulated_instruction(vcpu);
2392                         return 1;
2393                 case 8:
2394                         kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2395                         skip_emulated_instruction(vcpu);
2396                         if (irqchip_in_kernel(vcpu->kvm))
2397                                 return 1;
2398                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2399                         return 0;
2400                 };
2401                 break;
2402         case 2: /* clts */
2403                 vmx_fpu_deactivate(vcpu);
2404                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2405                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2406                 vmx_fpu_activate(vcpu);
2407                 KVMTRACE_0D(CLTS, vcpu, handler);
2408                 skip_emulated_instruction(vcpu);
2409                 return 1;
2410         case 1: /*mov from cr*/
2411                 switch (cr) {
2412                 case 3:
2413                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2414                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2415                                     (u32)kvm_register_read(vcpu, reg),
2416                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2417                                     handler);
2418                         skip_emulated_instruction(vcpu);
2419                         return 1;
2420                 case 8:
2421                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2422                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2423                                     (u32)kvm_register_read(vcpu, reg), handler);
2424                         skip_emulated_instruction(vcpu);
2425                         return 1;
2426                 }
2427                 break;
2428         case 3: /* lmsw */
2429                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2430
2431                 skip_emulated_instruction(vcpu);
2432                 return 1;
2433         default:
2434                 break;
2435         }
2436         kvm_run->exit_reason = 0;
2437         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2438                (int)(exit_qualification >> 4) & 3, cr);
2439         return 0;
2440 }
2441
2442 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2443 {
2444         unsigned long exit_qualification;
2445         unsigned long val;
2446         int dr, reg;
2447
2448         /*
2449          * FIXME: this code assumes the host is debugging the guest.
2450          *        need to deal with guest debugging itself too.
2451          */
2452         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2453         dr = exit_qualification & 7;
2454         reg = (exit_qualification >> 8) & 15;
2455         if (exit_qualification & 16) {
2456                 /* mov from dr */
2457                 switch (dr) {
2458                 case 6:
2459                         val = 0xffff0ff0;
2460                         break;
2461                 case 7:
2462                         val = 0x400;
2463                         break;
2464                 default:
2465                         val = 0;
2466                 }
2467                 kvm_register_write(vcpu, reg, val);
2468                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2469         } else {
2470                 /* mov to dr */
2471         }
2472         skip_emulated_instruction(vcpu);
2473         return 1;
2474 }
2475
2476 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2477 {
2478         kvm_emulate_cpuid(vcpu);
2479         return 1;
2480 }
2481
2482 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2483 {
2484         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2485         u64 data;
2486
2487         if (vmx_get_msr(vcpu, ecx, &data)) {
2488                 kvm_inject_gp(vcpu, 0);
2489                 return 1;
2490         }
2491
2492         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2493                     handler);
2494
2495         /* FIXME: handling of bits 32:63 of rax, rdx */
2496         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2497         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2498         skip_emulated_instruction(vcpu);
2499         return 1;
2500 }
2501
2502 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2503 {
2504         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2505         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2506                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2507
2508         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2509                     handler);
2510
2511         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2512                 kvm_inject_gp(vcpu, 0);
2513                 return 1;
2514         }
2515
2516         skip_emulated_instruction(vcpu);
2517         return 1;
2518 }
2519
2520 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2521                                       struct kvm_run *kvm_run)
2522 {
2523         return 1;
2524 }
2525
2526 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2527                                    struct kvm_run *kvm_run)
2528 {
2529         u32 cpu_based_vm_exec_control;
2530
2531         /* clear pending irq */
2532         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2533         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2534         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2535
2536         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2537
2538         /*
2539          * If the user space waits to inject interrupts, exit as soon as
2540          * possible
2541          */
2542         if (kvm_run->request_interrupt_window &&
2543             !vcpu->arch.irq_summary) {
2544                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2545                 ++vcpu->stat.irq_window_exits;
2546                 return 0;
2547         }
2548         return 1;
2549 }
2550
2551 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2552 {
2553         skip_emulated_instruction(vcpu);
2554         return kvm_emulate_halt(vcpu);
2555 }
2556
2557 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2558 {
2559         skip_emulated_instruction(vcpu);
2560         kvm_emulate_hypercall(vcpu);
2561         return 1;
2562 }
2563
2564 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2565 {
2566         skip_emulated_instruction(vcpu);
2567         /* TODO: Add support for VT-d/pass-through device */
2568         return 1;
2569 }
2570
2571 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2572 {
2573         u64 exit_qualification;
2574         enum emulation_result er;
2575         unsigned long offset;
2576
2577         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2578         offset = exit_qualification & 0xffful;
2579
2580         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2581
2582         if (er !=  EMULATE_DONE) {
2583                 printk(KERN_ERR
2584                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2585                        offset);
2586                 return -ENOTSUPP;
2587         }
2588         return 1;
2589 }
2590
2591 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2592 {
2593         unsigned long exit_qualification;
2594         u16 tss_selector;
2595         int reason;
2596
2597         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2598
2599         reason = (u32)exit_qualification >> 30;
2600         tss_selector = exit_qualification;
2601
2602         return kvm_task_switch(vcpu, tss_selector, reason);
2603 }
2604
2605 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2606 {
2607         u64 exit_qualification;
2608         enum emulation_result er;
2609         gpa_t gpa;
2610         unsigned long hva;
2611         int gla_validity;
2612         int r;
2613
2614         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2615
2616         if (exit_qualification & (1 << 6)) {
2617                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2618                 return -ENOTSUPP;
2619         }
2620
2621         gla_validity = (exit_qualification >> 7) & 0x3;
2622         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2623                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2624                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2625                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2626                         (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2627                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2628                         (long unsigned int)exit_qualification);
2629                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2630                 kvm_run->hw.hardware_exit_reason = 0;
2631                 return -ENOTSUPP;
2632         }
2633
2634         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2635         hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2636         if (!kvm_is_error_hva(hva)) {
2637                 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2638                 if (r < 0) {
2639                         printk(KERN_ERR "EPT: Not enough memory!\n");
2640                         return -ENOMEM;
2641                 }
2642                 return 1;
2643         } else {
2644                 /* must be MMIO */
2645                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2646
2647                 if (er == EMULATE_FAIL) {
2648                         printk(KERN_ERR
2649                          "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2650                          er);
2651                         printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2652                          (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2653                          (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2654                         printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2655                                 (long unsigned int)exit_qualification);
2656                         return -ENOTSUPP;
2657                 } else if (er == EMULATE_DO_MMIO)
2658                         return 0;
2659         }
2660         return 1;
2661 }
2662
2663 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2664 {
2665         u32 cpu_based_vm_exec_control;
2666
2667         /* clear pending NMI */
2668         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2669         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2670         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2671         ++vcpu->stat.nmi_window_exits;
2672
2673         return 1;
2674 }
2675
2676 /*
2677  * The exit handlers return 1 if the exit was handled fully and guest execution
2678  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2679  * to be done to userspace and return 0.
2680  */
2681 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2682                                       struct kvm_run *kvm_run) = {
2683         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2684         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2685         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2686         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
2687         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2688         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2689         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2690         [EXIT_REASON_CPUID]                   = handle_cpuid,
2691         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2692         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2693         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2694         [EXIT_REASON_HLT]                     = handle_halt,
2695         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2696         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
2697         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
2698         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
2699         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
2700         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
2701 };
2702
2703 static const int kvm_vmx_max_exit_handlers =
2704         ARRAY_SIZE(kvm_vmx_exit_handlers);
2705
2706 /*
2707  * The guest has exited.  See if we can fix it or if we need userspace
2708  * assistance.
2709  */
2710 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2711 {
2712         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2713         struct vcpu_vmx *vmx = to_vmx(vcpu);
2714         u32 vectoring_info = vmx->idt_vectoring_info;
2715
2716         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
2717                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
2718
2719         /* Access CR3 don't cause VMExit in paging mode, so we need
2720          * to sync with guest real CR3. */
2721         if (vm_need_ept() && is_paging(vcpu)) {
2722                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2723                 ept_load_pdptrs(vcpu);
2724         }
2725
2726         if (unlikely(vmx->fail)) {
2727                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2728                 kvm_run->fail_entry.hardware_entry_failure_reason
2729                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2730                 return 0;
2731         }
2732
2733         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2734                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2735                         exit_reason != EXIT_REASON_EPT_VIOLATION))
2736                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2737                        "exit reason is 0x%x\n", __func__, exit_reason);
2738         if (exit_reason < kvm_vmx_max_exit_handlers
2739             && kvm_vmx_exit_handlers[exit_reason])
2740                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2741         else {
2742                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2743                 kvm_run->hw.hardware_exit_reason = exit_reason;
2744         }
2745         return 0;
2746 }
2747
2748 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2749 {
2750         int max_irr, tpr;
2751
2752         if (!vm_need_tpr_shadow(vcpu->kvm))
2753                 return;
2754
2755         if (!kvm_lapic_enabled(vcpu) ||
2756             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2757                 vmcs_write32(TPR_THRESHOLD, 0);
2758                 return;
2759         }
2760
2761         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2762         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2763 }
2764
2765 static void enable_irq_window(struct kvm_vcpu *vcpu)
2766 {
2767         u32 cpu_based_vm_exec_control;
2768
2769         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2770         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2771         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2772 }
2773
2774 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2775 {
2776         u32 cpu_based_vm_exec_control;
2777
2778         if (!cpu_has_virtual_nmis())
2779                 return;
2780
2781         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2782         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2783         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2784 }
2785
2786 static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
2787 {
2788         u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2789         return !(guest_intr & (GUEST_INTR_STATE_NMI |
2790                                GUEST_INTR_STATE_MOV_SS |
2791                                GUEST_INTR_STATE_STI));
2792 }
2793
2794 static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
2795 {
2796         u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2797         return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
2798                                GUEST_INTR_STATE_STI)) &&
2799                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2800 }
2801
2802 static void enable_intr_window(struct kvm_vcpu *vcpu)
2803 {
2804         if (vcpu->arch.nmi_pending)
2805                 enable_nmi_window(vcpu);
2806         else if (kvm_cpu_has_interrupt(vcpu))
2807                 enable_irq_window(vcpu);
2808 }
2809
2810 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
2811 {
2812         u32 exit_intr_info;
2813         u32 idt_vectoring_info;
2814         bool unblock_nmi;
2815         u8 vector;
2816         int type;
2817         bool idtv_info_valid;
2818         u32 error;
2819
2820         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2821         if (cpu_has_virtual_nmis()) {
2822                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
2823                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
2824                 /*
2825                  * SDM 3: 25.7.1.2
2826                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
2827                  * a guest IRET fault.
2828                  */
2829                 if (unblock_nmi && vector != DF_VECTOR)
2830                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2831                                       GUEST_INTR_STATE_NMI);
2832         }
2833
2834         idt_vectoring_info = vmx->idt_vectoring_info;
2835         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
2836         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
2837         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
2838         if (vmx->vcpu.arch.nmi_injected) {
2839                 /*
2840                  * SDM 3: 25.7.1.2
2841                  * Clear bit "block by NMI" before VM entry if a NMI delivery
2842                  * faulted.
2843                  */
2844                 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
2845                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2846                                         GUEST_INTR_STATE_NMI);
2847                 else
2848                         vmx->vcpu.arch.nmi_injected = false;
2849         }
2850         kvm_clear_exception_queue(&vmx->vcpu);
2851         if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
2852                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
2853                         error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
2854                         kvm_queue_exception_e(&vmx->vcpu, vector, error);
2855                 } else
2856                         kvm_queue_exception(&vmx->vcpu, vector);
2857                 vmx->idt_vectoring_info = 0;
2858         }
2859         kvm_clear_interrupt_queue(&vmx->vcpu);
2860         if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
2861                 kvm_queue_interrupt(&vmx->vcpu, vector);
2862                 vmx->idt_vectoring_info = 0;
2863         }
2864 }
2865
2866 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2867 {
2868         u32 intr_info_field;
2869
2870         update_tpr_threshold(vcpu);
2871
2872         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2873         if (cpu_has_virtual_nmis()) {
2874                 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2875                         if (vmx_nmi_enabled(vcpu)) {
2876                                 vcpu->arch.nmi_pending = false;
2877                                 vcpu->arch.nmi_injected = true;
2878                         } else {
2879                                 enable_intr_window(vcpu);
2880                                 return;
2881                         }
2882                 }
2883                 if (vcpu->arch.nmi_injected) {
2884                         vmx_inject_nmi(vcpu);
2885                         enable_intr_window(vcpu);
2886                         return;
2887                 }
2888         }
2889         if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
2890                 if (vmx_irq_enabled(vcpu))
2891                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
2892                 else
2893                         enable_irq_window(vcpu);
2894         }
2895         if (vcpu->arch.interrupt.pending) {
2896                 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2897                 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
2898         }
2899 }
2900
2901 /*
2902  * Failure to inject an interrupt should give us the information
2903  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
2904  * when fetching the interrupt redirection bitmap in the real-mode
2905  * tss, this doesn't happen.  So we do it ourselves.
2906  */
2907 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2908 {
2909         vmx->rmode.irq.pending = 0;
2910         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
2911                 return;
2912         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
2913         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2914                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2915                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2916                 return;
2917         }
2918         vmx->idt_vectoring_info =
2919                 VECTORING_INFO_VALID_MASK
2920                 | INTR_TYPE_EXT_INTR
2921                 | vmx->rmode.irq.vector;
2922 }
2923
2924 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2925 {
2926         struct vcpu_vmx *vmx = to_vmx(vcpu);
2927         u32 intr_info;
2928
2929         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
2930                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
2931         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
2932                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
2933
2934         /*
2935          * Loading guest fpu may have cleared host cr0.ts
2936          */
2937         vmcs_writel(HOST_CR0, read_cr0());
2938
2939         asm(
2940                 /* Store host registers */
2941 #ifdef CONFIG_X86_64
2942                 "push %%rdx; push %%rbp;"
2943                 "push %%rcx \n\t"
2944 #else
2945                 "push %%edx; push %%ebp;"
2946                 "push %%ecx \n\t"
2947 #endif
2948                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
2949                 /* Check if vmlaunch of vmresume is needed */
2950                 "cmpl $0, %c[launched](%0) \n\t"
2951                 /* Load guest registers.  Don't clobber flags. */
2952 #ifdef CONFIG_X86_64
2953                 "mov %c[cr2](%0), %%rax \n\t"
2954                 "mov %%rax, %%cr2 \n\t"
2955                 "mov %c[rax](%0), %%rax \n\t"
2956                 "mov %c[rbx](%0), %%rbx \n\t"
2957                 "mov %c[rdx](%0), %%rdx \n\t"
2958                 "mov %c[rsi](%0), %%rsi \n\t"
2959                 "mov %c[rdi](%0), %%rdi \n\t"
2960                 "mov %c[rbp](%0), %%rbp \n\t"
2961                 "mov %c[r8](%0),  %%r8  \n\t"
2962                 "mov %c[r9](%0),  %%r9  \n\t"
2963                 "mov %c[r10](%0), %%r10 \n\t"
2964                 "mov %c[r11](%0), %%r11 \n\t"
2965                 "mov %c[r12](%0), %%r12 \n\t"
2966                 "mov %c[r13](%0), %%r13 \n\t"
2967                 "mov %c[r14](%0), %%r14 \n\t"
2968                 "mov %c[r15](%0), %%r15 \n\t"
2969                 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2970 #else
2971                 "mov %c[cr2](%0), %%eax \n\t"
2972                 "mov %%eax,   %%cr2 \n\t"
2973                 "mov %c[rax](%0), %%eax \n\t"
2974                 "mov %c[rbx](%0), %%ebx \n\t"
2975                 "mov %c[rdx](%0), %%edx \n\t"
2976                 "mov %c[rsi](%0), %%esi \n\t"
2977                 "mov %c[rdi](%0), %%edi \n\t"
2978                 "mov %c[rbp](%0), %%ebp \n\t"
2979                 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2980 #endif
2981                 /* Enter guest mode */
2982                 "jne .Llaunched \n\t"
2983                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
2984                 "jmp .Lkvm_vmx_return \n\t"
2985                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
2986                 ".Lkvm_vmx_return: "
2987                 /* Save guest registers, load host registers, keep flags */
2988 #ifdef CONFIG_X86_64
2989                 "xchg %0,     (%%rsp) \n\t"
2990                 "mov %%rax, %c[rax](%0) \n\t"
2991                 "mov %%rbx, %c[rbx](%0) \n\t"
2992                 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2993                 "mov %%rdx, %c[rdx](%0) \n\t"
2994                 "mov %%rsi, %c[rsi](%0) \n\t"
2995                 "mov %%rdi, %c[rdi](%0) \n\t"
2996                 "mov %%rbp, %c[rbp](%0) \n\t"
2997                 "mov %%r8,  %c[r8](%0) \n\t"
2998                 "mov %%r9,  %c[r9](%0) \n\t"
2999                 "mov %%r10, %c[r10](%0) \n\t"
3000                 "mov %%r11, %c[r11](%0) \n\t"
3001                 "mov %%r12, %c[r12](%0) \n\t"
3002                 "mov %%r13, %c[r13](%0) \n\t"
3003                 "mov %%r14, %c[r14](%0) \n\t"
3004                 "mov %%r15, %c[r15](%0) \n\t"
3005                 "mov %%cr2, %%rax   \n\t"
3006                 "mov %%rax, %c[cr2](%0) \n\t"
3007
3008                 "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t"
3009 #else
3010                 "xchg %0, (%%esp) \n\t"
3011                 "mov %%eax, %c[rax](%0) \n\t"
3012                 "mov %%ebx, %c[rbx](%0) \n\t"
3013                 "pushl (%%esp); popl %c[rcx](%0) \n\t"
3014                 "mov %%edx, %c[rdx](%0) \n\t"
3015                 "mov %%esi, %c[rsi](%0) \n\t"
3016                 "mov %%edi, %c[rdi](%0) \n\t"
3017                 "mov %%ebp, %c[rbp](%0) \n\t"
3018                 "mov %%cr2, %%eax  \n\t"
3019                 "mov %%eax, %c[cr2](%0) \n\t"
3020
3021                 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
3022 #endif
3023                 "setbe %c[fail](%0) \n\t"
3024               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3025                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3026                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3027                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3028                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3029                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3030                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3031                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3032                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3033                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3034 #ifdef CONFIG_X86_64
3035                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3036                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3037                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3038                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3039                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3040                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3041                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3042                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3043 #endif
3044                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3045               : "cc", "memory"
3046 #ifdef CONFIG_X86_64
3047                 , "rbx", "rdi", "rsi"
3048                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3049 #else
3050                 , "ebx", "edi", "rsi"
3051 #endif
3052               );
3053
3054         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3055         vcpu->arch.regs_dirty = 0;
3056
3057         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3058         if (vmx->rmode.irq.pending)
3059                 fixup_rmode_irq(vmx);
3060
3061         vcpu->arch.interrupt_window_open =
3062                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3063                  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
3064
3065         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3066         vmx->launched = 1;
3067
3068         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3069
3070         /* We need to handle NMIs before interrupts are enabled */
3071         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
3072             (intr_info & INTR_INFO_VALID_MASK)) {
3073                 KVMTRACE_0D(NMI, vcpu, handler);
3074                 asm("int $2");
3075         }
3076
3077         vmx_complete_interrupts(vmx);
3078 }
3079
3080 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3081 {
3082         struct vcpu_vmx *vmx = to_vmx(vcpu);
3083
3084         if (vmx->vmcs) {
3085                 vcpu_clear(vmx);
3086                 free_vmcs(vmx->vmcs);
3087                 vmx->vmcs = NULL;
3088         }
3089 }
3090
3091 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3092 {
3093         struct vcpu_vmx *vmx = to_vmx(vcpu);
3094
3095         spin_lock(&vmx_vpid_lock);
3096         if (vmx->vpid != 0)
3097                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3098         spin_unlock(&vmx_vpid_lock);
3099         vmx_free_vmcs(vcpu);
3100         kfree(vmx->host_msrs);
3101         kfree(vmx->guest_msrs);
3102         kvm_vcpu_uninit(vcpu);
3103         kmem_cache_free(kvm_vcpu_cache, vmx);
3104 }
3105
3106 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3107 {
3108         int err;
3109         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3110         int cpu;
3111
3112         if (!vmx)
3113                 return ERR_PTR(-ENOMEM);
3114
3115         allocate_vpid(vmx);
3116
3117         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3118         if (err)
3119                 goto free_vcpu;
3120
3121         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3122         if (!vmx->guest_msrs) {
3123                 err = -ENOMEM;
3124                 goto uninit_vcpu;
3125         }
3126
3127         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3128         if (!vmx->host_msrs)
3129                 goto free_guest_msrs;
3130
3131         vmx->vmcs = alloc_vmcs();
3132         if (!vmx->vmcs)
3133                 goto free_msrs;
3134
3135         vmcs_clear(vmx->vmcs);
3136
3137         cpu = get_cpu();
3138         vmx_vcpu_load(&vmx->vcpu, cpu);
3139         err = vmx_vcpu_setup(vmx);
3140         vmx_vcpu_put(&vmx->vcpu);
3141         put_cpu();
3142         if (err)
3143                 goto free_vmcs;
3144         if (vm_need_virtualize_apic_accesses(kvm))
3145                 if (alloc_apic_access_page(kvm) != 0)
3146                         goto free_vmcs;
3147
3148         if (vm_need_ept())
3149                 if (alloc_identity_pagetable(kvm) != 0)
3150                         goto free_vmcs;
3151
3152         return &vmx->vcpu;
3153
3154 free_vmcs:
3155         free_vmcs(vmx->vmcs);
3156 free_msrs:
3157         kfree(vmx->host_msrs);
3158 free_guest_msrs:
3159         kfree(vmx->guest_msrs);
3160 uninit_vcpu:
3161         kvm_vcpu_uninit(&vmx->vcpu);
3162 free_vcpu:
3163         kmem_cache_free(kvm_vcpu_cache, vmx);
3164         return ERR_PTR(err);
3165 }
3166
3167 static void __init vmx_check_processor_compat(void *rtn)
3168 {
3169         struct vmcs_config vmcs_conf;
3170
3171         *(int *)rtn = 0;
3172         if (setup_vmcs_config(&vmcs_conf) < 0)
3173                 *(int *)rtn = -EIO;
3174         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3175                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3176                                 smp_processor_id());
3177                 *(int *)rtn = -EIO;
3178         }
3179 }
3180
3181 static int get_ept_level(void)
3182 {
3183         return VMX_EPT_DEFAULT_GAW + 1;
3184 }
3185
3186 static struct kvm_x86_ops vmx_x86_ops = {
3187         .cpu_has_kvm_support = cpu_has_kvm_support,
3188         .disabled_by_bios = vmx_disabled_by_bios,
3189         .hardware_setup = hardware_setup,
3190         .hardware_unsetup = hardware_unsetup,
3191         .check_processor_compatibility = vmx_check_processor_compat,
3192         .hardware_enable = hardware_enable,
3193         .hardware_disable = hardware_disable,
3194         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3195
3196         .vcpu_create = vmx_create_vcpu,
3197         .vcpu_free = vmx_free_vcpu,
3198         .vcpu_reset = vmx_vcpu_reset,
3199
3200         .prepare_guest_switch = vmx_save_host_state,
3201         .vcpu_load = vmx_vcpu_load,
3202         .vcpu_put = vmx_vcpu_put,
3203
3204         .set_guest_debug = set_guest_debug,
3205         .guest_debug_pre = kvm_guest_debug_pre,
3206         .get_msr = vmx_get_msr,
3207         .set_msr = vmx_set_msr,
3208         .get_segment_base = vmx_get_segment_base,
3209         .get_segment = vmx_get_segment,
3210         .set_segment = vmx_set_segment,
3211         .get_cpl = vmx_get_cpl,
3212         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3213         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3214         .set_cr0 = vmx_set_cr0,
3215         .set_cr3 = vmx_set_cr3,
3216         .set_cr4 = vmx_set_cr4,
3217         .set_efer = vmx_set_efer,
3218         .get_idt = vmx_get_idt,
3219         .set_idt = vmx_set_idt,
3220         .get_gdt = vmx_get_gdt,
3221         .set_gdt = vmx_set_gdt,
3222         .cache_reg = vmx_cache_reg,
3223         .get_rflags = vmx_get_rflags,
3224         .set_rflags = vmx_set_rflags,
3225
3226         .tlb_flush = vmx_flush_tlb,
3227
3228         .run = vmx_vcpu_run,
3229         .handle_exit = kvm_handle_exit,
3230         .skip_emulated_instruction = skip_emulated_instruction,
3231         .patch_hypercall = vmx_patch_hypercall,
3232         .get_irq = vmx_get_irq,
3233         .set_irq = vmx_inject_irq,
3234         .queue_exception = vmx_queue_exception,
3235         .exception_injected = vmx_exception_injected,
3236         .inject_pending_irq = vmx_intr_assist,
3237         .inject_pending_vectors = do_interrupt_requests,
3238
3239         .set_tss_addr = vmx_set_tss_addr,
3240         .get_tdp_level = get_ept_level,
3241 };
3242
3243 static int __init vmx_init(void)
3244 {
3245         void *va;
3246         int r;
3247
3248         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3249         if (!vmx_io_bitmap_a)
3250                 return -ENOMEM;
3251
3252         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3253         if (!vmx_io_bitmap_b) {
3254                 r = -ENOMEM;
3255                 goto out;
3256         }
3257
3258         vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3259         if (!vmx_msr_bitmap) {
3260                 r = -ENOMEM;
3261                 goto out1;
3262         }
3263
3264         /*
3265          * Allow direct access to the PC debug port (it is often used for I/O
3266          * delays, but the vmexits simply slow things down).
3267          */
3268         va = kmap(vmx_io_bitmap_a);
3269         memset(va, 0xff, PAGE_SIZE);
3270         clear_bit(0x80, va);
3271         kunmap(vmx_io_bitmap_a);
3272
3273         va = kmap(vmx_io_bitmap_b);
3274         memset(va, 0xff, PAGE_SIZE);
3275         kunmap(vmx_io_bitmap_b);
3276
3277         va = kmap(vmx_msr_bitmap);
3278         memset(va, 0xff, PAGE_SIZE);
3279         kunmap(vmx_msr_bitmap);
3280
3281         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3282
3283         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3284         if (r)
3285                 goto out2;
3286
3287         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3288         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3289         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3290         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3291         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3292
3293         if (vm_need_ept()) {
3294                 bypass_guest_pf = 0;
3295                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3296                         VMX_EPT_WRITABLE_MASK |
3297                         VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3298                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3299                                 VMX_EPT_EXECUTABLE_MASK);
3300                 kvm_enable_tdp();
3301         } else
3302                 kvm_disable_tdp();
3303
3304         if (bypass_guest_pf)
3305                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3306
3307         ept_sync_global();
3308
3309         return 0;
3310
3311 out2:
3312         __free_page(vmx_msr_bitmap);
3313 out1:
3314         __free_page(vmx_io_bitmap_b);
3315 out:
3316         __free_page(vmx_io_bitmap_a);
3317         return r;
3318 }
3319
3320 static void __exit vmx_exit(void)
3321 {
3322         __free_page(vmx_msr_bitmap);
3323         __free_page(vmx_io_bitmap_b);
3324         __free_page(vmx_io_bitmap_a);
3325
3326         kvm_exit();
3327 }
3328
3329 module_init(vmx_init)
3330 module_exit(vmx_exit)