KVM: Do not re-execute INTn instruction.
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 static int __read_mostly bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, S_IRUGO);
43
44 static int __read_mostly enable_vpid = 1;
45 module_param_named(vpid, enable_vpid, bool, 0444);
46
47 static int __read_mostly flexpriority_enabled = 1;
48 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
49
50 static int __read_mostly enable_ept = 1;
51 module_param_named(ept, enable_ept, bool, S_IRUGO);
52
53 static int __read_mostly emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
55
56 struct vmcs {
57         u32 revision_id;
58         u32 abort;
59         char data[0];
60 };
61
62 struct vcpu_vmx {
63         struct kvm_vcpu       vcpu;
64         struct list_head      local_vcpus_link;
65         unsigned long         host_rsp;
66         int                   launched;
67         u8                    fail;
68         u32                   idt_vectoring_info;
69         struct kvm_msr_entry *guest_msrs;
70         struct kvm_msr_entry *host_msrs;
71         int                   nmsrs;
72         int                   save_nmsrs;
73         int                   msr_offset_efer;
74 #ifdef CONFIG_X86_64
75         int                   msr_offset_kernel_gs_base;
76 #endif
77         struct vmcs          *vmcs;
78         struct {
79                 int           loaded;
80                 u16           fs_sel, gs_sel, ldt_sel;
81                 int           gs_ldt_reload_needed;
82                 int           fs_reload_needed;
83                 int           guest_efer_loaded;
84         } host_state;
85         struct {
86                 struct {
87                         bool pending;
88                         u8 vector;
89                         unsigned rip;
90                 } irq;
91         } rmode;
92         int vpid;
93         bool emulation_required;
94         enum emulation_result invalid_state_emulation_result;
95
96         /* Support for vnmi-less CPUs */
97         int soft_vnmi_blocked;
98         ktime_t entry_time;
99         s64 vnmi_blocked_time;
100 };
101
102 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
103 {
104         return container_of(vcpu, struct vcpu_vmx, vcpu);
105 }
106
107 static int init_rmode(struct kvm *kvm);
108 static u64 construct_eptp(unsigned long root_hpa);
109
110 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
111 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
112 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
113
114 static unsigned long *vmx_io_bitmap_a;
115 static unsigned long *vmx_io_bitmap_b;
116 static unsigned long *vmx_msr_bitmap_legacy;
117 static unsigned long *vmx_msr_bitmap_longmode;
118
119 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
120 static DEFINE_SPINLOCK(vmx_vpid_lock);
121
122 static struct vmcs_config {
123         int size;
124         int order;
125         u32 revision_id;
126         u32 pin_based_exec_ctrl;
127         u32 cpu_based_exec_ctrl;
128         u32 cpu_based_2nd_exec_ctrl;
129         u32 vmexit_ctrl;
130         u32 vmentry_ctrl;
131 } vmcs_config;
132
133 static struct vmx_capability {
134         u32 ept;
135         u32 vpid;
136 } vmx_capability;
137
138 #define VMX_SEGMENT_FIELD(seg)                                  \
139         [VCPU_SREG_##seg] = {                                   \
140                 .selector = GUEST_##seg##_SELECTOR,             \
141                 .base = GUEST_##seg##_BASE,                     \
142                 .limit = GUEST_##seg##_LIMIT,                   \
143                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
144         }
145
146 static struct kvm_vmx_segment_field {
147         unsigned selector;
148         unsigned base;
149         unsigned limit;
150         unsigned ar_bytes;
151 } kvm_vmx_segment_fields[] = {
152         VMX_SEGMENT_FIELD(CS),
153         VMX_SEGMENT_FIELD(DS),
154         VMX_SEGMENT_FIELD(ES),
155         VMX_SEGMENT_FIELD(FS),
156         VMX_SEGMENT_FIELD(GS),
157         VMX_SEGMENT_FIELD(SS),
158         VMX_SEGMENT_FIELD(TR),
159         VMX_SEGMENT_FIELD(LDTR),
160 };
161
162 /*
163  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
164  * away by decrementing the array size.
165  */
166 static const u32 vmx_msr_index[] = {
167 #ifdef CONFIG_X86_64
168         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
169 #endif
170         MSR_EFER, MSR_K6_STAR,
171 };
172 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
173
174 static void load_msrs(struct kvm_msr_entry *e, int n)
175 {
176         int i;
177
178         for (i = 0; i < n; ++i)
179                 wrmsrl(e[i].index, e[i].data);
180 }
181
182 static void save_msrs(struct kvm_msr_entry *e, int n)
183 {
184         int i;
185
186         for (i = 0; i < n; ++i)
187                 rdmsrl(e[i].index, e[i].data);
188 }
189
190 static inline int is_page_fault(u32 intr_info)
191 {
192         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193                              INTR_INFO_VALID_MASK)) ==
194                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int is_no_device(u32 intr_info)
198 {
199         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
200                              INTR_INFO_VALID_MASK)) ==
201                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
202 }
203
204 static inline int is_invalid_opcode(u32 intr_info)
205 {
206         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
207                              INTR_INFO_VALID_MASK)) ==
208                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
209 }
210
211 static inline int is_external_interrupt(u32 intr_info)
212 {
213         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
214                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
215 }
216
217 static inline int cpu_has_vmx_msr_bitmap(void)
218 {
219         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
220 }
221
222 static inline int cpu_has_vmx_tpr_shadow(void)
223 {
224         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
225 }
226
227 static inline int vm_need_tpr_shadow(struct kvm *kvm)
228 {
229         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
230 }
231
232 static inline int cpu_has_secondary_exec_ctrls(void)
233 {
234         return vmcs_config.cpu_based_exec_ctrl &
235                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
236 }
237
238 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
239 {
240         return vmcs_config.cpu_based_2nd_exec_ctrl &
241                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
242 }
243
244 static inline bool cpu_has_vmx_flexpriority(void)
245 {
246         return cpu_has_vmx_tpr_shadow() &&
247                 cpu_has_vmx_virtualize_apic_accesses();
248 }
249
250 static inline int cpu_has_vmx_invept_individual_addr(void)
251 {
252         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
253 }
254
255 static inline int cpu_has_vmx_invept_context(void)
256 {
257         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
258 }
259
260 static inline int cpu_has_vmx_invept_global(void)
261 {
262         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
263 }
264
265 static inline int cpu_has_vmx_ept(void)
266 {
267         return vmcs_config.cpu_based_2nd_exec_ctrl &
268                 SECONDARY_EXEC_ENABLE_EPT;
269 }
270
271 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
272 {
273         return flexpriority_enabled &&
274                 (cpu_has_vmx_virtualize_apic_accesses()) &&
275                 (irqchip_in_kernel(kvm));
276 }
277
278 static inline int cpu_has_vmx_vpid(void)
279 {
280         return vmcs_config.cpu_based_2nd_exec_ctrl &
281                 SECONDARY_EXEC_ENABLE_VPID;
282 }
283
284 static inline int cpu_has_virtual_nmis(void)
285 {
286         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
287 }
288
289 static inline bool report_flexpriority(void)
290 {
291         return flexpriority_enabled;
292 }
293
294 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
295 {
296         int i;
297
298         for (i = 0; i < vmx->nmsrs; ++i)
299                 if (vmx->guest_msrs[i].index == msr)
300                         return i;
301         return -1;
302 }
303
304 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
305 {
306     struct {
307         u64 vpid : 16;
308         u64 rsvd : 48;
309         u64 gva;
310     } operand = { vpid, 0, gva };
311
312     asm volatile (__ex(ASM_VMX_INVVPID)
313                   /* CF==1 or ZF==1 --> rc = -1 */
314                   "; ja 1f ; ud2 ; 1:"
315                   : : "a"(&operand), "c"(ext) : "cc", "memory");
316 }
317
318 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
319 {
320         struct {
321                 u64 eptp, gpa;
322         } operand = {eptp, gpa};
323
324         asm volatile (__ex(ASM_VMX_INVEPT)
325                         /* CF==1 or ZF==1 --> rc = -1 */
326                         "; ja 1f ; ud2 ; 1:\n"
327                         : : "a" (&operand), "c" (ext) : "cc", "memory");
328 }
329
330 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
331 {
332         int i;
333
334         i = __find_msr_index(vmx, msr);
335         if (i >= 0)
336                 return &vmx->guest_msrs[i];
337         return NULL;
338 }
339
340 static void vmcs_clear(struct vmcs *vmcs)
341 {
342         u64 phys_addr = __pa(vmcs);
343         u8 error;
344
345         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
346                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
347                       : "cc", "memory");
348         if (error)
349                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
350                        vmcs, phys_addr);
351 }
352
353 static void __vcpu_clear(void *arg)
354 {
355         struct vcpu_vmx *vmx = arg;
356         int cpu = raw_smp_processor_id();
357
358         if (vmx->vcpu.cpu == cpu)
359                 vmcs_clear(vmx->vmcs);
360         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
361                 per_cpu(current_vmcs, cpu) = NULL;
362         rdtscll(vmx->vcpu.arch.host_tsc);
363         list_del(&vmx->local_vcpus_link);
364         vmx->vcpu.cpu = -1;
365         vmx->launched = 0;
366 }
367
368 static void vcpu_clear(struct vcpu_vmx *vmx)
369 {
370         if (vmx->vcpu.cpu == -1)
371                 return;
372         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
373 }
374
375 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
376 {
377         if (vmx->vpid == 0)
378                 return;
379
380         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
381 }
382
383 static inline void ept_sync_global(void)
384 {
385         if (cpu_has_vmx_invept_global())
386                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
387 }
388
389 static inline void ept_sync_context(u64 eptp)
390 {
391         if (enable_ept) {
392                 if (cpu_has_vmx_invept_context())
393                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
394                 else
395                         ept_sync_global();
396         }
397 }
398
399 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
400 {
401         if (enable_ept) {
402                 if (cpu_has_vmx_invept_individual_addr())
403                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
404                                         eptp, gpa);
405                 else
406                         ept_sync_context(eptp);
407         }
408 }
409
410 static unsigned long vmcs_readl(unsigned long field)
411 {
412         unsigned long value;
413
414         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
415                       : "=a"(value) : "d"(field) : "cc");
416         return value;
417 }
418
419 static u16 vmcs_read16(unsigned long field)
420 {
421         return vmcs_readl(field);
422 }
423
424 static u32 vmcs_read32(unsigned long field)
425 {
426         return vmcs_readl(field);
427 }
428
429 static u64 vmcs_read64(unsigned long field)
430 {
431 #ifdef CONFIG_X86_64
432         return vmcs_readl(field);
433 #else
434         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
435 #endif
436 }
437
438 static noinline void vmwrite_error(unsigned long field, unsigned long value)
439 {
440         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
441                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
442         dump_stack();
443 }
444
445 static void vmcs_writel(unsigned long field, unsigned long value)
446 {
447         u8 error;
448
449         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
450                        : "=q"(error) : "a"(value), "d"(field) : "cc");
451         if (unlikely(error))
452                 vmwrite_error(field, value);
453 }
454
455 static void vmcs_write16(unsigned long field, u16 value)
456 {
457         vmcs_writel(field, value);
458 }
459
460 static void vmcs_write32(unsigned long field, u32 value)
461 {
462         vmcs_writel(field, value);
463 }
464
465 static void vmcs_write64(unsigned long field, u64 value)
466 {
467         vmcs_writel(field, value);
468 #ifndef CONFIG_X86_64
469         asm volatile ("");
470         vmcs_writel(field+1, value >> 32);
471 #endif
472 }
473
474 static void vmcs_clear_bits(unsigned long field, u32 mask)
475 {
476         vmcs_writel(field, vmcs_readl(field) & ~mask);
477 }
478
479 static void vmcs_set_bits(unsigned long field, u32 mask)
480 {
481         vmcs_writel(field, vmcs_readl(field) | mask);
482 }
483
484 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
485 {
486         u32 eb;
487
488         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
489         if (!vcpu->fpu_active)
490                 eb |= 1u << NM_VECTOR;
491         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
492                 if (vcpu->guest_debug &
493                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
494                         eb |= 1u << DB_VECTOR;
495                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
496                         eb |= 1u << BP_VECTOR;
497         }
498         if (vcpu->arch.rmode.active)
499                 eb = ~0;
500         if (enable_ept)
501                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
502         vmcs_write32(EXCEPTION_BITMAP, eb);
503 }
504
505 static void reload_tss(void)
506 {
507         /*
508          * VT restores TR but not its size.  Useless.
509          */
510         struct descriptor_table gdt;
511         struct desc_struct *descs;
512
513         kvm_get_gdt(&gdt);
514         descs = (void *)gdt.base;
515         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
516         load_TR_desc();
517 }
518
519 static void load_transition_efer(struct vcpu_vmx *vmx)
520 {
521         int efer_offset = vmx->msr_offset_efer;
522         u64 host_efer = vmx->host_msrs[efer_offset].data;
523         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
524         u64 ignore_bits;
525
526         if (efer_offset < 0)
527                 return;
528         /*
529          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
530          * outside long mode
531          */
532         ignore_bits = EFER_NX | EFER_SCE;
533 #ifdef CONFIG_X86_64
534         ignore_bits |= EFER_LMA | EFER_LME;
535         /* SCE is meaningful only in long mode on Intel */
536         if (guest_efer & EFER_LMA)
537                 ignore_bits &= ~(u64)EFER_SCE;
538 #endif
539         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
540                 return;
541
542         vmx->host_state.guest_efer_loaded = 1;
543         guest_efer &= ~ignore_bits;
544         guest_efer |= host_efer & ignore_bits;
545         wrmsrl(MSR_EFER, guest_efer);
546         vmx->vcpu.stat.efer_reload++;
547 }
548
549 static void reload_host_efer(struct vcpu_vmx *vmx)
550 {
551         if (vmx->host_state.guest_efer_loaded) {
552                 vmx->host_state.guest_efer_loaded = 0;
553                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
554         }
555 }
556
557 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
558 {
559         struct vcpu_vmx *vmx = to_vmx(vcpu);
560
561         if (vmx->host_state.loaded)
562                 return;
563
564         vmx->host_state.loaded = 1;
565         /*
566          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
567          * allow segment selectors with cpl > 0 or ti == 1.
568          */
569         vmx->host_state.ldt_sel = kvm_read_ldt();
570         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
571         vmx->host_state.fs_sel = kvm_read_fs();
572         if (!(vmx->host_state.fs_sel & 7)) {
573                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
574                 vmx->host_state.fs_reload_needed = 0;
575         } else {
576                 vmcs_write16(HOST_FS_SELECTOR, 0);
577                 vmx->host_state.fs_reload_needed = 1;
578         }
579         vmx->host_state.gs_sel = kvm_read_gs();
580         if (!(vmx->host_state.gs_sel & 7))
581                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
582         else {
583                 vmcs_write16(HOST_GS_SELECTOR, 0);
584                 vmx->host_state.gs_ldt_reload_needed = 1;
585         }
586
587 #ifdef CONFIG_X86_64
588         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
589         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
590 #else
591         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
592         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
593 #endif
594
595 #ifdef CONFIG_X86_64
596         if (is_long_mode(&vmx->vcpu))
597                 save_msrs(vmx->host_msrs +
598                           vmx->msr_offset_kernel_gs_base, 1);
599
600 #endif
601         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
602         load_transition_efer(vmx);
603 }
604
605 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
606 {
607         unsigned long flags;
608
609         if (!vmx->host_state.loaded)
610                 return;
611
612         ++vmx->vcpu.stat.host_state_reload;
613         vmx->host_state.loaded = 0;
614         if (vmx->host_state.fs_reload_needed)
615                 kvm_load_fs(vmx->host_state.fs_sel);
616         if (vmx->host_state.gs_ldt_reload_needed) {
617                 kvm_load_ldt(vmx->host_state.ldt_sel);
618                 /*
619                  * If we have to reload gs, we must take care to
620                  * preserve our gs base.
621                  */
622                 local_irq_save(flags);
623                 kvm_load_gs(vmx->host_state.gs_sel);
624 #ifdef CONFIG_X86_64
625                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
626 #endif
627                 local_irq_restore(flags);
628         }
629         reload_tss();
630         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
632         reload_host_efer(vmx);
633 }
634
635 static void vmx_load_host_state(struct vcpu_vmx *vmx)
636 {
637         preempt_disable();
638         __vmx_load_host_state(vmx);
639         preempt_enable();
640 }
641
642 /*
643  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
644  * vcpu mutex is already taken.
645  */
646 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
647 {
648         struct vcpu_vmx *vmx = to_vmx(vcpu);
649         u64 phys_addr = __pa(vmx->vmcs);
650         u64 tsc_this, delta, new_offset;
651
652         if (vcpu->cpu != cpu) {
653                 vcpu_clear(vmx);
654                 kvm_migrate_timers(vcpu);
655                 vpid_sync_vcpu_all(vmx);
656                 local_irq_disable();
657                 list_add(&vmx->local_vcpus_link,
658                          &per_cpu(vcpus_on_cpu, cpu));
659                 local_irq_enable();
660         }
661
662         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
663                 u8 error;
664
665                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
666                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
667                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
668                               : "cc");
669                 if (error)
670                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
671                                vmx->vmcs, phys_addr);
672         }
673
674         if (vcpu->cpu != cpu) {
675                 struct descriptor_table dt;
676                 unsigned long sysenter_esp;
677
678                 vcpu->cpu = cpu;
679                 /*
680                  * Linux uses per-cpu TSS and GDT, so set these when switching
681                  * processors.
682                  */
683                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
684                 kvm_get_gdt(&dt);
685                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
686
687                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
688                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
689
690                 /*
691                  * Make sure the time stamp counter is monotonous.
692                  */
693                 rdtscll(tsc_this);
694                 if (tsc_this < vcpu->arch.host_tsc) {
695                         delta = vcpu->arch.host_tsc - tsc_this;
696                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
697                         vmcs_write64(TSC_OFFSET, new_offset);
698                 }
699         }
700 }
701
702 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
703 {
704         __vmx_load_host_state(to_vmx(vcpu));
705 }
706
707 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
708 {
709         if (vcpu->fpu_active)
710                 return;
711         vcpu->fpu_active = 1;
712         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
713         if (vcpu->arch.cr0 & X86_CR0_TS)
714                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
715         update_exception_bitmap(vcpu);
716 }
717
718 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
719 {
720         if (!vcpu->fpu_active)
721                 return;
722         vcpu->fpu_active = 0;
723         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
724         update_exception_bitmap(vcpu);
725 }
726
727 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
728 {
729         return vmcs_readl(GUEST_RFLAGS);
730 }
731
732 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
733 {
734         if (vcpu->arch.rmode.active)
735                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
736         vmcs_writel(GUEST_RFLAGS, rflags);
737 }
738
739 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
740 {
741         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
742         int ret = 0;
743
744         if (interruptibility & GUEST_INTR_STATE_STI)
745                 ret |= X86_SHADOW_INT_STI;
746         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
747                 ret |= X86_SHADOW_INT_MOV_SS;
748
749         return ret & mask;
750 }
751
752 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
753 {
754         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
755         u32 interruptibility = interruptibility_old;
756
757         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
758
759         if (mask & X86_SHADOW_INT_MOV_SS)
760                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
761         if (mask & X86_SHADOW_INT_STI)
762                 interruptibility |= GUEST_INTR_STATE_STI;
763
764         if ((interruptibility != interruptibility_old))
765                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
766 }
767
768 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
769 {
770         unsigned long rip;
771
772         rip = kvm_rip_read(vcpu);
773         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
774         kvm_rip_write(vcpu, rip);
775
776         /* skipping an emulated instruction also counts */
777         vmx_set_interrupt_shadow(vcpu, 0);
778 }
779
780 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
781                                 bool has_error_code, u32 error_code)
782 {
783         struct vcpu_vmx *vmx = to_vmx(vcpu);
784         u32 intr_info = nr | INTR_INFO_VALID_MASK;
785
786         if (has_error_code) {
787                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
788                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
789         }
790
791         if (vcpu->arch.rmode.active) {
792                 vmx->rmode.irq.pending = true;
793                 vmx->rmode.irq.vector = nr;
794                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
795                 if (nr == BP_VECTOR || nr == OF_VECTOR)
796                         vmx->rmode.irq.rip++;
797                 intr_info |= INTR_TYPE_SOFT_INTR;
798                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
799                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
800                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
801                 return;
802         }
803
804         if (kvm_exception_is_soft(nr)) {
805                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
806                              vmx->vcpu.arch.event_exit_inst_len);
807                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
808         } else
809                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
810
811         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
812 }
813
814 /*
815  * Swap MSR entry in host/guest MSR entry array.
816  */
817 #ifdef CONFIG_X86_64
818 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
819 {
820         struct kvm_msr_entry tmp;
821
822         tmp = vmx->guest_msrs[to];
823         vmx->guest_msrs[to] = vmx->guest_msrs[from];
824         vmx->guest_msrs[from] = tmp;
825         tmp = vmx->host_msrs[to];
826         vmx->host_msrs[to] = vmx->host_msrs[from];
827         vmx->host_msrs[from] = tmp;
828 }
829 #endif
830
831 /*
832  * Set up the vmcs to automatically save and restore system
833  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
834  * mode, as fiddling with msrs is very expensive.
835  */
836 static void setup_msrs(struct vcpu_vmx *vmx)
837 {
838         int save_nmsrs;
839         unsigned long *msr_bitmap;
840
841         vmx_load_host_state(vmx);
842         save_nmsrs = 0;
843 #ifdef CONFIG_X86_64
844         if (is_long_mode(&vmx->vcpu)) {
845                 int index;
846
847                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
848                 if (index >= 0)
849                         move_msr_up(vmx, index, save_nmsrs++);
850                 index = __find_msr_index(vmx, MSR_LSTAR);
851                 if (index >= 0)
852                         move_msr_up(vmx, index, save_nmsrs++);
853                 index = __find_msr_index(vmx, MSR_CSTAR);
854                 if (index >= 0)
855                         move_msr_up(vmx, index, save_nmsrs++);
856                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
857                 if (index >= 0)
858                         move_msr_up(vmx, index, save_nmsrs++);
859                 /*
860                  * MSR_K6_STAR is only needed on long mode guests, and only
861                  * if efer.sce is enabled.
862                  */
863                 index = __find_msr_index(vmx, MSR_K6_STAR);
864                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
865                         move_msr_up(vmx, index, save_nmsrs++);
866         }
867 #endif
868         vmx->save_nmsrs = save_nmsrs;
869
870 #ifdef CONFIG_X86_64
871         vmx->msr_offset_kernel_gs_base =
872                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
873 #endif
874         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
875
876         if (cpu_has_vmx_msr_bitmap()) {
877                 if (is_long_mode(&vmx->vcpu))
878                         msr_bitmap = vmx_msr_bitmap_longmode;
879                 else
880                         msr_bitmap = vmx_msr_bitmap_legacy;
881
882                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
883         }
884 }
885
886 /*
887  * reads and returns guest's timestamp counter "register"
888  * guest_tsc = host_tsc + tsc_offset    -- 21.3
889  */
890 static u64 guest_read_tsc(void)
891 {
892         u64 host_tsc, tsc_offset;
893
894         rdtscll(host_tsc);
895         tsc_offset = vmcs_read64(TSC_OFFSET);
896         return host_tsc + tsc_offset;
897 }
898
899 /*
900  * writes 'guest_tsc' into guest's timestamp counter "register"
901  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
902  */
903 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
904 {
905         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
906 }
907
908 /*
909  * Reads an msr value (of 'msr_index') into 'pdata'.
910  * Returns 0 on success, non-0 otherwise.
911  * Assumes vcpu_load() was already called.
912  */
913 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
914 {
915         u64 data;
916         struct kvm_msr_entry *msr;
917
918         if (!pdata) {
919                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
920                 return -EINVAL;
921         }
922
923         switch (msr_index) {
924 #ifdef CONFIG_X86_64
925         case MSR_FS_BASE:
926                 data = vmcs_readl(GUEST_FS_BASE);
927                 break;
928         case MSR_GS_BASE:
929                 data = vmcs_readl(GUEST_GS_BASE);
930                 break;
931         case MSR_EFER:
932                 return kvm_get_msr_common(vcpu, msr_index, pdata);
933 #endif
934         case MSR_IA32_TIME_STAMP_COUNTER:
935                 data = guest_read_tsc();
936                 break;
937         case MSR_IA32_SYSENTER_CS:
938                 data = vmcs_read32(GUEST_SYSENTER_CS);
939                 break;
940         case MSR_IA32_SYSENTER_EIP:
941                 data = vmcs_readl(GUEST_SYSENTER_EIP);
942                 break;
943         case MSR_IA32_SYSENTER_ESP:
944                 data = vmcs_readl(GUEST_SYSENTER_ESP);
945                 break;
946         default:
947                 vmx_load_host_state(to_vmx(vcpu));
948                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
949                 if (msr) {
950                         data = msr->data;
951                         break;
952                 }
953                 return kvm_get_msr_common(vcpu, msr_index, pdata);
954         }
955
956         *pdata = data;
957         return 0;
958 }
959
960 /*
961  * Writes msr value into into the appropriate "register".
962  * Returns 0 on success, non-0 otherwise.
963  * Assumes vcpu_load() was already called.
964  */
965 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
966 {
967         struct vcpu_vmx *vmx = to_vmx(vcpu);
968         struct kvm_msr_entry *msr;
969         u64 host_tsc;
970         int ret = 0;
971
972         switch (msr_index) {
973         case MSR_EFER:
974                 vmx_load_host_state(vmx);
975                 ret = kvm_set_msr_common(vcpu, msr_index, data);
976                 break;
977 #ifdef CONFIG_X86_64
978         case MSR_FS_BASE:
979                 vmcs_writel(GUEST_FS_BASE, data);
980                 break;
981         case MSR_GS_BASE:
982                 vmcs_writel(GUEST_GS_BASE, data);
983                 break;
984 #endif
985         case MSR_IA32_SYSENTER_CS:
986                 vmcs_write32(GUEST_SYSENTER_CS, data);
987                 break;
988         case MSR_IA32_SYSENTER_EIP:
989                 vmcs_writel(GUEST_SYSENTER_EIP, data);
990                 break;
991         case MSR_IA32_SYSENTER_ESP:
992                 vmcs_writel(GUEST_SYSENTER_ESP, data);
993                 break;
994         case MSR_IA32_TIME_STAMP_COUNTER:
995                 rdtscll(host_tsc);
996                 guest_write_tsc(data, host_tsc);
997                 break;
998         case MSR_P6_PERFCTR0:
999         case MSR_P6_PERFCTR1:
1000         case MSR_P6_EVNTSEL0:
1001         case MSR_P6_EVNTSEL1:
1002                 /*
1003                  * Just discard all writes to the performance counters; this
1004                  * should keep both older linux and windows 64-bit guests
1005                  * happy
1006                  */
1007                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
1008
1009                 break;
1010         case MSR_IA32_CR_PAT:
1011                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1012                         vmcs_write64(GUEST_IA32_PAT, data);
1013                         vcpu->arch.pat = data;
1014                         break;
1015                 }
1016                 /* Otherwise falls through to kvm_set_msr_common */
1017         default:
1018                 vmx_load_host_state(vmx);
1019                 msr = find_msr_entry(vmx, msr_index);
1020                 if (msr) {
1021                         msr->data = data;
1022                         break;
1023                 }
1024                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1025         }
1026
1027         return ret;
1028 }
1029
1030 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1031 {
1032         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1033         switch (reg) {
1034         case VCPU_REGS_RSP:
1035                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1036                 break;
1037         case VCPU_REGS_RIP:
1038                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1039                 break;
1040         default:
1041                 break;
1042         }
1043 }
1044
1045 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1046 {
1047         int old_debug = vcpu->guest_debug;
1048         unsigned long flags;
1049
1050         vcpu->guest_debug = dbg->control;
1051         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1052                 vcpu->guest_debug = 0;
1053
1054         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1055                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1056         else
1057                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1058
1059         flags = vmcs_readl(GUEST_RFLAGS);
1060         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1061                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1062         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1063                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1064         vmcs_writel(GUEST_RFLAGS, flags);
1065
1066         update_exception_bitmap(vcpu);
1067
1068         return 0;
1069 }
1070
1071 static __init int cpu_has_kvm_support(void)
1072 {
1073         return cpu_has_vmx();
1074 }
1075
1076 static __init int vmx_disabled_by_bios(void)
1077 {
1078         u64 msr;
1079
1080         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1081         return (msr & (FEATURE_CONTROL_LOCKED |
1082                        FEATURE_CONTROL_VMXON_ENABLED))
1083             == FEATURE_CONTROL_LOCKED;
1084         /* locked but not enabled */
1085 }
1086
1087 static void hardware_enable(void *garbage)
1088 {
1089         int cpu = raw_smp_processor_id();
1090         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1091         u64 old;
1092
1093         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1094         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1095         if ((old & (FEATURE_CONTROL_LOCKED |
1096                     FEATURE_CONTROL_VMXON_ENABLED))
1097             != (FEATURE_CONTROL_LOCKED |
1098                 FEATURE_CONTROL_VMXON_ENABLED))
1099                 /* enable and lock */
1100                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1101                        FEATURE_CONTROL_LOCKED |
1102                        FEATURE_CONTROL_VMXON_ENABLED);
1103         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1104         asm volatile (ASM_VMX_VMXON_RAX
1105                       : : "a"(&phys_addr), "m"(phys_addr)
1106                       : "memory", "cc");
1107 }
1108
1109 static void vmclear_local_vcpus(void)
1110 {
1111         int cpu = raw_smp_processor_id();
1112         struct vcpu_vmx *vmx, *n;
1113
1114         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1115                                  local_vcpus_link)
1116                 __vcpu_clear(vmx);
1117 }
1118
1119
1120 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1121  * tricks.
1122  */
1123 static void kvm_cpu_vmxoff(void)
1124 {
1125         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1126         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1127 }
1128
1129 static void hardware_disable(void *garbage)
1130 {
1131         vmclear_local_vcpus();
1132         kvm_cpu_vmxoff();
1133 }
1134
1135 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1136                                       u32 msr, u32 *result)
1137 {
1138         u32 vmx_msr_low, vmx_msr_high;
1139         u32 ctl = ctl_min | ctl_opt;
1140
1141         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1142
1143         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1144         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1145
1146         /* Ensure minimum (required) set of control bits are supported. */
1147         if (ctl_min & ~ctl)
1148                 return -EIO;
1149
1150         *result = ctl;
1151         return 0;
1152 }
1153
1154 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1155 {
1156         u32 vmx_msr_low, vmx_msr_high;
1157         u32 min, opt, min2, opt2;
1158         u32 _pin_based_exec_control = 0;
1159         u32 _cpu_based_exec_control = 0;
1160         u32 _cpu_based_2nd_exec_control = 0;
1161         u32 _vmexit_control = 0;
1162         u32 _vmentry_control = 0;
1163
1164         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1165         opt = PIN_BASED_VIRTUAL_NMIS;
1166         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1167                                 &_pin_based_exec_control) < 0)
1168                 return -EIO;
1169
1170         min = CPU_BASED_HLT_EXITING |
1171 #ifdef CONFIG_X86_64
1172               CPU_BASED_CR8_LOAD_EXITING |
1173               CPU_BASED_CR8_STORE_EXITING |
1174 #endif
1175               CPU_BASED_CR3_LOAD_EXITING |
1176               CPU_BASED_CR3_STORE_EXITING |
1177               CPU_BASED_USE_IO_BITMAPS |
1178               CPU_BASED_MOV_DR_EXITING |
1179               CPU_BASED_USE_TSC_OFFSETING |
1180               CPU_BASED_INVLPG_EXITING;
1181         opt = CPU_BASED_TPR_SHADOW |
1182               CPU_BASED_USE_MSR_BITMAPS |
1183               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1184         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1185                                 &_cpu_based_exec_control) < 0)
1186                 return -EIO;
1187 #ifdef CONFIG_X86_64
1188         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1189                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1190                                            ~CPU_BASED_CR8_STORE_EXITING;
1191 #endif
1192         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1193                 min2 = 0;
1194                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1195                         SECONDARY_EXEC_WBINVD_EXITING |
1196                         SECONDARY_EXEC_ENABLE_VPID |
1197                         SECONDARY_EXEC_ENABLE_EPT;
1198                 if (adjust_vmx_controls(min2, opt2,
1199                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1200                                         &_cpu_based_2nd_exec_control) < 0)
1201                         return -EIO;
1202         }
1203 #ifndef CONFIG_X86_64
1204         if (!(_cpu_based_2nd_exec_control &
1205                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1206                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1207 #endif
1208         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1209                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1210                    enabled */
1211                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1212                          CPU_BASED_CR3_STORE_EXITING |
1213                          CPU_BASED_INVLPG_EXITING);
1214                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1215                                         &_cpu_based_exec_control) < 0)
1216                         return -EIO;
1217                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1218                       vmx_capability.ept, vmx_capability.vpid);
1219         }
1220
1221         min = 0;
1222 #ifdef CONFIG_X86_64
1223         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1224 #endif
1225         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1226         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1227                                 &_vmexit_control) < 0)
1228                 return -EIO;
1229
1230         min = 0;
1231         opt = VM_ENTRY_LOAD_IA32_PAT;
1232         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1233                                 &_vmentry_control) < 0)
1234                 return -EIO;
1235
1236         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1237
1238         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1239         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1240                 return -EIO;
1241
1242 #ifdef CONFIG_X86_64
1243         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1244         if (vmx_msr_high & (1u<<16))
1245                 return -EIO;
1246 #endif
1247
1248         /* Require Write-Back (WB) memory type for VMCS accesses. */
1249         if (((vmx_msr_high >> 18) & 15) != 6)
1250                 return -EIO;
1251
1252         vmcs_conf->size = vmx_msr_high & 0x1fff;
1253         vmcs_conf->order = get_order(vmcs_config.size);
1254         vmcs_conf->revision_id = vmx_msr_low;
1255
1256         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1257         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1258         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1259         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1260         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1261
1262         return 0;
1263 }
1264
1265 static struct vmcs *alloc_vmcs_cpu(int cpu)
1266 {
1267         int node = cpu_to_node(cpu);
1268         struct page *pages;
1269         struct vmcs *vmcs;
1270
1271         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1272         if (!pages)
1273                 return NULL;
1274         vmcs = page_address(pages);
1275         memset(vmcs, 0, vmcs_config.size);
1276         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1277         return vmcs;
1278 }
1279
1280 static struct vmcs *alloc_vmcs(void)
1281 {
1282         return alloc_vmcs_cpu(raw_smp_processor_id());
1283 }
1284
1285 static void free_vmcs(struct vmcs *vmcs)
1286 {
1287         free_pages((unsigned long)vmcs, vmcs_config.order);
1288 }
1289
1290 static void free_kvm_area(void)
1291 {
1292         int cpu;
1293
1294         for_each_online_cpu(cpu)
1295                 free_vmcs(per_cpu(vmxarea, cpu));
1296 }
1297
1298 static __init int alloc_kvm_area(void)
1299 {
1300         int cpu;
1301
1302         for_each_online_cpu(cpu) {
1303                 struct vmcs *vmcs;
1304
1305                 vmcs = alloc_vmcs_cpu(cpu);
1306                 if (!vmcs) {
1307                         free_kvm_area();
1308                         return -ENOMEM;
1309                 }
1310
1311                 per_cpu(vmxarea, cpu) = vmcs;
1312         }
1313         return 0;
1314 }
1315
1316 static __init int hardware_setup(void)
1317 {
1318         if (setup_vmcs_config(&vmcs_config) < 0)
1319                 return -EIO;
1320
1321         if (boot_cpu_has(X86_FEATURE_NX))
1322                 kvm_enable_efer_bits(EFER_NX);
1323
1324         if (!cpu_has_vmx_vpid())
1325                 enable_vpid = 0;
1326
1327         if (!cpu_has_vmx_ept())
1328                 enable_ept = 0;
1329
1330         if (!cpu_has_vmx_flexpriority())
1331                 flexpriority_enabled = 0;
1332
1333         if (!cpu_has_vmx_tpr_shadow())
1334                 kvm_x86_ops->update_cr8_intercept = NULL;
1335
1336         return alloc_kvm_area();
1337 }
1338
1339 static __exit void hardware_unsetup(void)
1340 {
1341         free_kvm_area();
1342 }
1343
1344 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1345 {
1346         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1347
1348         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1349                 vmcs_write16(sf->selector, save->selector);
1350                 vmcs_writel(sf->base, save->base);
1351                 vmcs_write32(sf->limit, save->limit);
1352                 vmcs_write32(sf->ar_bytes, save->ar);
1353         } else {
1354                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1355                         << AR_DPL_SHIFT;
1356                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1357         }
1358 }
1359
1360 static void enter_pmode(struct kvm_vcpu *vcpu)
1361 {
1362         unsigned long flags;
1363         struct vcpu_vmx *vmx = to_vmx(vcpu);
1364
1365         vmx->emulation_required = 1;
1366         vcpu->arch.rmode.active = 0;
1367
1368         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1369         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1370         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1371
1372         flags = vmcs_readl(GUEST_RFLAGS);
1373         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1374         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1375         vmcs_writel(GUEST_RFLAGS, flags);
1376
1377         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1378                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1379
1380         update_exception_bitmap(vcpu);
1381
1382         if (emulate_invalid_guest_state)
1383                 return;
1384
1385         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1386         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1387         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1388         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1389
1390         vmcs_write16(GUEST_SS_SELECTOR, 0);
1391         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1392
1393         vmcs_write16(GUEST_CS_SELECTOR,
1394                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1395         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1396 }
1397
1398 static gva_t rmode_tss_base(struct kvm *kvm)
1399 {
1400         if (!kvm->arch.tss_addr) {
1401                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1402                                  kvm->memslots[0].npages - 3;
1403                 return base_gfn << PAGE_SHIFT;
1404         }
1405         return kvm->arch.tss_addr;
1406 }
1407
1408 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1409 {
1410         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1411
1412         save->selector = vmcs_read16(sf->selector);
1413         save->base = vmcs_readl(sf->base);
1414         save->limit = vmcs_read32(sf->limit);
1415         save->ar = vmcs_read32(sf->ar_bytes);
1416         vmcs_write16(sf->selector, save->base >> 4);
1417         vmcs_write32(sf->base, save->base & 0xfffff);
1418         vmcs_write32(sf->limit, 0xffff);
1419         vmcs_write32(sf->ar_bytes, 0xf3);
1420 }
1421
1422 static void enter_rmode(struct kvm_vcpu *vcpu)
1423 {
1424         unsigned long flags;
1425         struct vcpu_vmx *vmx = to_vmx(vcpu);
1426
1427         vmx->emulation_required = 1;
1428         vcpu->arch.rmode.active = 1;
1429
1430         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1431         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1432
1433         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1434         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1435
1436         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1437         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1438
1439         flags = vmcs_readl(GUEST_RFLAGS);
1440         vcpu->arch.rmode.save_iopl
1441                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1442
1443         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1444
1445         vmcs_writel(GUEST_RFLAGS, flags);
1446         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1447         update_exception_bitmap(vcpu);
1448
1449         if (emulate_invalid_guest_state)
1450                 goto continue_rmode;
1451
1452         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1453         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1454         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1455
1456         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1457         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1458         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1459                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1460         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1461
1462         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1463         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1464         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1465         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1466
1467 continue_rmode:
1468         kvm_mmu_reset_context(vcpu);
1469         init_rmode(vcpu->kvm);
1470 }
1471
1472 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1473 {
1474         struct vcpu_vmx *vmx = to_vmx(vcpu);
1475         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1476
1477         vcpu->arch.shadow_efer = efer;
1478         if (!msr)
1479                 return;
1480         if (efer & EFER_LMA) {
1481                 vmcs_write32(VM_ENTRY_CONTROLS,
1482                              vmcs_read32(VM_ENTRY_CONTROLS) |
1483                              VM_ENTRY_IA32E_MODE);
1484                 msr->data = efer;
1485         } else {
1486                 vmcs_write32(VM_ENTRY_CONTROLS,
1487                              vmcs_read32(VM_ENTRY_CONTROLS) &
1488                              ~VM_ENTRY_IA32E_MODE);
1489
1490                 msr->data = efer & ~EFER_LME;
1491         }
1492         setup_msrs(vmx);
1493 }
1494
1495 #ifdef CONFIG_X86_64
1496
1497 static void enter_lmode(struct kvm_vcpu *vcpu)
1498 {
1499         u32 guest_tr_ar;
1500
1501         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1502         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1503                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1504                        __func__);
1505                 vmcs_write32(GUEST_TR_AR_BYTES,
1506                              (guest_tr_ar & ~AR_TYPE_MASK)
1507                              | AR_TYPE_BUSY_64_TSS);
1508         }
1509         vcpu->arch.shadow_efer |= EFER_LMA;
1510         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1511 }
1512
1513 static void exit_lmode(struct kvm_vcpu *vcpu)
1514 {
1515         vcpu->arch.shadow_efer &= ~EFER_LMA;
1516
1517         vmcs_write32(VM_ENTRY_CONTROLS,
1518                      vmcs_read32(VM_ENTRY_CONTROLS)
1519                      & ~VM_ENTRY_IA32E_MODE);
1520 }
1521
1522 #endif
1523
1524 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1525 {
1526         vpid_sync_vcpu_all(to_vmx(vcpu));
1527         if (enable_ept)
1528                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1529 }
1530
1531 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1532 {
1533         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1534         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1535 }
1536
1537 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1538 {
1539         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1540                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1541                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1542                         return;
1543                 }
1544                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1545                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1546                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1547                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1548         }
1549 }
1550
1551 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1552
1553 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1554                                         unsigned long cr0,
1555                                         struct kvm_vcpu *vcpu)
1556 {
1557         if (!(cr0 & X86_CR0_PG)) {
1558                 /* From paging/starting to nonpaging */
1559                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1560                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1561                              (CPU_BASED_CR3_LOAD_EXITING |
1562                               CPU_BASED_CR3_STORE_EXITING));
1563                 vcpu->arch.cr0 = cr0;
1564                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1565                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1566                 *hw_cr0 &= ~X86_CR0_WP;
1567         } else if (!is_paging(vcpu)) {
1568                 /* From nonpaging to paging */
1569                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1570                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1571                              ~(CPU_BASED_CR3_LOAD_EXITING |
1572                                CPU_BASED_CR3_STORE_EXITING));
1573                 vcpu->arch.cr0 = cr0;
1574                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1575                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1576                         *hw_cr0 &= ~X86_CR0_WP;
1577         }
1578 }
1579
1580 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1581                                         struct kvm_vcpu *vcpu)
1582 {
1583         if (!is_paging(vcpu)) {
1584                 *hw_cr4 &= ~X86_CR4_PAE;
1585                 *hw_cr4 |= X86_CR4_PSE;
1586         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1587                 *hw_cr4 &= ~X86_CR4_PAE;
1588 }
1589
1590 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1591 {
1592         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1593                                 KVM_VM_CR0_ALWAYS_ON;
1594
1595         vmx_fpu_deactivate(vcpu);
1596
1597         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1598                 enter_pmode(vcpu);
1599
1600         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1601                 enter_rmode(vcpu);
1602
1603 #ifdef CONFIG_X86_64
1604         if (vcpu->arch.shadow_efer & EFER_LME) {
1605                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1606                         enter_lmode(vcpu);
1607                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1608                         exit_lmode(vcpu);
1609         }
1610 #endif
1611
1612         if (enable_ept)
1613                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1614
1615         vmcs_writel(CR0_READ_SHADOW, cr0);
1616         vmcs_writel(GUEST_CR0, hw_cr0);
1617         vcpu->arch.cr0 = cr0;
1618
1619         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1620                 vmx_fpu_activate(vcpu);
1621 }
1622
1623 static u64 construct_eptp(unsigned long root_hpa)
1624 {
1625         u64 eptp;
1626
1627         /* TODO write the value reading from MSR */
1628         eptp = VMX_EPT_DEFAULT_MT |
1629                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1630         eptp |= (root_hpa & PAGE_MASK);
1631
1632         return eptp;
1633 }
1634
1635 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1636 {
1637         unsigned long guest_cr3;
1638         u64 eptp;
1639
1640         guest_cr3 = cr3;
1641         if (enable_ept) {
1642                 eptp = construct_eptp(cr3);
1643                 vmcs_write64(EPT_POINTER, eptp);
1644                 ept_sync_context(eptp);
1645                 ept_load_pdptrs(vcpu);
1646                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1647                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1648         }
1649
1650         vmx_flush_tlb(vcpu);
1651         vmcs_writel(GUEST_CR3, guest_cr3);
1652         if (vcpu->arch.cr0 & X86_CR0_PE)
1653                 vmx_fpu_deactivate(vcpu);
1654 }
1655
1656 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1657 {
1658         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1659                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1660
1661         vcpu->arch.cr4 = cr4;
1662         if (enable_ept)
1663                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1664
1665         vmcs_writel(CR4_READ_SHADOW, cr4);
1666         vmcs_writel(GUEST_CR4, hw_cr4);
1667 }
1668
1669 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1670 {
1671         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1672
1673         return vmcs_readl(sf->base);
1674 }
1675
1676 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1677                             struct kvm_segment *var, int seg)
1678 {
1679         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1680         u32 ar;
1681
1682         var->base = vmcs_readl(sf->base);
1683         var->limit = vmcs_read32(sf->limit);
1684         var->selector = vmcs_read16(sf->selector);
1685         ar = vmcs_read32(sf->ar_bytes);
1686         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1687                 ar = 0;
1688         var->type = ar & 15;
1689         var->s = (ar >> 4) & 1;
1690         var->dpl = (ar >> 5) & 3;
1691         var->present = (ar >> 7) & 1;
1692         var->avl = (ar >> 12) & 1;
1693         var->l = (ar >> 13) & 1;
1694         var->db = (ar >> 14) & 1;
1695         var->g = (ar >> 15) & 1;
1696         var->unusable = (ar >> 16) & 1;
1697 }
1698
1699 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1700 {
1701         struct kvm_segment kvm_seg;
1702
1703         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1704                 return 0;
1705
1706         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1707                 return 3;
1708
1709         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1710         return kvm_seg.selector & 3;
1711 }
1712
1713 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1714 {
1715         u32 ar;
1716
1717         if (var->unusable)
1718                 ar = 1 << 16;
1719         else {
1720                 ar = var->type & 15;
1721                 ar |= (var->s & 1) << 4;
1722                 ar |= (var->dpl & 3) << 5;
1723                 ar |= (var->present & 1) << 7;
1724                 ar |= (var->avl & 1) << 12;
1725                 ar |= (var->l & 1) << 13;
1726                 ar |= (var->db & 1) << 14;
1727                 ar |= (var->g & 1) << 15;
1728         }
1729         if (ar == 0) /* a 0 value means unusable */
1730                 ar = AR_UNUSABLE_MASK;
1731
1732         return ar;
1733 }
1734
1735 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1736                             struct kvm_segment *var, int seg)
1737 {
1738         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1739         u32 ar;
1740
1741         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1742                 vcpu->arch.rmode.tr.selector = var->selector;
1743                 vcpu->arch.rmode.tr.base = var->base;
1744                 vcpu->arch.rmode.tr.limit = var->limit;
1745                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1746                 return;
1747         }
1748         vmcs_writel(sf->base, var->base);
1749         vmcs_write32(sf->limit, var->limit);
1750         vmcs_write16(sf->selector, var->selector);
1751         if (vcpu->arch.rmode.active && var->s) {
1752                 /*
1753                  * Hack real-mode segments into vm86 compatibility.
1754                  */
1755                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1756                         vmcs_writel(sf->base, 0xf0000);
1757                 ar = 0xf3;
1758         } else
1759                 ar = vmx_segment_access_rights(var);
1760         vmcs_write32(sf->ar_bytes, ar);
1761 }
1762
1763 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1764 {
1765         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1766
1767         *db = (ar >> 14) & 1;
1768         *l = (ar >> 13) & 1;
1769 }
1770
1771 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1772 {
1773         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1774         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1775 }
1776
1777 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1778 {
1779         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1780         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1781 }
1782
1783 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1784 {
1785         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1786         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1787 }
1788
1789 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1790 {
1791         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1792         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1793 }
1794
1795 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1796 {
1797         struct kvm_segment var;
1798         u32 ar;
1799
1800         vmx_get_segment(vcpu, &var, seg);
1801         ar = vmx_segment_access_rights(&var);
1802
1803         if (var.base != (var.selector << 4))
1804                 return false;
1805         if (var.limit != 0xffff)
1806                 return false;
1807         if (ar != 0xf3)
1808                 return false;
1809
1810         return true;
1811 }
1812
1813 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1814 {
1815         struct kvm_segment cs;
1816         unsigned int cs_rpl;
1817
1818         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1819         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1820
1821         if (cs.unusable)
1822                 return false;
1823         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1824                 return false;
1825         if (!cs.s)
1826                 return false;
1827         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1828                 if (cs.dpl > cs_rpl)
1829                         return false;
1830         } else {
1831                 if (cs.dpl != cs_rpl)
1832                         return false;
1833         }
1834         if (!cs.present)
1835                 return false;
1836
1837         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1838         return true;
1839 }
1840
1841 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1842 {
1843         struct kvm_segment ss;
1844         unsigned int ss_rpl;
1845
1846         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1847         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1848
1849         if (ss.unusable)
1850                 return true;
1851         if (ss.type != 3 && ss.type != 7)
1852                 return false;
1853         if (!ss.s)
1854                 return false;
1855         if (ss.dpl != ss_rpl) /* DPL != RPL */
1856                 return false;
1857         if (!ss.present)
1858                 return false;
1859
1860         return true;
1861 }
1862
1863 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1864 {
1865         struct kvm_segment var;
1866         unsigned int rpl;
1867
1868         vmx_get_segment(vcpu, &var, seg);
1869         rpl = var.selector & SELECTOR_RPL_MASK;
1870
1871         if (var.unusable)
1872                 return true;
1873         if (!var.s)
1874                 return false;
1875         if (!var.present)
1876                 return false;
1877         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1878                 if (var.dpl < rpl) /* DPL < RPL */
1879                         return false;
1880         }
1881
1882         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1883          * rights flags
1884          */
1885         return true;
1886 }
1887
1888 static bool tr_valid(struct kvm_vcpu *vcpu)
1889 {
1890         struct kvm_segment tr;
1891
1892         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1893
1894         if (tr.unusable)
1895                 return false;
1896         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1897                 return false;
1898         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1899                 return false;
1900         if (!tr.present)
1901                 return false;
1902
1903         return true;
1904 }
1905
1906 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1907 {
1908         struct kvm_segment ldtr;
1909
1910         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1911
1912         if (ldtr.unusable)
1913                 return true;
1914         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
1915                 return false;
1916         if (ldtr.type != 2)
1917                 return false;
1918         if (!ldtr.present)
1919                 return false;
1920
1921         return true;
1922 }
1923
1924 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1925 {
1926         struct kvm_segment cs, ss;
1927
1928         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1929         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1930
1931         return ((cs.selector & SELECTOR_RPL_MASK) ==
1932                  (ss.selector & SELECTOR_RPL_MASK));
1933 }
1934
1935 /*
1936  * Check if guest state is valid. Returns true if valid, false if
1937  * not.
1938  * We assume that registers are always usable
1939  */
1940 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1941 {
1942         /* real mode guest state checks */
1943         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1944                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1945                         return false;
1946                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1947                         return false;
1948                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1949                         return false;
1950                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1951                         return false;
1952                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1953                         return false;
1954                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1955                         return false;
1956         } else {
1957         /* protected mode guest state checks */
1958                 if (!cs_ss_rpl_check(vcpu))
1959                         return false;
1960                 if (!code_segment_valid(vcpu))
1961                         return false;
1962                 if (!stack_segment_valid(vcpu))
1963                         return false;
1964                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1965                         return false;
1966                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1967                         return false;
1968                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1969                         return false;
1970                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1971                         return false;
1972                 if (!tr_valid(vcpu))
1973                         return false;
1974                 if (!ldtr_valid(vcpu))
1975                         return false;
1976         }
1977         /* TODO:
1978          * - Add checks on RIP
1979          * - Add checks on RFLAGS
1980          */
1981
1982         return true;
1983 }
1984
1985 static int init_rmode_tss(struct kvm *kvm)
1986 {
1987         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1988         u16 data = 0;
1989         int ret = 0;
1990         int r;
1991
1992         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1993         if (r < 0)
1994                 goto out;
1995         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1996         r = kvm_write_guest_page(kvm, fn++, &data,
1997                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
1998         if (r < 0)
1999                 goto out;
2000         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2001         if (r < 0)
2002                 goto out;
2003         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2004         if (r < 0)
2005                 goto out;
2006         data = ~0;
2007         r = kvm_write_guest_page(kvm, fn, &data,
2008                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2009                                  sizeof(u8));
2010         if (r < 0)
2011                 goto out;
2012
2013         ret = 1;
2014 out:
2015         return ret;
2016 }
2017
2018 static int init_rmode_identity_map(struct kvm *kvm)
2019 {
2020         int i, r, ret;
2021         pfn_t identity_map_pfn;
2022         u32 tmp;
2023
2024         if (!enable_ept)
2025                 return 1;
2026         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2027                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2028                         "haven't been allocated!\n");
2029                 return 0;
2030         }
2031         if (likely(kvm->arch.ept_identity_pagetable_done))
2032                 return 1;
2033         ret = 0;
2034         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2035         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2036         if (r < 0)
2037                 goto out;
2038         /* Set up identity-mapping pagetable for EPT in real mode */
2039         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2040                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2041                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2042                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2043                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2044                 if (r < 0)
2045                         goto out;
2046         }
2047         kvm->arch.ept_identity_pagetable_done = true;
2048         ret = 1;
2049 out:
2050         return ret;
2051 }
2052
2053 static void seg_setup(int seg)
2054 {
2055         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2056
2057         vmcs_write16(sf->selector, 0);
2058         vmcs_writel(sf->base, 0);
2059         vmcs_write32(sf->limit, 0xffff);
2060         vmcs_write32(sf->ar_bytes, 0xf3);
2061 }
2062
2063 static int alloc_apic_access_page(struct kvm *kvm)
2064 {
2065         struct kvm_userspace_memory_region kvm_userspace_mem;
2066         int r = 0;
2067
2068         down_write(&kvm->slots_lock);
2069         if (kvm->arch.apic_access_page)
2070                 goto out;
2071         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2072         kvm_userspace_mem.flags = 0;
2073         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2074         kvm_userspace_mem.memory_size = PAGE_SIZE;
2075         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2076         if (r)
2077                 goto out;
2078
2079         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2080 out:
2081         up_write(&kvm->slots_lock);
2082         return r;
2083 }
2084
2085 static int alloc_identity_pagetable(struct kvm *kvm)
2086 {
2087         struct kvm_userspace_memory_region kvm_userspace_mem;
2088         int r = 0;
2089
2090         down_write(&kvm->slots_lock);
2091         if (kvm->arch.ept_identity_pagetable)
2092                 goto out;
2093         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2094         kvm_userspace_mem.flags = 0;
2095         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2096         kvm_userspace_mem.memory_size = PAGE_SIZE;
2097         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2098         if (r)
2099                 goto out;
2100
2101         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2102                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2103 out:
2104         up_write(&kvm->slots_lock);
2105         return r;
2106 }
2107
2108 static void allocate_vpid(struct vcpu_vmx *vmx)
2109 {
2110         int vpid;
2111
2112         vmx->vpid = 0;
2113         if (!enable_vpid)
2114                 return;
2115         spin_lock(&vmx_vpid_lock);
2116         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2117         if (vpid < VMX_NR_VPIDS) {
2118                 vmx->vpid = vpid;
2119                 __set_bit(vpid, vmx_vpid_bitmap);
2120         }
2121         spin_unlock(&vmx_vpid_lock);
2122 }
2123
2124 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2125 {
2126         int f = sizeof(unsigned long);
2127
2128         if (!cpu_has_vmx_msr_bitmap())
2129                 return;
2130
2131         /*
2132          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2133          * have the write-low and read-high bitmap offsets the wrong way round.
2134          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2135          */
2136         if (msr <= 0x1fff) {
2137                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2138                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2139         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2140                 msr &= 0x1fff;
2141                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2142                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2143         }
2144 }
2145
2146 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2147 {
2148         if (!longmode_only)
2149                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2150         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2151 }
2152
2153 /*
2154  * Sets up the vmcs for emulated real mode.
2155  */
2156 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2157 {
2158         u32 host_sysenter_cs, msr_low, msr_high;
2159         u32 junk;
2160         u64 host_pat, tsc_this, tsc_base;
2161         unsigned long a;
2162         struct descriptor_table dt;
2163         int i;
2164         unsigned long kvm_vmx_return;
2165         u32 exec_control;
2166
2167         /* I/O */
2168         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2169         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2170
2171         if (cpu_has_vmx_msr_bitmap())
2172                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2173
2174         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2175
2176         /* Control */
2177         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2178                 vmcs_config.pin_based_exec_ctrl);
2179
2180         exec_control = vmcs_config.cpu_based_exec_ctrl;
2181         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2182                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2183 #ifdef CONFIG_X86_64
2184                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2185                                 CPU_BASED_CR8_LOAD_EXITING;
2186 #endif
2187         }
2188         if (!enable_ept)
2189                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2190                                 CPU_BASED_CR3_LOAD_EXITING  |
2191                                 CPU_BASED_INVLPG_EXITING;
2192         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2193
2194         if (cpu_has_secondary_exec_ctrls()) {
2195                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2196                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2197                         exec_control &=
2198                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2199                 if (vmx->vpid == 0)
2200                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2201                 if (!enable_ept)
2202                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2203                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2204         }
2205
2206         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2207         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2208         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2209
2210         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2211         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2212         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2213
2214         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2215         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2216         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2217         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2218         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2219         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2220 #ifdef CONFIG_X86_64
2221         rdmsrl(MSR_FS_BASE, a);
2222         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2223         rdmsrl(MSR_GS_BASE, a);
2224         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2225 #else
2226         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2227         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2228 #endif
2229
2230         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2231
2232         kvm_get_idt(&dt);
2233         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2234
2235         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2236         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2237         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2238         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2239         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2240
2241         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2242         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2243         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2244         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2245         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2246         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2247
2248         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2249                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2250                 host_pat = msr_low | ((u64) msr_high << 32);
2251                 vmcs_write64(HOST_IA32_PAT, host_pat);
2252         }
2253         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2254                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2255                 host_pat = msr_low | ((u64) msr_high << 32);
2256                 /* Write the default value follow host pat */
2257                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2258                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2259                 vmx->vcpu.arch.pat = host_pat;
2260         }
2261
2262         for (i = 0; i < NR_VMX_MSR; ++i) {
2263                 u32 index = vmx_msr_index[i];
2264                 u32 data_low, data_high;
2265                 u64 data;
2266                 int j = vmx->nmsrs;
2267
2268                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2269                         continue;
2270                 if (wrmsr_safe(index, data_low, data_high) < 0)
2271                         continue;
2272                 data = data_low | ((u64)data_high << 32);
2273                 vmx->host_msrs[j].index = index;
2274                 vmx->host_msrs[j].reserved = 0;
2275                 vmx->host_msrs[j].data = data;
2276                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2277                 ++vmx->nmsrs;
2278         }
2279
2280         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2281
2282         /* 22.2.1, 20.8.1 */
2283         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2284
2285         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2286         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2287
2288         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2289         rdtscll(tsc_this);
2290         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2291                 tsc_base = tsc_this;
2292
2293         guest_write_tsc(0, tsc_base);
2294
2295         return 0;
2296 }
2297
2298 static int init_rmode(struct kvm *kvm)
2299 {
2300         if (!init_rmode_tss(kvm))
2301                 return 0;
2302         if (!init_rmode_identity_map(kvm))
2303                 return 0;
2304         return 1;
2305 }
2306
2307 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2308 {
2309         struct vcpu_vmx *vmx = to_vmx(vcpu);
2310         u64 msr;
2311         int ret;
2312
2313         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2314         down_read(&vcpu->kvm->slots_lock);
2315         if (!init_rmode(vmx->vcpu.kvm)) {
2316                 ret = -ENOMEM;
2317                 goto out;
2318         }
2319
2320         vmx->vcpu.arch.rmode.active = 0;
2321
2322         vmx->soft_vnmi_blocked = 0;
2323
2324         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2325         kvm_set_cr8(&vmx->vcpu, 0);
2326         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2327         if (vmx->vcpu.vcpu_id == 0)
2328                 msr |= MSR_IA32_APICBASE_BSP;
2329         kvm_set_apic_base(&vmx->vcpu, msr);
2330
2331         fx_init(&vmx->vcpu);
2332
2333         seg_setup(VCPU_SREG_CS);
2334         /*
2335          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2336          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2337          */
2338         if (vmx->vcpu.vcpu_id == 0) {
2339                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2340                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2341         } else {
2342                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2343                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2344         }
2345
2346         seg_setup(VCPU_SREG_DS);
2347         seg_setup(VCPU_SREG_ES);
2348         seg_setup(VCPU_SREG_FS);
2349         seg_setup(VCPU_SREG_GS);
2350         seg_setup(VCPU_SREG_SS);
2351
2352         vmcs_write16(GUEST_TR_SELECTOR, 0);
2353         vmcs_writel(GUEST_TR_BASE, 0);
2354         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2355         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2356
2357         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2358         vmcs_writel(GUEST_LDTR_BASE, 0);
2359         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2360         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2361
2362         vmcs_write32(GUEST_SYSENTER_CS, 0);
2363         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2364         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2365
2366         vmcs_writel(GUEST_RFLAGS, 0x02);
2367         if (vmx->vcpu.vcpu_id == 0)
2368                 kvm_rip_write(vcpu, 0xfff0);
2369         else
2370                 kvm_rip_write(vcpu, 0);
2371         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2372
2373         vmcs_writel(GUEST_DR7, 0x400);
2374
2375         vmcs_writel(GUEST_GDTR_BASE, 0);
2376         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2377
2378         vmcs_writel(GUEST_IDTR_BASE, 0);
2379         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2380
2381         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2382         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2383         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2384
2385         /* Special registers */
2386         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2387
2388         setup_msrs(vmx);
2389
2390         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2391
2392         if (cpu_has_vmx_tpr_shadow()) {
2393                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2394                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2395                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2396                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2397                 vmcs_write32(TPR_THRESHOLD, 0);
2398         }
2399
2400         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2401                 vmcs_write64(APIC_ACCESS_ADDR,
2402                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2403
2404         if (vmx->vpid != 0)
2405                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2406
2407         vmx->vcpu.arch.cr0 = 0x60000010;
2408         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2409         vmx_set_cr4(&vmx->vcpu, 0);
2410         vmx_set_efer(&vmx->vcpu, 0);
2411         vmx_fpu_activate(&vmx->vcpu);
2412         update_exception_bitmap(&vmx->vcpu);
2413
2414         vpid_sync_vcpu_all(vmx);
2415
2416         ret = 0;
2417
2418         /* HACK: Don't enable emulation on guest boot/reset */
2419         vmx->emulation_required = 0;
2420
2421 out:
2422         up_read(&vcpu->kvm->slots_lock);
2423         return ret;
2424 }
2425
2426 static void enable_irq_window(struct kvm_vcpu *vcpu)
2427 {
2428         u32 cpu_based_vm_exec_control;
2429
2430         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2431         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2432         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2433 }
2434
2435 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2436 {
2437         u32 cpu_based_vm_exec_control;
2438
2439         if (!cpu_has_virtual_nmis()) {
2440                 enable_irq_window(vcpu);
2441                 return;
2442         }
2443
2444         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2445         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2446         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2447 }
2448
2449 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2450 {
2451         struct vcpu_vmx *vmx = to_vmx(vcpu);
2452         uint32_t intr;
2453         int irq = vcpu->arch.interrupt.nr;
2454
2455         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2456
2457         ++vcpu->stat.irq_injections;
2458         if (vcpu->arch.rmode.active) {
2459                 vmx->rmode.irq.pending = true;
2460                 vmx->rmode.irq.vector = irq;
2461                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2462                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2463                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2464                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2465                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2466                 return;
2467         }
2468         intr = irq | INTR_INFO_VALID_MASK;
2469         if (vcpu->arch.interrupt.soft) {
2470                 intr |= INTR_TYPE_SOFT_INTR;
2471                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2472                              vmx->vcpu.arch.event_exit_inst_len);
2473         } else
2474                 intr |= INTR_TYPE_EXT_INTR;
2475         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2476 }
2477
2478 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2479 {
2480         struct vcpu_vmx *vmx = to_vmx(vcpu);
2481
2482         if (!cpu_has_virtual_nmis()) {
2483                 /*
2484                  * Tracking the NMI-blocked state in software is built upon
2485                  * finding the next open IRQ window. This, in turn, depends on
2486                  * well-behaving guests: They have to keep IRQs disabled at
2487                  * least as long as the NMI handler runs. Otherwise we may
2488                  * cause NMI nesting, maybe breaking the guest. But as this is
2489                  * highly unlikely, we can live with the residual risk.
2490                  */
2491                 vmx->soft_vnmi_blocked = 1;
2492                 vmx->vnmi_blocked_time = 0;
2493         }
2494
2495         ++vcpu->stat.nmi_injections;
2496         if (vcpu->arch.rmode.active) {
2497                 vmx->rmode.irq.pending = true;
2498                 vmx->rmode.irq.vector = NMI_VECTOR;
2499                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2500                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2501                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2502                              INTR_INFO_VALID_MASK);
2503                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2504                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2505                 return;
2506         }
2507         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2508                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2509 }
2510
2511 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2512 {
2513         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2514                 return 0;
2515
2516         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2517                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2518                                 GUEST_INTR_STATE_NMI));
2519 }
2520
2521 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2522 {
2523         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2524                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2525                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2526 }
2527
2528 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2529 {
2530         int ret;
2531         struct kvm_userspace_memory_region tss_mem = {
2532                 .slot = TSS_PRIVATE_MEMSLOT,
2533                 .guest_phys_addr = addr,
2534                 .memory_size = PAGE_SIZE * 3,
2535                 .flags = 0,
2536         };
2537
2538         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2539         if (ret)
2540                 return ret;
2541         kvm->arch.tss_addr = addr;
2542         return 0;
2543 }
2544
2545 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2546                                   int vec, u32 err_code)
2547 {
2548         /*
2549          * Instruction with address size override prefix opcode 0x67
2550          * Cause the #SS fault with 0 error code in VM86 mode.
2551          */
2552         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2553                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2554                         return 1;
2555         /*
2556          * Forward all other exceptions that are valid in real mode.
2557          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2558          *        the required debugging infrastructure rework.
2559          */
2560         switch (vec) {
2561         case DB_VECTOR:
2562                 if (vcpu->guest_debug &
2563                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2564                         return 0;
2565                 kvm_queue_exception(vcpu, vec);
2566                 return 1;
2567         case BP_VECTOR:
2568                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2569                         return 0;
2570                 /* fall through */
2571         case DE_VECTOR:
2572         case OF_VECTOR:
2573         case BR_VECTOR:
2574         case UD_VECTOR:
2575         case DF_VECTOR:
2576         case SS_VECTOR:
2577         case GP_VECTOR:
2578         case MF_VECTOR:
2579                 kvm_queue_exception(vcpu, vec);
2580                 return 1;
2581         }
2582         return 0;
2583 }
2584
2585 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2586 {
2587         struct vcpu_vmx *vmx = to_vmx(vcpu);
2588         u32 intr_info, ex_no, error_code;
2589         unsigned long cr2, rip, dr6;
2590         u32 vect_info;
2591         enum emulation_result er;
2592
2593         vect_info = vmx->idt_vectoring_info;
2594         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2595
2596         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2597                                                 !is_page_fault(intr_info))
2598                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2599                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2600
2601         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2602                 return 1;  /* already handled by vmx_vcpu_run() */
2603
2604         if (is_no_device(intr_info)) {
2605                 vmx_fpu_activate(vcpu);
2606                 return 1;
2607         }
2608
2609         if (is_invalid_opcode(intr_info)) {
2610                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2611                 if (er != EMULATE_DONE)
2612                         kvm_queue_exception(vcpu, UD_VECTOR);
2613                 return 1;
2614         }
2615
2616         error_code = 0;
2617         rip = kvm_rip_read(vcpu);
2618         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2619                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2620         if (is_page_fault(intr_info)) {
2621                 /* EPT won't cause page fault directly */
2622                 if (enable_ept)
2623                         BUG();
2624                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2625                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2626                             (u32)((u64)cr2 >> 32), handler);
2627                 if (kvm_event_needs_reinjection(vcpu))
2628                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2629                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2630         }
2631
2632         if (vcpu->arch.rmode.active &&
2633             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2634                                                                 error_code)) {
2635                 if (vcpu->arch.halt_request) {
2636                         vcpu->arch.halt_request = 0;
2637                         return kvm_emulate_halt(vcpu);
2638                 }
2639                 return 1;
2640         }
2641
2642         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2643         switch (ex_no) {
2644         case DB_VECTOR:
2645                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2646                 if (!(vcpu->guest_debug &
2647                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2648                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2649                         kvm_queue_exception(vcpu, DB_VECTOR);
2650                         return 1;
2651                 }
2652                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2653                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2654                 /* fall through */
2655         case BP_VECTOR:
2656                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2657                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2658                 kvm_run->debug.arch.exception = ex_no;
2659                 break;
2660         default:
2661                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2662                 kvm_run->ex.exception = ex_no;
2663                 kvm_run->ex.error_code = error_code;
2664                 break;
2665         }
2666         return 0;
2667 }
2668
2669 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2670                                      struct kvm_run *kvm_run)
2671 {
2672         ++vcpu->stat.irq_exits;
2673         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2674         return 1;
2675 }
2676
2677 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2678 {
2679         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2680         return 0;
2681 }
2682
2683 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2684 {
2685         unsigned long exit_qualification;
2686         int size, in, string;
2687         unsigned port;
2688
2689         ++vcpu->stat.io_exits;
2690         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2691         string = (exit_qualification & 16) != 0;
2692
2693         if (string) {
2694                 if (emulate_instruction(vcpu,
2695                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2696                         return 0;
2697                 return 1;
2698         }
2699
2700         size = (exit_qualification & 7) + 1;
2701         in = (exit_qualification & 8) != 0;
2702         port = exit_qualification >> 16;
2703
2704         skip_emulated_instruction(vcpu);
2705         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2706 }
2707
2708 static void
2709 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2710 {
2711         /*
2712          * Patch in the VMCALL instruction:
2713          */
2714         hypercall[0] = 0x0f;
2715         hypercall[1] = 0x01;
2716         hypercall[2] = 0xc1;
2717 }
2718
2719 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2720 {
2721         unsigned long exit_qualification;
2722         int cr;
2723         int reg;
2724
2725         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2726         cr = exit_qualification & 15;
2727         reg = (exit_qualification >> 8) & 15;
2728         switch ((exit_qualification >> 4) & 3) {
2729         case 0: /* mov to cr */
2730                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2731                             (u32)kvm_register_read(vcpu, reg),
2732                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2733                             handler);
2734                 switch (cr) {
2735                 case 0:
2736                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2737                         skip_emulated_instruction(vcpu);
2738                         return 1;
2739                 case 3:
2740                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2741                         skip_emulated_instruction(vcpu);
2742                         return 1;
2743                 case 4:
2744                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2745                         skip_emulated_instruction(vcpu);
2746                         return 1;
2747                 case 8: {
2748                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2749                                 u8 cr8 = kvm_register_read(vcpu, reg);
2750                                 kvm_set_cr8(vcpu, cr8);
2751                                 skip_emulated_instruction(vcpu);
2752                                 if (irqchip_in_kernel(vcpu->kvm))
2753                                         return 1;
2754                                 if (cr8_prev <= cr8)
2755                                         return 1;
2756                                 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2757                                 return 0;
2758                         }
2759                 };
2760                 break;
2761         case 2: /* clts */
2762                 vmx_fpu_deactivate(vcpu);
2763                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2764                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2765                 vmx_fpu_activate(vcpu);
2766                 KVMTRACE_0D(CLTS, vcpu, handler);
2767                 skip_emulated_instruction(vcpu);
2768                 return 1;
2769         case 1: /*mov from cr*/
2770                 switch (cr) {
2771                 case 3:
2772                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2773                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2774                                     (u32)kvm_register_read(vcpu, reg),
2775                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2776                                     handler);
2777                         skip_emulated_instruction(vcpu);
2778                         return 1;
2779                 case 8:
2780                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2781                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2782                                     (u32)kvm_register_read(vcpu, reg), handler);
2783                         skip_emulated_instruction(vcpu);
2784                         return 1;
2785                 }
2786                 break;
2787         case 3: /* lmsw */
2788                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2789
2790                 skip_emulated_instruction(vcpu);
2791                 return 1;
2792         default:
2793                 break;
2794         }
2795         kvm_run->exit_reason = 0;
2796         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2797                (int)(exit_qualification >> 4) & 3, cr);
2798         return 0;
2799 }
2800
2801 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2802 {
2803         unsigned long exit_qualification;
2804         unsigned long val;
2805         int dr, reg;
2806
2807         dr = vmcs_readl(GUEST_DR7);
2808         if (dr & DR7_GD) {
2809                 /*
2810                  * As the vm-exit takes precedence over the debug trap, we
2811                  * need to emulate the latter, either for the host or the
2812                  * guest debugging itself.
2813                  */
2814                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2815                         kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2816                         kvm_run->debug.arch.dr7 = dr;
2817                         kvm_run->debug.arch.pc =
2818                                 vmcs_readl(GUEST_CS_BASE) +
2819                                 vmcs_readl(GUEST_RIP);
2820                         kvm_run->debug.arch.exception = DB_VECTOR;
2821                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2822                         return 0;
2823                 } else {
2824                         vcpu->arch.dr7 &= ~DR7_GD;
2825                         vcpu->arch.dr6 |= DR6_BD;
2826                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2827                         kvm_queue_exception(vcpu, DB_VECTOR);
2828                         return 1;
2829                 }
2830         }
2831
2832         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2833         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2834         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2835         if (exit_qualification & TYPE_MOV_FROM_DR) {
2836                 switch (dr) {
2837                 case 0 ... 3:
2838                         val = vcpu->arch.db[dr];
2839                         break;
2840                 case 6:
2841                         val = vcpu->arch.dr6;
2842                         break;
2843                 case 7:
2844                         val = vcpu->arch.dr7;
2845                         break;
2846                 default:
2847                         val = 0;
2848                 }
2849                 kvm_register_write(vcpu, reg, val);
2850                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2851         } else {
2852                 val = vcpu->arch.regs[reg];
2853                 switch (dr) {
2854                 case 0 ... 3:
2855                         vcpu->arch.db[dr] = val;
2856                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2857                                 vcpu->arch.eff_db[dr] = val;
2858                         break;
2859                 case 4 ... 5:
2860                         if (vcpu->arch.cr4 & X86_CR4_DE)
2861                                 kvm_queue_exception(vcpu, UD_VECTOR);
2862                         break;
2863                 case 6:
2864                         if (val & 0xffffffff00000000ULL) {
2865                                 kvm_queue_exception(vcpu, GP_VECTOR);
2866                                 break;
2867                         }
2868                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2869                         break;
2870                 case 7:
2871                         if (val & 0xffffffff00000000ULL) {
2872                                 kvm_queue_exception(vcpu, GP_VECTOR);
2873                                 break;
2874                         }
2875                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2876                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2877                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2878                                 vcpu->arch.switch_db_regs =
2879                                         (val & DR7_BP_EN_MASK);
2880                         }
2881                         break;
2882                 }
2883                 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2884         }
2885         skip_emulated_instruction(vcpu);
2886         return 1;
2887 }
2888
2889 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2890 {
2891         kvm_emulate_cpuid(vcpu);
2892         return 1;
2893 }
2894
2895 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2896 {
2897         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2898         u64 data;
2899
2900         if (vmx_get_msr(vcpu, ecx, &data)) {
2901                 kvm_inject_gp(vcpu, 0);
2902                 return 1;
2903         }
2904
2905         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2906                     handler);
2907
2908         /* FIXME: handling of bits 32:63 of rax, rdx */
2909         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2910         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2911         skip_emulated_instruction(vcpu);
2912         return 1;
2913 }
2914
2915 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2916 {
2917         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2918         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2919                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2920
2921         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2922                     handler);
2923
2924         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2925                 kvm_inject_gp(vcpu, 0);
2926                 return 1;
2927         }
2928
2929         skip_emulated_instruction(vcpu);
2930         return 1;
2931 }
2932
2933 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2934                                       struct kvm_run *kvm_run)
2935 {
2936         return 1;
2937 }
2938
2939 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2940                                    struct kvm_run *kvm_run)
2941 {
2942         u32 cpu_based_vm_exec_control;
2943
2944         /* clear pending irq */
2945         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2946         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2947         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2948
2949         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2950         ++vcpu->stat.irq_window_exits;
2951
2952         /*
2953          * If the user space waits to inject interrupts, exit as soon as
2954          * possible
2955          */
2956         if (!irqchip_in_kernel(vcpu->kvm) &&
2957             kvm_run->request_interrupt_window &&
2958             !kvm_cpu_has_interrupt(vcpu)) {
2959                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2960                 return 0;
2961         }
2962         return 1;
2963 }
2964
2965 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2966 {
2967         skip_emulated_instruction(vcpu);
2968         return kvm_emulate_halt(vcpu);
2969 }
2970
2971 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2972 {
2973         skip_emulated_instruction(vcpu);
2974         kvm_emulate_hypercall(vcpu);
2975         return 1;
2976 }
2977
2978 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2979 {
2980         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2981
2982         kvm_mmu_invlpg(vcpu, exit_qualification);
2983         skip_emulated_instruction(vcpu);
2984         return 1;
2985 }
2986
2987 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2988 {
2989         skip_emulated_instruction(vcpu);
2990         /* TODO: Add support for VT-d/pass-through device */
2991         return 1;
2992 }
2993
2994 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2995 {
2996         unsigned long exit_qualification;
2997         enum emulation_result er;
2998         unsigned long offset;
2999
3000         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3001         offset = exit_qualification & 0xffful;
3002
3003         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3004
3005         if (er !=  EMULATE_DONE) {
3006                 printk(KERN_ERR
3007                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3008                        offset);
3009                 return -ENOTSUPP;
3010         }
3011         return 1;
3012 }
3013
3014 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3015 {
3016         struct vcpu_vmx *vmx = to_vmx(vcpu);
3017         unsigned long exit_qualification;
3018         u16 tss_selector;
3019         int reason, type, idt_v;
3020
3021         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3022         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3023
3024         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3025
3026         reason = (u32)exit_qualification >> 30;
3027         if (reason == TASK_SWITCH_GATE && idt_v) {
3028                 switch (type) {
3029                 case INTR_TYPE_NMI_INTR:
3030                         vcpu->arch.nmi_injected = false;
3031                         if (cpu_has_virtual_nmis())
3032                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3033                                               GUEST_INTR_STATE_NMI);
3034                         break;
3035                 case INTR_TYPE_EXT_INTR:
3036                 case INTR_TYPE_SOFT_INTR:
3037                         kvm_clear_interrupt_queue(vcpu);
3038                         break;
3039                 case INTR_TYPE_HARD_EXCEPTION:
3040                 case INTR_TYPE_SOFT_EXCEPTION:
3041                         kvm_clear_exception_queue(vcpu);
3042                         break;
3043                 default:
3044                         break;
3045                 }
3046         }
3047         tss_selector = exit_qualification;
3048
3049         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3050                        type != INTR_TYPE_EXT_INTR &&
3051                        type != INTR_TYPE_NMI_INTR))
3052                 skip_emulated_instruction(vcpu);
3053
3054         if (!kvm_task_switch(vcpu, tss_selector, reason))
3055                 return 0;
3056
3057         /* clear all local breakpoint enable flags */
3058         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3059
3060         /*
3061          * TODO: What about debug traps on tss switch?
3062          *       Are we supposed to inject them and update dr6?
3063          */
3064
3065         return 1;
3066 }
3067
3068 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3069 {
3070         unsigned long exit_qualification;
3071         gpa_t gpa;
3072         int gla_validity;
3073
3074         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3075
3076         if (exit_qualification & (1 << 6)) {
3077                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3078                 return -ENOTSUPP;
3079         }
3080
3081         gla_validity = (exit_qualification >> 7) & 0x3;
3082         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3083                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3084                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3085                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3086                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3087                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3088                         (long unsigned int)exit_qualification);
3089                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3090                 kvm_run->hw.hardware_exit_reason = 0;
3091                 return -ENOTSUPP;
3092         }
3093
3094         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3095         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3096 }
3097
3098 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3099 {
3100         u32 cpu_based_vm_exec_control;
3101
3102         /* clear pending NMI */
3103         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3104         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3105         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3106         ++vcpu->stat.nmi_window_exits;
3107
3108         return 1;
3109 }
3110
3111 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3112                                 struct kvm_run *kvm_run)
3113 {
3114         struct vcpu_vmx *vmx = to_vmx(vcpu);
3115         enum emulation_result err = EMULATE_DONE;
3116
3117         preempt_enable();
3118         local_irq_enable();
3119
3120         while (!guest_state_valid(vcpu)) {
3121                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3122
3123                 if (err == EMULATE_DO_MMIO)
3124                         break;
3125
3126                 if (err != EMULATE_DONE) {
3127                         kvm_report_emulation_failure(vcpu, "emulation failure");
3128                         return;
3129                 }
3130
3131                 if (signal_pending(current))
3132                         break;
3133                 if (need_resched())
3134                         schedule();
3135         }
3136
3137         local_irq_disable();
3138         preempt_disable();
3139
3140         vmx->invalid_state_emulation_result = err;
3141 }
3142
3143 /*
3144  * The exit handlers return 1 if the exit was handled fully and guest execution
3145  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3146  * to be done to userspace and return 0.
3147  */
3148 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3149                                       struct kvm_run *kvm_run) = {
3150         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3151         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3152         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3153         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3154         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3155         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3156         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3157         [EXIT_REASON_CPUID]                   = handle_cpuid,
3158         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3159         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3160         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3161         [EXIT_REASON_HLT]                     = handle_halt,
3162         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3163         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3164         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3165         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3166         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3167         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3168         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3169 };
3170
3171 static const int kvm_vmx_max_exit_handlers =
3172         ARRAY_SIZE(kvm_vmx_exit_handlers);
3173
3174 /*
3175  * The guest has exited.  See if we can fix it or if we need userspace
3176  * assistance.
3177  */
3178 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3179 {
3180         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3181         struct vcpu_vmx *vmx = to_vmx(vcpu);
3182         u32 vectoring_info = vmx->idt_vectoring_info;
3183
3184         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3185                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3186
3187         /* If we need to emulate an MMIO from handle_invalid_guest_state
3188          * we just return 0 */
3189         if (vmx->emulation_required && emulate_invalid_guest_state) {
3190                 if (guest_state_valid(vcpu))
3191                         vmx->emulation_required = 0;
3192                 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3193         }
3194
3195         /* Access CR3 don't cause VMExit in paging mode, so we need
3196          * to sync with guest real CR3. */
3197         if (enable_ept && is_paging(vcpu)) {
3198                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3199                 ept_load_pdptrs(vcpu);
3200         }
3201
3202         if (unlikely(vmx->fail)) {
3203                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3204                 kvm_run->fail_entry.hardware_entry_failure_reason
3205                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3206                 return 0;
3207         }
3208
3209         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3210                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3211                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3212                         exit_reason != EXIT_REASON_TASK_SWITCH))
3213                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3214                        "(0x%x) and exit reason is 0x%x\n",
3215                        __func__, vectoring_info, exit_reason);
3216
3217         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3218                 if (vmx_interrupt_allowed(vcpu)) {
3219                         vmx->soft_vnmi_blocked = 0;
3220                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3221                            vcpu->arch.nmi_pending) {
3222                         /*
3223                          * This CPU don't support us in finding the end of an
3224                          * NMI-blocked window if the guest runs with IRQs
3225                          * disabled. So we pull the trigger after 1 s of
3226                          * futile waiting, but inform the user about this.
3227                          */
3228                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3229                                "state on VCPU %d after 1 s timeout\n",
3230                                __func__, vcpu->vcpu_id);
3231                         vmx->soft_vnmi_blocked = 0;
3232                 }
3233         }
3234
3235         if (exit_reason < kvm_vmx_max_exit_handlers
3236             && kvm_vmx_exit_handlers[exit_reason])
3237                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3238         else {
3239                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3240                 kvm_run->hw.hardware_exit_reason = exit_reason;
3241         }
3242         return 0;
3243 }
3244
3245 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3246 {
3247         if (irr == -1 || tpr < irr) {
3248                 vmcs_write32(TPR_THRESHOLD, 0);
3249                 return;
3250         }
3251
3252         vmcs_write32(TPR_THRESHOLD, irr);
3253 }
3254
3255 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3256 {
3257         u32 exit_intr_info;
3258         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3259         bool unblock_nmi;
3260         u8 vector;
3261         int type;
3262         bool idtv_info_valid;
3263
3264         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3265         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3266         if (cpu_has_virtual_nmis()) {
3267                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3268                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3269                 /*
3270                  * SDM 3: 27.7.1.2 (September 2008)
3271                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3272                  * a guest IRET fault.
3273                  * SDM 3: 23.2.2 (September 2008)
3274                  * Bit 12 is undefined in any of the following cases:
3275                  *  If the VM exit sets the valid bit in the IDT-vectoring
3276                  *   information field.
3277                  *  If the VM exit is due to a double fault.
3278                  */
3279                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3280                     vector != DF_VECTOR && !idtv_info_valid)
3281                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3282                                       GUEST_INTR_STATE_NMI);
3283         } else if (unlikely(vmx->soft_vnmi_blocked))
3284                 vmx->vnmi_blocked_time +=
3285                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3286
3287         vmx->vcpu.arch.nmi_injected = false;
3288         kvm_clear_exception_queue(&vmx->vcpu);
3289         kvm_clear_interrupt_queue(&vmx->vcpu);
3290
3291         if (!idtv_info_valid)
3292                 return;
3293
3294         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3295         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3296
3297         switch (type) {
3298         case INTR_TYPE_NMI_INTR:
3299                 vmx->vcpu.arch.nmi_injected = true;
3300                 /*
3301                  * SDM 3: 27.7.1.2 (September 2008)
3302                  * Clear bit "block by NMI" before VM entry if a NMI
3303                  * delivery faulted.
3304                  */
3305                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3306                                 GUEST_INTR_STATE_NMI);
3307                 break;
3308         case INTR_TYPE_SOFT_EXCEPTION:
3309                 vmx->vcpu.arch.event_exit_inst_len =
3310                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3311                 /* fall through */
3312         case INTR_TYPE_HARD_EXCEPTION:
3313                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3314                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3315                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3316                 } else
3317                         kvm_queue_exception(&vmx->vcpu, vector);
3318                 break;
3319         case INTR_TYPE_SOFT_INTR:
3320                 vmx->vcpu.arch.event_exit_inst_len =
3321                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3322                 /* fall through */
3323         case INTR_TYPE_EXT_INTR:
3324                 kvm_queue_interrupt(&vmx->vcpu, vector,
3325                         type == INTR_TYPE_SOFT_INTR);
3326                 break;
3327         default:
3328                 break;
3329         }
3330 }
3331
3332 /*
3333  * Failure to inject an interrupt should give us the information
3334  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3335  * when fetching the interrupt redirection bitmap in the real-mode
3336  * tss, this doesn't happen.  So we do it ourselves.
3337  */
3338 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3339 {
3340         vmx->rmode.irq.pending = 0;
3341         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3342                 return;
3343         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3344         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3345                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3346                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3347                 return;
3348         }
3349         vmx->idt_vectoring_info =
3350                 VECTORING_INFO_VALID_MASK
3351                 | INTR_TYPE_EXT_INTR
3352                 | vmx->rmode.irq.vector;
3353 }
3354
3355 #ifdef CONFIG_X86_64
3356 #define R "r"
3357 #define Q "q"
3358 #else
3359 #define R "e"
3360 #define Q "l"
3361 #endif
3362
3363 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3364 {
3365         struct vcpu_vmx *vmx = to_vmx(vcpu);
3366         u32 intr_info;
3367
3368         /* Record the guest's net vcpu time for enforced NMI injections. */
3369         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3370                 vmx->entry_time = ktime_get();
3371
3372         /* Handle invalid guest state instead of entering VMX */
3373         if (vmx->emulation_required && emulate_invalid_guest_state) {
3374                 handle_invalid_guest_state(vcpu, kvm_run);
3375                 return;
3376         }
3377
3378         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3379                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3380         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3381                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3382
3383         /*
3384          * Loading guest fpu may have cleared host cr0.ts
3385          */
3386         vmcs_writel(HOST_CR0, read_cr0());
3387
3388         set_debugreg(vcpu->arch.dr6, 6);
3389
3390         asm(
3391                 /* Store host registers */
3392                 "push %%"R"dx; push %%"R"bp;"
3393                 "push %%"R"cx \n\t"
3394                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3395                 "je 1f \n\t"
3396                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3397                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3398                 "1: \n\t"
3399                 /* Check if vmlaunch of vmresume is needed */
3400                 "cmpl $0, %c[launched](%0) \n\t"
3401                 /* Load guest registers.  Don't clobber flags. */
3402                 "mov %c[cr2](%0), %%"R"ax \n\t"
3403                 "mov %%"R"ax, %%cr2 \n\t"
3404                 "mov %c[rax](%0), %%"R"ax \n\t"
3405                 "mov %c[rbx](%0), %%"R"bx \n\t"
3406                 "mov %c[rdx](%0), %%"R"dx \n\t"
3407                 "mov %c[rsi](%0), %%"R"si \n\t"
3408                 "mov %c[rdi](%0), %%"R"di \n\t"
3409                 "mov %c[rbp](%0), %%"R"bp \n\t"
3410 #ifdef CONFIG_X86_64
3411                 "mov %c[r8](%0),  %%r8  \n\t"
3412                 "mov %c[r9](%0),  %%r9  \n\t"
3413                 "mov %c[r10](%0), %%r10 \n\t"
3414                 "mov %c[r11](%0), %%r11 \n\t"
3415                 "mov %c[r12](%0), %%r12 \n\t"
3416                 "mov %c[r13](%0), %%r13 \n\t"
3417                 "mov %c[r14](%0), %%r14 \n\t"
3418                 "mov %c[r15](%0), %%r15 \n\t"
3419 #endif
3420                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3421
3422                 /* Enter guest mode */
3423                 "jne .Llaunched \n\t"
3424                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3425                 "jmp .Lkvm_vmx_return \n\t"
3426                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3427                 ".Lkvm_vmx_return: "
3428                 /* Save guest registers, load host registers, keep flags */
3429                 "xchg %0,     (%%"R"sp) \n\t"
3430                 "mov %%"R"ax, %c[rax](%0) \n\t"
3431                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3432                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3433                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3434                 "mov %%"R"si, %c[rsi](%0) \n\t"
3435                 "mov %%"R"di, %c[rdi](%0) \n\t"
3436                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3437 #ifdef CONFIG_X86_64
3438                 "mov %%r8,  %c[r8](%0) \n\t"
3439                 "mov %%r9,  %c[r9](%0) \n\t"
3440                 "mov %%r10, %c[r10](%0) \n\t"
3441                 "mov %%r11, %c[r11](%0) \n\t"
3442                 "mov %%r12, %c[r12](%0) \n\t"
3443                 "mov %%r13, %c[r13](%0) \n\t"
3444                 "mov %%r14, %c[r14](%0) \n\t"
3445                 "mov %%r15, %c[r15](%0) \n\t"
3446 #endif
3447                 "mov %%cr2, %%"R"ax   \n\t"
3448                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3449
3450                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3451                 "setbe %c[fail](%0) \n\t"
3452               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3453                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3454                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3455                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3456                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3457                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3458                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3459                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3460                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3461                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3462                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3463 #ifdef CONFIG_X86_64
3464                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3465                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3466                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3467                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3468                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3469                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3470                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3471                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3472 #endif
3473                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3474               : "cc", "memory"
3475                 , R"bx", R"di", R"si"
3476 #ifdef CONFIG_X86_64
3477                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3478 #endif
3479               );
3480
3481         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3482         vcpu->arch.regs_dirty = 0;
3483
3484         get_debugreg(vcpu->arch.dr6, 6);
3485
3486         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3487         if (vmx->rmode.irq.pending)
3488                 fixup_rmode_irq(vmx);
3489
3490         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3491         vmx->launched = 1;
3492
3493         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3494
3495         /* We need to handle NMIs before interrupts are enabled */
3496         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3497             (intr_info & INTR_INFO_VALID_MASK)) {
3498                 KVMTRACE_0D(NMI, vcpu, handler);
3499                 asm("int $2");
3500         }
3501
3502         vmx_complete_interrupts(vmx);
3503 }
3504
3505 #undef R
3506 #undef Q
3507
3508 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3509 {
3510         struct vcpu_vmx *vmx = to_vmx(vcpu);
3511
3512         if (vmx->vmcs) {
3513                 vcpu_clear(vmx);
3514                 free_vmcs(vmx->vmcs);
3515                 vmx->vmcs = NULL;
3516         }
3517 }
3518
3519 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3520 {
3521         struct vcpu_vmx *vmx = to_vmx(vcpu);
3522
3523         spin_lock(&vmx_vpid_lock);
3524         if (vmx->vpid != 0)
3525                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3526         spin_unlock(&vmx_vpid_lock);
3527         vmx_free_vmcs(vcpu);
3528         kfree(vmx->host_msrs);
3529         kfree(vmx->guest_msrs);
3530         kvm_vcpu_uninit(vcpu);
3531         kmem_cache_free(kvm_vcpu_cache, vmx);
3532 }
3533
3534 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3535 {
3536         int err;
3537         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3538         int cpu;
3539
3540         if (!vmx)
3541                 return ERR_PTR(-ENOMEM);
3542
3543         allocate_vpid(vmx);
3544
3545         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3546         if (err)
3547                 goto free_vcpu;
3548
3549         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3550         if (!vmx->guest_msrs) {
3551                 err = -ENOMEM;
3552                 goto uninit_vcpu;
3553         }
3554
3555         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3556         if (!vmx->host_msrs)
3557                 goto free_guest_msrs;
3558
3559         vmx->vmcs = alloc_vmcs();
3560         if (!vmx->vmcs)
3561                 goto free_msrs;
3562
3563         vmcs_clear(vmx->vmcs);
3564
3565         cpu = get_cpu();
3566         vmx_vcpu_load(&vmx->vcpu, cpu);
3567         err = vmx_vcpu_setup(vmx);
3568         vmx_vcpu_put(&vmx->vcpu);
3569         put_cpu();
3570         if (err)
3571                 goto free_vmcs;
3572         if (vm_need_virtualize_apic_accesses(kvm))
3573                 if (alloc_apic_access_page(kvm) != 0)
3574                         goto free_vmcs;
3575
3576         if (enable_ept)
3577                 if (alloc_identity_pagetable(kvm) != 0)
3578                         goto free_vmcs;
3579
3580         return &vmx->vcpu;
3581
3582 free_vmcs:
3583         free_vmcs(vmx->vmcs);
3584 free_msrs:
3585         kfree(vmx->host_msrs);
3586 free_guest_msrs:
3587         kfree(vmx->guest_msrs);
3588 uninit_vcpu:
3589         kvm_vcpu_uninit(&vmx->vcpu);
3590 free_vcpu:
3591         kmem_cache_free(kvm_vcpu_cache, vmx);
3592         return ERR_PTR(err);
3593 }
3594
3595 static void __init vmx_check_processor_compat(void *rtn)
3596 {
3597         struct vmcs_config vmcs_conf;
3598
3599         *(int *)rtn = 0;
3600         if (setup_vmcs_config(&vmcs_conf) < 0)
3601                 *(int *)rtn = -EIO;
3602         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3603                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3604                                 smp_processor_id());
3605                 *(int *)rtn = -EIO;
3606         }
3607 }
3608
3609 static int get_ept_level(void)
3610 {
3611         return VMX_EPT_DEFAULT_GAW + 1;
3612 }
3613
3614 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3615 {
3616         u64 ret;
3617
3618         /* For VT-d and EPT combination
3619          * 1. MMIO: always map as UC
3620          * 2. EPT with VT-d:
3621          *   a. VT-d without snooping control feature: can't guarantee the
3622          *      result, try to trust guest.
3623          *   b. VT-d with snooping control feature: snooping control feature of
3624          *      VT-d engine can guarantee the cache correctness. Just set it
3625          *      to WB to keep consistent with host. So the same as item 3.
3626          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3627          *    consistent with host MTRR
3628          */
3629         if (is_mmio)
3630                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3631         else if (vcpu->kvm->arch.iommu_domain &&
3632                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3633                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3634                       VMX_EPT_MT_EPTE_SHIFT;
3635         else
3636                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3637                         | VMX_EPT_IGMT_BIT;
3638
3639         return ret;
3640 }
3641
3642 static struct kvm_x86_ops vmx_x86_ops = {
3643         .cpu_has_kvm_support = cpu_has_kvm_support,
3644         .disabled_by_bios = vmx_disabled_by_bios,
3645         .hardware_setup = hardware_setup,
3646         .hardware_unsetup = hardware_unsetup,
3647         .check_processor_compatibility = vmx_check_processor_compat,
3648         .hardware_enable = hardware_enable,
3649         .hardware_disable = hardware_disable,
3650         .cpu_has_accelerated_tpr = report_flexpriority,
3651
3652         .vcpu_create = vmx_create_vcpu,
3653         .vcpu_free = vmx_free_vcpu,
3654         .vcpu_reset = vmx_vcpu_reset,
3655
3656         .prepare_guest_switch = vmx_save_host_state,
3657         .vcpu_load = vmx_vcpu_load,
3658         .vcpu_put = vmx_vcpu_put,
3659
3660         .set_guest_debug = set_guest_debug,
3661         .get_msr = vmx_get_msr,
3662         .set_msr = vmx_set_msr,
3663         .get_segment_base = vmx_get_segment_base,
3664         .get_segment = vmx_get_segment,
3665         .set_segment = vmx_set_segment,
3666         .get_cpl = vmx_get_cpl,
3667         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3668         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3669         .set_cr0 = vmx_set_cr0,
3670         .set_cr3 = vmx_set_cr3,
3671         .set_cr4 = vmx_set_cr4,
3672         .set_efer = vmx_set_efer,
3673         .get_idt = vmx_get_idt,
3674         .set_idt = vmx_set_idt,
3675         .get_gdt = vmx_get_gdt,
3676         .set_gdt = vmx_set_gdt,
3677         .cache_reg = vmx_cache_reg,
3678         .get_rflags = vmx_get_rflags,
3679         .set_rflags = vmx_set_rflags,
3680
3681         .tlb_flush = vmx_flush_tlb,
3682
3683         .run = vmx_vcpu_run,
3684         .handle_exit = vmx_handle_exit,
3685         .skip_emulated_instruction = skip_emulated_instruction,
3686         .set_interrupt_shadow = vmx_set_interrupt_shadow,
3687         .get_interrupt_shadow = vmx_get_interrupt_shadow,
3688         .patch_hypercall = vmx_patch_hypercall,
3689         .set_irq = vmx_inject_irq,
3690         .set_nmi = vmx_inject_nmi,
3691         .queue_exception = vmx_queue_exception,
3692         .interrupt_allowed = vmx_interrupt_allowed,
3693         .nmi_allowed = vmx_nmi_allowed,
3694         .enable_nmi_window = enable_nmi_window,
3695         .enable_irq_window = enable_irq_window,
3696         .update_cr8_intercept = update_cr8_intercept,
3697
3698         .set_tss_addr = vmx_set_tss_addr,
3699         .get_tdp_level = get_ept_level,
3700         .get_mt_mask = vmx_get_mt_mask,
3701 };
3702
3703 static int __init vmx_init(void)
3704 {
3705         int r;
3706
3707         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3708         if (!vmx_io_bitmap_a)
3709                 return -ENOMEM;
3710
3711         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3712         if (!vmx_io_bitmap_b) {
3713                 r = -ENOMEM;
3714                 goto out;
3715         }
3716
3717         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3718         if (!vmx_msr_bitmap_legacy) {
3719                 r = -ENOMEM;
3720                 goto out1;
3721         }
3722
3723         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3724         if (!vmx_msr_bitmap_longmode) {
3725                 r = -ENOMEM;
3726                 goto out2;
3727         }
3728
3729         /*
3730          * Allow direct access to the PC debug port (it is often used for I/O
3731          * delays, but the vmexits simply slow things down).
3732          */
3733         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3734         clear_bit(0x80, vmx_io_bitmap_a);
3735
3736         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3737
3738         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3739         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3740
3741         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3742
3743         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3744         if (r)
3745                 goto out3;
3746
3747         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3748         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3749         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3750         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3751         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3752         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3753
3754         if (enable_ept) {
3755                 bypass_guest_pf = 0;
3756                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3757                         VMX_EPT_WRITABLE_MASK);
3758                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3759                                 VMX_EPT_EXECUTABLE_MASK);
3760                 kvm_enable_tdp();
3761         } else
3762                 kvm_disable_tdp();
3763
3764         if (bypass_guest_pf)
3765                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3766
3767         ept_sync_global();
3768
3769         return 0;
3770
3771 out3:
3772         free_page((unsigned long)vmx_msr_bitmap_longmode);
3773 out2:
3774         free_page((unsigned long)vmx_msr_bitmap_legacy);
3775 out1:
3776         free_page((unsigned long)vmx_io_bitmap_b);
3777 out:
3778         free_page((unsigned long)vmx_io_bitmap_a);
3779         return r;
3780 }
3781
3782 static void __exit vmx_exit(void)
3783 {
3784         free_page((unsigned long)vmx_msr_bitmap_legacy);
3785         free_page((unsigned long)vmx_msr_bitmap_longmode);
3786         free_page((unsigned long)vmx_io_bitmap_b);
3787         free_page((unsigned long)vmx_io_bitmap_a);
3788
3789         kvm_exit();
3790 }
3791
3792 module_init(vmx_init)
3793 module_exit(vmx_exit)