KVM: Do not report TPR write to userspace if new value bigger or equal to a previous...
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 static int __read_mostly bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, S_IRUGO);
43
44 static int __read_mostly enable_vpid = 1;
45 module_param_named(vpid, enable_vpid, bool, 0444);
46
47 static int __read_mostly flexpriority_enabled = 1;
48 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
49
50 static int __read_mostly enable_ept = 1;
51 module_param_named(ept, enable_ept, bool, S_IRUGO);
52
53 static int __read_mostly emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
55
56 struct vmcs {
57         u32 revision_id;
58         u32 abort;
59         char data[0];
60 };
61
62 struct vcpu_vmx {
63         struct kvm_vcpu       vcpu;
64         struct list_head      local_vcpus_link;
65         unsigned long         host_rsp;
66         int                   launched;
67         u8                    fail;
68         u32                   idt_vectoring_info;
69         struct kvm_msr_entry *guest_msrs;
70         struct kvm_msr_entry *host_msrs;
71         int                   nmsrs;
72         int                   save_nmsrs;
73         int                   msr_offset_efer;
74 #ifdef CONFIG_X86_64
75         int                   msr_offset_kernel_gs_base;
76 #endif
77         struct vmcs          *vmcs;
78         struct {
79                 int           loaded;
80                 u16           fs_sel, gs_sel, ldt_sel;
81                 int           gs_ldt_reload_needed;
82                 int           fs_reload_needed;
83                 int           guest_efer_loaded;
84         } host_state;
85         struct {
86                 struct {
87                         bool pending;
88                         u8 vector;
89                         unsigned rip;
90                 } irq;
91         } rmode;
92         int vpid;
93         bool emulation_required;
94         enum emulation_result invalid_state_emulation_result;
95
96         /* Support for vnmi-less CPUs */
97         int soft_vnmi_blocked;
98         ktime_t entry_time;
99         s64 vnmi_blocked_time;
100 };
101
102 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
103 {
104         return container_of(vcpu, struct vcpu_vmx, vcpu);
105 }
106
107 static int init_rmode(struct kvm *kvm);
108 static u64 construct_eptp(unsigned long root_hpa);
109
110 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
111 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
112 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
113
114 static unsigned long *vmx_io_bitmap_a;
115 static unsigned long *vmx_io_bitmap_b;
116 static unsigned long *vmx_msr_bitmap_legacy;
117 static unsigned long *vmx_msr_bitmap_longmode;
118
119 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
120 static DEFINE_SPINLOCK(vmx_vpid_lock);
121
122 static struct vmcs_config {
123         int size;
124         int order;
125         u32 revision_id;
126         u32 pin_based_exec_ctrl;
127         u32 cpu_based_exec_ctrl;
128         u32 cpu_based_2nd_exec_ctrl;
129         u32 vmexit_ctrl;
130         u32 vmentry_ctrl;
131 } vmcs_config;
132
133 static struct vmx_capability {
134         u32 ept;
135         u32 vpid;
136 } vmx_capability;
137
138 #define VMX_SEGMENT_FIELD(seg)                                  \
139         [VCPU_SREG_##seg] = {                                   \
140                 .selector = GUEST_##seg##_SELECTOR,             \
141                 .base = GUEST_##seg##_BASE,                     \
142                 .limit = GUEST_##seg##_LIMIT,                   \
143                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
144         }
145
146 static struct kvm_vmx_segment_field {
147         unsigned selector;
148         unsigned base;
149         unsigned limit;
150         unsigned ar_bytes;
151 } kvm_vmx_segment_fields[] = {
152         VMX_SEGMENT_FIELD(CS),
153         VMX_SEGMENT_FIELD(DS),
154         VMX_SEGMENT_FIELD(ES),
155         VMX_SEGMENT_FIELD(FS),
156         VMX_SEGMENT_FIELD(GS),
157         VMX_SEGMENT_FIELD(SS),
158         VMX_SEGMENT_FIELD(TR),
159         VMX_SEGMENT_FIELD(LDTR),
160 };
161
162 /*
163  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
164  * away by decrementing the array size.
165  */
166 static const u32 vmx_msr_index[] = {
167 #ifdef CONFIG_X86_64
168         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
169 #endif
170         MSR_EFER, MSR_K6_STAR,
171 };
172 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
173
174 static void load_msrs(struct kvm_msr_entry *e, int n)
175 {
176         int i;
177
178         for (i = 0; i < n; ++i)
179                 wrmsrl(e[i].index, e[i].data);
180 }
181
182 static void save_msrs(struct kvm_msr_entry *e, int n)
183 {
184         int i;
185
186         for (i = 0; i < n; ++i)
187                 rdmsrl(e[i].index, e[i].data);
188 }
189
190 static inline int is_page_fault(u32 intr_info)
191 {
192         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193                              INTR_INFO_VALID_MASK)) ==
194                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
195 }
196
197 static inline int is_no_device(u32 intr_info)
198 {
199         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
200                              INTR_INFO_VALID_MASK)) ==
201                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
202 }
203
204 static inline int is_invalid_opcode(u32 intr_info)
205 {
206         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
207                              INTR_INFO_VALID_MASK)) ==
208                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
209 }
210
211 static inline int is_external_interrupt(u32 intr_info)
212 {
213         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
214                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
215 }
216
217 static inline int cpu_has_vmx_msr_bitmap(void)
218 {
219         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
220 }
221
222 static inline int cpu_has_vmx_tpr_shadow(void)
223 {
224         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
225 }
226
227 static inline int vm_need_tpr_shadow(struct kvm *kvm)
228 {
229         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
230 }
231
232 static inline int cpu_has_secondary_exec_ctrls(void)
233 {
234         return vmcs_config.cpu_based_exec_ctrl &
235                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
236 }
237
238 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
239 {
240         return vmcs_config.cpu_based_2nd_exec_ctrl &
241                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
242 }
243
244 static inline bool cpu_has_vmx_flexpriority(void)
245 {
246         return cpu_has_vmx_tpr_shadow() &&
247                 cpu_has_vmx_virtualize_apic_accesses();
248 }
249
250 static inline int cpu_has_vmx_invept_individual_addr(void)
251 {
252         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
253 }
254
255 static inline int cpu_has_vmx_invept_context(void)
256 {
257         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
258 }
259
260 static inline int cpu_has_vmx_invept_global(void)
261 {
262         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
263 }
264
265 static inline int cpu_has_vmx_ept(void)
266 {
267         return vmcs_config.cpu_based_2nd_exec_ctrl &
268                 SECONDARY_EXEC_ENABLE_EPT;
269 }
270
271 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
272 {
273         return flexpriority_enabled &&
274                 (cpu_has_vmx_virtualize_apic_accesses()) &&
275                 (irqchip_in_kernel(kvm));
276 }
277
278 static inline int cpu_has_vmx_vpid(void)
279 {
280         return vmcs_config.cpu_based_2nd_exec_ctrl &
281                 SECONDARY_EXEC_ENABLE_VPID;
282 }
283
284 static inline int cpu_has_virtual_nmis(void)
285 {
286         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
287 }
288
289 static inline bool report_flexpriority(void)
290 {
291         return flexpriority_enabled;
292 }
293
294 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
295 {
296         int i;
297
298         for (i = 0; i < vmx->nmsrs; ++i)
299                 if (vmx->guest_msrs[i].index == msr)
300                         return i;
301         return -1;
302 }
303
304 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
305 {
306     struct {
307         u64 vpid : 16;
308         u64 rsvd : 48;
309         u64 gva;
310     } operand = { vpid, 0, gva };
311
312     asm volatile (__ex(ASM_VMX_INVVPID)
313                   /* CF==1 or ZF==1 --> rc = -1 */
314                   "; ja 1f ; ud2 ; 1:"
315                   : : "a"(&operand), "c"(ext) : "cc", "memory");
316 }
317
318 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
319 {
320         struct {
321                 u64 eptp, gpa;
322         } operand = {eptp, gpa};
323
324         asm volatile (__ex(ASM_VMX_INVEPT)
325                         /* CF==1 or ZF==1 --> rc = -1 */
326                         "; ja 1f ; ud2 ; 1:\n"
327                         : : "a" (&operand), "c" (ext) : "cc", "memory");
328 }
329
330 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
331 {
332         int i;
333
334         i = __find_msr_index(vmx, msr);
335         if (i >= 0)
336                 return &vmx->guest_msrs[i];
337         return NULL;
338 }
339
340 static void vmcs_clear(struct vmcs *vmcs)
341 {
342         u64 phys_addr = __pa(vmcs);
343         u8 error;
344
345         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
346                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
347                       : "cc", "memory");
348         if (error)
349                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
350                        vmcs, phys_addr);
351 }
352
353 static void __vcpu_clear(void *arg)
354 {
355         struct vcpu_vmx *vmx = arg;
356         int cpu = raw_smp_processor_id();
357
358         if (vmx->vcpu.cpu == cpu)
359                 vmcs_clear(vmx->vmcs);
360         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
361                 per_cpu(current_vmcs, cpu) = NULL;
362         rdtscll(vmx->vcpu.arch.host_tsc);
363         list_del(&vmx->local_vcpus_link);
364         vmx->vcpu.cpu = -1;
365         vmx->launched = 0;
366 }
367
368 static void vcpu_clear(struct vcpu_vmx *vmx)
369 {
370         if (vmx->vcpu.cpu == -1)
371                 return;
372         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
373 }
374
375 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
376 {
377         if (vmx->vpid == 0)
378                 return;
379
380         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
381 }
382
383 static inline void ept_sync_global(void)
384 {
385         if (cpu_has_vmx_invept_global())
386                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
387 }
388
389 static inline void ept_sync_context(u64 eptp)
390 {
391         if (enable_ept) {
392                 if (cpu_has_vmx_invept_context())
393                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
394                 else
395                         ept_sync_global();
396         }
397 }
398
399 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
400 {
401         if (enable_ept) {
402                 if (cpu_has_vmx_invept_individual_addr())
403                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
404                                         eptp, gpa);
405                 else
406                         ept_sync_context(eptp);
407         }
408 }
409
410 static unsigned long vmcs_readl(unsigned long field)
411 {
412         unsigned long value;
413
414         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
415                       : "=a"(value) : "d"(field) : "cc");
416         return value;
417 }
418
419 static u16 vmcs_read16(unsigned long field)
420 {
421         return vmcs_readl(field);
422 }
423
424 static u32 vmcs_read32(unsigned long field)
425 {
426         return vmcs_readl(field);
427 }
428
429 static u64 vmcs_read64(unsigned long field)
430 {
431 #ifdef CONFIG_X86_64
432         return vmcs_readl(field);
433 #else
434         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
435 #endif
436 }
437
438 static noinline void vmwrite_error(unsigned long field, unsigned long value)
439 {
440         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
441                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
442         dump_stack();
443 }
444
445 static void vmcs_writel(unsigned long field, unsigned long value)
446 {
447         u8 error;
448
449         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
450                        : "=q"(error) : "a"(value), "d"(field) : "cc");
451         if (unlikely(error))
452                 vmwrite_error(field, value);
453 }
454
455 static void vmcs_write16(unsigned long field, u16 value)
456 {
457         vmcs_writel(field, value);
458 }
459
460 static void vmcs_write32(unsigned long field, u32 value)
461 {
462         vmcs_writel(field, value);
463 }
464
465 static void vmcs_write64(unsigned long field, u64 value)
466 {
467         vmcs_writel(field, value);
468 #ifndef CONFIG_X86_64
469         asm volatile ("");
470         vmcs_writel(field+1, value >> 32);
471 #endif
472 }
473
474 static void vmcs_clear_bits(unsigned long field, u32 mask)
475 {
476         vmcs_writel(field, vmcs_readl(field) & ~mask);
477 }
478
479 static void vmcs_set_bits(unsigned long field, u32 mask)
480 {
481         vmcs_writel(field, vmcs_readl(field) | mask);
482 }
483
484 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
485 {
486         u32 eb;
487
488         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
489         if (!vcpu->fpu_active)
490                 eb |= 1u << NM_VECTOR;
491         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
492                 if (vcpu->guest_debug &
493                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
494                         eb |= 1u << DB_VECTOR;
495                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
496                         eb |= 1u << BP_VECTOR;
497         }
498         if (vcpu->arch.rmode.active)
499                 eb = ~0;
500         if (enable_ept)
501                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
502         vmcs_write32(EXCEPTION_BITMAP, eb);
503 }
504
505 static void reload_tss(void)
506 {
507         /*
508          * VT restores TR but not its size.  Useless.
509          */
510         struct descriptor_table gdt;
511         struct desc_struct *descs;
512
513         kvm_get_gdt(&gdt);
514         descs = (void *)gdt.base;
515         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
516         load_TR_desc();
517 }
518
519 static void load_transition_efer(struct vcpu_vmx *vmx)
520 {
521         int efer_offset = vmx->msr_offset_efer;
522         u64 host_efer = vmx->host_msrs[efer_offset].data;
523         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
524         u64 ignore_bits;
525
526         if (efer_offset < 0)
527                 return;
528         /*
529          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
530          * outside long mode
531          */
532         ignore_bits = EFER_NX | EFER_SCE;
533 #ifdef CONFIG_X86_64
534         ignore_bits |= EFER_LMA | EFER_LME;
535         /* SCE is meaningful only in long mode on Intel */
536         if (guest_efer & EFER_LMA)
537                 ignore_bits &= ~(u64)EFER_SCE;
538 #endif
539         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
540                 return;
541
542         vmx->host_state.guest_efer_loaded = 1;
543         guest_efer &= ~ignore_bits;
544         guest_efer |= host_efer & ignore_bits;
545         wrmsrl(MSR_EFER, guest_efer);
546         vmx->vcpu.stat.efer_reload++;
547 }
548
549 static void reload_host_efer(struct vcpu_vmx *vmx)
550 {
551         if (vmx->host_state.guest_efer_loaded) {
552                 vmx->host_state.guest_efer_loaded = 0;
553                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
554         }
555 }
556
557 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
558 {
559         struct vcpu_vmx *vmx = to_vmx(vcpu);
560
561         if (vmx->host_state.loaded)
562                 return;
563
564         vmx->host_state.loaded = 1;
565         /*
566          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
567          * allow segment selectors with cpl > 0 or ti == 1.
568          */
569         vmx->host_state.ldt_sel = kvm_read_ldt();
570         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
571         vmx->host_state.fs_sel = kvm_read_fs();
572         if (!(vmx->host_state.fs_sel & 7)) {
573                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
574                 vmx->host_state.fs_reload_needed = 0;
575         } else {
576                 vmcs_write16(HOST_FS_SELECTOR, 0);
577                 vmx->host_state.fs_reload_needed = 1;
578         }
579         vmx->host_state.gs_sel = kvm_read_gs();
580         if (!(vmx->host_state.gs_sel & 7))
581                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
582         else {
583                 vmcs_write16(HOST_GS_SELECTOR, 0);
584                 vmx->host_state.gs_ldt_reload_needed = 1;
585         }
586
587 #ifdef CONFIG_X86_64
588         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
589         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
590 #else
591         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
592         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
593 #endif
594
595 #ifdef CONFIG_X86_64
596         if (is_long_mode(&vmx->vcpu))
597                 save_msrs(vmx->host_msrs +
598                           vmx->msr_offset_kernel_gs_base, 1);
599
600 #endif
601         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
602         load_transition_efer(vmx);
603 }
604
605 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
606 {
607         unsigned long flags;
608
609         if (!vmx->host_state.loaded)
610                 return;
611
612         ++vmx->vcpu.stat.host_state_reload;
613         vmx->host_state.loaded = 0;
614         if (vmx->host_state.fs_reload_needed)
615                 kvm_load_fs(vmx->host_state.fs_sel);
616         if (vmx->host_state.gs_ldt_reload_needed) {
617                 kvm_load_ldt(vmx->host_state.ldt_sel);
618                 /*
619                  * If we have to reload gs, we must take care to
620                  * preserve our gs base.
621                  */
622                 local_irq_save(flags);
623                 kvm_load_gs(vmx->host_state.gs_sel);
624 #ifdef CONFIG_X86_64
625                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
626 #endif
627                 local_irq_restore(flags);
628         }
629         reload_tss();
630         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
632         reload_host_efer(vmx);
633 }
634
635 static void vmx_load_host_state(struct vcpu_vmx *vmx)
636 {
637         preempt_disable();
638         __vmx_load_host_state(vmx);
639         preempt_enable();
640 }
641
642 /*
643  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
644  * vcpu mutex is already taken.
645  */
646 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
647 {
648         struct vcpu_vmx *vmx = to_vmx(vcpu);
649         u64 phys_addr = __pa(vmx->vmcs);
650         u64 tsc_this, delta, new_offset;
651
652         if (vcpu->cpu != cpu) {
653                 vcpu_clear(vmx);
654                 kvm_migrate_timers(vcpu);
655                 vpid_sync_vcpu_all(vmx);
656                 local_irq_disable();
657                 list_add(&vmx->local_vcpus_link,
658                          &per_cpu(vcpus_on_cpu, cpu));
659                 local_irq_enable();
660         }
661
662         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
663                 u8 error;
664
665                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
666                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
667                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
668                               : "cc");
669                 if (error)
670                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
671                                vmx->vmcs, phys_addr);
672         }
673
674         if (vcpu->cpu != cpu) {
675                 struct descriptor_table dt;
676                 unsigned long sysenter_esp;
677
678                 vcpu->cpu = cpu;
679                 /*
680                  * Linux uses per-cpu TSS and GDT, so set these when switching
681                  * processors.
682                  */
683                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
684                 kvm_get_gdt(&dt);
685                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
686
687                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
688                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
689
690                 /*
691                  * Make sure the time stamp counter is monotonous.
692                  */
693                 rdtscll(tsc_this);
694                 if (tsc_this < vcpu->arch.host_tsc) {
695                         delta = vcpu->arch.host_tsc - tsc_this;
696                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
697                         vmcs_write64(TSC_OFFSET, new_offset);
698                 }
699         }
700 }
701
702 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
703 {
704         __vmx_load_host_state(to_vmx(vcpu));
705 }
706
707 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
708 {
709         if (vcpu->fpu_active)
710                 return;
711         vcpu->fpu_active = 1;
712         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
713         if (vcpu->arch.cr0 & X86_CR0_TS)
714                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
715         update_exception_bitmap(vcpu);
716 }
717
718 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
719 {
720         if (!vcpu->fpu_active)
721                 return;
722         vcpu->fpu_active = 0;
723         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
724         update_exception_bitmap(vcpu);
725 }
726
727 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
728 {
729         return vmcs_readl(GUEST_RFLAGS);
730 }
731
732 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
733 {
734         if (vcpu->arch.rmode.active)
735                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
736         vmcs_writel(GUEST_RFLAGS, rflags);
737 }
738
739 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
740 {
741         unsigned long rip;
742         u32 interruptibility;
743
744         rip = kvm_rip_read(vcpu);
745         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
746         kvm_rip_write(vcpu, rip);
747
748         /*
749          * We emulated an instruction, so temporary interrupt blocking
750          * should be removed, if set.
751          */
752         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
753         if (interruptibility & 3)
754                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
755                              interruptibility & ~3);
756         vcpu->arch.interrupt_window_open = 1;
757 }
758
759 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
760                                 bool has_error_code, u32 error_code)
761 {
762         struct vcpu_vmx *vmx = to_vmx(vcpu);
763         u32 intr_info = nr | INTR_INFO_VALID_MASK;
764
765         if (has_error_code) {
766                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
767                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
768         }
769
770         if (vcpu->arch.rmode.active) {
771                 vmx->rmode.irq.pending = true;
772                 vmx->rmode.irq.vector = nr;
773                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
774                 if (nr == BP_VECTOR || nr == OF_VECTOR)
775                         vmx->rmode.irq.rip++;
776                 intr_info |= INTR_TYPE_SOFT_INTR;
777                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
778                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
779                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
780                 return;
781         }
782
783         if (nr == BP_VECTOR || nr == OF_VECTOR) {
784                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
785                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
786         } else
787                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
788
789         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
790 }
791
792 /*
793  * Swap MSR entry in host/guest MSR entry array.
794  */
795 #ifdef CONFIG_X86_64
796 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
797 {
798         struct kvm_msr_entry tmp;
799
800         tmp = vmx->guest_msrs[to];
801         vmx->guest_msrs[to] = vmx->guest_msrs[from];
802         vmx->guest_msrs[from] = tmp;
803         tmp = vmx->host_msrs[to];
804         vmx->host_msrs[to] = vmx->host_msrs[from];
805         vmx->host_msrs[from] = tmp;
806 }
807 #endif
808
809 /*
810  * Set up the vmcs to automatically save and restore system
811  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
812  * mode, as fiddling with msrs is very expensive.
813  */
814 static void setup_msrs(struct vcpu_vmx *vmx)
815 {
816         int save_nmsrs;
817         unsigned long *msr_bitmap;
818
819         vmx_load_host_state(vmx);
820         save_nmsrs = 0;
821 #ifdef CONFIG_X86_64
822         if (is_long_mode(&vmx->vcpu)) {
823                 int index;
824
825                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
826                 if (index >= 0)
827                         move_msr_up(vmx, index, save_nmsrs++);
828                 index = __find_msr_index(vmx, MSR_LSTAR);
829                 if (index >= 0)
830                         move_msr_up(vmx, index, save_nmsrs++);
831                 index = __find_msr_index(vmx, MSR_CSTAR);
832                 if (index >= 0)
833                         move_msr_up(vmx, index, save_nmsrs++);
834                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
835                 if (index >= 0)
836                         move_msr_up(vmx, index, save_nmsrs++);
837                 /*
838                  * MSR_K6_STAR is only needed on long mode guests, and only
839                  * if efer.sce is enabled.
840                  */
841                 index = __find_msr_index(vmx, MSR_K6_STAR);
842                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
843                         move_msr_up(vmx, index, save_nmsrs++);
844         }
845 #endif
846         vmx->save_nmsrs = save_nmsrs;
847
848 #ifdef CONFIG_X86_64
849         vmx->msr_offset_kernel_gs_base =
850                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
851 #endif
852         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
853
854         if (cpu_has_vmx_msr_bitmap()) {
855                 if (is_long_mode(&vmx->vcpu))
856                         msr_bitmap = vmx_msr_bitmap_longmode;
857                 else
858                         msr_bitmap = vmx_msr_bitmap_legacy;
859
860                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
861         }
862 }
863
864 /*
865  * reads and returns guest's timestamp counter "register"
866  * guest_tsc = host_tsc + tsc_offset    -- 21.3
867  */
868 static u64 guest_read_tsc(void)
869 {
870         u64 host_tsc, tsc_offset;
871
872         rdtscll(host_tsc);
873         tsc_offset = vmcs_read64(TSC_OFFSET);
874         return host_tsc + tsc_offset;
875 }
876
877 /*
878  * writes 'guest_tsc' into guest's timestamp counter "register"
879  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
880  */
881 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
882 {
883         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
884 }
885
886 /*
887  * Reads an msr value (of 'msr_index') into 'pdata'.
888  * Returns 0 on success, non-0 otherwise.
889  * Assumes vcpu_load() was already called.
890  */
891 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
892 {
893         u64 data;
894         struct kvm_msr_entry *msr;
895
896         if (!pdata) {
897                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
898                 return -EINVAL;
899         }
900
901         switch (msr_index) {
902 #ifdef CONFIG_X86_64
903         case MSR_FS_BASE:
904                 data = vmcs_readl(GUEST_FS_BASE);
905                 break;
906         case MSR_GS_BASE:
907                 data = vmcs_readl(GUEST_GS_BASE);
908                 break;
909         case MSR_EFER:
910                 return kvm_get_msr_common(vcpu, msr_index, pdata);
911 #endif
912         case MSR_IA32_TIME_STAMP_COUNTER:
913                 data = guest_read_tsc();
914                 break;
915         case MSR_IA32_SYSENTER_CS:
916                 data = vmcs_read32(GUEST_SYSENTER_CS);
917                 break;
918         case MSR_IA32_SYSENTER_EIP:
919                 data = vmcs_readl(GUEST_SYSENTER_EIP);
920                 break;
921         case MSR_IA32_SYSENTER_ESP:
922                 data = vmcs_readl(GUEST_SYSENTER_ESP);
923                 break;
924         default:
925                 vmx_load_host_state(to_vmx(vcpu));
926                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
927                 if (msr) {
928                         data = msr->data;
929                         break;
930                 }
931                 return kvm_get_msr_common(vcpu, msr_index, pdata);
932         }
933
934         *pdata = data;
935         return 0;
936 }
937
938 /*
939  * Writes msr value into into the appropriate "register".
940  * Returns 0 on success, non-0 otherwise.
941  * Assumes vcpu_load() was already called.
942  */
943 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
944 {
945         struct vcpu_vmx *vmx = to_vmx(vcpu);
946         struct kvm_msr_entry *msr;
947         u64 host_tsc;
948         int ret = 0;
949
950         switch (msr_index) {
951         case MSR_EFER:
952                 vmx_load_host_state(vmx);
953                 ret = kvm_set_msr_common(vcpu, msr_index, data);
954                 break;
955 #ifdef CONFIG_X86_64
956         case MSR_FS_BASE:
957                 vmcs_writel(GUEST_FS_BASE, data);
958                 break;
959         case MSR_GS_BASE:
960                 vmcs_writel(GUEST_GS_BASE, data);
961                 break;
962 #endif
963         case MSR_IA32_SYSENTER_CS:
964                 vmcs_write32(GUEST_SYSENTER_CS, data);
965                 break;
966         case MSR_IA32_SYSENTER_EIP:
967                 vmcs_writel(GUEST_SYSENTER_EIP, data);
968                 break;
969         case MSR_IA32_SYSENTER_ESP:
970                 vmcs_writel(GUEST_SYSENTER_ESP, data);
971                 break;
972         case MSR_IA32_TIME_STAMP_COUNTER:
973                 rdtscll(host_tsc);
974                 guest_write_tsc(data, host_tsc);
975                 break;
976         case MSR_P6_PERFCTR0:
977         case MSR_P6_PERFCTR1:
978         case MSR_P6_EVNTSEL0:
979         case MSR_P6_EVNTSEL1:
980                 /*
981                  * Just discard all writes to the performance counters; this
982                  * should keep both older linux and windows 64-bit guests
983                  * happy
984                  */
985                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
986
987                 break;
988         case MSR_IA32_CR_PAT:
989                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
990                         vmcs_write64(GUEST_IA32_PAT, data);
991                         vcpu->arch.pat = data;
992                         break;
993                 }
994                 /* Otherwise falls through to kvm_set_msr_common */
995         default:
996                 vmx_load_host_state(vmx);
997                 msr = find_msr_entry(vmx, msr_index);
998                 if (msr) {
999                         msr->data = data;
1000                         break;
1001                 }
1002                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1003         }
1004
1005         return ret;
1006 }
1007
1008 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1009 {
1010         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1011         switch (reg) {
1012         case VCPU_REGS_RSP:
1013                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1014                 break;
1015         case VCPU_REGS_RIP:
1016                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1017                 break;
1018         default:
1019                 break;
1020         }
1021 }
1022
1023 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1024 {
1025         int old_debug = vcpu->guest_debug;
1026         unsigned long flags;
1027
1028         vcpu->guest_debug = dbg->control;
1029         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1030                 vcpu->guest_debug = 0;
1031
1032         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1033                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1034         else
1035                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1036
1037         flags = vmcs_readl(GUEST_RFLAGS);
1038         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1039                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1040         else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1041                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1042         vmcs_writel(GUEST_RFLAGS, flags);
1043
1044         update_exception_bitmap(vcpu);
1045
1046         return 0;
1047 }
1048
1049 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1050 {
1051         if (!vcpu->arch.interrupt.pending)
1052                 return -1;
1053         return vcpu->arch.interrupt.nr;
1054 }
1055
1056 static __init int cpu_has_kvm_support(void)
1057 {
1058         return cpu_has_vmx();
1059 }
1060
1061 static __init int vmx_disabled_by_bios(void)
1062 {
1063         u64 msr;
1064
1065         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1066         return (msr & (FEATURE_CONTROL_LOCKED |
1067                        FEATURE_CONTROL_VMXON_ENABLED))
1068             == FEATURE_CONTROL_LOCKED;
1069         /* locked but not enabled */
1070 }
1071
1072 static void hardware_enable(void *garbage)
1073 {
1074         int cpu = raw_smp_processor_id();
1075         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1076         u64 old;
1077
1078         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1079         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1080         if ((old & (FEATURE_CONTROL_LOCKED |
1081                     FEATURE_CONTROL_VMXON_ENABLED))
1082             != (FEATURE_CONTROL_LOCKED |
1083                 FEATURE_CONTROL_VMXON_ENABLED))
1084                 /* enable and lock */
1085                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1086                        FEATURE_CONTROL_LOCKED |
1087                        FEATURE_CONTROL_VMXON_ENABLED);
1088         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1089         asm volatile (ASM_VMX_VMXON_RAX
1090                       : : "a"(&phys_addr), "m"(phys_addr)
1091                       : "memory", "cc");
1092 }
1093
1094 static void vmclear_local_vcpus(void)
1095 {
1096         int cpu = raw_smp_processor_id();
1097         struct vcpu_vmx *vmx, *n;
1098
1099         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1100                                  local_vcpus_link)
1101                 __vcpu_clear(vmx);
1102 }
1103
1104
1105 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1106  * tricks.
1107  */
1108 static void kvm_cpu_vmxoff(void)
1109 {
1110         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1111         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1112 }
1113
1114 static void hardware_disable(void *garbage)
1115 {
1116         vmclear_local_vcpus();
1117         kvm_cpu_vmxoff();
1118 }
1119
1120 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1121                                       u32 msr, u32 *result)
1122 {
1123         u32 vmx_msr_low, vmx_msr_high;
1124         u32 ctl = ctl_min | ctl_opt;
1125
1126         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1127
1128         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1129         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1130
1131         /* Ensure minimum (required) set of control bits are supported. */
1132         if (ctl_min & ~ctl)
1133                 return -EIO;
1134
1135         *result = ctl;
1136         return 0;
1137 }
1138
1139 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1140 {
1141         u32 vmx_msr_low, vmx_msr_high;
1142         u32 min, opt, min2, opt2;
1143         u32 _pin_based_exec_control = 0;
1144         u32 _cpu_based_exec_control = 0;
1145         u32 _cpu_based_2nd_exec_control = 0;
1146         u32 _vmexit_control = 0;
1147         u32 _vmentry_control = 0;
1148
1149         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1150         opt = PIN_BASED_VIRTUAL_NMIS;
1151         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1152                                 &_pin_based_exec_control) < 0)
1153                 return -EIO;
1154
1155         min = CPU_BASED_HLT_EXITING |
1156 #ifdef CONFIG_X86_64
1157               CPU_BASED_CR8_LOAD_EXITING |
1158               CPU_BASED_CR8_STORE_EXITING |
1159 #endif
1160               CPU_BASED_CR3_LOAD_EXITING |
1161               CPU_BASED_CR3_STORE_EXITING |
1162               CPU_BASED_USE_IO_BITMAPS |
1163               CPU_BASED_MOV_DR_EXITING |
1164               CPU_BASED_USE_TSC_OFFSETING |
1165               CPU_BASED_INVLPG_EXITING;
1166         opt = CPU_BASED_TPR_SHADOW |
1167               CPU_BASED_USE_MSR_BITMAPS |
1168               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1169         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1170                                 &_cpu_based_exec_control) < 0)
1171                 return -EIO;
1172 #ifdef CONFIG_X86_64
1173         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1174                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1175                                            ~CPU_BASED_CR8_STORE_EXITING;
1176 #endif
1177         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1178                 min2 = 0;
1179                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1180                         SECONDARY_EXEC_WBINVD_EXITING |
1181                         SECONDARY_EXEC_ENABLE_VPID |
1182                         SECONDARY_EXEC_ENABLE_EPT;
1183                 if (adjust_vmx_controls(min2, opt2,
1184                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1185                                         &_cpu_based_2nd_exec_control) < 0)
1186                         return -EIO;
1187         }
1188 #ifndef CONFIG_X86_64
1189         if (!(_cpu_based_2nd_exec_control &
1190                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1191                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1192 #endif
1193         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1194                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1195                    enabled */
1196                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1197                          CPU_BASED_CR3_STORE_EXITING |
1198                          CPU_BASED_INVLPG_EXITING);
1199                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1200                                         &_cpu_based_exec_control) < 0)
1201                         return -EIO;
1202                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1203                       vmx_capability.ept, vmx_capability.vpid);
1204         }
1205
1206         min = 0;
1207 #ifdef CONFIG_X86_64
1208         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1209 #endif
1210         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1211         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1212                                 &_vmexit_control) < 0)
1213                 return -EIO;
1214
1215         min = 0;
1216         opt = VM_ENTRY_LOAD_IA32_PAT;
1217         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1218                                 &_vmentry_control) < 0)
1219                 return -EIO;
1220
1221         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1222
1223         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1224         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1225                 return -EIO;
1226
1227 #ifdef CONFIG_X86_64
1228         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1229         if (vmx_msr_high & (1u<<16))
1230                 return -EIO;
1231 #endif
1232
1233         /* Require Write-Back (WB) memory type for VMCS accesses. */
1234         if (((vmx_msr_high >> 18) & 15) != 6)
1235                 return -EIO;
1236
1237         vmcs_conf->size = vmx_msr_high & 0x1fff;
1238         vmcs_conf->order = get_order(vmcs_config.size);
1239         vmcs_conf->revision_id = vmx_msr_low;
1240
1241         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1242         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1243         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1244         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1245         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1246
1247         return 0;
1248 }
1249
1250 static struct vmcs *alloc_vmcs_cpu(int cpu)
1251 {
1252         int node = cpu_to_node(cpu);
1253         struct page *pages;
1254         struct vmcs *vmcs;
1255
1256         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1257         if (!pages)
1258                 return NULL;
1259         vmcs = page_address(pages);
1260         memset(vmcs, 0, vmcs_config.size);
1261         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1262         return vmcs;
1263 }
1264
1265 static struct vmcs *alloc_vmcs(void)
1266 {
1267         return alloc_vmcs_cpu(raw_smp_processor_id());
1268 }
1269
1270 static void free_vmcs(struct vmcs *vmcs)
1271 {
1272         free_pages((unsigned long)vmcs, vmcs_config.order);
1273 }
1274
1275 static void free_kvm_area(void)
1276 {
1277         int cpu;
1278
1279         for_each_online_cpu(cpu)
1280                 free_vmcs(per_cpu(vmxarea, cpu));
1281 }
1282
1283 static __init int alloc_kvm_area(void)
1284 {
1285         int cpu;
1286
1287         for_each_online_cpu(cpu) {
1288                 struct vmcs *vmcs;
1289
1290                 vmcs = alloc_vmcs_cpu(cpu);
1291                 if (!vmcs) {
1292                         free_kvm_area();
1293                         return -ENOMEM;
1294                 }
1295
1296                 per_cpu(vmxarea, cpu) = vmcs;
1297         }
1298         return 0;
1299 }
1300
1301 static __init int hardware_setup(void)
1302 {
1303         if (setup_vmcs_config(&vmcs_config) < 0)
1304                 return -EIO;
1305
1306         if (boot_cpu_has(X86_FEATURE_NX))
1307                 kvm_enable_efer_bits(EFER_NX);
1308
1309         if (!cpu_has_vmx_vpid())
1310                 enable_vpid = 0;
1311
1312         if (!cpu_has_vmx_ept())
1313                 enable_ept = 0;
1314
1315         if (!cpu_has_vmx_flexpriority())
1316                 flexpriority_enabled = 0;
1317
1318         return alloc_kvm_area();
1319 }
1320
1321 static __exit void hardware_unsetup(void)
1322 {
1323         free_kvm_area();
1324 }
1325
1326 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1327 {
1328         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1329
1330         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1331                 vmcs_write16(sf->selector, save->selector);
1332                 vmcs_writel(sf->base, save->base);
1333                 vmcs_write32(sf->limit, save->limit);
1334                 vmcs_write32(sf->ar_bytes, save->ar);
1335         } else {
1336                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1337                         << AR_DPL_SHIFT;
1338                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1339         }
1340 }
1341
1342 static void enter_pmode(struct kvm_vcpu *vcpu)
1343 {
1344         unsigned long flags;
1345         struct vcpu_vmx *vmx = to_vmx(vcpu);
1346
1347         vmx->emulation_required = 1;
1348         vcpu->arch.rmode.active = 0;
1349
1350         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1351         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1352         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1353
1354         flags = vmcs_readl(GUEST_RFLAGS);
1355         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1356         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1357         vmcs_writel(GUEST_RFLAGS, flags);
1358
1359         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1360                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1361
1362         update_exception_bitmap(vcpu);
1363
1364         if (emulate_invalid_guest_state)
1365                 return;
1366
1367         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1368         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1369         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1370         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1371
1372         vmcs_write16(GUEST_SS_SELECTOR, 0);
1373         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1374
1375         vmcs_write16(GUEST_CS_SELECTOR,
1376                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1377         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1378 }
1379
1380 static gva_t rmode_tss_base(struct kvm *kvm)
1381 {
1382         if (!kvm->arch.tss_addr) {
1383                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1384                                  kvm->memslots[0].npages - 3;
1385                 return base_gfn << PAGE_SHIFT;
1386         }
1387         return kvm->arch.tss_addr;
1388 }
1389
1390 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1391 {
1392         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1393
1394         save->selector = vmcs_read16(sf->selector);
1395         save->base = vmcs_readl(sf->base);
1396         save->limit = vmcs_read32(sf->limit);
1397         save->ar = vmcs_read32(sf->ar_bytes);
1398         vmcs_write16(sf->selector, save->base >> 4);
1399         vmcs_write32(sf->base, save->base & 0xfffff);
1400         vmcs_write32(sf->limit, 0xffff);
1401         vmcs_write32(sf->ar_bytes, 0xf3);
1402 }
1403
1404 static void enter_rmode(struct kvm_vcpu *vcpu)
1405 {
1406         unsigned long flags;
1407         struct vcpu_vmx *vmx = to_vmx(vcpu);
1408
1409         vmx->emulation_required = 1;
1410         vcpu->arch.rmode.active = 1;
1411
1412         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1413         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1414
1415         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1416         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1417
1418         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1419         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1420
1421         flags = vmcs_readl(GUEST_RFLAGS);
1422         vcpu->arch.rmode.save_iopl
1423                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1424
1425         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1426
1427         vmcs_writel(GUEST_RFLAGS, flags);
1428         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1429         update_exception_bitmap(vcpu);
1430
1431         if (emulate_invalid_guest_state)
1432                 goto continue_rmode;
1433
1434         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1435         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1436         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1437
1438         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1439         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1440         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1441                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1442         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1443
1444         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1445         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1446         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1447         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1448
1449 continue_rmode:
1450         kvm_mmu_reset_context(vcpu);
1451         init_rmode(vcpu->kvm);
1452 }
1453
1454 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1455 {
1456         struct vcpu_vmx *vmx = to_vmx(vcpu);
1457         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1458
1459         vcpu->arch.shadow_efer = efer;
1460         if (!msr)
1461                 return;
1462         if (efer & EFER_LMA) {
1463                 vmcs_write32(VM_ENTRY_CONTROLS,
1464                              vmcs_read32(VM_ENTRY_CONTROLS) |
1465                              VM_ENTRY_IA32E_MODE);
1466                 msr->data = efer;
1467         } else {
1468                 vmcs_write32(VM_ENTRY_CONTROLS,
1469                              vmcs_read32(VM_ENTRY_CONTROLS) &
1470                              ~VM_ENTRY_IA32E_MODE);
1471
1472                 msr->data = efer & ~EFER_LME;
1473         }
1474         setup_msrs(vmx);
1475 }
1476
1477 #ifdef CONFIG_X86_64
1478
1479 static void enter_lmode(struct kvm_vcpu *vcpu)
1480 {
1481         u32 guest_tr_ar;
1482
1483         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1484         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1485                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1486                        __func__);
1487                 vmcs_write32(GUEST_TR_AR_BYTES,
1488                              (guest_tr_ar & ~AR_TYPE_MASK)
1489                              | AR_TYPE_BUSY_64_TSS);
1490         }
1491         vcpu->arch.shadow_efer |= EFER_LMA;
1492         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1493 }
1494
1495 static void exit_lmode(struct kvm_vcpu *vcpu)
1496 {
1497         vcpu->arch.shadow_efer &= ~EFER_LMA;
1498
1499         vmcs_write32(VM_ENTRY_CONTROLS,
1500                      vmcs_read32(VM_ENTRY_CONTROLS)
1501                      & ~VM_ENTRY_IA32E_MODE);
1502 }
1503
1504 #endif
1505
1506 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1507 {
1508         vpid_sync_vcpu_all(to_vmx(vcpu));
1509         if (enable_ept)
1510                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1511 }
1512
1513 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1514 {
1515         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1516         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1517 }
1518
1519 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1520 {
1521         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1522                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1523                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1524                         return;
1525                 }
1526                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1527                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1528                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1529                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1530         }
1531 }
1532
1533 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1534
1535 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1536                                         unsigned long cr0,
1537                                         struct kvm_vcpu *vcpu)
1538 {
1539         if (!(cr0 & X86_CR0_PG)) {
1540                 /* From paging/starting to nonpaging */
1541                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1542                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1543                              (CPU_BASED_CR3_LOAD_EXITING |
1544                               CPU_BASED_CR3_STORE_EXITING));
1545                 vcpu->arch.cr0 = cr0;
1546                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1547                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1548                 *hw_cr0 &= ~X86_CR0_WP;
1549         } else if (!is_paging(vcpu)) {
1550                 /* From nonpaging to paging */
1551                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1552                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1553                              ~(CPU_BASED_CR3_LOAD_EXITING |
1554                                CPU_BASED_CR3_STORE_EXITING));
1555                 vcpu->arch.cr0 = cr0;
1556                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1557                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1558                         *hw_cr0 &= ~X86_CR0_WP;
1559         }
1560 }
1561
1562 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1563                                         struct kvm_vcpu *vcpu)
1564 {
1565         if (!is_paging(vcpu)) {
1566                 *hw_cr4 &= ~X86_CR4_PAE;
1567                 *hw_cr4 |= X86_CR4_PSE;
1568         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1569                 *hw_cr4 &= ~X86_CR4_PAE;
1570 }
1571
1572 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1573 {
1574         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1575                                 KVM_VM_CR0_ALWAYS_ON;
1576
1577         vmx_fpu_deactivate(vcpu);
1578
1579         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1580                 enter_pmode(vcpu);
1581
1582         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1583                 enter_rmode(vcpu);
1584
1585 #ifdef CONFIG_X86_64
1586         if (vcpu->arch.shadow_efer & EFER_LME) {
1587                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1588                         enter_lmode(vcpu);
1589                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1590                         exit_lmode(vcpu);
1591         }
1592 #endif
1593
1594         if (enable_ept)
1595                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1596
1597         vmcs_writel(CR0_READ_SHADOW, cr0);
1598         vmcs_writel(GUEST_CR0, hw_cr0);
1599         vcpu->arch.cr0 = cr0;
1600
1601         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1602                 vmx_fpu_activate(vcpu);
1603 }
1604
1605 static u64 construct_eptp(unsigned long root_hpa)
1606 {
1607         u64 eptp;
1608
1609         /* TODO write the value reading from MSR */
1610         eptp = VMX_EPT_DEFAULT_MT |
1611                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1612         eptp |= (root_hpa & PAGE_MASK);
1613
1614         return eptp;
1615 }
1616
1617 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1618 {
1619         unsigned long guest_cr3;
1620         u64 eptp;
1621
1622         guest_cr3 = cr3;
1623         if (enable_ept) {
1624                 eptp = construct_eptp(cr3);
1625                 vmcs_write64(EPT_POINTER, eptp);
1626                 ept_sync_context(eptp);
1627                 ept_load_pdptrs(vcpu);
1628                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1629                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1630         }
1631
1632         vmx_flush_tlb(vcpu);
1633         vmcs_writel(GUEST_CR3, guest_cr3);
1634         if (vcpu->arch.cr0 & X86_CR0_PE)
1635                 vmx_fpu_deactivate(vcpu);
1636 }
1637
1638 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1639 {
1640         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1641                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1642
1643         vcpu->arch.cr4 = cr4;
1644         if (enable_ept)
1645                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1646
1647         vmcs_writel(CR4_READ_SHADOW, cr4);
1648         vmcs_writel(GUEST_CR4, hw_cr4);
1649 }
1650
1651 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1652 {
1653         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1654
1655         return vmcs_readl(sf->base);
1656 }
1657
1658 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1659                             struct kvm_segment *var, int seg)
1660 {
1661         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1662         u32 ar;
1663
1664         var->base = vmcs_readl(sf->base);
1665         var->limit = vmcs_read32(sf->limit);
1666         var->selector = vmcs_read16(sf->selector);
1667         ar = vmcs_read32(sf->ar_bytes);
1668         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1669                 ar = 0;
1670         var->type = ar & 15;
1671         var->s = (ar >> 4) & 1;
1672         var->dpl = (ar >> 5) & 3;
1673         var->present = (ar >> 7) & 1;
1674         var->avl = (ar >> 12) & 1;
1675         var->l = (ar >> 13) & 1;
1676         var->db = (ar >> 14) & 1;
1677         var->g = (ar >> 15) & 1;
1678         var->unusable = (ar >> 16) & 1;
1679 }
1680
1681 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1682 {
1683         struct kvm_segment kvm_seg;
1684
1685         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1686                 return 0;
1687
1688         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1689                 return 3;
1690
1691         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1692         return kvm_seg.selector & 3;
1693 }
1694
1695 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1696 {
1697         u32 ar;
1698
1699         if (var->unusable)
1700                 ar = 1 << 16;
1701         else {
1702                 ar = var->type & 15;
1703                 ar |= (var->s & 1) << 4;
1704                 ar |= (var->dpl & 3) << 5;
1705                 ar |= (var->present & 1) << 7;
1706                 ar |= (var->avl & 1) << 12;
1707                 ar |= (var->l & 1) << 13;
1708                 ar |= (var->db & 1) << 14;
1709                 ar |= (var->g & 1) << 15;
1710         }
1711         if (ar == 0) /* a 0 value means unusable */
1712                 ar = AR_UNUSABLE_MASK;
1713
1714         return ar;
1715 }
1716
1717 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1718                             struct kvm_segment *var, int seg)
1719 {
1720         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1721         u32 ar;
1722
1723         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1724                 vcpu->arch.rmode.tr.selector = var->selector;
1725                 vcpu->arch.rmode.tr.base = var->base;
1726                 vcpu->arch.rmode.tr.limit = var->limit;
1727                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1728                 return;
1729         }
1730         vmcs_writel(sf->base, var->base);
1731         vmcs_write32(sf->limit, var->limit);
1732         vmcs_write16(sf->selector, var->selector);
1733         if (vcpu->arch.rmode.active && var->s) {
1734                 /*
1735                  * Hack real-mode segments into vm86 compatibility.
1736                  */
1737                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1738                         vmcs_writel(sf->base, 0xf0000);
1739                 ar = 0xf3;
1740         } else
1741                 ar = vmx_segment_access_rights(var);
1742         vmcs_write32(sf->ar_bytes, ar);
1743 }
1744
1745 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1746 {
1747         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1748
1749         *db = (ar >> 14) & 1;
1750         *l = (ar >> 13) & 1;
1751 }
1752
1753 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1754 {
1755         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1756         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1757 }
1758
1759 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1760 {
1761         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1762         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1763 }
1764
1765 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1766 {
1767         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1768         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1769 }
1770
1771 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1772 {
1773         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1774         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1775 }
1776
1777 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1778 {
1779         struct kvm_segment var;
1780         u32 ar;
1781
1782         vmx_get_segment(vcpu, &var, seg);
1783         ar = vmx_segment_access_rights(&var);
1784
1785         if (var.base != (var.selector << 4))
1786                 return false;
1787         if (var.limit != 0xffff)
1788                 return false;
1789         if (ar != 0xf3)
1790                 return false;
1791
1792         return true;
1793 }
1794
1795 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1796 {
1797         struct kvm_segment cs;
1798         unsigned int cs_rpl;
1799
1800         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1801         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1802
1803         if (cs.unusable)
1804                 return false;
1805         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1806                 return false;
1807         if (!cs.s)
1808                 return false;
1809         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1810                 if (cs.dpl > cs_rpl)
1811                         return false;
1812         } else {
1813                 if (cs.dpl != cs_rpl)
1814                         return false;
1815         }
1816         if (!cs.present)
1817                 return false;
1818
1819         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1820         return true;
1821 }
1822
1823 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1824 {
1825         struct kvm_segment ss;
1826         unsigned int ss_rpl;
1827
1828         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1829         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1830
1831         if (ss.unusable)
1832                 return true;
1833         if (ss.type != 3 && ss.type != 7)
1834                 return false;
1835         if (!ss.s)
1836                 return false;
1837         if (ss.dpl != ss_rpl) /* DPL != RPL */
1838                 return false;
1839         if (!ss.present)
1840                 return false;
1841
1842         return true;
1843 }
1844
1845 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1846 {
1847         struct kvm_segment var;
1848         unsigned int rpl;
1849
1850         vmx_get_segment(vcpu, &var, seg);
1851         rpl = var.selector & SELECTOR_RPL_MASK;
1852
1853         if (var.unusable)
1854                 return true;
1855         if (!var.s)
1856                 return false;
1857         if (!var.present)
1858                 return false;
1859         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1860                 if (var.dpl < rpl) /* DPL < RPL */
1861                         return false;
1862         }
1863
1864         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1865          * rights flags
1866          */
1867         return true;
1868 }
1869
1870 static bool tr_valid(struct kvm_vcpu *vcpu)
1871 {
1872         struct kvm_segment tr;
1873
1874         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1875
1876         if (tr.unusable)
1877                 return false;
1878         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1879                 return false;
1880         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1881                 return false;
1882         if (!tr.present)
1883                 return false;
1884
1885         return true;
1886 }
1887
1888 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1889 {
1890         struct kvm_segment ldtr;
1891
1892         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1893
1894         if (ldtr.unusable)
1895                 return true;
1896         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
1897                 return false;
1898         if (ldtr.type != 2)
1899                 return false;
1900         if (!ldtr.present)
1901                 return false;
1902
1903         return true;
1904 }
1905
1906 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1907 {
1908         struct kvm_segment cs, ss;
1909
1910         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1911         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1912
1913         return ((cs.selector & SELECTOR_RPL_MASK) ==
1914                  (ss.selector & SELECTOR_RPL_MASK));
1915 }
1916
1917 /*
1918  * Check if guest state is valid. Returns true if valid, false if
1919  * not.
1920  * We assume that registers are always usable
1921  */
1922 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1923 {
1924         /* real mode guest state checks */
1925         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1926                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1927                         return false;
1928                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1929                         return false;
1930                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1931                         return false;
1932                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1933                         return false;
1934                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1935                         return false;
1936                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1937                         return false;
1938         } else {
1939         /* protected mode guest state checks */
1940                 if (!cs_ss_rpl_check(vcpu))
1941                         return false;
1942                 if (!code_segment_valid(vcpu))
1943                         return false;
1944                 if (!stack_segment_valid(vcpu))
1945                         return false;
1946                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1947                         return false;
1948                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1949                         return false;
1950                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1951                         return false;
1952                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1953                         return false;
1954                 if (!tr_valid(vcpu))
1955                         return false;
1956                 if (!ldtr_valid(vcpu))
1957                         return false;
1958         }
1959         /* TODO:
1960          * - Add checks on RIP
1961          * - Add checks on RFLAGS
1962          */
1963
1964         return true;
1965 }
1966
1967 static int init_rmode_tss(struct kvm *kvm)
1968 {
1969         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1970         u16 data = 0;
1971         int ret = 0;
1972         int r;
1973
1974         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1975         if (r < 0)
1976                 goto out;
1977         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1978         r = kvm_write_guest_page(kvm, fn++, &data,
1979                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
1980         if (r < 0)
1981                 goto out;
1982         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1983         if (r < 0)
1984                 goto out;
1985         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1986         if (r < 0)
1987                 goto out;
1988         data = ~0;
1989         r = kvm_write_guest_page(kvm, fn, &data,
1990                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1991                                  sizeof(u8));
1992         if (r < 0)
1993                 goto out;
1994
1995         ret = 1;
1996 out:
1997         return ret;
1998 }
1999
2000 static int init_rmode_identity_map(struct kvm *kvm)
2001 {
2002         int i, r, ret;
2003         pfn_t identity_map_pfn;
2004         u32 tmp;
2005
2006         if (!enable_ept)
2007                 return 1;
2008         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2009                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2010                         "haven't been allocated!\n");
2011                 return 0;
2012         }
2013         if (likely(kvm->arch.ept_identity_pagetable_done))
2014                 return 1;
2015         ret = 0;
2016         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2017         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2018         if (r < 0)
2019                 goto out;
2020         /* Set up identity-mapping pagetable for EPT in real mode */
2021         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2022                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2023                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2024                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2025                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2026                 if (r < 0)
2027                         goto out;
2028         }
2029         kvm->arch.ept_identity_pagetable_done = true;
2030         ret = 1;
2031 out:
2032         return ret;
2033 }
2034
2035 static void seg_setup(int seg)
2036 {
2037         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2038
2039         vmcs_write16(sf->selector, 0);
2040         vmcs_writel(sf->base, 0);
2041         vmcs_write32(sf->limit, 0xffff);
2042         vmcs_write32(sf->ar_bytes, 0xf3);
2043 }
2044
2045 static int alloc_apic_access_page(struct kvm *kvm)
2046 {
2047         struct kvm_userspace_memory_region kvm_userspace_mem;
2048         int r = 0;
2049
2050         down_write(&kvm->slots_lock);
2051         if (kvm->arch.apic_access_page)
2052                 goto out;
2053         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2054         kvm_userspace_mem.flags = 0;
2055         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2056         kvm_userspace_mem.memory_size = PAGE_SIZE;
2057         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2058         if (r)
2059                 goto out;
2060
2061         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2062 out:
2063         up_write(&kvm->slots_lock);
2064         return r;
2065 }
2066
2067 static int alloc_identity_pagetable(struct kvm *kvm)
2068 {
2069         struct kvm_userspace_memory_region kvm_userspace_mem;
2070         int r = 0;
2071
2072         down_write(&kvm->slots_lock);
2073         if (kvm->arch.ept_identity_pagetable)
2074                 goto out;
2075         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2076         kvm_userspace_mem.flags = 0;
2077         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2078         kvm_userspace_mem.memory_size = PAGE_SIZE;
2079         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2080         if (r)
2081                 goto out;
2082
2083         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2084                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2085 out:
2086         up_write(&kvm->slots_lock);
2087         return r;
2088 }
2089
2090 static void allocate_vpid(struct vcpu_vmx *vmx)
2091 {
2092         int vpid;
2093
2094         vmx->vpid = 0;
2095         if (!enable_vpid)
2096                 return;
2097         spin_lock(&vmx_vpid_lock);
2098         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2099         if (vpid < VMX_NR_VPIDS) {
2100                 vmx->vpid = vpid;
2101                 __set_bit(vpid, vmx_vpid_bitmap);
2102         }
2103         spin_unlock(&vmx_vpid_lock);
2104 }
2105
2106 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2107 {
2108         int f = sizeof(unsigned long);
2109
2110         if (!cpu_has_vmx_msr_bitmap())
2111                 return;
2112
2113         /*
2114          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2115          * have the write-low and read-high bitmap offsets the wrong way round.
2116          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2117          */
2118         if (msr <= 0x1fff) {
2119                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2120                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2121         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2122                 msr &= 0x1fff;
2123                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2124                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2125         }
2126 }
2127
2128 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2129 {
2130         if (!longmode_only)
2131                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2132         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2133 }
2134
2135 /*
2136  * Sets up the vmcs for emulated real mode.
2137  */
2138 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2139 {
2140         u32 host_sysenter_cs, msr_low, msr_high;
2141         u32 junk;
2142         u64 host_pat, tsc_this, tsc_base;
2143         unsigned long a;
2144         struct descriptor_table dt;
2145         int i;
2146         unsigned long kvm_vmx_return;
2147         u32 exec_control;
2148
2149         /* I/O */
2150         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2151         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2152
2153         if (cpu_has_vmx_msr_bitmap())
2154                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2155
2156         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2157
2158         /* Control */
2159         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2160                 vmcs_config.pin_based_exec_ctrl);
2161
2162         exec_control = vmcs_config.cpu_based_exec_ctrl;
2163         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2164                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2165 #ifdef CONFIG_X86_64
2166                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2167                                 CPU_BASED_CR8_LOAD_EXITING;
2168 #endif
2169         }
2170         if (!enable_ept)
2171                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2172                                 CPU_BASED_CR3_LOAD_EXITING  |
2173                                 CPU_BASED_INVLPG_EXITING;
2174         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2175
2176         if (cpu_has_secondary_exec_ctrls()) {
2177                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2178                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2179                         exec_control &=
2180                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2181                 if (vmx->vpid == 0)
2182                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2183                 if (!enable_ept)
2184                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2185                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2186         }
2187
2188         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2189         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2190         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2191
2192         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2193         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2194         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2195
2196         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2197         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2198         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2199         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2200         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2201         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2202 #ifdef CONFIG_X86_64
2203         rdmsrl(MSR_FS_BASE, a);
2204         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2205         rdmsrl(MSR_GS_BASE, a);
2206         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2207 #else
2208         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2209         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2210 #endif
2211
2212         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2213
2214         kvm_get_idt(&dt);
2215         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2216
2217         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2218         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2219         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2220         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2221         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2222
2223         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2224         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2225         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2226         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2227         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2228         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2229
2230         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2231                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2232                 host_pat = msr_low | ((u64) msr_high << 32);
2233                 vmcs_write64(HOST_IA32_PAT, host_pat);
2234         }
2235         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2236                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2237                 host_pat = msr_low | ((u64) msr_high << 32);
2238                 /* Write the default value follow host pat */
2239                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2240                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2241                 vmx->vcpu.arch.pat = host_pat;
2242         }
2243
2244         for (i = 0; i < NR_VMX_MSR; ++i) {
2245                 u32 index = vmx_msr_index[i];
2246                 u32 data_low, data_high;
2247                 u64 data;
2248                 int j = vmx->nmsrs;
2249
2250                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2251                         continue;
2252                 if (wrmsr_safe(index, data_low, data_high) < 0)
2253                         continue;
2254                 data = data_low | ((u64)data_high << 32);
2255                 vmx->host_msrs[j].index = index;
2256                 vmx->host_msrs[j].reserved = 0;
2257                 vmx->host_msrs[j].data = data;
2258                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2259                 ++vmx->nmsrs;
2260         }
2261
2262         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2263
2264         /* 22.2.1, 20.8.1 */
2265         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2266
2267         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2268         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2269
2270         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2271         rdtscll(tsc_this);
2272         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2273                 tsc_base = tsc_this;
2274
2275         guest_write_tsc(0, tsc_base);
2276
2277         return 0;
2278 }
2279
2280 static int init_rmode(struct kvm *kvm)
2281 {
2282         if (!init_rmode_tss(kvm))
2283                 return 0;
2284         if (!init_rmode_identity_map(kvm))
2285                 return 0;
2286         return 1;
2287 }
2288
2289 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2290 {
2291         struct vcpu_vmx *vmx = to_vmx(vcpu);
2292         u64 msr;
2293         int ret;
2294
2295         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2296         down_read(&vcpu->kvm->slots_lock);
2297         if (!init_rmode(vmx->vcpu.kvm)) {
2298                 ret = -ENOMEM;
2299                 goto out;
2300         }
2301
2302         vmx->vcpu.arch.rmode.active = 0;
2303
2304         vmx->soft_vnmi_blocked = 0;
2305
2306         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2307         kvm_set_cr8(&vmx->vcpu, 0);
2308         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2309         if (vmx->vcpu.vcpu_id == 0)
2310                 msr |= MSR_IA32_APICBASE_BSP;
2311         kvm_set_apic_base(&vmx->vcpu, msr);
2312
2313         fx_init(&vmx->vcpu);
2314
2315         seg_setup(VCPU_SREG_CS);
2316         /*
2317          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2318          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2319          */
2320         if (vmx->vcpu.vcpu_id == 0) {
2321                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2322                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2323         } else {
2324                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2325                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2326         }
2327
2328         seg_setup(VCPU_SREG_DS);
2329         seg_setup(VCPU_SREG_ES);
2330         seg_setup(VCPU_SREG_FS);
2331         seg_setup(VCPU_SREG_GS);
2332         seg_setup(VCPU_SREG_SS);
2333
2334         vmcs_write16(GUEST_TR_SELECTOR, 0);
2335         vmcs_writel(GUEST_TR_BASE, 0);
2336         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2337         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2338
2339         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2340         vmcs_writel(GUEST_LDTR_BASE, 0);
2341         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2342         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2343
2344         vmcs_write32(GUEST_SYSENTER_CS, 0);
2345         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2346         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2347
2348         vmcs_writel(GUEST_RFLAGS, 0x02);
2349         if (vmx->vcpu.vcpu_id == 0)
2350                 kvm_rip_write(vcpu, 0xfff0);
2351         else
2352                 kvm_rip_write(vcpu, 0);
2353         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2354
2355         vmcs_writel(GUEST_DR7, 0x400);
2356
2357         vmcs_writel(GUEST_GDTR_BASE, 0);
2358         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2359
2360         vmcs_writel(GUEST_IDTR_BASE, 0);
2361         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2362
2363         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2364         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2365         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2366
2367         /* Special registers */
2368         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2369
2370         setup_msrs(vmx);
2371
2372         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2373
2374         if (cpu_has_vmx_tpr_shadow()) {
2375                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2376                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2377                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2378                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2379                 vmcs_write32(TPR_THRESHOLD, 0);
2380         }
2381
2382         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2383                 vmcs_write64(APIC_ACCESS_ADDR,
2384                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2385
2386         if (vmx->vpid != 0)
2387                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2388
2389         vmx->vcpu.arch.cr0 = 0x60000010;
2390         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2391         vmx_set_cr4(&vmx->vcpu, 0);
2392         vmx_set_efer(&vmx->vcpu, 0);
2393         vmx_fpu_activate(&vmx->vcpu);
2394         update_exception_bitmap(&vmx->vcpu);
2395
2396         vpid_sync_vcpu_all(vmx);
2397
2398         ret = 0;
2399
2400         /* HACK: Don't enable emulation on guest boot/reset */
2401         vmx->emulation_required = 0;
2402
2403 out:
2404         up_read(&vcpu->kvm->slots_lock);
2405         return ret;
2406 }
2407
2408 static void enable_irq_window(struct kvm_vcpu *vcpu)
2409 {
2410         u32 cpu_based_vm_exec_control;
2411
2412         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2413         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2414         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2415 }
2416
2417 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2418 {
2419         u32 cpu_based_vm_exec_control;
2420
2421         if (!cpu_has_virtual_nmis()) {
2422                 enable_irq_window(vcpu);
2423                 return;
2424         }
2425
2426         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2427         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2428         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2429 }
2430
2431 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2432 {
2433         struct vcpu_vmx *vmx = to_vmx(vcpu);
2434
2435         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2436
2437         ++vcpu->stat.irq_injections;
2438         if (vcpu->arch.rmode.active) {
2439                 vmx->rmode.irq.pending = true;
2440                 vmx->rmode.irq.vector = irq;
2441                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2442                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2443                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2444                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2445                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2446                 return;
2447         }
2448         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2449                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2450 }
2451
2452 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2453 {
2454         struct vcpu_vmx *vmx = to_vmx(vcpu);
2455
2456         if (!cpu_has_virtual_nmis()) {
2457                 /*
2458                  * Tracking the NMI-blocked state in software is built upon
2459                  * finding the next open IRQ window. This, in turn, depends on
2460                  * well-behaving guests: They have to keep IRQs disabled at
2461                  * least as long as the NMI handler runs. Otherwise we may
2462                  * cause NMI nesting, maybe breaking the guest. But as this is
2463                  * highly unlikely, we can live with the residual risk.
2464                  */
2465                 vmx->soft_vnmi_blocked = 1;
2466                 vmx->vnmi_blocked_time = 0;
2467         }
2468
2469         ++vcpu->stat.nmi_injections;
2470         if (vcpu->arch.rmode.active) {
2471                 vmx->rmode.irq.pending = true;
2472                 vmx->rmode.irq.vector = NMI_VECTOR;
2473                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2474                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2475                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2476                              INTR_INFO_VALID_MASK);
2477                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2478                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2479                 return;
2480         }
2481         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2482                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2483 }
2484
2485 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2486 {
2487         u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2488
2489         vcpu->arch.nmi_window_open =
2490                 !(guest_intr & (GUEST_INTR_STATE_STI |
2491                                 GUEST_INTR_STATE_MOV_SS |
2492                                 GUEST_INTR_STATE_NMI));
2493         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2494                 vcpu->arch.nmi_window_open = 0;
2495
2496         vcpu->arch.interrupt_window_open =
2497                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2498                  !(guest_intr & (GUEST_INTR_STATE_STI |
2499                                  GUEST_INTR_STATE_MOV_SS)));
2500 }
2501
2502 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2503 {
2504         vmx_update_window_states(vcpu);
2505         return vcpu->arch.interrupt_window_open;
2506 }
2507
2508 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2509 {
2510         int ret;
2511         struct kvm_userspace_memory_region tss_mem = {
2512                 .slot = TSS_PRIVATE_MEMSLOT,
2513                 .guest_phys_addr = addr,
2514                 .memory_size = PAGE_SIZE * 3,
2515                 .flags = 0,
2516         };
2517
2518         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2519         if (ret)
2520                 return ret;
2521         kvm->arch.tss_addr = addr;
2522         return 0;
2523 }
2524
2525 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2526                                   int vec, u32 err_code)
2527 {
2528         /*
2529          * Instruction with address size override prefix opcode 0x67
2530          * Cause the #SS fault with 0 error code in VM86 mode.
2531          */
2532         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2533                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2534                         return 1;
2535         /*
2536          * Forward all other exceptions that are valid in real mode.
2537          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2538          *        the required debugging infrastructure rework.
2539          */
2540         switch (vec) {
2541         case DB_VECTOR:
2542                 if (vcpu->guest_debug &
2543                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2544                         return 0;
2545                 kvm_queue_exception(vcpu, vec);
2546                 return 1;
2547         case BP_VECTOR:
2548                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2549                         return 0;
2550                 /* fall through */
2551         case DE_VECTOR:
2552         case OF_VECTOR:
2553         case BR_VECTOR:
2554         case UD_VECTOR:
2555         case DF_VECTOR:
2556         case SS_VECTOR:
2557         case GP_VECTOR:
2558         case MF_VECTOR:
2559                 kvm_queue_exception(vcpu, vec);
2560                 return 1;
2561         }
2562         return 0;
2563 }
2564
2565 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2566 {
2567         struct vcpu_vmx *vmx = to_vmx(vcpu);
2568         u32 intr_info, ex_no, error_code;
2569         unsigned long cr2, rip, dr6;
2570         u32 vect_info;
2571         enum emulation_result er;
2572
2573         vect_info = vmx->idt_vectoring_info;
2574         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2575
2576         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2577                                                 !is_page_fault(intr_info))
2578                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2579                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2580
2581         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2582                 return 1;  /* already handled by vmx_vcpu_run() */
2583
2584         if (is_no_device(intr_info)) {
2585                 vmx_fpu_activate(vcpu);
2586                 return 1;
2587         }
2588
2589         if (is_invalid_opcode(intr_info)) {
2590                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2591                 if (er != EMULATE_DONE)
2592                         kvm_queue_exception(vcpu, UD_VECTOR);
2593                 return 1;
2594         }
2595
2596         error_code = 0;
2597         rip = kvm_rip_read(vcpu);
2598         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2599                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2600         if (is_page_fault(intr_info)) {
2601                 /* EPT won't cause page fault directly */
2602                 if (enable_ept)
2603                         BUG();
2604                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2605                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2606                             (u32)((u64)cr2 >> 32), handler);
2607                 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2608                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2609                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2610         }
2611
2612         if (vcpu->arch.rmode.active &&
2613             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2614                                                                 error_code)) {
2615                 if (vcpu->arch.halt_request) {
2616                         vcpu->arch.halt_request = 0;
2617                         return kvm_emulate_halt(vcpu);
2618                 }
2619                 return 1;
2620         }
2621
2622         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2623         switch (ex_no) {
2624         case DB_VECTOR:
2625                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2626                 if (!(vcpu->guest_debug &
2627                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2628                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2629                         kvm_queue_exception(vcpu, DB_VECTOR);
2630                         return 1;
2631                 }
2632                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2633                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2634                 /* fall through */
2635         case BP_VECTOR:
2636                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2637                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2638                 kvm_run->debug.arch.exception = ex_no;
2639                 break;
2640         default:
2641                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2642                 kvm_run->ex.exception = ex_no;
2643                 kvm_run->ex.error_code = error_code;
2644                 break;
2645         }
2646         return 0;
2647 }
2648
2649 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2650                                      struct kvm_run *kvm_run)
2651 {
2652         ++vcpu->stat.irq_exits;
2653         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2654         return 1;
2655 }
2656
2657 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2658 {
2659         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2660         return 0;
2661 }
2662
2663 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2664 {
2665         unsigned long exit_qualification;
2666         int size, in, string;
2667         unsigned port;
2668
2669         ++vcpu->stat.io_exits;
2670         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2671         string = (exit_qualification & 16) != 0;
2672
2673         if (string) {
2674                 if (emulate_instruction(vcpu,
2675                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2676                         return 0;
2677                 return 1;
2678         }
2679
2680         size = (exit_qualification & 7) + 1;
2681         in = (exit_qualification & 8) != 0;
2682         port = exit_qualification >> 16;
2683
2684         skip_emulated_instruction(vcpu);
2685         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2686 }
2687
2688 static void
2689 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2690 {
2691         /*
2692          * Patch in the VMCALL instruction:
2693          */
2694         hypercall[0] = 0x0f;
2695         hypercall[1] = 0x01;
2696         hypercall[2] = 0xc1;
2697 }
2698
2699 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2700 {
2701         unsigned long exit_qualification;
2702         int cr;
2703         int reg;
2704
2705         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2706         cr = exit_qualification & 15;
2707         reg = (exit_qualification >> 8) & 15;
2708         switch ((exit_qualification >> 4) & 3) {
2709         case 0: /* mov to cr */
2710                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2711                             (u32)kvm_register_read(vcpu, reg),
2712                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2713                             handler);
2714                 switch (cr) {
2715                 case 0:
2716                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2717                         skip_emulated_instruction(vcpu);
2718                         return 1;
2719                 case 3:
2720                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2721                         skip_emulated_instruction(vcpu);
2722                         return 1;
2723                 case 4:
2724                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2725                         skip_emulated_instruction(vcpu);
2726                         return 1;
2727                 case 8: {
2728                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2729                                 u8 cr8 = kvm_register_read(vcpu, reg);
2730                                 kvm_set_cr8(vcpu, cr8);
2731                                 skip_emulated_instruction(vcpu);
2732                                 if (irqchip_in_kernel(vcpu->kvm))
2733                                         return 1;
2734                                 if (cr8_prev <= cr8)
2735                                         return 1;
2736                                 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2737                                 return 0;
2738                         }
2739                 };
2740                 break;
2741         case 2: /* clts */
2742                 vmx_fpu_deactivate(vcpu);
2743                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2744                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2745                 vmx_fpu_activate(vcpu);
2746                 KVMTRACE_0D(CLTS, vcpu, handler);
2747                 skip_emulated_instruction(vcpu);
2748                 return 1;
2749         case 1: /*mov from cr*/
2750                 switch (cr) {
2751                 case 3:
2752                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2753                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2754                                     (u32)kvm_register_read(vcpu, reg),
2755                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2756                                     handler);
2757                         skip_emulated_instruction(vcpu);
2758                         return 1;
2759                 case 8:
2760                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2761                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2762                                     (u32)kvm_register_read(vcpu, reg), handler);
2763                         skip_emulated_instruction(vcpu);
2764                         return 1;
2765                 }
2766                 break;
2767         case 3: /* lmsw */
2768                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2769
2770                 skip_emulated_instruction(vcpu);
2771                 return 1;
2772         default:
2773                 break;
2774         }
2775         kvm_run->exit_reason = 0;
2776         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2777                (int)(exit_qualification >> 4) & 3, cr);
2778         return 0;
2779 }
2780
2781 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2782 {
2783         unsigned long exit_qualification;
2784         unsigned long val;
2785         int dr, reg;
2786
2787         dr = vmcs_readl(GUEST_DR7);
2788         if (dr & DR7_GD) {
2789                 /*
2790                  * As the vm-exit takes precedence over the debug trap, we
2791                  * need to emulate the latter, either for the host or the
2792                  * guest debugging itself.
2793                  */
2794                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2795                         kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2796                         kvm_run->debug.arch.dr7 = dr;
2797                         kvm_run->debug.arch.pc =
2798                                 vmcs_readl(GUEST_CS_BASE) +
2799                                 vmcs_readl(GUEST_RIP);
2800                         kvm_run->debug.arch.exception = DB_VECTOR;
2801                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2802                         return 0;
2803                 } else {
2804                         vcpu->arch.dr7 &= ~DR7_GD;
2805                         vcpu->arch.dr6 |= DR6_BD;
2806                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2807                         kvm_queue_exception(vcpu, DB_VECTOR);
2808                         return 1;
2809                 }
2810         }
2811
2812         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2813         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2814         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2815         if (exit_qualification & TYPE_MOV_FROM_DR) {
2816                 switch (dr) {
2817                 case 0 ... 3:
2818                         val = vcpu->arch.db[dr];
2819                         break;
2820                 case 6:
2821                         val = vcpu->arch.dr6;
2822                         break;
2823                 case 7:
2824                         val = vcpu->arch.dr7;
2825                         break;
2826                 default:
2827                         val = 0;
2828                 }
2829                 kvm_register_write(vcpu, reg, val);
2830                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2831         } else {
2832                 val = vcpu->arch.regs[reg];
2833                 switch (dr) {
2834                 case 0 ... 3:
2835                         vcpu->arch.db[dr] = val;
2836                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2837                                 vcpu->arch.eff_db[dr] = val;
2838                         break;
2839                 case 4 ... 5:
2840                         if (vcpu->arch.cr4 & X86_CR4_DE)
2841                                 kvm_queue_exception(vcpu, UD_VECTOR);
2842                         break;
2843                 case 6:
2844                         if (val & 0xffffffff00000000ULL) {
2845                                 kvm_queue_exception(vcpu, GP_VECTOR);
2846                                 break;
2847                         }
2848                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2849                         break;
2850                 case 7:
2851                         if (val & 0xffffffff00000000ULL) {
2852                                 kvm_queue_exception(vcpu, GP_VECTOR);
2853                                 break;
2854                         }
2855                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2856                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2857                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2858                                 vcpu->arch.switch_db_regs =
2859                                         (val & DR7_BP_EN_MASK);
2860                         }
2861                         break;
2862                 }
2863                 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2864         }
2865         skip_emulated_instruction(vcpu);
2866         return 1;
2867 }
2868
2869 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2870 {
2871         kvm_emulate_cpuid(vcpu);
2872         return 1;
2873 }
2874
2875 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2876 {
2877         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2878         u64 data;
2879
2880         if (vmx_get_msr(vcpu, ecx, &data)) {
2881                 kvm_inject_gp(vcpu, 0);
2882                 return 1;
2883         }
2884
2885         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2886                     handler);
2887
2888         /* FIXME: handling of bits 32:63 of rax, rdx */
2889         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2890         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2891         skip_emulated_instruction(vcpu);
2892         return 1;
2893 }
2894
2895 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2896 {
2897         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2898         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2899                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2900
2901         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2902                     handler);
2903
2904         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2905                 kvm_inject_gp(vcpu, 0);
2906                 return 1;
2907         }
2908
2909         skip_emulated_instruction(vcpu);
2910         return 1;
2911 }
2912
2913 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2914                                       struct kvm_run *kvm_run)
2915 {
2916         return 1;
2917 }
2918
2919 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2920                                    struct kvm_run *kvm_run)
2921 {
2922         u32 cpu_based_vm_exec_control;
2923
2924         /* clear pending irq */
2925         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2926         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2927         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2928
2929         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2930         ++vcpu->stat.irq_window_exits;
2931
2932         /*
2933          * If the user space waits to inject interrupts, exit as soon as
2934          * possible
2935          */
2936         if (!irqchip_in_kernel(vcpu->kvm) &&
2937             kvm_run->request_interrupt_window &&
2938             !kvm_cpu_has_interrupt(vcpu)) {
2939                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2940                 return 0;
2941         }
2942         return 1;
2943 }
2944
2945 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2946 {
2947         skip_emulated_instruction(vcpu);
2948         return kvm_emulate_halt(vcpu);
2949 }
2950
2951 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2952 {
2953         skip_emulated_instruction(vcpu);
2954         kvm_emulate_hypercall(vcpu);
2955         return 1;
2956 }
2957
2958 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2959 {
2960         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2961
2962         kvm_mmu_invlpg(vcpu, exit_qualification);
2963         skip_emulated_instruction(vcpu);
2964         return 1;
2965 }
2966
2967 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2968 {
2969         skip_emulated_instruction(vcpu);
2970         /* TODO: Add support for VT-d/pass-through device */
2971         return 1;
2972 }
2973
2974 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2975 {
2976         unsigned long exit_qualification;
2977         enum emulation_result er;
2978         unsigned long offset;
2979
2980         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2981         offset = exit_qualification & 0xffful;
2982
2983         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2984
2985         if (er !=  EMULATE_DONE) {
2986                 printk(KERN_ERR
2987                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2988                        offset);
2989                 return -ENOTSUPP;
2990         }
2991         return 1;
2992 }
2993
2994 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2995 {
2996         struct vcpu_vmx *vmx = to_vmx(vcpu);
2997         unsigned long exit_qualification;
2998         u16 tss_selector;
2999         int reason, type, idt_v;
3000
3001         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3002         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3003
3004         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3005
3006         reason = (u32)exit_qualification >> 30;
3007         if (reason == TASK_SWITCH_GATE && idt_v) {
3008                 switch (type) {
3009                 case INTR_TYPE_NMI_INTR:
3010                         vcpu->arch.nmi_injected = false;
3011                         if (cpu_has_virtual_nmis())
3012                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3013                                               GUEST_INTR_STATE_NMI);
3014                         break;
3015                 case INTR_TYPE_EXT_INTR:
3016                         kvm_clear_interrupt_queue(vcpu);
3017                         break;
3018                 case INTR_TYPE_HARD_EXCEPTION:
3019                 case INTR_TYPE_SOFT_EXCEPTION:
3020                         kvm_clear_exception_queue(vcpu);
3021                         break;
3022                 default:
3023                         break;
3024                 }
3025         }
3026         tss_selector = exit_qualification;
3027
3028         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3029                        type != INTR_TYPE_EXT_INTR &&
3030                        type != INTR_TYPE_NMI_INTR))
3031                 skip_emulated_instruction(vcpu);
3032
3033         if (!kvm_task_switch(vcpu, tss_selector, reason))
3034                 return 0;
3035
3036         /* clear all local breakpoint enable flags */
3037         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3038
3039         /*
3040          * TODO: What about debug traps on tss switch?
3041          *       Are we supposed to inject them and update dr6?
3042          */
3043
3044         return 1;
3045 }
3046
3047 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3048 {
3049         unsigned long exit_qualification;
3050         gpa_t gpa;
3051         int gla_validity;
3052
3053         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3054
3055         if (exit_qualification & (1 << 6)) {
3056                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3057                 return -ENOTSUPP;
3058         }
3059
3060         gla_validity = (exit_qualification >> 7) & 0x3;
3061         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3062                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3063                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3064                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3065                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3066                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3067                         (long unsigned int)exit_qualification);
3068                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3069                 kvm_run->hw.hardware_exit_reason = 0;
3070                 return -ENOTSUPP;
3071         }
3072
3073         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3074         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3075 }
3076
3077 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3078 {
3079         u32 cpu_based_vm_exec_control;
3080
3081         /* clear pending NMI */
3082         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3083         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3084         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3085         ++vcpu->stat.nmi_window_exits;
3086
3087         return 1;
3088 }
3089
3090 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3091                                 struct kvm_run *kvm_run)
3092 {
3093         struct vcpu_vmx *vmx = to_vmx(vcpu);
3094         enum emulation_result err = EMULATE_DONE;
3095
3096         preempt_enable();
3097         local_irq_enable();
3098
3099         while (!guest_state_valid(vcpu)) {
3100                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3101
3102                 if (err == EMULATE_DO_MMIO)
3103                         break;
3104
3105                 if (err != EMULATE_DONE) {
3106                         kvm_report_emulation_failure(vcpu, "emulation failure");
3107                         return;
3108                 }
3109
3110                 if (signal_pending(current))
3111                         break;
3112                 if (need_resched())
3113                         schedule();
3114         }
3115
3116         local_irq_disable();
3117         preempt_disable();
3118
3119         vmx->invalid_state_emulation_result = err;
3120 }
3121
3122 /*
3123  * The exit handlers return 1 if the exit was handled fully and guest execution
3124  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3125  * to be done to userspace and return 0.
3126  */
3127 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3128                                       struct kvm_run *kvm_run) = {
3129         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3130         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3131         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3132         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3133         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3134         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3135         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3136         [EXIT_REASON_CPUID]                   = handle_cpuid,
3137         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3138         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3139         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3140         [EXIT_REASON_HLT]                     = handle_halt,
3141         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3142         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3143         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3144         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3145         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3146         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3147         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3148 };
3149
3150 static const int kvm_vmx_max_exit_handlers =
3151         ARRAY_SIZE(kvm_vmx_exit_handlers);
3152
3153 /*
3154  * The guest has exited.  See if we can fix it or if we need userspace
3155  * assistance.
3156  */
3157 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3158 {
3159         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3160         struct vcpu_vmx *vmx = to_vmx(vcpu);
3161         u32 vectoring_info = vmx->idt_vectoring_info;
3162
3163         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3164                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3165
3166         /* If we need to emulate an MMIO from handle_invalid_guest_state
3167          * we just return 0 */
3168         if (vmx->emulation_required && emulate_invalid_guest_state) {
3169                 if (guest_state_valid(vcpu))
3170                         vmx->emulation_required = 0;
3171                 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3172         }
3173
3174         /* Access CR3 don't cause VMExit in paging mode, so we need
3175          * to sync with guest real CR3. */
3176         if (enable_ept && is_paging(vcpu)) {
3177                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3178                 ept_load_pdptrs(vcpu);
3179         }
3180
3181         if (unlikely(vmx->fail)) {
3182                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3183                 kvm_run->fail_entry.hardware_entry_failure_reason
3184                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3185                 return 0;
3186         }
3187
3188         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3189                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3190                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3191                         exit_reason != EXIT_REASON_TASK_SWITCH))
3192                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3193                        "(0x%x) and exit reason is 0x%x\n",
3194                        __func__, vectoring_info, exit_reason);
3195
3196         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3197                 if (vcpu->arch.interrupt_window_open) {
3198                         vmx->soft_vnmi_blocked = 0;
3199                         vcpu->arch.nmi_window_open = 1;
3200                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3201                            vcpu->arch.nmi_pending) {
3202                         /*
3203                          * This CPU don't support us in finding the end of an
3204                          * NMI-blocked window if the guest runs with IRQs
3205                          * disabled. So we pull the trigger after 1 s of
3206                          * futile waiting, but inform the user about this.
3207                          */
3208                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3209                                "state on VCPU %d after 1 s timeout\n",
3210                                __func__, vcpu->vcpu_id);
3211                         vmx->soft_vnmi_blocked = 0;
3212                         vmx->vcpu.arch.nmi_window_open = 1;
3213                 }
3214         }
3215
3216         if (exit_reason < kvm_vmx_max_exit_handlers
3217             && kvm_vmx_exit_handlers[exit_reason])
3218                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3219         else {
3220                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3221                 kvm_run->hw.hardware_exit_reason = exit_reason;
3222         }
3223         return 0;
3224 }
3225
3226 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3227 {
3228         int max_irr, tpr;
3229
3230         if (!vm_need_tpr_shadow(vcpu->kvm))
3231                 return;
3232
3233         if (!kvm_lapic_enabled(vcpu) ||
3234             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3235                 vmcs_write32(TPR_THRESHOLD, 0);
3236                 return;
3237         }
3238
3239         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3240         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3241 }
3242
3243 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3244 {
3245         u32 exit_intr_info;
3246         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3247         bool unblock_nmi;
3248         u8 vector;
3249         int type;
3250         bool idtv_info_valid;
3251
3252         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3253         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3254         if (cpu_has_virtual_nmis()) {
3255                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3256                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3257                 /*
3258                  * SDM 3: 27.7.1.2 (September 2008)
3259                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3260                  * a guest IRET fault.
3261                  * SDM 3: 23.2.2 (September 2008)
3262                  * Bit 12 is undefined in any of the following cases:
3263                  *  If the VM exit sets the valid bit in the IDT-vectoring
3264                  *   information field.
3265                  *  If the VM exit is due to a double fault.
3266                  */
3267                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3268                     vector != DF_VECTOR && !idtv_info_valid)
3269                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3270                                       GUEST_INTR_STATE_NMI);
3271         } else if (unlikely(vmx->soft_vnmi_blocked))
3272                 vmx->vnmi_blocked_time +=
3273                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3274
3275         vmx->vcpu.arch.nmi_injected = false;
3276         kvm_clear_exception_queue(&vmx->vcpu);
3277         kvm_clear_interrupt_queue(&vmx->vcpu);
3278
3279         if (!idtv_info_valid)
3280                 return;
3281
3282         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3283         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3284
3285         switch (type) {
3286         case INTR_TYPE_NMI_INTR:
3287                 vmx->vcpu.arch.nmi_injected = true;
3288                 /*
3289                  * SDM 3: 27.7.1.2 (September 2008)
3290                  * Clear bit "block by NMI" before VM entry if a NMI
3291                  * delivery faulted.
3292                  */
3293                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3294                                 GUEST_INTR_STATE_NMI);
3295                 break;
3296         case INTR_TYPE_HARD_EXCEPTION:
3297         case INTR_TYPE_SOFT_EXCEPTION:
3298                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3299                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3300                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3301                 } else
3302                         kvm_queue_exception(&vmx->vcpu, vector);
3303                 break;
3304         case INTR_TYPE_EXT_INTR:
3305                 kvm_queue_interrupt(&vmx->vcpu, vector);
3306                 break;
3307         default:
3308                 break;
3309         }
3310 }
3311
3312 static void vmx_intr_inject(struct kvm_vcpu *vcpu)
3313 {
3314         /* try to reinject previous events if any */
3315         if (vcpu->arch.nmi_injected) {
3316                 vmx_inject_nmi(vcpu);
3317                 return;
3318         }
3319
3320         if (vcpu->arch.interrupt.pending) {
3321                 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3322                 return;
3323         }
3324
3325         /* try to inject new event if pending */
3326         if (vcpu->arch.nmi_pending) {
3327                 if (vcpu->arch.nmi_window_open) {
3328                         vcpu->arch.nmi_pending = false;
3329                         vcpu->arch.nmi_injected = true;
3330                         vmx_inject_nmi(vcpu);
3331                 }
3332         } else if (kvm_cpu_has_interrupt(vcpu)) {
3333                 if (vcpu->arch.interrupt_window_open) {
3334                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3335                         vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3336                 }
3337         }
3338 }
3339
3340 static void vmx_intr_assist(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3341 {
3342         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3343                 kvm_run->request_interrupt_window;
3344
3345         update_tpr_threshold(vcpu);
3346
3347         vmx_update_window_states(vcpu);
3348
3349         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3350                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3351                                 GUEST_INTR_STATE_STI |
3352                                 GUEST_INTR_STATE_MOV_SS);
3353
3354         vmx_intr_inject(vcpu);
3355
3356         /* enable NMI/IRQ window open exits if needed */
3357         if (vcpu->arch.nmi_pending)
3358                 enable_nmi_window(vcpu);
3359         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3360                 enable_irq_window(vcpu);
3361 }
3362
3363 /*
3364  * Failure to inject an interrupt should give us the information
3365  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3366  * when fetching the interrupt redirection bitmap in the real-mode
3367  * tss, this doesn't happen.  So we do it ourselves.
3368  */
3369 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3370 {
3371         vmx->rmode.irq.pending = 0;
3372         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3373                 return;
3374         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3375         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3376                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3377                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3378                 return;
3379         }
3380         vmx->idt_vectoring_info =
3381                 VECTORING_INFO_VALID_MASK
3382                 | INTR_TYPE_EXT_INTR
3383                 | vmx->rmode.irq.vector;
3384 }
3385
3386 #ifdef CONFIG_X86_64
3387 #define R "r"
3388 #define Q "q"
3389 #else
3390 #define R "e"
3391 #define Q "l"
3392 #endif
3393
3394 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3395 {
3396         struct vcpu_vmx *vmx = to_vmx(vcpu);
3397         u32 intr_info;
3398
3399         /* Record the guest's net vcpu time for enforced NMI injections. */
3400         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3401                 vmx->entry_time = ktime_get();
3402
3403         /* Handle invalid guest state instead of entering VMX */
3404         if (vmx->emulation_required && emulate_invalid_guest_state) {
3405                 handle_invalid_guest_state(vcpu, kvm_run);
3406                 return;
3407         }
3408
3409         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3410                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3411         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3412                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3413
3414         /*
3415          * Loading guest fpu may have cleared host cr0.ts
3416          */
3417         vmcs_writel(HOST_CR0, read_cr0());
3418
3419         set_debugreg(vcpu->arch.dr6, 6);
3420
3421         asm(
3422                 /* Store host registers */
3423                 "push %%"R"dx; push %%"R"bp;"
3424                 "push %%"R"cx \n\t"
3425                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3426                 "je 1f \n\t"
3427                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3428                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3429                 "1: \n\t"
3430                 /* Check if vmlaunch of vmresume is needed */
3431                 "cmpl $0, %c[launched](%0) \n\t"
3432                 /* Load guest registers.  Don't clobber flags. */
3433                 "mov %c[cr2](%0), %%"R"ax \n\t"
3434                 "mov %%"R"ax, %%cr2 \n\t"
3435                 "mov %c[rax](%0), %%"R"ax \n\t"
3436                 "mov %c[rbx](%0), %%"R"bx \n\t"
3437                 "mov %c[rdx](%0), %%"R"dx \n\t"
3438                 "mov %c[rsi](%0), %%"R"si \n\t"
3439                 "mov %c[rdi](%0), %%"R"di \n\t"
3440                 "mov %c[rbp](%0), %%"R"bp \n\t"
3441 #ifdef CONFIG_X86_64
3442                 "mov %c[r8](%0),  %%r8  \n\t"
3443                 "mov %c[r9](%0),  %%r9  \n\t"
3444                 "mov %c[r10](%0), %%r10 \n\t"
3445                 "mov %c[r11](%0), %%r11 \n\t"
3446                 "mov %c[r12](%0), %%r12 \n\t"
3447                 "mov %c[r13](%0), %%r13 \n\t"
3448                 "mov %c[r14](%0), %%r14 \n\t"
3449                 "mov %c[r15](%0), %%r15 \n\t"
3450 #endif
3451                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3452
3453                 /* Enter guest mode */
3454                 "jne .Llaunched \n\t"
3455                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3456                 "jmp .Lkvm_vmx_return \n\t"
3457                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3458                 ".Lkvm_vmx_return: "
3459                 /* Save guest registers, load host registers, keep flags */
3460                 "xchg %0,     (%%"R"sp) \n\t"
3461                 "mov %%"R"ax, %c[rax](%0) \n\t"
3462                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3463                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3464                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3465                 "mov %%"R"si, %c[rsi](%0) \n\t"
3466                 "mov %%"R"di, %c[rdi](%0) \n\t"
3467                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3468 #ifdef CONFIG_X86_64
3469                 "mov %%r8,  %c[r8](%0) \n\t"
3470                 "mov %%r9,  %c[r9](%0) \n\t"
3471                 "mov %%r10, %c[r10](%0) \n\t"
3472                 "mov %%r11, %c[r11](%0) \n\t"
3473                 "mov %%r12, %c[r12](%0) \n\t"
3474                 "mov %%r13, %c[r13](%0) \n\t"
3475                 "mov %%r14, %c[r14](%0) \n\t"
3476                 "mov %%r15, %c[r15](%0) \n\t"
3477 #endif
3478                 "mov %%cr2, %%"R"ax   \n\t"
3479                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3480
3481                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3482                 "setbe %c[fail](%0) \n\t"
3483               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3484                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3485                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3486                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3487                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3488                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3489                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3490                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3491                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3492                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3493                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3494 #ifdef CONFIG_X86_64
3495                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3496                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3497                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3498                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3499                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3500                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3501                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3502                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3503 #endif
3504                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3505               : "cc", "memory"
3506                 , R"bx", R"di", R"si"
3507 #ifdef CONFIG_X86_64
3508                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3509 #endif
3510               );
3511
3512         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3513         vcpu->arch.regs_dirty = 0;
3514
3515         get_debugreg(vcpu->arch.dr6, 6);
3516
3517         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3518         if (vmx->rmode.irq.pending)
3519                 fixup_rmode_irq(vmx);
3520
3521         vmx_update_window_states(vcpu);
3522
3523         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3524         vmx->launched = 1;
3525
3526         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3527
3528         /* We need to handle NMIs before interrupts are enabled */
3529         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3530             (intr_info & INTR_INFO_VALID_MASK)) {
3531                 KVMTRACE_0D(NMI, vcpu, handler);
3532                 asm("int $2");
3533         }
3534
3535         vmx_complete_interrupts(vmx);
3536 }
3537
3538 #undef R
3539 #undef Q
3540
3541 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3542 {
3543         struct vcpu_vmx *vmx = to_vmx(vcpu);
3544
3545         if (vmx->vmcs) {
3546                 vcpu_clear(vmx);
3547                 free_vmcs(vmx->vmcs);
3548                 vmx->vmcs = NULL;
3549         }
3550 }
3551
3552 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3553 {
3554         struct vcpu_vmx *vmx = to_vmx(vcpu);
3555
3556         spin_lock(&vmx_vpid_lock);
3557         if (vmx->vpid != 0)
3558                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3559         spin_unlock(&vmx_vpid_lock);
3560         vmx_free_vmcs(vcpu);
3561         kfree(vmx->host_msrs);
3562         kfree(vmx->guest_msrs);
3563         kvm_vcpu_uninit(vcpu);
3564         kmem_cache_free(kvm_vcpu_cache, vmx);
3565 }
3566
3567 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3568 {
3569         int err;
3570         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3571         int cpu;
3572
3573         if (!vmx)
3574                 return ERR_PTR(-ENOMEM);
3575
3576         allocate_vpid(vmx);
3577
3578         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3579         if (err)
3580                 goto free_vcpu;
3581
3582         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3583         if (!vmx->guest_msrs) {
3584                 err = -ENOMEM;
3585                 goto uninit_vcpu;
3586         }
3587
3588         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3589         if (!vmx->host_msrs)
3590                 goto free_guest_msrs;
3591
3592         vmx->vmcs = alloc_vmcs();
3593         if (!vmx->vmcs)
3594                 goto free_msrs;
3595
3596         vmcs_clear(vmx->vmcs);
3597
3598         cpu = get_cpu();
3599         vmx_vcpu_load(&vmx->vcpu, cpu);
3600         err = vmx_vcpu_setup(vmx);
3601         vmx_vcpu_put(&vmx->vcpu);
3602         put_cpu();
3603         if (err)
3604                 goto free_vmcs;
3605         if (vm_need_virtualize_apic_accesses(kvm))
3606                 if (alloc_apic_access_page(kvm) != 0)
3607                         goto free_vmcs;
3608
3609         if (enable_ept)
3610                 if (alloc_identity_pagetable(kvm) != 0)
3611                         goto free_vmcs;
3612
3613         return &vmx->vcpu;
3614
3615 free_vmcs:
3616         free_vmcs(vmx->vmcs);
3617 free_msrs:
3618         kfree(vmx->host_msrs);
3619 free_guest_msrs:
3620         kfree(vmx->guest_msrs);
3621 uninit_vcpu:
3622         kvm_vcpu_uninit(&vmx->vcpu);
3623 free_vcpu:
3624         kmem_cache_free(kvm_vcpu_cache, vmx);
3625         return ERR_PTR(err);
3626 }
3627
3628 static void __init vmx_check_processor_compat(void *rtn)
3629 {
3630         struct vmcs_config vmcs_conf;
3631
3632         *(int *)rtn = 0;
3633         if (setup_vmcs_config(&vmcs_conf) < 0)
3634                 *(int *)rtn = -EIO;
3635         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3636                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3637                                 smp_processor_id());
3638                 *(int *)rtn = -EIO;
3639         }
3640 }
3641
3642 static int get_ept_level(void)
3643 {
3644         return VMX_EPT_DEFAULT_GAW + 1;
3645 }
3646
3647 static int vmx_get_mt_mask_shift(void)
3648 {
3649         return VMX_EPT_MT_EPTE_SHIFT;
3650 }
3651
3652 static struct kvm_x86_ops vmx_x86_ops = {
3653         .cpu_has_kvm_support = cpu_has_kvm_support,
3654         .disabled_by_bios = vmx_disabled_by_bios,
3655         .hardware_setup = hardware_setup,
3656         .hardware_unsetup = hardware_unsetup,
3657         .check_processor_compatibility = vmx_check_processor_compat,
3658         .hardware_enable = hardware_enable,
3659         .hardware_disable = hardware_disable,
3660         .cpu_has_accelerated_tpr = report_flexpriority,
3661
3662         .vcpu_create = vmx_create_vcpu,
3663         .vcpu_free = vmx_free_vcpu,
3664         .vcpu_reset = vmx_vcpu_reset,
3665
3666         .prepare_guest_switch = vmx_save_host_state,
3667         .vcpu_load = vmx_vcpu_load,
3668         .vcpu_put = vmx_vcpu_put,
3669
3670         .set_guest_debug = set_guest_debug,
3671         .get_msr = vmx_get_msr,
3672         .set_msr = vmx_set_msr,
3673         .get_segment_base = vmx_get_segment_base,
3674         .get_segment = vmx_get_segment,
3675         .set_segment = vmx_set_segment,
3676         .get_cpl = vmx_get_cpl,
3677         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3678         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3679         .set_cr0 = vmx_set_cr0,
3680         .set_cr3 = vmx_set_cr3,
3681         .set_cr4 = vmx_set_cr4,
3682         .set_efer = vmx_set_efer,
3683         .get_idt = vmx_get_idt,
3684         .set_idt = vmx_set_idt,
3685         .get_gdt = vmx_get_gdt,
3686         .set_gdt = vmx_set_gdt,
3687         .cache_reg = vmx_cache_reg,
3688         .get_rflags = vmx_get_rflags,
3689         .set_rflags = vmx_set_rflags,
3690
3691         .tlb_flush = vmx_flush_tlb,
3692
3693         .run = vmx_vcpu_run,
3694         .handle_exit = vmx_handle_exit,
3695         .skip_emulated_instruction = skip_emulated_instruction,
3696         .patch_hypercall = vmx_patch_hypercall,
3697         .get_irq = vmx_get_irq,
3698         .set_irq = vmx_inject_irq,
3699         .queue_exception = vmx_queue_exception,
3700         .inject_pending_irq = vmx_intr_assist,
3701         .interrupt_allowed = vmx_interrupt_allowed,
3702         .set_tss_addr = vmx_set_tss_addr,
3703         .get_tdp_level = get_ept_level,
3704         .get_mt_mask_shift = vmx_get_mt_mask_shift,
3705 };
3706
3707 static int __init vmx_init(void)
3708 {
3709         int r;
3710
3711         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3712         if (!vmx_io_bitmap_a)
3713                 return -ENOMEM;
3714
3715         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3716         if (!vmx_io_bitmap_b) {
3717                 r = -ENOMEM;
3718                 goto out;
3719         }
3720
3721         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3722         if (!vmx_msr_bitmap_legacy) {
3723                 r = -ENOMEM;
3724                 goto out1;
3725         }
3726
3727         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3728         if (!vmx_msr_bitmap_longmode) {
3729                 r = -ENOMEM;
3730                 goto out2;
3731         }
3732
3733         /*
3734          * Allow direct access to the PC debug port (it is often used for I/O
3735          * delays, but the vmexits simply slow things down).
3736          */
3737         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3738         clear_bit(0x80, vmx_io_bitmap_a);
3739
3740         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3741
3742         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3743         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3744
3745         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3746
3747         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3748         if (r)
3749                 goto out3;
3750
3751         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3752         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3753         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3754         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3755         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3756         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3757
3758         if (enable_ept) {
3759                 bypass_guest_pf = 0;
3760                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3761                         VMX_EPT_WRITABLE_MASK);
3762                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3763                                 VMX_EPT_EXECUTABLE_MASK,
3764                                 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3765                 kvm_enable_tdp();
3766         } else
3767                 kvm_disable_tdp();
3768
3769         if (bypass_guest_pf)
3770                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3771
3772         ept_sync_global();
3773
3774         return 0;
3775
3776 out3:
3777         free_page((unsigned long)vmx_msr_bitmap_longmode);
3778 out2:
3779         free_page((unsigned long)vmx_msr_bitmap_legacy);
3780 out1:
3781         free_page((unsigned long)vmx_io_bitmap_b);
3782 out:
3783         free_page((unsigned long)vmx_io_bitmap_a);
3784         return r;
3785 }
3786
3787 static void __exit vmx_exit(void)
3788 {
3789         free_page((unsigned long)vmx_msr_bitmap_legacy);
3790         free_page((unsigned long)vmx_msr_bitmap_longmode);
3791         free_page((unsigned long)vmx_io_bitmap_b);
3792         free_page((unsigned long)vmx_io_bitmap_a);
3793
3794         kvm_exit();
3795 }
3796
3797 module_init(vmx_init)
3798 module_exit(vmx_exit)