427dbc14fae9380b4e6c8a62f481b8351b820cad
[safe/jmp/linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
42
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
45
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
48
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
51
52 static int emulate_invalid_guest_state = 0;
53 module_param(emulate_invalid_guest_state, bool, 0);
54
55 struct vmcs {
56         u32 revision_id;
57         u32 abort;
58         char data[0];
59 };
60
61 struct vcpu_vmx {
62         struct kvm_vcpu       vcpu;
63         struct list_head      local_vcpus_link;
64         unsigned long         host_rsp;
65         int                   launched;
66         u8                    fail;
67         u32                   idt_vectoring_info;
68         struct kvm_msr_entry *guest_msrs;
69         struct kvm_msr_entry *host_msrs;
70         int                   nmsrs;
71         int                   save_nmsrs;
72         int                   msr_offset_efer;
73 #ifdef CONFIG_X86_64
74         int                   msr_offset_kernel_gs_base;
75 #endif
76         struct vmcs          *vmcs;
77         struct {
78                 int           loaded;
79                 u16           fs_sel, gs_sel, ldt_sel;
80                 int           gs_ldt_reload_needed;
81                 int           fs_reload_needed;
82                 int           guest_efer_loaded;
83         } host_state;
84         struct {
85                 struct {
86                         bool pending;
87                         u8 vector;
88                         unsigned rip;
89                 } irq;
90         } rmode;
91         int vpid;
92         bool emulation_required;
93
94         /* Support for vnmi-less CPUs */
95         int soft_vnmi_blocked;
96         ktime_t entry_time;
97         s64 vnmi_blocked_time;
98 };
99
100 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
101 {
102         return container_of(vcpu, struct vcpu_vmx, vcpu);
103 }
104
105 static int init_rmode(struct kvm *kvm);
106 static u64 construct_eptp(unsigned long root_hpa);
107
108 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
109 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
110 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
111
112 static struct page *vmx_io_bitmap_a;
113 static struct page *vmx_io_bitmap_b;
114 static struct page *vmx_msr_bitmap;
115
116 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
117 static DEFINE_SPINLOCK(vmx_vpid_lock);
118
119 static struct vmcs_config {
120         int size;
121         int order;
122         u32 revision_id;
123         u32 pin_based_exec_ctrl;
124         u32 cpu_based_exec_ctrl;
125         u32 cpu_based_2nd_exec_ctrl;
126         u32 vmexit_ctrl;
127         u32 vmentry_ctrl;
128 } vmcs_config;
129
130 struct vmx_capability {
131         u32 ept;
132         u32 vpid;
133 } vmx_capability;
134
135 #define VMX_SEGMENT_FIELD(seg)                                  \
136         [VCPU_SREG_##seg] = {                                   \
137                 .selector = GUEST_##seg##_SELECTOR,             \
138                 .base = GUEST_##seg##_BASE,                     \
139                 .limit = GUEST_##seg##_LIMIT,                   \
140                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
141         }
142
143 static struct kvm_vmx_segment_field {
144         unsigned selector;
145         unsigned base;
146         unsigned limit;
147         unsigned ar_bytes;
148 } kvm_vmx_segment_fields[] = {
149         VMX_SEGMENT_FIELD(CS),
150         VMX_SEGMENT_FIELD(DS),
151         VMX_SEGMENT_FIELD(ES),
152         VMX_SEGMENT_FIELD(FS),
153         VMX_SEGMENT_FIELD(GS),
154         VMX_SEGMENT_FIELD(SS),
155         VMX_SEGMENT_FIELD(TR),
156         VMX_SEGMENT_FIELD(LDTR),
157 };
158
159 /*
160  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
161  * away by decrementing the array size.
162  */
163 static const u32 vmx_msr_index[] = {
164 #ifdef CONFIG_X86_64
165         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
166 #endif
167         MSR_EFER, MSR_K6_STAR,
168 };
169 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
170
171 static void load_msrs(struct kvm_msr_entry *e, int n)
172 {
173         int i;
174
175         for (i = 0; i < n; ++i)
176                 wrmsrl(e[i].index, e[i].data);
177 }
178
179 static void save_msrs(struct kvm_msr_entry *e, int n)
180 {
181         int i;
182
183         for (i = 0; i < n; ++i)
184                 rdmsrl(e[i].index, e[i].data);
185 }
186
187 static inline int is_page_fault(u32 intr_info)
188 {
189         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
190                              INTR_INFO_VALID_MASK)) ==
191                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
192 }
193
194 static inline int is_no_device(u32 intr_info)
195 {
196         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
197                              INTR_INFO_VALID_MASK)) ==
198                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
199 }
200
201 static inline int is_invalid_opcode(u32 intr_info)
202 {
203         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
204                              INTR_INFO_VALID_MASK)) ==
205                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
206 }
207
208 static inline int is_external_interrupt(u32 intr_info)
209 {
210         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
211                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
212 }
213
214 static inline int cpu_has_vmx_msr_bitmap(void)
215 {
216         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
217 }
218
219 static inline int cpu_has_vmx_tpr_shadow(void)
220 {
221         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
222 }
223
224 static inline int vm_need_tpr_shadow(struct kvm *kvm)
225 {
226         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
227 }
228
229 static inline int cpu_has_secondary_exec_ctrls(void)
230 {
231         return (vmcs_config.cpu_based_exec_ctrl &
232                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
233 }
234
235 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
236 {
237         return flexpriority_enabled
238                 && (vmcs_config.cpu_based_2nd_exec_ctrl &
239                     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
240 }
241
242 static inline int cpu_has_vmx_invept_individual_addr(void)
243 {
244         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
245 }
246
247 static inline int cpu_has_vmx_invept_context(void)
248 {
249         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
250 }
251
252 static inline int cpu_has_vmx_invept_global(void)
253 {
254         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
255 }
256
257 static inline int cpu_has_vmx_ept(void)
258 {
259         return (vmcs_config.cpu_based_2nd_exec_ctrl &
260                 SECONDARY_EXEC_ENABLE_EPT);
261 }
262
263 static inline int vm_need_ept(void)
264 {
265         return (cpu_has_vmx_ept() && enable_ept);
266 }
267
268 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
269 {
270         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
271                 (irqchip_in_kernel(kvm)));
272 }
273
274 static inline int cpu_has_vmx_vpid(void)
275 {
276         return (vmcs_config.cpu_based_2nd_exec_ctrl &
277                 SECONDARY_EXEC_ENABLE_VPID);
278 }
279
280 static inline int cpu_has_virtual_nmis(void)
281 {
282         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
283 }
284
285 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
286 {
287         int i;
288
289         for (i = 0; i < vmx->nmsrs; ++i)
290                 if (vmx->guest_msrs[i].index == msr)
291                         return i;
292         return -1;
293 }
294
295 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
296 {
297     struct {
298         u64 vpid : 16;
299         u64 rsvd : 48;
300         u64 gva;
301     } operand = { vpid, 0, gva };
302
303     asm volatile (__ex(ASM_VMX_INVVPID)
304                   /* CF==1 or ZF==1 --> rc = -1 */
305                   "; ja 1f ; ud2 ; 1:"
306                   : : "a"(&operand), "c"(ext) : "cc", "memory");
307 }
308
309 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
310 {
311         struct {
312                 u64 eptp, gpa;
313         } operand = {eptp, gpa};
314
315         asm volatile (__ex(ASM_VMX_INVEPT)
316                         /* CF==1 or ZF==1 --> rc = -1 */
317                         "; ja 1f ; ud2 ; 1:\n"
318                         : : "a" (&operand), "c" (ext) : "cc", "memory");
319 }
320
321 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
322 {
323         int i;
324
325         i = __find_msr_index(vmx, msr);
326         if (i >= 0)
327                 return &vmx->guest_msrs[i];
328         return NULL;
329 }
330
331 static void vmcs_clear(struct vmcs *vmcs)
332 {
333         u64 phys_addr = __pa(vmcs);
334         u8 error;
335
336         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
337                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
338                       : "cc", "memory");
339         if (error)
340                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
341                        vmcs, phys_addr);
342 }
343
344 static void __vcpu_clear(void *arg)
345 {
346         struct vcpu_vmx *vmx = arg;
347         int cpu = raw_smp_processor_id();
348
349         if (vmx->vcpu.cpu == cpu)
350                 vmcs_clear(vmx->vmcs);
351         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
352                 per_cpu(current_vmcs, cpu) = NULL;
353         rdtscll(vmx->vcpu.arch.host_tsc);
354         list_del(&vmx->local_vcpus_link);
355         vmx->vcpu.cpu = -1;
356         vmx->launched = 0;
357 }
358
359 static void vcpu_clear(struct vcpu_vmx *vmx)
360 {
361         if (vmx->vcpu.cpu == -1)
362                 return;
363         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
364 }
365
366 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
367 {
368         if (vmx->vpid == 0)
369                 return;
370
371         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
372 }
373
374 static inline void ept_sync_global(void)
375 {
376         if (cpu_has_vmx_invept_global())
377                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
378 }
379
380 static inline void ept_sync_context(u64 eptp)
381 {
382         if (vm_need_ept()) {
383                 if (cpu_has_vmx_invept_context())
384                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
385                 else
386                         ept_sync_global();
387         }
388 }
389
390 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
391 {
392         if (vm_need_ept()) {
393                 if (cpu_has_vmx_invept_individual_addr())
394                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
395                                         eptp, gpa);
396                 else
397                         ept_sync_context(eptp);
398         }
399 }
400
401 static unsigned long vmcs_readl(unsigned long field)
402 {
403         unsigned long value;
404
405         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
406                       : "=a"(value) : "d"(field) : "cc");
407         return value;
408 }
409
410 static u16 vmcs_read16(unsigned long field)
411 {
412         return vmcs_readl(field);
413 }
414
415 static u32 vmcs_read32(unsigned long field)
416 {
417         return vmcs_readl(field);
418 }
419
420 static u64 vmcs_read64(unsigned long field)
421 {
422 #ifdef CONFIG_X86_64
423         return vmcs_readl(field);
424 #else
425         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
426 #endif
427 }
428
429 static noinline void vmwrite_error(unsigned long field, unsigned long value)
430 {
431         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
432                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
433         dump_stack();
434 }
435
436 static void vmcs_writel(unsigned long field, unsigned long value)
437 {
438         u8 error;
439
440         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
441                        : "=q"(error) : "a"(value), "d"(field) : "cc");
442         if (unlikely(error))
443                 vmwrite_error(field, value);
444 }
445
446 static void vmcs_write16(unsigned long field, u16 value)
447 {
448         vmcs_writel(field, value);
449 }
450
451 static void vmcs_write32(unsigned long field, u32 value)
452 {
453         vmcs_writel(field, value);
454 }
455
456 static void vmcs_write64(unsigned long field, u64 value)
457 {
458         vmcs_writel(field, value);
459 #ifndef CONFIG_X86_64
460         asm volatile ("");
461         vmcs_writel(field+1, value >> 32);
462 #endif
463 }
464
465 static void vmcs_clear_bits(unsigned long field, u32 mask)
466 {
467         vmcs_writel(field, vmcs_readl(field) & ~mask);
468 }
469
470 static void vmcs_set_bits(unsigned long field, u32 mask)
471 {
472         vmcs_writel(field, vmcs_readl(field) | mask);
473 }
474
475 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
476 {
477         u32 eb;
478
479         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
480         if (!vcpu->fpu_active)
481                 eb |= 1u << NM_VECTOR;
482         if (vcpu->guest_debug.enabled)
483                 eb |= 1u << DB_VECTOR;
484         if (vcpu->arch.rmode.active)
485                 eb = ~0;
486         if (vm_need_ept())
487                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
488         vmcs_write32(EXCEPTION_BITMAP, eb);
489 }
490
491 static void reload_tss(void)
492 {
493         /*
494          * VT restores TR but not its size.  Useless.
495          */
496         struct descriptor_table gdt;
497         struct desc_struct *descs;
498
499         kvm_get_gdt(&gdt);
500         descs = (void *)gdt.base;
501         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
502         load_TR_desc();
503 }
504
505 static void load_transition_efer(struct vcpu_vmx *vmx)
506 {
507         int efer_offset = vmx->msr_offset_efer;
508         u64 host_efer = vmx->host_msrs[efer_offset].data;
509         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
510         u64 ignore_bits;
511
512         if (efer_offset < 0)
513                 return;
514         /*
515          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
516          * outside long mode
517          */
518         ignore_bits = EFER_NX | EFER_SCE;
519 #ifdef CONFIG_X86_64
520         ignore_bits |= EFER_LMA | EFER_LME;
521         /* SCE is meaningful only in long mode on Intel */
522         if (guest_efer & EFER_LMA)
523                 ignore_bits &= ~(u64)EFER_SCE;
524 #endif
525         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
526                 return;
527
528         vmx->host_state.guest_efer_loaded = 1;
529         guest_efer &= ~ignore_bits;
530         guest_efer |= host_efer & ignore_bits;
531         wrmsrl(MSR_EFER, guest_efer);
532         vmx->vcpu.stat.efer_reload++;
533 }
534
535 static void reload_host_efer(struct vcpu_vmx *vmx)
536 {
537         if (vmx->host_state.guest_efer_loaded) {
538                 vmx->host_state.guest_efer_loaded = 0;
539                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
540         }
541 }
542
543 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
544 {
545         struct vcpu_vmx *vmx = to_vmx(vcpu);
546
547         if (vmx->host_state.loaded)
548                 return;
549
550         vmx->host_state.loaded = 1;
551         /*
552          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
553          * allow segment selectors with cpl > 0 or ti == 1.
554          */
555         vmx->host_state.ldt_sel = kvm_read_ldt();
556         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
557         vmx->host_state.fs_sel = kvm_read_fs();
558         if (!(vmx->host_state.fs_sel & 7)) {
559                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
560                 vmx->host_state.fs_reload_needed = 0;
561         } else {
562                 vmcs_write16(HOST_FS_SELECTOR, 0);
563                 vmx->host_state.fs_reload_needed = 1;
564         }
565         vmx->host_state.gs_sel = kvm_read_gs();
566         if (!(vmx->host_state.gs_sel & 7))
567                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
568         else {
569                 vmcs_write16(HOST_GS_SELECTOR, 0);
570                 vmx->host_state.gs_ldt_reload_needed = 1;
571         }
572
573 #ifdef CONFIG_X86_64
574         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
575         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
576 #else
577         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
578         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
579 #endif
580
581 #ifdef CONFIG_X86_64
582         if (is_long_mode(&vmx->vcpu))
583                 save_msrs(vmx->host_msrs +
584                           vmx->msr_offset_kernel_gs_base, 1);
585
586 #endif
587         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
588         load_transition_efer(vmx);
589 }
590
591 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
592 {
593         unsigned long flags;
594
595         if (!vmx->host_state.loaded)
596                 return;
597
598         ++vmx->vcpu.stat.host_state_reload;
599         vmx->host_state.loaded = 0;
600         if (vmx->host_state.fs_reload_needed)
601                 kvm_load_fs(vmx->host_state.fs_sel);
602         if (vmx->host_state.gs_ldt_reload_needed) {
603                 kvm_load_ldt(vmx->host_state.ldt_sel);
604                 /*
605                  * If we have to reload gs, we must take care to
606                  * preserve our gs base.
607                  */
608                 local_irq_save(flags);
609                 kvm_load_gs(vmx->host_state.gs_sel);
610 #ifdef CONFIG_X86_64
611                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
612 #endif
613                 local_irq_restore(flags);
614         }
615         reload_tss();
616         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
617         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
618         reload_host_efer(vmx);
619 }
620
621 static void vmx_load_host_state(struct vcpu_vmx *vmx)
622 {
623         preempt_disable();
624         __vmx_load_host_state(vmx);
625         preempt_enable();
626 }
627
628 /*
629  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
630  * vcpu mutex is already taken.
631  */
632 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
633 {
634         struct vcpu_vmx *vmx = to_vmx(vcpu);
635         u64 phys_addr = __pa(vmx->vmcs);
636         u64 tsc_this, delta, new_offset;
637
638         if (vcpu->cpu != cpu) {
639                 vcpu_clear(vmx);
640                 kvm_migrate_timers(vcpu);
641                 vpid_sync_vcpu_all(vmx);
642                 local_irq_disable();
643                 list_add(&vmx->local_vcpus_link,
644                          &per_cpu(vcpus_on_cpu, cpu));
645                 local_irq_enable();
646         }
647
648         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
649                 u8 error;
650
651                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
652                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
653                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
654                               : "cc");
655                 if (error)
656                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
657                                vmx->vmcs, phys_addr);
658         }
659
660         if (vcpu->cpu != cpu) {
661                 struct descriptor_table dt;
662                 unsigned long sysenter_esp;
663
664                 vcpu->cpu = cpu;
665                 /*
666                  * Linux uses per-cpu TSS and GDT, so set these when switching
667                  * processors.
668                  */
669                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
670                 kvm_get_gdt(&dt);
671                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
672
673                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
674                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
675
676                 /*
677                  * Make sure the time stamp counter is monotonous.
678                  */
679                 rdtscll(tsc_this);
680                 if (tsc_this < vcpu->arch.host_tsc) {
681                         delta = vcpu->arch.host_tsc - tsc_this;
682                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
683                         vmcs_write64(TSC_OFFSET, new_offset);
684                 }
685         }
686 }
687
688 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
689 {
690         __vmx_load_host_state(to_vmx(vcpu));
691 }
692
693 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
694 {
695         if (vcpu->fpu_active)
696                 return;
697         vcpu->fpu_active = 1;
698         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
699         if (vcpu->arch.cr0 & X86_CR0_TS)
700                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
701         update_exception_bitmap(vcpu);
702 }
703
704 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
705 {
706         if (!vcpu->fpu_active)
707                 return;
708         vcpu->fpu_active = 0;
709         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
710         update_exception_bitmap(vcpu);
711 }
712
713 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
714 {
715         return vmcs_readl(GUEST_RFLAGS);
716 }
717
718 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
719 {
720         if (vcpu->arch.rmode.active)
721                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
722         vmcs_writel(GUEST_RFLAGS, rflags);
723 }
724
725 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
726 {
727         unsigned long rip;
728         u32 interruptibility;
729
730         rip = kvm_rip_read(vcpu);
731         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
732         kvm_rip_write(vcpu, rip);
733
734         /*
735          * We emulated an instruction, so temporary interrupt blocking
736          * should be removed, if set.
737          */
738         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
739         if (interruptibility & 3)
740                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
741                              interruptibility & ~3);
742         vcpu->arch.interrupt_window_open = 1;
743 }
744
745 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
746                                 bool has_error_code, u32 error_code)
747 {
748         struct vcpu_vmx *vmx = to_vmx(vcpu);
749
750         if (has_error_code)
751                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
752
753         if (vcpu->arch.rmode.active) {
754                 vmx->rmode.irq.pending = true;
755                 vmx->rmode.irq.vector = nr;
756                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
757                 if (nr == BP_VECTOR)
758                         vmx->rmode.irq.rip++;
759                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
760                              nr | INTR_TYPE_SOFT_INTR
761                              | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
762                              | INTR_INFO_VALID_MASK);
763                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
764                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
765                 return;
766         }
767
768         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
769                      nr | INTR_TYPE_EXCEPTION
770                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
771                      | INTR_INFO_VALID_MASK);
772 }
773
774 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
775 {
776         return false;
777 }
778
779 /*
780  * Swap MSR entry in host/guest MSR entry array.
781  */
782 #ifdef CONFIG_X86_64
783 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
784 {
785         struct kvm_msr_entry tmp;
786
787         tmp = vmx->guest_msrs[to];
788         vmx->guest_msrs[to] = vmx->guest_msrs[from];
789         vmx->guest_msrs[from] = tmp;
790         tmp = vmx->host_msrs[to];
791         vmx->host_msrs[to] = vmx->host_msrs[from];
792         vmx->host_msrs[from] = tmp;
793 }
794 #endif
795
796 /*
797  * Set up the vmcs to automatically save and restore system
798  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
799  * mode, as fiddling with msrs is very expensive.
800  */
801 static void setup_msrs(struct vcpu_vmx *vmx)
802 {
803         int save_nmsrs;
804
805         vmx_load_host_state(vmx);
806         save_nmsrs = 0;
807 #ifdef CONFIG_X86_64
808         if (is_long_mode(&vmx->vcpu)) {
809                 int index;
810
811                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
812                 if (index >= 0)
813                         move_msr_up(vmx, index, save_nmsrs++);
814                 index = __find_msr_index(vmx, MSR_LSTAR);
815                 if (index >= 0)
816                         move_msr_up(vmx, index, save_nmsrs++);
817                 index = __find_msr_index(vmx, MSR_CSTAR);
818                 if (index >= 0)
819                         move_msr_up(vmx, index, save_nmsrs++);
820                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
821                 if (index >= 0)
822                         move_msr_up(vmx, index, save_nmsrs++);
823                 /*
824                  * MSR_K6_STAR is only needed on long mode guests, and only
825                  * if efer.sce is enabled.
826                  */
827                 index = __find_msr_index(vmx, MSR_K6_STAR);
828                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
829                         move_msr_up(vmx, index, save_nmsrs++);
830         }
831 #endif
832         vmx->save_nmsrs = save_nmsrs;
833
834 #ifdef CONFIG_X86_64
835         vmx->msr_offset_kernel_gs_base =
836                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
837 #endif
838         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
839 }
840
841 /*
842  * reads and returns guest's timestamp counter "register"
843  * guest_tsc = host_tsc + tsc_offset    -- 21.3
844  */
845 static u64 guest_read_tsc(void)
846 {
847         u64 host_tsc, tsc_offset;
848
849         rdtscll(host_tsc);
850         tsc_offset = vmcs_read64(TSC_OFFSET);
851         return host_tsc + tsc_offset;
852 }
853
854 /*
855  * writes 'guest_tsc' into guest's timestamp counter "register"
856  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
857  */
858 static void guest_write_tsc(u64 guest_tsc)
859 {
860         u64 host_tsc;
861
862         rdtscll(host_tsc);
863         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
864 }
865
866 /*
867  * Reads an msr value (of 'msr_index') into 'pdata'.
868  * Returns 0 on success, non-0 otherwise.
869  * Assumes vcpu_load() was already called.
870  */
871 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
872 {
873         u64 data;
874         struct kvm_msr_entry *msr;
875
876         if (!pdata) {
877                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
878                 return -EINVAL;
879         }
880
881         switch (msr_index) {
882 #ifdef CONFIG_X86_64
883         case MSR_FS_BASE:
884                 data = vmcs_readl(GUEST_FS_BASE);
885                 break;
886         case MSR_GS_BASE:
887                 data = vmcs_readl(GUEST_GS_BASE);
888                 break;
889         case MSR_EFER:
890                 return kvm_get_msr_common(vcpu, msr_index, pdata);
891 #endif
892         case MSR_IA32_TIME_STAMP_COUNTER:
893                 data = guest_read_tsc();
894                 break;
895         case MSR_IA32_SYSENTER_CS:
896                 data = vmcs_read32(GUEST_SYSENTER_CS);
897                 break;
898         case MSR_IA32_SYSENTER_EIP:
899                 data = vmcs_readl(GUEST_SYSENTER_EIP);
900                 break;
901         case MSR_IA32_SYSENTER_ESP:
902                 data = vmcs_readl(GUEST_SYSENTER_ESP);
903                 break;
904         default:
905                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
906                 if (msr) {
907                         data = msr->data;
908                         break;
909                 }
910                 return kvm_get_msr_common(vcpu, msr_index, pdata);
911         }
912
913         *pdata = data;
914         return 0;
915 }
916
917 /*
918  * Writes msr value into into the appropriate "register".
919  * Returns 0 on success, non-0 otherwise.
920  * Assumes vcpu_load() was already called.
921  */
922 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
923 {
924         struct vcpu_vmx *vmx = to_vmx(vcpu);
925         struct kvm_msr_entry *msr;
926         int ret = 0;
927
928         switch (msr_index) {
929 #ifdef CONFIG_X86_64
930         case MSR_EFER:
931                 vmx_load_host_state(vmx);
932                 ret = kvm_set_msr_common(vcpu, msr_index, data);
933                 break;
934         case MSR_FS_BASE:
935                 vmcs_writel(GUEST_FS_BASE, data);
936                 break;
937         case MSR_GS_BASE:
938                 vmcs_writel(GUEST_GS_BASE, data);
939                 break;
940 #endif
941         case MSR_IA32_SYSENTER_CS:
942                 vmcs_write32(GUEST_SYSENTER_CS, data);
943                 break;
944         case MSR_IA32_SYSENTER_EIP:
945                 vmcs_writel(GUEST_SYSENTER_EIP, data);
946                 break;
947         case MSR_IA32_SYSENTER_ESP:
948                 vmcs_writel(GUEST_SYSENTER_ESP, data);
949                 break;
950         case MSR_IA32_TIME_STAMP_COUNTER:
951                 guest_write_tsc(data);
952                 break;
953         case MSR_P6_PERFCTR0:
954         case MSR_P6_PERFCTR1:
955         case MSR_P6_EVNTSEL0:
956         case MSR_P6_EVNTSEL1:
957                 /*
958                  * Just discard all writes to the performance counters; this
959                  * should keep both older linux and windows 64-bit guests
960                  * happy
961                  */
962                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
963
964                 break;
965         case MSR_IA32_CR_PAT:
966                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
967                         vmcs_write64(GUEST_IA32_PAT, data);
968                         vcpu->arch.pat = data;
969                         break;
970                 }
971                 /* Otherwise falls through to kvm_set_msr_common */
972         default:
973                 vmx_load_host_state(vmx);
974                 msr = find_msr_entry(vmx, msr_index);
975                 if (msr) {
976                         msr->data = data;
977                         break;
978                 }
979                 ret = kvm_set_msr_common(vcpu, msr_index, data);
980         }
981
982         return ret;
983 }
984
985 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
986 {
987         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
988         switch (reg) {
989         case VCPU_REGS_RSP:
990                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
991                 break;
992         case VCPU_REGS_RIP:
993                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
994                 break;
995         default:
996                 break;
997         }
998 }
999
1000 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
1001 {
1002         unsigned long dr7 = 0x400;
1003         int old_singlestep;
1004
1005         old_singlestep = vcpu->guest_debug.singlestep;
1006
1007         vcpu->guest_debug.enabled = dbg->enabled;
1008         if (vcpu->guest_debug.enabled) {
1009                 int i;
1010
1011                 dr7 |= 0x200;  /* exact */
1012                 for (i = 0; i < 4; ++i) {
1013                         if (!dbg->breakpoints[i].enabled)
1014                                 continue;
1015                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
1016                         dr7 |= 2 << (i*2);    /* global enable */
1017                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
1018                 }
1019
1020                 vcpu->guest_debug.singlestep = dbg->singlestep;
1021         } else
1022                 vcpu->guest_debug.singlestep = 0;
1023
1024         if (old_singlestep && !vcpu->guest_debug.singlestep) {
1025                 unsigned long flags;
1026
1027                 flags = vmcs_readl(GUEST_RFLAGS);
1028                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1029                 vmcs_writel(GUEST_RFLAGS, flags);
1030         }
1031
1032         update_exception_bitmap(vcpu);
1033         vmcs_writel(GUEST_DR7, dr7);
1034
1035         return 0;
1036 }
1037
1038 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1039 {
1040         if (!vcpu->arch.interrupt.pending)
1041                 return -1;
1042         return vcpu->arch.interrupt.nr;
1043 }
1044
1045 static __init int cpu_has_kvm_support(void)
1046 {
1047         unsigned long ecx = cpuid_ecx(1);
1048         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1049 }
1050
1051 static __init int vmx_disabled_by_bios(void)
1052 {
1053         u64 msr;
1054
1055         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1056         return (msr & (FEATURE_CONTROL_LOCKED |
1057                        FEATURE_CONTROL_VMXON_ENABLED))
1058             == FEATURE_CONTROL_LOCKED;
1059         /* locked but not enabled */
1060 }
1061
1062 static void hardware_enable(void *garbage)
1063 {
1064         int cpu = raw_smp_processor_id();
1065         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1066         u64 old;
1067
1068         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1069         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1070         if ((old & (FEATURE_CONTROL_LOCKED |
1071                     FEATURE_CONTROL_VMXON_ENABLED))
1072             != (FEATURE_CONTROL_LOCKED |
1073                 FEATURE_CONTROL_VMXON_ENABLED))
1074                 /* enable and lock */
1075                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1076                        FEATURE_CONTROL_LOCKED |
1077                        FEATURE_CONTROL_VMXON_ENABLED);
1078         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1079         asm volatile (ASM_VMX_VMXON_RAX
1080                       : : "a"(&phys_addr), "m"(phys_addr)
1081                       : "memory", "cc");
1082 }
1083
1084 static void vmclear_local_vcpus(void)
1085 {
1086         int cpu = raw_smp_processor_id();
1087         struct vcpu_vmx *vmx, *n;
1088
1089         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1090                                  local_vcpus_link)
1091                 __vcpu_clear(vmx);
1092 }
1093
1094 static void hardware_disable(void *garbage)
1095 {
1096         vmclear_local_vcpus();
1097         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1098         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1099 }
1100
1101 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1102                                       u32 msr, u32 *result)
1103 {
1104         u32 vmx_msr_low, vmx_msr_high;
1105         u32 ctl = ctl_min | ctl_opt;
1106
1107         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1108
1109         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1110         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1111
1112         /* Ensure minimum (required) set of control bits are supported. */
1113         if (ctl_min & ~ctl)
1114                 return -EIO;
1115
1116         *result = ctl;
1117         return 0;
1118 }
1119
1120 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1121 {
1122         u32 vmx_msr_low, vmx_msr_high;
1123         u32 min, opt, min2, opt2;
1124         u32 _pin_based_exec_control = 0;
1125         u32 _cpu_based_exec_control = 0;
1126         u32 _cpu_based_2nd_exec_control = 0;
1127         u32 _vmexit_control = 0;
1128         u32 _vmentry_control = 0;
1129
1130         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1131         opt = PIN_BASED_VIRTUAL_NMIS;
1132         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1133                                 &_pin_based_exec_control) < 0)
1134                 return -EIO;
1135
1136         min = CPU_BASED_HLT_EXITING |
1137 #ifdef CONFIG_X86_64
1138               CPU_BASED_CR8_LOAD_EXITING |
1139               CPU_BASED_CR8_STORE_EXITING |
1140 #endif
1141               CPU_BASED_CR3_LOAD_EXITING |
1142               CPU_BASED_CR3_STORE_EXITING |
1143               CPU_BASED_USE_IO_BITMAPS |
1144               CPU_BASED_MOV_DR_EXITING |
1145               CPU_BASED_USE_TSC_OFFSETING |
1146               CPU_BASED_INVLPG_EXITING;
1147         opt = CPU_BASED_TPR_SHADOW |
1148               CPU_BASED_USE_MSR_BITMAPS |
1149               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1150         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1151                                 &_cpu_based_exec_control) < 0)
1152                 return -EIO;
1153 #ifdef CONFIG_X86_64
1154         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1155                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1156                                            ~CPU_BASED_CR8_STORE_EXITING;
1157 #endif
1158         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1159                 min2 = 0;
1160                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1161                         SECONDARY_EXEC_WBINVD_EXITING |
1162                         SECONDARY_EXEC_ENABLE_VPID |
1163                         SECONDARY_EXEC_ENABLE_EPT;
1164                 if (adjust_vmx_controls(min2, opt2,
1165                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1166                                         &_cpu_based_2nd_exec_control) < 0)
1167                         return -EIO;
1168         }
1169 #ifndef CONFIG_X86_64
1170         if (!(_cpu_based_2nd_exec_control &
1171                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1172                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1173 #endif
1174         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1175                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1176                    enabled */
1177                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1178                          CPU_BASED_CR3_STORE_EXITING |
1179                          CPU_BASED_INVLPG_EXITING);
1180                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1181                                         &_cpu_based_exec_control) < 0)
1182                         return -EIO;
1183                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1184                       vmx_capability.ept, vmx_capability.vpid);
1185         }
1186
1187         min = 0;
1188 #ifdef CONFIG_X86_64
1189         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1190 #endif
1191         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1192         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1193                                 &_vmexit_control) < 0)
1194                 return -EIO;
1195
1196         min = 0;
1197         opt = VM_ENTRY_LOAD_IA32_PAT;
1198         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1199                                 &_vmentry_control) < 0)
1200                 return -EIO;
1201
1202         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1203
1204         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1205         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1206                 return -EIO;
1207
1208 #ifdef CONFIG_X86_64
1209         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1210         if (vmx_msr_high & (1u<<16))
1211                 return -EIO;
1212 #endif
1213
1214         /* Require Write-Back (WB) memory type for VMCS accesses. */
1215         if (((vmx_msr_high >> 18) & 15) != 6)
1216                 return -EIO;
1217
1218         vmcs_conf->size = vmx_msr_high & 0x1fff;
1219         vmcs_conf->order = get_order(vmcs_config.size);
1220         vmcs_conf->revision_id = vmx_msr_low;
1221
1222         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1223         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1224         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1225         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1226         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1227
1228         return 0;
1229 }
1230
1231 static struct vmcs *alloc_vmcs_cpu(int cpu)
1232 {
1233         int node = cpu_to_node(cpu);
1234         struct page *pages;
1235         struct vmcs *vmcs;
1236
1237         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1238         if (!pages)
1239                 return NULL;
1240         vmcs = page_address(pages);
1241         memset(vmcs, 0, vmcs_config.size);
1242         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1243         return vmcs;
1244 }
1245
1246 static struct vmcs *alloc_vmcs(void)
1247 {
1248         return alloc_vmcs_cpu(raw_smp_processor_id());
1249 }
1250
1251 static void free_vmcs(struct vmcs *vmcs)
1252 {
1253         free_pages((unsigned long)vmcs, vmcs_config.order);
1254 }
1255
1256 static void free_kvm_area(void)
1257 {
1258         int cpu;
1259
1260         for_each_online_cpu(cpu)
1261                 free_vmcs(per_cpu(vmxarea, cpu));
1262 }
1263
1264 static __init int alloc_kvm_area(void)
1265 {
1266         int cpu;
1267
1268         for_each_online_cpu(cpu) {
1269                 struct vmcs *vmcs;
1270
1271                 vmcs = alloc_vmcs_cpu(cpu);
1272                 if (!vmcs) {
1273                         free_kvm_area();
1274                         return -ENOMEM;
1275                 }
1276
1277                 per_cpu(vmxarea, cpu) = vmcs;
1278         }
1279         return 0;
1280 }
1281
1282 static __init int hardware_setup(void)
1283 {
1284         if (setup_vmcs_config(&vmcs_config) < 0)
1285                 return -EIO;
1286
1287         if (boot_cpu_has(X86_FEATURE_NX))
1288                 kvm_enable_efer_bits(EFER_NX);
1289
1290         return alloc_kvm_area();
1291 }
1292
1293 static __exit void hardware_unsetup(void)
1294 {
1295         free_kvm_area();
1296 }
1297
1298 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1299 {
1300         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1301
1302         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1303                 vmcs_write16(sf->selector, save->selector);
1304                 vmcs_writel(sf->base, save->base);
1305                 vmcs_write32(sf->limit, save->limit);
1306                 vmcs_write32(sf->ar_bytes, save->ar);
1307         } else {
1308                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1309                         << AR_DPL_SHIFT;
1310                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1311         }
1312 }
1313
1314 static void enter_pmode(struct kvm_vcpu *vcpu)
1315 {
1316         unsigned long flags;
1317         struct vcpu_vmx *vmx = to_vmx(vcpu);
1318
1319         vmx->emulation_required = 1;
1320         vcpu->arch.rmode.active = 0;
1321
1322         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1323         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1324         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1325
1326         flags = vmcs_readl(GUEST_RFLAGS);
1327         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1328         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1329         vmcs_writel(GUEST_RFLAGS, flags);
1330
1331         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1332                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1333
1334         update_exception_bitmap(vcpu);
1335
1336         if (emulate_invalid_guest_state)
1337                 return;
1338
1339         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1340         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1341         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1342         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1343
1344         vmcs_write16(GUEST_SS_SELECTOR, 0);
1345         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1346
1347         vmcs_write16(GUEST_CS_SELECTOR,
1348                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1349         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1350 }
1351
1352 static gva_t rmode_tss_base(struct kvm *kvm)
1353 {
1354         if (!kvm->arch.tss_addr) {
1355                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1356                                  kvm->memslots[0].npages - 3;
1357                 return base_gfn << PAGE_SHIFT;
1358         }
1359         return kvm->arch.tss_addr;
1360 }
1361
1362 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1363 {
1364         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1365
1366         save->selector = vmcs_read16(sf->selector);
1367         save->base = vmcs_readl(sf->base);
1368         save->limit = vmcs_read32(sf->limit);
1369         save->ar = vmcs_read32(sf->ar_bytes);
1370         vmcs_write16(sf->selector, save->base >> 4);
1371         vmcs_write32(sf->base, save->base & 0xfffff);
1372         vmcs_write32(sf->limit, 0xffff);
1373         vmcs_write32(sf->ar_bytes, 0xf3);
1374 }
1375
1376 static void enter_rmode(struct kvm_vcpu *vcpu)
1377 {
1378         unsigned long flags;
1379         struct vcpu_vmx *vmx = to_vmx(vcpu);
1380
1381         vmx->emulation_required = 1;
1382         vcpu->arch.rmode.active = 1;
1383
1384         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1385         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1386
1387         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1388         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1389
1390         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1391         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1392
1393         flags = vmcs_readl(GUEST_RFLAGS);
1394         vcpu->arch.rmode.save_iopl
1395                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1396
1397         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1398
1399         vmcs_writel(GUEST_RFLAGS, flags);
1400         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1401         update_exception_bitmap(vcpu);
1402
1403         if (emulate_invalid_guest_state)
1404                 goto continue_rmode;
1405
1406         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1407         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1408         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1409
1410         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1411         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1412         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1413                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1414         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1415
1416         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1417         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1418         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1419         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1420
1421 continue_rmode:
1422         kvm_mmu_reset_context(vcpu);
1423         init_rmode(vcpu->kvm);
1424 }
1425
1426 #ifdef CONFIG_X86_64
1427
1428 static void enter_lmode(struct kvm_vcpu *vcpu)
1429 {
1430         u32 guest_tr_ar;
1431
1432         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1433         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1434                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1435                        __func__);
1436                 vmcs_write32(GUEST_TR_AR_BYTES,
1437                              (guest_tr_ar & ~AR_TYPE_MASK)
1438                              | AR_TYPE_BUSY_64_TSS);
1439         }
1440
1441         vcpu->arch.shadow_efer |= EFER_LMA;
1442
1443         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1444         vmcs_write32(VM_ENTRY_CONTROLS,
1445                      vmcs_read32(VM_ENTRY_CONTROLS)
1446                      | VM_ENTRY_IA32E_MODE);
1447 }
1448
1449 static void exit_lmode(struct kvm_vcpu *vcpu)
1450 {
1451         vcpu->arch.shadow_efer &= ~EFER_LMA;
1452
1453         vmcs_write32(VM_ENTRY_CONTROLS,
1454                      vmcs_read32(VM_ENTRY_CONTROLS)
1455                      & ~VM_ENTRY_IA32E_MODE);
1456 }
1457
1458 #endif
1459
1460 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1461 {
1462         vpid_sync_vcpu_all(to_vmx(vcpu));
1463         if (vm_need_ept())
1464                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1465 }
1466
1467 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1468 {
1469         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1470         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1471 }
1472
1473 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1474 {
1475         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1476                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1477                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1478                         return;
1479                 }
1480                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1481                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1482                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1483                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1484         }
1485 }
1486
1487 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1488
1489 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1490                                         unsigned long cr0,
1491                                         struct kvm_vcpu *vcpu)
1492 {
1493         if (!(cr0 & X86_CR0_PG)) {
1494                 /* From paging/starting to nonpaging */
1495                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1496                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1497                              (CPU_BASED_CR3_LOAD_EXITING |
1498                               CPU_BASED_CR3_STORE_EXITING));
1499                 vcpu->arch.cr0 = cr0;
1500                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1501                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1502                 *hw_cr0 &= ~X86_CR0_WP;
1503         } else if (!is_paging(vcpu)) {
1504                 /* From nonpaging to paging */
1505                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1506                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1507                              ~(CPU_BASED_CR3_LOAD_EXITING |
1508                                CPU_BASED_CR3_STORE_EXITING));
1509                 vcpu->arch.cr0 = cr0;
1510                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1511                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1512                         *hw_cr0 &= ~X86_CR0_WP;
1513         }
1514 }
1515
1516 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1517                                         struct kvm_vcpu *vcpu)
1518 {
1519         if (!is_paging(vcpu)) {
1520                 *hw_cr4 &= ~X86_CR4_PAE;
1521                 *hw_cr4 |= X86_CR4_PSE;
1522         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1523                 *hw_cr4 &= ~X86_CR4_PAE;
1524 }
1525
1526 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1527 {
1528         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1529                                 KVM_VM_CR0_ALWAYS_ON;
1530
1531         vmx_fpu_deactivate(vcpu);
1532
1533         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1534                 enter_pmode(vcpu);
1535
1536         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1537                 enter_rmode(vcpu);
1538
1539 #ifdef CONFIG_X86_64
1540         if (vcpu->arch.shadow_efer & EFER_LME) {
1541                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1542                         enter_lmode(vcpu);
1543                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1544                         exit_lmode(vcpu);
1545         }
1546 #endif
1547
1548         if (vm_need_ept())
1549                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1550
1551         vmcs_writel(CR0_READ_SHADOW, cr0);
1552         vmcs_writel(GUEST_CR0, hw_cr0);
1553         vcpu->arch.cr0 = cr0;
1554
1555         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1556                 vmx_fpu_activate(vcpu);
1557 }
1558
1559 static u64 construct_eptp(unsigned long root_hpa)
1560 {
1561         u64 eptp;
1562
1563         /* TODO write the value reading from MSR */
1564         eptp = VMX_EPT_DEFAULT_MT |
1565                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1566         eptp |= (root_hpa & PAGE_MASK);
1567
1568         return eptp;
1569 }
1570
1571 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1572 {
1573         unsigned long guest_cr3;
1574         u64 eptp;
1575
1576         guest_cr3 = cr3;
1577         if (vm_need_ept()) {
1578                 eptp = construct_eptp(cr3);
1579                 vmcs_write64(EPT_POINTER, eptp);
1580                 ept_sync_context(eptp);
1581                 ept_load_pdptrs(vcpu);
1582                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1583                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1584         }
1585
1586         vmx_flush_tlb(vcpu);
1587         vmcs_writel(GUEST_CR3, guest_cr3);
1588         if (vcpu->arch.cr0 & X86_CR0_PE)
1589                 vmx_fpu_deactivate(vcpu);
1590 }
1591
1592 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1593 {
1594         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1595                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1596
1597         vcpu->arch.cr4 = cr4;
1598         if (vm_need_ept())
1599                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1600
1601         vmcs_writel(CR4_READ_SHADOW, cr4);
1602         vmcs_writel(GUEST_CR4, hw_cr4);
1603 }
1604
1605 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1606 {
1607         struct vcpu_vmx *vmx = to_vmx(vcpu);
1608         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1609
1610         vcpu->arch.shadow_efer = efer;
1611         if (!msr)
1612                 return;
1613         if (efer & EFER_LMA) {
1614                 vmcs_write32(VM_ENTRY_CONTROLS,
1615                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1616                                      VM_ENTRY_IA32E_MODE);
1617                 msr->data = efer;
1618
1619         } else {
1620                 vmcs_write32(VM_ENTRY_CONTROLS,
1621                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1622                                      ~VM_ENTRY_IA32E_MODE);
1623
1624                 msr->data = efer & ~EFER_LME;
1625         }
1626         setup_msrs(vmx);
1627 }
1628
1629 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1630 {
1631         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1632
1633         return vmcs_readl(sf->base);
1634 }
1635
1636 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1637                             struct kvm_segment *var, int seg)
1638 {
1639         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1640         u32 ar;
1641
1642         var->base = vmcs_readl(sf->base);
1643         var->limit = vmcs_read32(sf->limit);
1644         var->selector = vmcs_read16(sf->selector);
1645         ar = vmcs_read32(sf->ar_bytes);
1646         if (ar & AR_UNUSABLE_MASK)
1647                 ar = 0;
1648         var->type = ar & 15;
1649         var->s = (ar >> 4) & 1;
1650         var->dpl = (ar >> 5) & 3;
1651         var->present = (ar >> 7) & 1;
1652         var->avl = (ar >> 12) & 1;
1653         var->l = (ar >> 13) & 1;
1654         var->db = (ar >> 14) & 1;
1655         var->g = (ar >> 15) & 1;
1656         var->unusable = (ar >> 16) & 1;
1657 }
1658
1659 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1660 {
1661         struct kvm_segment kvm_seg;
1662
1663         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1664                 return 0;
1665
1666         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1667                 return 3;
1668
1669         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1670         return kvm_seg.selector & 3;
1671 }
1672
1673 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1674 {
1675         u32 ar;
1676
1677         if (var->unusable)
1678                 ar = 1 << 16;
1679         else {
1680                 ar = var->type & 15;
1681                 ar |= (var->s & 1) << 4;
1682                 ar |= (var->dpl & 3) << 5;
1683                 ar |= (var->present & 1) << 7;
1684                 ar |= (var->avl & 1) << 12;
1685                 ar |= (var->l & 1) << 13;
1686                 ar |= (var->db & 1) << 14;
1687                 ar |= (var->g & 1) << 15;
1688         }
1689         if (ar == 0) /* a 0 value means unusable */
1690                 ar = AR_UNUSABLE_MASK;
1691
1692         return ar;
1693 }
1694
1695 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1696                             struct kvm_segment *var, int seg)
1697 {
1698         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1699         u32 ar;
1700
1701         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1702                 vcpu->arch.rmode.tr.selector = var->selector;
1703                 vcpu->arch.rmode.tr.base = var->base;
1704                 vcpu->arch.rmode.tr.limit = var->limit;
1705                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1706                 return;
1707         }
1708         vmcs_writel(sf->base, var->base);
1709         vmcs_write32(sf->limit, var->limit);
1710         vmcs_write16(sf->selector, var->selector);
1711         if (vcpu->arch.rmode.active && var->s) {
1712                 /*
1713                  * Hack real-mode segments into vm86 compatibility.
1714                  */
1715                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1716                         vmcs_writel(sf->base, 0xf0000);
1717                 ar = 0xf3;
1718         } else
1719                 ar = vmx_segment_access_rights(var);
1720         vmcs_write32(sf->ar_bytes, ar);
1721 }
1722
1723 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1724 {
1725         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1726
1727         *db = (ar >> 14) & 1;
1728         *l = (ar >> 13) & 1;
1729 }
1730
1731 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1732 {
1733         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1734         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1735 }
1736
1737 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1738 {
1739         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1740         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1741 }
1742
1743 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1744 {
1745         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1746         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1747 }
1748
1749 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1750 {
1751         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1752         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1753 }
1754
1755 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1756 {
1757         struct kvm_segment var;
1758         u32 ar;
1759
1760         vmx_get_segment(vcpu, &var, seg);
1761         ar = vmx_segment_access_rights(&var);
1762
1763         if (var.base != (var.selector << 4))
1764                 return false;
1765         if (var.limit != 0xffff)
1766                 return false;
1767         if (ar != 0xf3)
1768                 return false;
1769
1770         return true;
1771 }
1772
1773 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1774 {
1775         struct kvm_segment cs;
1776         unsigned int cs_rpl;
1777
1778         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1779         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1780
1781         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1782                 return false;
1783         if (!cs.s)
1784                 return false;
1785         if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
1786                 if (cs.dpl > cs_rpl)
1787                         return false;
1788         } else if (cs.type & AR_TYPE_CODE_MASK) {
1789                 if (cs.dpl != cs_rpl)
1790                         return false;
1791         }
1792         if (!cs.present)
1793                 return false;
1794
1795         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1796         return true;
1797 }
1798
1799 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1800 {
1801         struct kvm_segment ss;
1802         unsigned int ss_rpl;
1803
1804         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1805         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1806
1807         if ((ss.type != 3) || (ss.type != 7))
1808                 return false;
1809         if (!ss.s)
1810                 return false;
1811         if (ss.dpl != ss_rpl) /* DPL != RPL */
1812                 return false;
1813         if (!ss.present)
1814                 return false;
1815
1816         return true;
1817 }
1818
1819 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1820 {
1821         struct kvm_segment var;
1822         unsigned int rpl;
1823
1824         vmx_get_segment(vcpu, &var, seg);
1825         rpl = var.selector & SELECTOR_RPL_MASK;
1826
1827         if (!var.s)
1828                 return false;
1829         if (!var.present)
1830                 return false;
1831         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1832                 if (var.dpl < rpl) /* DPL < RPL */
1833                         return false;
1834         }
1835
1836         /* TODO: Add other members to kvm_segment_field to allow checking for other access
1837          * rights flags
1838          */
1839         return true;
1840 }
1841
1842 static bool tr_valid(struct kvm_vcpu *vcpu)
1843 {
1844         struct kvm_segment tr;
1845
1846         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1847
1848         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
1849                 return false;
1850         if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
1851                 return false;
1852         if (!tr.present)
1853                 return false;
1854
1855         return true;
1856 }
1857
1858 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1859 {
1860         struct kvm_segment ldtr;
1861
1862         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1863
1864         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
1865                 return false;
1866         if (ldtr.type != 2)
1867                 return false;
1868         if (!ldtr.present)
1869                 return false;
1870
1871         return true;
1872 }
1873
1874 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1875 {
1876         struct kvm_segment cs, ss;
1877
1878         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1879         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1880
1881         return ((cs.selector & SELECTOR_RPL_MASK) ==
1882                  (ss.selector & SELECTOR_RPL_MASK));
1883 }
1884
1885 /*
1886  * Check if guest state is valid. Returns true if valid, false if
1887  * not.
1888  * We assume that registers are always usable
1889  */
1890 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1891 {
1892         /* real mode guest state checks */
1893         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1894                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1895                         return false;
1896                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1897                         return false;
1898                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1899                         return false;
1900                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1901                         return false;
1902                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1903                         return false;
1904                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1905                         return false;
1906         } else {
1907         /* protected mode guest state checks */
1908                 if (!cs_ss_rpl_check(vcpu))
1909                         return false;
1910                 if (!code_segment_valid(vcpu))
1911                         return false;
1912                 if (!stack_segment_valid(vcpu))
1913                         return false;
1914                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1915                         return false;
1916                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1917                         return false;
1918                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1919                         return false;
1920                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1921                         return false;
1922                 if (!tr_valid(vcpu))
1923                         return false;
1924                 if (!ldtr_valid(vcpu))
1925                         return false;
1926         }
1927         /* TODO:
1928          * - Add checks on RIP
1929          * - Add checks on RFLAGS
1930          */
1931
1932         return true;
1933 }
1934
1935 static int init_rmode_tss(struct kvm *kvm)
1936 {
1937         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1938         u16 data = 0;
1939         int ret = 0;
1940         int r;
1941
1942         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1943         if (r < 0)
1944                 goto out;
1945         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1946         r = kvm_write_guest_page(kvm, fn++, &data,
1947                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
1948         if (r < 0)
1949                 goto out;
1950         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1951         if (r < 0)
1952                 goto out;
1953         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1954         if (r < 0)
1955                 goto out;
1956         data = ~0;
1957         r = kvm_write_guest_page(kvm, fn, &data,
1958                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1959                                  sizeof(u8));
1960         if (r < 0)
1961                 goto out;
1962
1963         ret = 1;
1964 out:
1965         return ret;
1966 }
1967
1968 static int init_rmode_identity_map(struct kvm *kvm)
1969 {
1970         int i, r, ret;
1971         pfn_t identity_map_pfn;
1972         u32 tmp;
1973
1974         if (!vm_need_ept())
1975                 return 1;
1976         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1977                 printk(KERN_ERR "EPT: identity-mapping pagetable "
1978                         "haven't been allocated!\n");
1979                 return 0;
1980         }
1981         if (likely(kvm->arch.ept_identity_pagetable_done))
1982                 return 1;
1983         ret = 0;
1984         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1985         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1986         if (r < 0)
1987                 goto out;
1988         /* Set up identity-mapping pagetable for EPT in real mode */
1989         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1990                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1991                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1992                 r = kvm_write_guest_page(kvm, identity_map_pfn,
1993                                 &tmp, i * sizeof(tmp), sizeof(tmp));
1994                 if (r < 0)
1995                         goto out;
1996         }
1997         kvm->arch.ept_identity_pagetable_done = true;
1998         ret = 1;
1999 out:
2000         return ret;
2001 }
2002
2003 static void seg_setup(int seg)
2004 {
2005         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2006
2007         vmcs_write16(sf->selector, 0);
2008         vmcs_writel(sf->base, 0);
2009         vmcs_write32(sf->limit, 0xffff);
2010         vmcs_write32(sf->ar_bytes, 0xf3);
2011 }
2012
2013 static int alloc_apic_access_page(struct kvm *kvm)
2014 {
2015         struct kvm_userspace_memory_region kvm_userspace_mem;
2016         int r = 0;
2017
2018         down_write(&kvm->slots_lock);
2019         if (kvm->arch.apic_access_page)
2020                 goto out;
2021         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2022         kvm_userspace_mem.flags = 0;
2023         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2024         kvm_userspace_mem.memory_size = PAGE_SIZE;
2025         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2026         if (r)
2027                 goto out;
2028
2029         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2030 out:
2031         up_write(&kvm->slots_lock);
2032         return r;
2033 }
2034
2035 static int alloc_identity_pagetable(struct kvm *kvm)
2036 {
2037         struct kvm_userspace_memory_region kvm_userspace_mem;
2038         int r = 0;
2039
2040         down_write(&kvm->slots_lock);
2041         if (kvm->arch.ept_identity_pagetable)
2042                 goto out;
2043         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2044         kvm_userspace_mem.flags = 0;
2045         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2046         kvm_userspace_mem.memory_size = PAGE_SIZE;
2047         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2048         if (r)
2049                 goto out;
2050
2051         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2052                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2053 out:
2054         up_write(&kvm->slots_lock);
2055         return r;
2056 }
2057
2058 static void allocate_vpid(struct vcpu_vmx *vmx)
2059 {
2060         int vpid;
2061
2062         vmx->vpid = 0;
2063         if (!enable_vpid || !cpu_has_vmx_vpid())
2064                 return;
2065         spin_lock(&vmx_vpid_lock);
2066         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2067         if (vpid < VMX_NR_VPIDS) {
2068                 vmx->vpid = vpid;
2069                 __set_bit(vpid, vmx_vpid_bitmap);
2070         }
2071         spin_unlock(&vmx_vpid_lock);
2072 }
2073
2074 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
2075 {
2076         void *va;
2077
2078         if (!cpu_has_vmx_msr_bitmap())
2079                 return;
2080
2081         /*
2082          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2083          * have the write-low and read-high bitmap offsets the wrong way round.
2084          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2085          */
2086         va = kmap(msr_bitmap);
2087         if (msr <= 0x1fff) {
2088                 __clear_bit(msr, va + 0x000); /* read-low */
2089                 __clear_bit(msr, va + 0x800); /* write-low */
2090         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2091                 msr &= 0x1fff;
2092                 __clear_bit(msr, va + 0x400); /* read-high */
2093                 __clear_bit(msr, va + 0xc00); /* write-high */
2094         }
2095         kunmap(msr_bitmap);
2096 }
2097
2098 /*
2099  * Sets up the vmcs for emulated real mode.
2100  */
2101 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2102 {
2103         u32 host_sysenter_cs, msr_low, msr_high;
2104         u32 junk;
2105         u64 host_pat;
2106         unsigned long a;
2107         struct descriptor_table dt;
2108         int i;
2109         unsigned long kvm_vmx_return;
2110         u32 exec_control;
2111
2112         /* I/O */
2113         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
2114         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
2115
2116         if (cpu_has_vmx_msr_bitmap())
2117                 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
2118
2119         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2120
2121         /* Control */
2122         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2123                 vmcs_config.pin_based_exec_ctrl);
2124
2125         exec_control = vmcs_config.cpu_based_exec_ctrl;
2126         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2127                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2128 #ifdef CONFIG_X86_64
2129                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2130                                 CPU_BASED_CR8_LOAD_EXITING;
2131 #endif
2132         }
2133         if (!vm_need_ept())
2134                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2135                                 CPU_BASED_CR3_LOAD_EXITING  |
2136                                 CPU_BASED_INVLPG_EXITING;
2137         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2138
2139         if (cpu_has_secondary_exec_ctrls()) {
2140                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2141                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2142                         exec_control &=
2143                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2144                 if (vmx->vpid == 0)
2145                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2146                 if (!vm_need_ept())
2147                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2148                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2149         }
2150
2151         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2152         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2153         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2154
2155         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2156         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2157         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2158
2159         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2160         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2161         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2162         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2163         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2164         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2165 #ifdef CONFIG_X86_64
2166         rdmsrl(MSR_FS_BASE, a);
2167         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2168         rdmsrl(MSR_GS_BASE, a);
2169         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2170 #else
2171         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2172         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2173 #endif
2174
2175         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2176
2177         kvm_get_idt(&dt);
2178         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2179
2180         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2181         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2182         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2183         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2184         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2185
2186         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2187         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2188         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2189         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2190         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2191         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2192
2193         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2194                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2195                 host_pat = msr_low | ((u64) msr_high << 32);
2196                 vmcs_write64(HOST_IA32_PAT, host_pat);
2197         }
2198         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2199                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2200                 host_pat = msr_low | ((u64) msr_high << 32);
2201                 /* Write the default value follow host pat */
2202                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2203                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2204                 vmx->vcpu.arch.pat = host_pat;
2205         }
2206
2207         for (i = 0; i < NR_VMX_MSR; ++i) {
2208                 u32 index = vmx_msr_index[i];
2209                 u32 data_low, data_high;
2210                 u64 data;
2211                 int j = vmx->nmsrs;
2212
2213                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2214                         continue;
2215                 if (wrmsr_safe(index, data_low, data_high) < 0)
2216                         continue;
2217                 data = data_low | ((u64)data_high << 32);
2218                 vmx->host_msrs[j].index = index;
2219                 vmx->host_msrs[j].reserved = 0;
2220                 vmx->host_msrs[j].data = data;
2221                 vmx->guest_msrs[j] = vmx->host_msrs[j];
2222                 ++vmx->nmsrs;
2223         }
2224
2225         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2226
2227         /* 22.2.1, 20.8.1 */
2228         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2229
2230         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2231         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2232
2233
2234         return 0;
2235 }
2236
2237 static int init_rmode(struct kvm *kvm)
2238 {
2239         if (!init_rmode_tss(kvm))
2240                 return 0;
2241         if (!init_rmode_identity_map(kvm))
2242                 return 0;
2243         return 1;
2244 }
2245
2246 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2247 {
2248         struct vcpu_vmx *vmx = to_vmx(vcpu);
2249         u64 msr;
2250         int ret;
2251
2252         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2253         down_read(&vcpu->kvm->slots_lock);
2254         if (!init_rmode(vmx->vcpu.kvm)) {
2255                 ret = -ENOMEM;
2256                 goto out;
2257         }
2258
2259         vmx->vcpu.arch.rmode.active = 0;
2260
2261         vmx->soft_vnmi_blocked = 0;
2262
2263         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2264         kvm_set_cr8(&vmx->vcpu, 0);
2265         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2266         if (vmx->vcpu.vcpu_id == 0)
2267                 msr |= MSR_IA32_APICBASE_BSP;
2268         kvm_set_apic_base(&vmx->vcpu, msr);
2269
2270         fx_init(&vmx->vcpu);
2271
2272         seg_setup(VCPU_SREG_CS);
2273         /*
2274          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2275          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2276          */
2277         if (vmx->vcpu.vcpu_id == 0) {
2278                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2279                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2280         } else {
2281                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2282                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2283         }
2284
2285         seg_setup(VCPU_SREG_DS);
2286         seg_setup(VCPU_SREG_ES);
2287         seg_setup(VCPU_SREG_FS);
2288         seg_setup(VCPU_SREG_GS);
2289         seg_setup(VCPU_SREG_SS);
2290
2291         vmcs_write16(GUEST_TR_SELECTOR, 0);
2292         vmcs_writel(GUEST_TR_BASE, 0);
2293         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2294         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2295
2296         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2297         vmcs_writel(GUEST_LDTR_BASE, 0);
2298         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2299         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2300
2301         vmcs_write32(GUEST_SYSENTER_CS, 0);
2302         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2303         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2304
2305         vmcs_writel(GUEST_RFLAGS, 0x02);
2306         if (vmx->vcpu.vcpu_id == 0)
2307                 kvm_rip_write(vcpu, 0xfff0);
2308         else
2309                 kvm_rip_write(vcpu, 0);
2310         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2311
2312         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2313         vmcs_writel(GUEST_DR7, 0x400);
2314
2315         vmcs_writel(GUEST_GDTR_BASE, 0);
2316         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2317
2318         vmcs_writel(GUEST_IDTR_BASE, 0);
2319         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2320
2321         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2322         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2323         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2324
2325         guest_write_tsc(0);
2326
2327         /* Special registers */
2328         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2329
2330         setup_msrs(vmx);
2331
2332         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2333
2334         if (cpu_has_vmx_tpr_shadow()) {
2335                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2336                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2337                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2338                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2339                 vmcs_write32(TPR_THRESHOLD, 0);
2340         }
2341
2342         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2343                 vmcs_write64(APIC_ACCESS_ADDR,
2344                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2345
2346         if (vmx->vpid != 0)
2347                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2348
2349         vmx->vcpu.arch.cr0 = 0x60000010;
2350         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2351         vmx_set_cr4(&vmx->vcpu, 0);
2352         vmx_set_efer(&vmx->vcpu, 0);
2353         vmx_fpu_activate(&vmx->vcpu);
2354         update_exception_bitmap(&vmx->vcpu);
2355
2356         vpid_sync_vcpu_all(vmx);
2357
2358         ret = 0;
2359
2360         /* HACK: Don't enable emulation on guest boot/reset */
2361         vmx->emulation_required = 0;
2362
2363 out:
2364         up_read(&vcpu->kvm->slots_lock);
2365         return ret;
2366 }
2367
2368 static void enable_irq_window(struct kvm_vcpu *vcpu)
2369 {
2370         u32 cpu_based_vm_exec_control;
2371
2372         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2373         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2374         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2375 }
2376
2377 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2378 {
2379         u32 cpu_based_vm_exec_control;
2380
2381         if (!cpu_has_virtual_nmis()) {
2382                 enable_irq_window(vcpu);
2383                 return;
2384         }
2385
2386         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2387         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2388         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2389 }
2390
2391 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2392 {
2393         struct vcpu_vmx *vmx = to_vmx(vcpu);
2394
2395         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2396
2397         ++vcpu->stat.irq_injections;
2398         if (vcpu->arch.rmode.active) {
2399                 vmx->rmode.irq.pending = true;
2400                 vmx->rmode.irq.vector = irq;
2401                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2402                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2403                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2404                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2405                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2406                 return;
2407         }
2408         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2409                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2410 }
2411
2412 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2413 {
2414         struct vcpu_vmx *vmx = to_vmx(vcpu);
2415
2416         if (!cpu_has_virtual_nmis()) {
2417                 /*
2418                  * Tracking the NMI-blocked state in software is built upon
2419                  * finding the next open IRQ window. This, in turn, depends on
2420                  * well-behaving guests: They have to keep IRQs disabled at
2421                  * least as long as the NMI handler runs. Otherwise we may
2422                  * cause NMI nesting, maybe breaking the guest. But as this is
2423                  * highly unlikely, we can live with the residual risk.
2424                  */
2425                 vmx->soft_vnmi_blocked = 1;
2426                 vmx->vnmi_blocked_time = 0;
2427         }
2428
2429         ++vcpu->stat.nmi_injections;
2430         if (vcpu->arch.rmode.active) {
2431                 vmx->rmode.irq.pending = true;
2432                 vmx->rmode.irq.vector = NMI_VECTOR;
2433                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2434                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2435                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2436                              INTR_INFO_VALID_MASK);
2437                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2438                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2439                 return;
2440         }
2441         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2442                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2443 }
2444
2445 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2446 {
2447         u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2448
2449         vcpu->arch.nmi_window_open =
2450                 !(guest_intr & (GUEST_INTR_STATE_STI |
2451                                 GUEST_INTR_STATE_MOV_SS |
2452                                 GUEST_INTR_STATE_NMI));
2453         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2454                 vcpu->arch.nmi_window_open = 0;
2455
2456         vcpu->arch.interrupt_window_open =
2457                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2458                  !(guest_intr & (GUEST_INTR_STATE_STI |
2459                                  GUEST_INTR_STATE_MOV_SS)));
2460 }
2461
2462 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2463 {
2464         int word_index = __ffs(vcpu->arch.irq_summary);
2465         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2466         int irq = word_index * BITS_PER_LONG + bit_index;
2467
2468         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2469         if (!vcpu->arch.irq_pending[word_index])
2470                 clear_bit(word_index, &vcpu->arch.irq_summary);
2471         kvm_queue_interrupt(vcpu, irq);
2472 }
2473
2474 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2475                                        struct kvm_run *kvm_run)
2476 {
2477         vmx_update_window_states(vcpu);
2478
2479         if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2480                 if (vcpu->arch.nmi_window_open) {
2481                         vcpu->arch.nmi_pending = false;
2482                         vcpu->arch.nmi_injected = true;
2483                 } else {
2484                         enable_nmi_window(vcpu);
2485                         return;
2486                 }
2487         }
2488         if (vcpu->arch.nmi_injected) {
2489                 vmx_inject_nmi(vcpu);
2490                 if (vcpu->arch.nmi_pending || kvm_run->request_nmi_window)
2491                         enable_nmi_window(vcpu);
2492                 else if (vcpu->arch.irq_summary
2493                          || kvm_run->request_interrupt_window)
2494                         enable_irq_window(vcpu);
2495                 return;
2496         }
2497         if (!vcpu->arch.nmi_window_open || kvm_run->request_nmi_window)
2498                 enable_nmi_window(vcpu);
2499
2500         if (vcpu->arch.interrupt_window_open) {
2501                 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2502                         kvm_do_inject_irq(vcpu);
2503
2504                 if (vcpu->arch.interrupt.pending)
2505                         vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2506         }
2507         if (!vcpu->arch.interrupt_window_open &&
2508             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2509                 enable_irq_window(vcpu);
2510 }
2511
2512 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2513 {
2514         int ret;
2515         struct kvm_userspace_memory_region tss_mem = {
2516                 .slot = TSS_PRIVATE_MEMSLOT,
2517                 .guest_phys_addr = addr,
2518                 .memory_size = PAGE_SIZE * 3,
2519                 .flags = 0,
2520         };
2521
2522         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2523         if (ret)
2524                 return ret;
2525         kvm->arch.tss_addr = addr;
2526         return 0;
2527 }
2528
2529 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2530 {
2531         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2532
2533         set_debugreg(dbg->bp[0], 0);
2534         set_debugreg(dbg->bp[1], 1);
2535         set_debugreg(dbg->bp[2], 2);
2536         set_debugreg(dbg->bp[3], 3);
2537
2538         if (dbg->singlestep) {
2539                 unsigned long flags;
2540
2541                 flags = vmcs_readl(GUEST_RFLAGS);
2542                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2543                 vmcs_writel(GUEST_RFLAGS, flags);
2544         }
2545 }
2546
2547 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2548                                   int vec, u32 err_code)
2549 {
2550         /*
2551          * Instruction with address size override prefix opcode 0x67
2552          * Cause the #SS fault with 0 error code in VM86 mode.
2553          */
2554         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2555                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2556                         return 1;
2557         /*
2558          * Forward all other exceptions that are valid in real mode.
2559          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2560          *        the required debugging infrastructure rework.
2561          */
2562         switch (vec) {
2563         case DE_VECTOR:
2564         case DB_VECTOR:
2565         case BP_VECTOR:
2566         case OF_VECTOR:
2567         case BR_VECTOR:
2568         case UD_VECTOR:
2569         case DF_VECTOR:
2570         case SS_VECTOR:
2571         case GP_VECTOR:
2572         case MF_VECTOR:
2573                 kvm_queue_exception(vcpu, vec);
2574                 return 1;
2575         }
2576         return 0;
2577 }
2578
2579 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2580 {
2581         struct vcpu_vmx *vmx = to_vmx(vcpu);
2582         u32 intr_info, error_code;
2583         unsigned long cr2, rip;
2584         u32 vect_info;
2585         enum emulation_result er;
2586
2587         vect_info = vmx->idt_vectoring_info;
2588         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2589
2590         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2591                                                 !is_page_fault(intr_info))
2592                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2593                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2594
2595         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2596                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2597                 set_bit(irq, vcpu->arch.irq_pending);
2598                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2599         }
2600
2601         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2602                 return 1;  /* already handled by vmx_vcpu_run() */
2603
2604         if (is_no_device(intr_info)) {
2605                 vmx_fpu_activate(vcpu);
2606                 return 1;
2607         }
2608
2609         if (is_invalid_opcode(intr_info)) {
2610                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2611                 if (er != EMULATE_DONE)
2612                         kvm_queue_exception(vcpu, UD_VECTOR);
2613                 return 1;
2614         }
2615
2616         error_code = 0;
2617         rip = kvm_rip_read(vcpu);
2618         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2619                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2620         if (is_page_fault(intr_info)) {
2621                 /* EPT won't cause page fault directly */
2622                 if (vm_need_ept())
2623                         BUG();
2624                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2625                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2626                             (u32)((u64)cr2 >> 32), handler);
2627                 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2628                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2629                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2630         }
2631
2632         if (vcpu->arch.rmode.active &&
2633             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2634                                                                 error_code)) {
2635                 if (vcpu->arch.halt_request) {
2636                         vcpu->arch.halt_request = 0;
2637                         return kvm_emulate_halt(vcpu);
2638                 }
2639                 return 1;
2640         }
2641
2642         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2643             (INTR_TYPE_EXCEPTION | 1)) {
2644                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2645                 return 0;
2646         }
2647         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2648         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2649         kvm_run->ex.error_code = error_code;
2650         return 0;
2651 }
2652
2653 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2654                                      struct kvm_run *kvm_run)
2655 {
2656         ++vcpu->stat.irq_exits;
2657         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2658         return 1;
2659 }
2660
2661 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2662 {
2663         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2664         return 0;
2665 }
2666
2667 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2668 {
2669         unsigned long exit_qualification;
2670         int size, down, in, string, rep;
2671         unsigned port;
2672
2673         ++vcpu->stat.io_exits;
2674         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2675         string = (exit_qualification & 16) != 0;
2676
2677         if (string) {
2678                 if (emulate_instruction(vcpu,
2679                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2680                         return 0;
2681                 return 1;
2682         }
2683
2684         size = (exit_qualification & 7) + 1;
2685         in = (exit_qualification & 8) != 0;
2686         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2687         rep = (exit_qualification & 32) != 0;
2688         port = exit_qualification >> 16;
2689
2690         skip_emulated_instruction(vcpu);
2691         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2692 }
2693
2694 static void
2695 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2696 {
2697         /*
2698          * Patch in the VMCALL instruction:
2699          */
2700         hypercall[0] = 0x0f;
2701         hypercall[1] = 0x01;
2702         hypercall[2] = 0xc1;
2703 }
2704
2705 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2706 {
2707         unsigned long exit_qualification;
2708         int cr;
2709         int reg;
2710
2711         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2712         cr = exit_qualification & 15;
2713         reg = (exit_qualification >> 8) & 15;
2714         switch ((exit_qualification >> 4) & 3) {
2715         case 0: /* mov to cr */
2716                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2717                             (u32)kvm_register_read(vcpu, reg),
2718                             (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2719                             handler);
2720                 switch (cr) {
2721                 case 0:
2722                         kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2723                         skip_emulated_instruction(vcpu);
2724                         return 1;
2725                 case 3:
2726                         kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2727                         skip_emulated_instruction(vcpu);
2728                         return 1;
2729                 case 4:
2730                         kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2731                         skip_emulated_instruction(vcpu);
2732                         return 1;
2733                 case 8:
2734                         kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2735                         skip_emulated_instruction(vcpu);
2736                         if (irqchip_in_kernel(vcpu->kvm))
2737                                 return 1;
2738                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2739                         return 0;
2740                 };
2741                 break;
2742         case 2: /* clts */
2743                 vmx_fpu_deactivate(vcpu);
2744                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2745                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2746                 vmx_fpu_activate(vcpu);
2747                 KVMTRACE_0D(CLTS, vcpu, handler);
2748                 skip_emulated_instruction(vcpu);
2749                 return 1;
2750         case 1: /*mov from cr*/
2751                 switch (cr) {
2752                 case 3:
2753                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2754                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2755                                     (u32)kvm_register_read(vcpu, reg),
2756                                     (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2757                                     handler);
2758                         skip_emulated_instruction(vcpu);
2759                         return 1;
2760                 case 8:
2761                         kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2762                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2763                                     (u32)kvm_register_read(vcpu, reg), handler);
2764                         skip_emulated_instruction(vcpu);
2765                         return 1;
2766                 }
2767                 break;
2768         case 3: /* lmsw */
2769                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2770
2771                 skip_emulated_instruction(vcpu);
2772                 return 1;
2773         default:
2774                 break;
2775         }
2776         kvm_run->exit_reason = 0;
2777         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2778                (int)(exit_qualification >> 4) & 3, cr);
2779         return 0;
2780 }
2781
2782 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2783 {
2784         unsigned long exit_qualification;
2785         unsigned long val;
2786         int dr, reg;
2787
2788         /*
2789          * FIXME: this code assumes the host is debugging the guest.
2790          *        need to deal with guest debugging itself too.
2791          */
2792         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2793         dr = exit_qualification & 7;
2794         reg = (exit_qualification >> 8) & 15;
2795         if (exit_qualification & 16) {
2796                 /* mov from dr */
2797                 switch (dr) {
2798                 case 6:
2799                         val = 0xffff0ff0;
2800                         break;
2801                 case 7:
2802                         val = 0x400;
2803                         break;
2804                 default:
2805                         val = 0;
2806                 }
2807                 kvm_register_write(vcpu, reg, val);
2808                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2809         } else {
2810                 /* mov to dr */
2811         }
2812         skip_emulated_instruction(vcpu);
2813         return 1;
2814 }
2815
2816 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2817 {
2818         kvm_emulate_cpuid(vcpu);
2819         return 1;
2820 }
2821
2822 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2823 {
2824         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2825         u64 data;
2826
2827         if (vmx_get_msr(vcpu, ecx, &data)) {
2828                 kvm_inject_gp(vcpu, 0);
2829                 return 1;
2830         }
2831
2832         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2833                     handler);
2834
2835         /* FIXME: handling of bits 32:63 of rax, rdx */
2836         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2837         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2838         skip_emulated_instruction(vcpu);
2839         return 1;
2840 }
2841
2842 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2843 {
2844         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2845         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2846                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2847
2848         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2849                     handler);
2850
2851         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2852                 kvm_inject_gp(vcpu, 0);
2853                 return 1;
2854         }
2855
2856         skip_emulated_instruction(vcpu);
2857         return 1;
2858 }
2859
2860 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2861                                       struct kvm_run *kvm_run)
2862 {
2863         return 1;
2864 }
2865
2866 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2867                                    struct kvm_run *kvm_run)
2868 {
2869         u32 cpu_based_vm_exec_control;
2870
2871         /* clear pending irq */
2872         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2873         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2874         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2875
2876         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2877         ++vcpu->stat.irq_window_exits;
2878
2879         /*
2880          * If the user space waits to inject interrupts, exit as soon as
2881          * possible
2882          */
2883         if (kvm_run->request_interrupt_window &&
2884             !vcpu->arch.irq_summary) {
2885                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2886                 return 0;
2887         }
2888         return 1;
2889 }
2890
2891 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2892 {
2893         skip_emulated_instruction(vcpu);
2894         return kvm_emulate_halt(vcpu);
2895 }
2896
2897 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2898 {
2899         skip_emulated_instruction(vcpu);
2900         kvm_emulate_hypercall(vcpu);
2901         return 1;
2902 }
2903
2904 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2905 {
2906         u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2907
2908         kvm_mmu_invlpg(vcpu, exit_qualification);
2909         skip_emulated_instruction(vcpu);
2910         return 1;
2911 }
2912
2913 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2914 {
2915         skip_emulated_instruction(vcpu);
2916         /* TODO: Add support for VT-d/pass-through device */
2917         return 1;
2918 }
2919
2920 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2921 {
2922         u64 exit_qualification;
2923         enum emulation_result er;
2924         unsigned long offset;
2925
2926         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2927         offset = exit_qualification & 0xffful;
2928
2929         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2930
2931         if (er !=  EMULATE_DONE) {
2932                 printk(KERN_ERR
2933                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2934                        offset);
2935                 return -ENOTSUPP;
2936         }
2937         return 1;
2938 }
2939
2940 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2941 {
2942         struct vcpu_vmx *vmx = to_vmx(vcpu);
2943         unsigned long exit_qualification;
2944         u16 tss_selector;
2945         int reason;
2946
2947         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2948
2949         reason = (u32)exit_qualification >> 30;
2950         if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
2951             (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
2952             (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
2953             == INTR_TYPE_NMI_INTR) {
2954                 vcpu->arch.nmi_injected = false;
2955                 if (cpu_has_virtual_nmis())
2956                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2957                                       GUEST_INTR_STATE_NMI);
2958         }
2959         tss_selector = exit_qualification;
2960
2961         return kvm_task_switch(vcpu, tss_selector, reason);
2962 }
2963
2964 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2965 {
2966         u64 exit_qualification;
2967         enum emulation_result er;
2968         gpa_t gpa;
2969         unsigned long hva;
2970         int gla_validity;
2971         int r;
2972
2973         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2974
2975         if (exit_qualification & (1 << 6)) {
2976                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2977                 return -ENOTSUPP;
2978         }
2979
2980         gla_validity = (exit_qualification >> 7) & 0x3;
2981         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2982                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2983                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2984                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2985                         (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2986                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2987                         (long unsigned int)exit_qualification);
2988                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2989                 kvm_run->hw.hardware_exit_reason = 0;
2990                 return -ENOTSUPP;
2991         }
2992
2993         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2994         hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2995         if (!kvm_is_error_hva(hva)) {
2996                 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2997                 if (r < 0) {
2998                         printk(KERN_ERR "EPT: Not enough memory!\n");
2999                         return -ENOMEM;
3000                 }
3001                 return 1;
3002         } else {
3003                 /* must be MMIO */
3004                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3005
3006                 if (er == EMULATE_FAIL) {
3007                         printk(KERN_ERR
3008                          "EPT: Fail to handle EPT violation vmexit!er is %d\n",
3009                          er);
3010                         printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3011                          (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3012                          (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
3013                         printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3014                                 (long unsigned int)exit_qualification);
3015                         return -ENOTSUPP;
3016                 } else if (er == EMULATE_DO_MMIO)
3017                         return 0;
3018         }
3019         return 1;
3020 }
3021
3022 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3023 {
3024         u32 cpu_based_vm_exec_control;
3025
3026         /* clear pending NMI */
3027         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3028         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3029         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3030         ++vcpu->stat.nmi_window_exits;
3031
3032         /*
3033          * If the user space waits to inject a NMI, exit as soon as possible
3034          */
3035         if (kvm_run->request_nmi_window && !vcpu->arch.nmi_pending) {
3036                 kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
3037                 return 0;
3038         }
3039
3040         return 1;
3041 }
3042
3043 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3044                                 struct kvm_run *kvm_run)
3045 {
3046         struct vcpu_vmx *vmx = to_vmx(vcpu);
3047         int err;
3048
3049         preempt_enable();
3050         local_irq_enable();
3051
3052         while (!guest_state_valid(vcpu)) {
3053                 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3054
3055                 if (err == EMULATE_DO_MMIO)
3056                         break;
3057
3058                 if (err != EMULATE_DONE) {
3059                         kvm_report_emulation_failure(vcpu, "emulation failure");
3060                         return;
3061                 }
3062
3063                 if (signal_pending(current))
3064                         break;
3065                 if (need_resched())
3066                         schedule();
3067         }
3068
3069         local_irq_disable();
3070         preempt_disable();
3071
3072         /* Guest state should be valid now except if we need to
3073          * emulate an MMIO */
3074         if (guest_state_valid(vcpu))
3075                 vmx->emulation_required = 0;
3076 }
3077
3078 /*
3079  * The exit handlers return 1 if the exit was handled fully and guest execution
3080  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3081  * to be done to userspace and return 0.
3082  */
3083 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3084                                       struct kvm_run *kvm_run) = {
3085         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3086         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3087         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3088         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3089         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3090         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3091         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3092         [EXIT_REASON_CPUID]                   = handle_cpuid,
3093         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3094         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3095         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3096         [EXIT_REASON_HLT]                     = handle_halt,
3097         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3098         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3099         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3100         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3101         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3102         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3103         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3104 };
3105
3106 static const int kvm_vmx_max_exit_handlers =
3107         ARRAY_SIZE(kvm_vmx_exit_handlers);
3108
3109 /*
3110  * The guest has exited.  See if we can fix it or if we need userspace
3111  * assistance.
3112  */
3113 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3114 {
3115         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3116         struct vcpu_vmx *vmx = to_vmx(vcpu);
3117         u32 vectoring_info = vmx->idt_vectoring_info;
3118
3119         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3120                     (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3121
3122         /* If we need to emulate an MMIO from handle_invalid_guest_state
3123          * we just return 0 */
3124         if (vmx->emulation_required && emulate_invalid_guest_state)
3125                 return 0;
3126
3127         /* Access CR3 don't cause VMExit in paging mode, so we need
3128          * to sync with guest real CR3. */
3129         if (vm_need_ept() && is_paging(vcpu)) {
3130                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3131                 ept_load_pdptrs(vcpu);
3132         }
3133
3134         if (unlikely(vmx->fail)) {
3135                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3136                 kvm_run->fail_entry.hardware_entry_failure_reason
3137                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3138                 return 0;
3139         }
3140
3141         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3142                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3143                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3144                         exit_reason != EXIT_REASON_TASK_SWITCH))
3145                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3146                        "(0x%x) and exit reason is 0x%x\n",
3147                        __func__, vectoring_info, exit_reason);
3148
3149         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3150                 if (vcpu->arch.interrupt_window_open) {
3151                         vmx->soft_vnmi_blocked = 0;
3152                         vcpu->arch.nmi_window_open = 1;
3153                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3154                     (kvm_run->request_nmi_window || vcpu->arch.nmi_pending)) {
3155                         /*
3156                          * This CPU don't support us in finding the end of an
3157                          * NMI-blocked window if the guest runs with IRQs
3158                          * disabled. So we pull the trigger after 1 s of
3159                          * futile waiting, but inform the user about this.
3160                          */
3161                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3162                                "state on VCPU %d after 1 s timeout\n",
3163                                __func__, vcpu->vcpu_id);
3164                         vmx->soft_vnmi_blocked = 0;
3165                         vmx->vcpu.arch.nmi_window_open = 1;
3166                 }
3167
3168                 /*
3169                  * If the user space waits to inject an NNI, exit ASAP
3170                  */
3171                 if (vcpu->arch.nmi_window_open && kvm_run->request_nmi_window
3172                     && !vcpu->arch.nmi_pending) {
3173                         kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
3174                         ++vcpu->stat.nmi_window_exits;
3175                         return 0;
3176                 }
3177         }
3178
3179         if (exit_reason < kvm_vmx_max_exit_handlers
3180             && kvm_vmx_exit_handlers[exit_reason])
3181                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3182         else {
3183                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3184                 kvm_run->hw.hardware_exit_reason = exit_reason;
3185         }
3186         return 0;
3187 }
3188
3189 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3190 {
3191         int max_irr, tpr;
3192
3193         if (!vm_need_tpr_shadow(vcpu->kvm))
3194                 return;
3195
3196         if (!kvm_lapic_enabled(vcpu) ||
3197             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3198                 vmcs_write32(TPR_THRESHOLD, 0);
3199                 return;
3200         }
3201
3202         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3203         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3204 }
3205
3206 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3207 {
3208         u32 exit_intr_info;
3209         u32 idt_vectoring_info;
3210         bool unblock_nmi;
3211         u8 vector;
3212         int type;
3213         bool idtv_info_valid;
3214         u32 error;
3215
3216         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3217         if (cpu_has_virtual_nmis()) {
3218                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3219                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3220                 /*
3221                  * SDM 3: 25.7.1.2
3222                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3223                  * a guest IRET fault.
3224                  */
3225                 if (unblock_nmi && vector != DF_VECTOR)
3226                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3227                                       GUEST_INTR_STATE_NMI);
3228         } else if (unlikely(vmx->soft_vnmi_blocked))
3229                 vmx->vnmi_blocked_time +=
3230                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3231
3232         idt_vectoring_info = vmx->idt_vectoring_info;
3233         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3234         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3235         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3236         if (vmx->vcpu.arch.nmi_injected) {
3237                 /*
3238                  * SDM 3: 25.7.1.2
3239                  * Clear bit "block by NMI" before VM entry if a NMI delivery
3240                  * faulted.
3241                  */
3242                 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3243                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3244                                         GUEST_INTR_STATE_NMI);
3245                 else
3246                         vmx->vcpu.arch.nmi_injected = false;
3247         }
3248         kvm_clear_exception_queue(&vmx->vcpu);
3249         if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
3250                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3251                         error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3252                         kvm_queue_exception_e(&vmx->vcpu, vector, error);
3253                 } else
3254                         kvm_queue_exception(&vmx->vcpu, vector);
3255                 vmx->idt_vectoring_info = 0;
3256         }
3257         kvm_clear_interrupt_queue(&vmx->vcpu);
3258         if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3259                 kvm_queue_interrupt(&vmx->vcpu, vector);
3260                 vmx->idt_vectoring_info = 0;
3261         }
3262 }
3263
3264 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3265 {
3266         update_tpr_threshold(vcpu);
3267
3268         vmx_update_window_states(vcpu);
3269
3270         if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3271                 if (vcpu->arch.interrupt.pending) {
3272                         enable_nmi_window(vcpu);
3273                 } else if (vcpu->arch.nmi_window_open) {
3274                         vcpu->arch.nmi_pending = false;
3275                         vcpu->arch.nmi_injected = true;
3276                 } else {
3277                         enable_nmi_window(vcpu);
3278                         return;
3279                 }
3280         }
3281         if (vcpu->arch.nmi_injected) {
3282                 vmx_inject_nmi(vcpu);
3283                 if (vcpu->arch.nmi_pending)
3284                         enable_nmi_window(vcpu);
3285                 else if (kvm_cpu_has_interrupt(vcpu))
3286                         enable_irq_window(vcpu);
3287                 return;
3288         }
3289         if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3290                 if (vcpu->arch.interrupt_window_open)
3291                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3292                 else
3293                         enable_irq_window(vcpu);
3294         }
3295         if (vcpu->arch.interrupt.pending) {
3296                 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3297                 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
3298         }
3299 }
3300
3301 /*
3302  * Failure to inject an interrupt should give us the information
3303  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3304  * when fetching the interrupt redirection bitmap in the real-mode
3305  * tss, this doesn't happen.  So we do it ourselves.
3306  */
3307 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3308 {
3309         vmx->rmode.irq.pending = 0;
3310         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3311                 return;
3312         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3313         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3314                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3315                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3316                 return;
3317         }
3318         vmx->idt_vectoring_info =
3319                 VECTORING_INFO_VALID_MASK
3320                 | INTR_TYPE_EXT_INTR
3321                 | vmx->rmode.irq.vector;
3322 }
3323
3324 #ifdef CONFIG_X86_64
3325 #define R "r"
3326 #define Q "q"
3327 #else
3328 #define R "e"
3329 #define Q "l"
3330 #endif
3331
3332 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3333 {
3334         struct vcpu_vmx *vmx = to_vmx(vcpu);
3335         u32 intr_info;
3336
3337         /* Record the guest's net vcpu time for enforced NMI injections. */
3338         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3339                 vmx->entry_time = ktime_get();
3340
3341         /* Handle invalid guest state instead of entering VMX */
3342         if (vmx->emulation_required && emulate_invalid_guest_state) {
3343                 handle_invalid_guest_state(vcpu, kvm_run);
3344                 return;
3345         }
3346
3347         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3348                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3349         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3350                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3351
3352         /*
3353          * Loading guest fpu may have cleared host cr0.ts
3354          */
3355         vmcs_writel(HOST_CR0, read_cr0());
3356
3357         asm(
3358                 /* Store host registers */
3359                 "push %%"R"dx; push %%"R"bp;"
3360                 "push %%"R"cx \n\t"
3361                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3362                 "je 1f \n\t"
3363                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3364                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3365                 "1: \n\t"
3366                 /* Check if vmlaunch of vmresume is needed */
3367                 "cmpl $0, %c[launched](%0) \n\t"
3368                 /* Load guest registers.  Don't clobber flags. */
3369                 "mov %c[cr2](%0), %%"R"ax \n\t"
3370                 "mov %%"R"ax, %%cr2 \n\t"
3371                 "mov %c[rax](%0), %%"R"ax \n\t"
3372                 "mov %c[rbx](%0), %%"R"bx \n\t"
3373                 "mov %c[rdx](%0), %%"R"dx \n\t"
3374                 "mov %c[rsi](%0), %%"R"si \n\t"
3375                 "mov %c[rdi](%0), %%"R"di \n\t"
3376                 "mov %c[rbp](%0), %%"R"bp \n\t"
3377 #ifdef CONFIG_X86_64
3378                 "mov %c[r8](%0),  %%r8  \n\t"
3379                 "mov %c[r9](%0),  %%r9  \n\t"
3380                 "mov %c[r10](%0), %%r10 \n\t"
3381                 "mov %c[r11](%0), %%r11 \n\t"
3382                 "mov %c[r12](%0), %%r12 \n\t"
3383                 "mov %c[r13](%0), %%r13 \n\t"
3384                 "mov %c[r14](%0), %%r14 \n\t"
3385                 "mov %c[r15](%0), %%r15 \n\t"
3386 #endif
3387                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3388
3389                 /* Enter guest mode */
3390                 "jne .Llaunched \n\t"
3391                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3392                 "jmp .Lkvm_vmx_return \n\t"
3393                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3394                 ".Lkvm_vmx_return: "
3395                 /* Save guest registers, load host registers, keep flags */
3396                 "xchg %0,     (%%"R"sp) \n\t"
3397                 "mov %%"R"ax, %c[rax](%0) \n\t"
3398                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3399                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3400                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3401                 "mov %%"R"si, %c[rsi](%0) \n\t"
3402                 "mov %%"R"di, %c[rdi](%0) \n\t"
3403                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3404 #ifdef CONFIG_X86_64
3405                 "mov %%r8,  %c[r8](%0) \n\t"
3406                 "mov %%r9,  %c[r9](%0) \n\t"
3407                 "mov %%r10, %c[r10](%0) \n\t"
3408                 "mov %%r11, %c[r11](%0) \n\t"
3409                 "mov %%r12, %c[r12](%0) \n\t"
3410                 "mov %%r13, %c[r13](%0) \n\t"
3411                 "mov %%r14, %c[r14](%0) \n\t"
3412                 "mov %%r15, %c[r15](%0) \n\t"
3413 #endif
3414                 "mov %%cr2, %%"R"ax   \n\t"
3415                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3416
3417                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3418                 "setbe %c[fail](%0) \n\t"
3419               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3420                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3421                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3422                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3423                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3424                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3425                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3426                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3427                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3428                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3429                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3430 #ifdef CONFIG_X86_64
3431                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3432                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3433                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3434                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3435                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3436                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3437                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3438                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3439 #endif
3440                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3441               : "cc", "memory"
3442                 , R"bx", R"di", R"si"
3443 #ifdef CONFIG_X86_64
3444                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3445 #endif
3446               );
3447
3448         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3449         vcpu->arch.regs_dirty = 0;
3450
3451         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3452         if (vmx->rmode.irq.pending)
3453                 fixup_rmode_irq(vmx);
3454
3455         vmx_update_window_states(vcpu);
3456
3457         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3458         vmx->launched = 1;
3459
3460         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3461
3462         /* We need to handle NMIs before interrupts are enabled */
3463         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3464             (intr_info & INTR_INFO_VALID_MASK)) {
3465                 KVMTRACE_0D(NMI, vcpu, handler);
3466                 asm("int $2");
3467         }
3468
3469         vmx_complete_interrupts(vmx);
3470 }
3471
3472 #undef R
3473 #undef Q
3474
3475 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3476 {
3477         struct vcpu_vmx *vmx = to_vmx(vcpu);
3478
3479         if (vmx->vmcs) {
3480                 vcpu_clear(vmx);
3481                 free_vmcs(vmx->vmcs);
3482                 vmx->vmcs = NULL;
3483         }
3484 }
3485
3486 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3487 {
3488         struct vcpu_vmx *vmx = to_vmx(vcpu);
3489
3490         spin_lock(&vmx_vpid_lock);
3491         if (vmx->vpid != 0)
3492                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3493         spin_unlock(&vmx_vpid_lock);
3494         vmx_free_vmcs(vcpu);
3495         kfree(vmx->host_msrs);
3496         kfree(vmx->guest_msrs);
3497         kvm_vcpu_uninit(vcpu);
3498         kmem_cache_free(kvm_vcpu_cache, vmx);
3499 }
3500
3501 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3502 {
3503         int err;
3504         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3505         int cpu;
3506
3507         if (!vmx)
3508                 return ERR_PTR(-ENOMEM);
3509
3510         allocate_vpid(vmx);
3511
3512         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3513         if (err)
3514                 goto free_vcpu;
3515
3516         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3517         if (!vmx->guest_msrs) {
3518                 err = -ENOMEM;
3519                 goto uninit_vcpu;
3520         }
3521
3522         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3523         if (!vmx->host_msrs)
3524                 goto free_guest_msrs;
3525
3526         vmx->vmcs = alloc_vmcs();
3527         if (!vmx->vmcs)
3528                 goto free_msrs;
3529
3530         vmcs_clear(vmx->vmcs);
3531
3532         cpu = get_cpu();
3533         vmx_vcpu_load(&vmx->vcpu, cpu);
3534         err = vmx_vcpu_setup(vmx);
3535         vmx_vcpu_put(&vmx->vcpu);
3536         put_cpu();
3537         if (err)
3538                 goto free_vmcs;
3539         if (vm_need_virtualize_apic_accesses(kvm))
3540                 if (alloc_apic_access_page(kvm) != 0)
3541                         goto free_vmcs;
3542
3543         if (vm_need_ept())
3544                 if (alloc_identity_pagetable(kvm) != 0)
3545                         goto free_vmcs;
3546
3547         return &vmx->vcpu;
3548
3549 free_vmcs:
3550         free_vmcs(vmx->vmcs);
3551 free_msrs:
3552         kfree(vmx->host_msrs);
3553 free_guest_msrs:
3554         kfree(vmx->guest_msrs);
3555 uninit_vcpu:
3556         kvm_vcpu_uninit(&vmx->vcpu);
3557 free_vcpu:
3558         kmem_cache_free(kvm_vcpu_cache, vmx);
3559         return ERR_PTR(err);
3560 }
3561
3562 static void __init vmx_check_processor_compat(void *rtn)
3563 {
3564         struct vmcs_config vmcs_conf;
3565
3566         *(int *)rtn = 0;
3567         if (setup_vmcs_config(&vmcs_conf) < 0)
3568                 *(int *)rtn = -EIO;
3569         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3570                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3571                                 smp_processor_id());
3572                 *(int *)rtn = -EIO;
3573         }
3574 }
3575
3576 static int get_ept_level(void)
3577 {
3578         return VMX_EPT_DEFAULT_GAW + 1;
3579 }
3580
3581 static int vmx_get_mt_mask_shift(void)
3582 {
3583         return VMX_EPT_MT_EPTE_SHIFT;
3584 }
3585
3586 static struct kvm_x86_ops vmx_x86_ops = {
3587         .cpu_has_kvm_support = cpu_has_kvm_support,
3588         .disabled_by_bios = vmx_disabled_by_bios,
3589         .hardware_setup = hardware_setup,
3590         .hardware_unsetup = hardware_unsetup,
3591         .check_processor_compatibility = vmx_check_processor_compat,
3592         .hardware_enable = hardware_enable,
3593         .hardware_disable = hardware_disable,
3594         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3595
3596         .vcpu_create = vmx_create_vcpu,
3597         .vcpu_free = vmx_free_vcpu,
3598         .vcpu_reset = vmx_vcpu_reset,
3599
3600         .prepare_guest_switch = vmx_save_host_state,
3601         .vcpu_load = vmx_vcpu_load,
3602         .vcpu_put = vmx_vcpu_put,
3603
3604         .set_guest_debug = set_guest_debug,
3605         .guest_debug_pre = kvm_guest_debug_pre,
3606         .get_msr = vmx_get_msr,
3607         .set_msr = vmx_set_msr,
3608         .get_segment_base = vmx_get_segment_base,
3609         .get_segment = vmx_get_segment,
3610         .set_segment = vmx_set_segment,
3611         .get_cpl = vmx_get_cpl,
3612         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3613         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3614         .set_cr0 = vmx_set_cr0,
3615         .set_cr3 = vmx_set_cr3,
3616         .set_cr4 = vmx_set_cr4,
3617         .set_efer = vmx_set_efer,
3618         .get_idt = vmx_get_idt,
3619         .set_idt = vmx_set_idt,
3620         .get_gdt = vmx_get_gdt,
3621         .set_gdt = vmx_set_gdt,
3622         .cache_reg = vmx_cache_reg,
3623         .get_rflags = vmx_get_rflags,
3624         .set_rflags = vmx_set_rflags,
3625
3626         .tlb_flush = vmx_flush_tlb,
3627
3628         .run = vmx_vcpu_run,
3629         .handle_exit = kvm_handle_exit,
3630         .skip_emulated_instruction = skip_emulated_instruction,
3631         .patch_hypercall = vmx_patch_hypercall,
3632         .get_irq = vmx_get_irq,
3633         .set_irq = vmx_inject_irq,
3634         .queue_exception = vmx_queue_exception,
3635         .exception_injected = vmx_exception_injected,
3636         .inject_pending_irq = vmx_intr_assist,
3637         .inject_pending_vectors = do_interrupt_requests,
3638
3639         .set_tss_addr = vmx_set_tss_addr,
3640         .get_tdp_level = get_ept_level,
3641         .get_mt_mask_shift = vmx_get_mt_mask_shift,
3642 };
3643
3644 static int __init vmx_init(void)
3645 {
3646         void *va;
3647         int r;
3648
3649         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3650         if (!vmx_io_bitmap_a)
3651                 return -ENOMEM;
3652
3653         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3654         if (!vmx_io_bitmap_b) {
3655                 r = -ENOMEM;
3656                 goto out;
3657         }
3658
3659         vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3660         if (!vmx_msr_bitmap) {
3661                 r = -ENOMEM;
3662                 goto out1;
3663         }
3664
3665         /*
3666          * Allow direct access to the PC debug port (it is often used for I/O
3667          * delays, but the vmexits simply slow things down).
3668          */
3669         va = kmap(vmx_io_bitmap_a);
3670         memset(va, 0xff, PAGE_SIZE);
3671         clear_bit(0x80, va);
3672         kunmap(vmx_io_bitmap_a);
3673
3674         va = kmap(vmx_io_bitmap_b);
3675         memset(va, 0xff, PAGE_SIZE);
3676         kunmap(vmx_io_bitmap_b);
3677
3678         va = kmap(vmx_msr_bitmap);
3679         memset(va, 0xff, PAGE_SIZE);
3680         kunmap(vmx_msr_bitmap);
3681
3682         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3683
3684         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3685         if (r)
3686                 goto out2;
3687
3688         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3689         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3690         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3691         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3692         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3693
3694         if (vm_need_ept()) {
3695                 bypass_guest_pf = 0;
3696                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3697                         VMX_EPT_WRITABLE_MASK |
3698                         VMX_EPT_IGMT_BIT);
3699                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3700                                 VMX_EPT_EXECUTABLE_MASK,
3701                                 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3702                 kvm_enable_tdp();
3703         } else
3704                 kvm_disable_tdp();
3705
3706         if (bypass_guest_pf)
3707                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3708
3709         ept_sync_global();
3710
3711         return 0;
3712
3713 out2:
3714         __free_page(vmx_msr_bitmap);
3715 out1:
3716         __free_page(vmx_io_bitmap_b);
3717 out:
3718         __free_page(vmx_io_bitmap_a);
3719         return r;
3720 }
3721
3722 static void __exit vmx_exit(void)
3723 {
3724         __free_page(vmx_msr_bitmap);
3725         __free_page(vmx_io_bitmap_b);
3726         __free_page(vmx_io_bitmap_a);
3727
3728         kvm_exit();
3729 }
3730
3731 module_init(vmx_init)
3732 module_exit(vmx_exit)